
 

  

 

Aalborg Universitet

Parallel Trajectory-to-Location Join

Shang, Shuo; Chen, Lisi; Zheng, Kai; Jensen, Christian S.; Wei, Zhewei; Kalnis, Panos

Published in:
IEEE Transactions on Knowledge and Data Engineering

DOI (link to publication from Publisher):
10.1109/TKDE.2018.2854705

Publication date:
2018

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Shang, S., Chen, L., Zheng, K., Jensen, C. S., Wei, Z., & Kalnis, P. (2018). Parallel Trajectory-to-Location Join.
IEEE Transactions on Knowledge and Data Engineering, 31(6), 1194 - 1207.
https://doi.org/10.1109/TKDE.2018.2854705

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: August 27, 2022

https://doi.org/10.1109/TKDE.2018.2854705
https://vbn.aau.dk/en/publications/54c6f80b-cf58-4925-933e-57df0b9325f5
https://doi.org/10.1109/TKDE.2018.2854705


1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2854705, IEEE

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, JANUARY XXXX 1

Parallel Trajectory-to-Location Join
Shuo Shang, Lisi Chen, Kai Zheng, Christian S. Jensen, Fellow, IEEE, Zhewei Wei, and Panos Kalnis

Abstract—The matching between trajectories and locations, called Trajectory-to-Location join (TL-Join), is fundamental functionality

in spatiotemporal data management. Given a set of trajectories, a set of locations, and a threshold θ, the TL-Join finds all (trajectory,

location) pairs from the two sets with spatiotemporal correlation above θ. This join targets diverse applications, including location

recommendation, event tracking, and trajectory activity analyses. We address three challenges in relation to the TL-Join: how to define

the spatiotemporal correlation between trajectories and locations, how to prune the search space effectively when computing the join,

and how to perform the computation in parallel. Specifically, we define new metrics to measure the spatiotemporal correlation between

trajectories and locations. We develop a novel parallel collaborative (PCol) search method based on a divide-and-conquer strategy. For

each location o, we retrieve the trajectories with high spatiotemporal correlation to o, and then we merge the results. An upper bound on

the spatiotemporal correlation and a heuristic scheduling strategy are developed to prune the search space. The trajectory searches

from different locations are independent and are performed in parallel, and the result merging cost is independent of the degree of

parallelism. Studies of the performance of the developed algorithms using large spatiotemporal data sets are reported.

Keywords—Trajectory-to-location join, Parallel Processing, Spatial networks, Spatial databases

✦

1 INTRODUCTION

With the continuous proliferation of GPS-enabled mobile

devices (e.g., vehicle navigation systems and smart phones)

and the rapid development of online map-based services (e.g.,

Google Maps1, and MapQuest2), it is easy to collect and share

trajectories, e.g., at specialized sites such as Bikely3, GPS-

way-points4, Share-my-routes5, and Microsoft Geolife6. Also,

more and more social networking sites, including Twitter7,

Facebook8, and Foursquare9, are starting to support trajectory

collection and sharing [16], [19]. The availability of massive

trajectory data motivates new studies in spatiotemporal data

management. The matching between trajectories and locations,

called Trajectory-to-Location Join (TL-Join), is fundamental

functionality. Given a set T of trajectories, a set O of locations,

and a threshold θ, the TL-Join finds all (trajectory, location)

pairs from T and O with a spatiotemporal correlation above

• Shuo Shang is with King Abdullah University of Science and Technology,

Saudi Arabia.

E-mail: jedi.shang@gmail.com

• Lisi Chen is with University of Wollongong, Australia.

E-mail: LCHEN012@e.ntu.edu.sg

• Kai Zheng is with University of Electronic Science and Technology of

China. Kai Zheng and Zhewei Wei are corresponding authors.

E-mail: zhengkai@uestc.edu.cn

• Christian S. Jensen is with Aalborg University, Denmark.

E-mail: csj@cs.aau.dk

• Zhewei Wei is with Renmin University of China.

E-mail: zhewei@ruc.edu.cn

• Panos Kalnis is with King Abdullah University of Science and Technology,

Saudi Arabia.

E-mail: panos.kalnis@kaust.edu.sa

1. https://maps.google.com/

2. https://www.mapquest.com/

3. https://www.bikely.com/

4. https://www.gps-waypoints.net

5. https://www.sharemyroutes.com/

6. https://research.microsoft.com/en-us/projects/geolife/

7. https://www.twitter.com/

8. https://www.Facebook.com/

9. https://www.Foursquare.com/

θ.

The TL-Join may benefit diverse applications, including

location recommendation [21], event tracking [28], and tra-

jectory activity analyses [12], [20], [25]. For example, people

may want to place new facilities (e.g., shopping malls, banks,

and petrol stations) in a city according to available trajectories

of the potential customers. They may use the TL-Join to

find the locations that join with the most trajectories. Such

locations have high visibility to trajectories and may be most

attractive to customers. These locations may then maximize

the commercial value of new facilities. As another example,

when events occur (e.g., accidents or terrorist attacks), the

police may want to find eyewitnesses of the events. The TL-

Join can find such people by matching their trajectories to

the events’ locations. In addition, we can use the TL-Join to

analyze the activities of trajectories. Depending on the points

of interest (e.g., restaurants, shopping malls, and sightseeing

places) that a trajectory joins with, we can infer activities

related to the trajectory (e.g., dinner, shopping, and tourism).

To the best of our knowledge, this is the first trajectory-

to-location matching study that takes into account both the

spatial and temporal ranges when computing spatial and

temporal correlations. We use a linear method [16], [18],

[19] to combine the spatial and temporal correlations into a

spatiotemporal correlation metric. In contrast, existing studies

typically perform (i) the matching solely in the spatial do-

main [18], [20], [21], [25], [28] or (ii) using point-to-point

matching in the spatial domain or the temporal domain [18],

[19], [21], [28]. As a result, they may fail to support time-

aware applications. For example, they may match a morning

trajectory to an evening activity (e.g., drinking at a bar), or

they may match a midnight trajectory to a facility open only

during the day (e.g., a bank or a shopping mall). Further, the

matched pairs cannot guarantee a long-term and continuous

correlation between locations and trajectories in the spatial

and temporal domains. For example, a trajectory may have

a single sample point and a short duration matching to a



1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2854705, IEEE

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, JANUARY XXXX 2

p10 

: sample point in a trajectory 

p11

: Shopping Mall (Opening hours: 11:00–16:30)

τ3

τ1
τ220:40

14:02

20:48
p5

p6

10:56

p7 

p1 

13:33

p9

21:12

11:11

p12

11:20 11:37

p13 

p14

12:06

p8 

21:00

13:41

p2 

p3

13:45

p4

13:50o

Fig. 1. TL-Join Example

location (its other sample points are too far away from the

location); but the result caused by this matching may be of

little use in activity analyses because its matching duration

is too short to denote a significant relationship. Furthermore,

the so-called Semantic Enrichment [12] approach utilizes the

stay-time at a location to infer a traveler’s activity. This type of

matching is not attractive in our intended applications because

it is not flexible, i.e., it relies on a fixed visit position (e.g.,

the intended location) when defining a matching. In contrast,

the matching in the TL-Join allows travelers to visit multiple

positions close to the intended location within a matching

duration. Such flexible matching is appropriate in applications

such as location recommendation, event tracking, and activity

analyses. The Semantic Enrichment can be viewed as a special

case of the matching in the TL-Join.

An example of the TL-Join is shown in Figure 1, where

τ1, τ2, and τ3 are trajectories and o is a location (a shop-

ping mall) with opening hours from 11:00 to 16:30. For

the matchings that solely consider the spatial domain [18],

[20], [21], [25], [28], trajectory-location pairs (τ1, o), (τ2, o),
and (τ3, o) are returned because all trajectories are spatially

close to o. However, the timestamps of τ2 do not match the

time range (opening hours) of o, so pair (τ2, o) has little

meaning in this scenario. For point-to-point matching [19] in

the spatial and temporal domains, pairs (τ1, o), and (τ3, o)
are returned because (p12, o) and (p4, o) are matched point

pairs, where p12 ∈ τ1 and p4 ∈ τ3. But there is not a long-

term and continuous correlation between p12 and o, so this

matching result is of little use in applications such as location

recommendation, event tracking, and activity analyses. The

TL-Join returns the pair (τ3, o) because it has a long-term

and continuous correlation in both the spatial and temporal

domains (e.g., matched point pairs (p2, o), (p3, o), (p4, o), and

(p5, o) and a duration of around 20 minutes) and because its

spatiotemporal correlation exceeds threshold θ. Notice that

the Semantic Enrichment approach [12] considers the stay

duration at a location, which means that multiple trajectory

sample points are at the corresponding location for the stay

duration (the number of sample points depends on the trajec-

tory sampling rate and the stay duration). The TL-Join can

support this special case.

The TL-Join is applied in a spatial network because objects

move in a spatial network rather than in Euclidean space

in many practical scenarios. In a spatial network, network

distance is the relevant distance between two objects, and using

Euclidean distance [12], [20], [25], [28] may lead to errors.

Table I: Trajectory-to-Location Matchings
Studies Query

Space
Spatiotemporal Match-
ing

Data

RPNN [21] Network Spatial only (point-to-
point)

1.6 K

ATSQ [28] Euclidean Spatial only (point-to-
point)

49 K

UOTS [18] Network Spatial only (point-to-
point)

30 K

PTM [19] Network Spatial (point-to-point)
and Temporal (point-to-
point)

30 K

Semantic En-
richment [12]

Euclidean Spatial (point-to-point)
and Temporal (range)

13 K

VID Join [20],
[25]

Euclidean Spatial only (range) 12 K

TL-Join (our
proposal)

Network Spatial (range) and Tem-
poral (range)

10 M

An overview of a comparison to existing trajectory-location

matching studies is shown in Table I. Existing methods [12],

[18]–[21], [25], [28] cannot process the TL-Join due to four

reasons. (i) Different query types: most trajectory-to-location

matching studies [12], [18], [19], [21], [28] are not related to

the join operation. For example, RPNN [21] concerns reverse

path nearest neighbor querying; ATSQ [28], UOTS [18], and

PTM [19] concern trajectory search by locations; and Semantic

Enrichment [12] concerns the use of trajectories to infer

travelers’ activities. Their solutions cannot be used in the TL-

Join because the solutions are for different query types. (ii)

Different matching functions: existing studies are based on

point-to-point matching [18], [19], [21], [28] or spatial-only

matching [18], [20], [21], [25], [28], and their solutions are

inapplicable to spatiotemporal range matching. (iii) Different

query spaces: the VID join [20], [25] is conducted in Eu-

clidean space, and its spatial index and accompanying pruning

techniques are not competitive in spatial networks. (iv) Paral-

lel processing requirement: existing centralized trajectory-to-

location joins (VID Join) cannot process large trajectory data

sets. Based on the experiments reported in the literature [20],

[25], the VID join can process at most 12 K trajectories. In

contrast, our implementation of the TL-Join can process 10

M trajectories with a reasonable runtime (the PCol solution

can process 10 M × 0.5 M (trajectory, location) pairs with

120 threads in 651 seconds). Table I offers further details on

the scale of the data considered, indicating that we consider

several orders of magnitude more data than do previous

studies.

Next, the algorithm used for computing the TS-Join [16]

cannot process the TL-Join because the query arguments are

different (two trajectory sets vs. a trajectory and a location

sets) and because the matching functions are different (point-

to-point matching vs. range matching). The TL-Join needs its

own specific solutions.

We propose two baseline solutions to the TL-Join, called

parallel temporal-first search (PTF) and parallel spatial-first



1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2854705, IEEE

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, JANUARY XXXX 3

search (PSF). For PTF, we improve the equal-partition grid

index in the TS-Join [16], and we propose a new balanced

grid index in the temporal domain (i.e., each leaf node has

similar numbers of trajectories and locations so that the par-

allel computation load is balanced). We define spatiotemporal

correlation upper and lower bounds to prune the search space,

and we perform the refinement of (trajectory, location) pairs

from the leaf nodes towards the root. The computations at

each index level occur in parallel. The main drawback of

PTF is threefold: (i) weak spatial pruning power (temporal

driven pruning), (ii) high merging cost (having more leaf nodes

enables more parallel processing, but also higher merging

cost), and (iii) additional computation cost to acquire network

distances when computing spatial correlations.

Next, PSF is based on a divide-and-conquer strategy and

performs better than PTF. For each location o, PSF explores

the spatial domain to find trajectories with high spatial corre-

lation to o. In the temporal domain, it checks whether the

corresponding timestamps are within the time range of o
(temporal correlation). We define upper bounds on the spatial

correlation to prune the search space. Each trajectory search

is independent and is performed in parallel, and the merging

cost is independent of the degree of parallelism. The network

distances needed for spatial correlation computations can be

derived directly during trajectory searches from locations.

The limitation of PSF lies in its weak pruning power in the

temporal domain.

To process the TL-Join more efficiently, we propose a

novel parallel collaborative search (PCol) approach. PCol uses

the parallel mechanism of PSF. For each location o, PCol

explores the spatial and temporal domains concurrently to

find trajectories with high spatiotemporal correlation to o. We

define upper bounds on the spatiotemporal correlation and

a heuristic scheduling strategy that result in strong pruning

power in the two domains.

To sum up, we make the following contributions:

• We propose a new trajectory-to-location join, called TL-

Join, targeting applications such as location recommen-

dation, event tracking, and trajectory activity analyses.

• The TL-Join takes both spatial and temporal range match-

ing into account to compute spatiotemporal correlation.

No other proposal provides this functionality.

• We develop two baseline algorithms for computing the

TL-Join called parallel temporal-first (PTF) search and

parallel spatial-first (PSF) search.

• We develop a parallel collaborative algorithm (PCol) with

effective pruning techniques and a heuristic scheduling

strategy in the spatial and temporal domains.

• We conduct extensive experiments on large trajectory

data sets to study the performance of the developed

algorithms. We can handle about 3 orders of magnitude

more trajectories than the state-of-the-art VID join.

The rest of the paper is organized as follows. Section 2

defines the setting, including spatial networks, trajectories, lo-

cations, and the spatiotemporal correlation metrics considered

in the paper; it ends by defining the problem. Parallel temporal-

first (PTF) search and parallel spatial-first (PSF) search are

covered in Sections 3 and 4, while parallel collaborative (PCol)

search is covered in Section 5. Experimental results are pre-

sented in Section 6. Related work is covered in Section 7, and

conclusions and future directions are presented in Section 8.

2 PRELIMINARIES AND PROBLEM DEFINITION

2.1 Spatial Networks

A spatial network is modeled as a connected, undirected, and

weighted graph G = (V,E, F,W ), where V is a vertex set and

E ⊆ {{vi, vj}|vi, vj ∈ V ∧ vi 6= vj} is an edge set. A vertex

vi ∈ V represents a road intersection or an end of a road, and

an edge ek = {vi, vj} ∈ E represents a road segment that

enables travel between vertices vi and vj . Function F : V ∪
E → Geometries maps a vertex to the point location of the

corresponding road intersection and maps an edge to a polyline

representing the corresponding road segment. Function W :
E → R assigns a real-valued weight W (e) to an edge e that

represents the corresponding road segment’s length.

The shortest path between two vertices vi and vj is a

sequence of edges linking vi and vj such that the sum of the

edge weights is minimal. Such a path is denoted by SP (vi, vj),
and its length is denoted by sd(vi, vj). Euclidean-space based

spatial indices (e.g., the R-tree [13]) and accompanying tech-

niques are ineffective in network environments due to loose

lower bounds.

For simplicity, we assume that the data points considered

(e.g., trajectory sample points) are located at vertices. It is

straightforward to also support data points on edges. Assume

a data point p is on an edge e with given network distances to

the two end vertices ea and eb. Then, a new vertex is created

for p with the appropriate geometry, and edge e is replaced

by edges (ea, p) and (p, eb) with the appropriate weights and

geometries.

2.2 Trajectories and Locations

Raw trajectory samples obtained from GPS devices are

typically of the form (longitude, latitude, time), and trajectory

sample points are captured periodically at some sampling

rate. We assume that all sample points have already been

map matched onto the spatial network using a map-matching

algorithm (e.g., [4], [24]) and that an object always follows

the shortest path when moving between two adjacent sample

points pa and pb. A trajectory is defined as follows.

Definition: Trajectory

A trajectory τ of a moving object is a finite, time-ordered

sequence 〈v1, v2, ..., vn〉, where vi = (pi, ti), i ∈ [1, n], with

pi being a sample point (equal to some vertex in G.V ) and

ti being a timestamp.

Assuming that τ.sr is the sampling rate of trajectory τ , we

have that ti+1 − ti = τ.sr, i ∈ [1, n− 1].

The above modeling of spatial networks and trajectories

aligns with previous studies [16], [19].

Definition: Location

A location o contains a spatial attribute o.p and a temporal



1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2854705, IEEE

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, JANUARY XXXX 4

τ

v3.pv2.pv1.p

o.p

v4.p

v5.p v6.p v7.p v8.p v9.p

v10.p v11.p v12.p

Fig. 2. Spatiotemporal Correlation

attribute o.R, where o.p is a vertex in G.V and o.R is a

time range. Time range o.R describes the valid duration

of o (e.g., opening hours of facilities, or time ranges of events).

The values of timestamps and time ranges are set to be

within the range of 24 hours, and the date is not taken

into account because in many practical scenarios, like urban

transportation, movements are often studied within the range

of a day [16], [19].

2.3 Spatiotemporal Correlation

Given a location o and a trajectory τ , Kτ is the set of

trajectory sample points in τ that are spatially closest to o.p:

∀v ∈ Kτ (∀v
′ ∈ τ \ Kτ (sd(o.p, v.p) ≤ sd(o.p, v′.p))). The

cardinality of Kτ is set as follows.

kτ = |Kτ | =

⌊

dc
τ.sr

⌋

+ 1 (1)

Here, dc controls the coupling duration (to describe the term

of correlations) between o and τ . Its value is user-defined. We

assume that trajectories are sampled uniformly. As different

locations may have different coupling duration dc and different

trajectories may have different sampling rates τ.sr, the value

of kτ may be different for different trajectories. The following

algorithms support this.

The spatial correlation CS(o, τ) and the temporal correlation

CT(o, τ) between o and τ are defined as follows.

CS(o, τ) =

∑

vi∈Kτ
e−sd(o.p,vi.p)

kτ
(2)

CT(o, τ) =
|{vj .t|vj ∈ Kτ ∧ vj .t ∈ o.R}|

kτ
(3)

In the spatial domain, we count the sum of the spatial distances

between location o and trajectory sample points in Kτ , while

in the temporal domain, we check the validity of the sample

points in Kτ by matching their timestamps to the time range

o.R.

An example that illustrates these definitions is shown in

Figure 2, where o is an object and τ = 〈v1, v2, ..., v12〉
is a trajectory. The coupling duration dc is 8 minutes, and

the sampling rate of τ is 2 minutes, so kτ = ⌊ 8 minutes
2 minutes

⌋ +
1 = 4 + 1 = 5. Points v7.p, v8.p,...,v11.p are the top-5

trajectory sample points spatially closest to o.p, so Kτ =
{v7.p, v8.p, ..., v11.p}. The value of CS(o, τ) is computed

by substituting Kτ into Equation 2. Next, assuming that

v7.t=12:50, v8.t=12:52, v9.t=12:54, v10.t=12:56, v11.t=12:58,

and o.R = [12:55, 13:00], we have that v7.t /∈ o.R, v8.t /∈ o.R,

v9.t /∈ o.R, v10.t ∈ o.R, and v11.t ∈ o.R. According to

Equation 3, CT(o, τ) = |{v10.t, v11.t}|/5 = 2/5 = 0.4.

A List of Notions
Notion Description

G.V the set of vertices in graph G

G.E the set of edges in graph G

sd(pi, pj) shortest path distance between vertices pi and pj
τ.sr sampling rate of trajectory τ

o.R time range of location o

dc coupling duration

Kτ the set of top-kτ sample points in τ that are
spatially closest to location o

CS, CT, CST spatial, temporal, and spatiotemporal correlation

λ the relative importance of the spatial and tempo-
ral correlations

UB , LB global upper and lower bounds

The spatial and temporal correlations of τ are both in the

range [0, 1]. We use a linear method [16], [19] to combine

the spatial and temporal correlations (Equations 2 and 3), and

the spatiotemporal correlation is defined as follows.

CST(o, τ) = λ · CS(o, τ) + (1− λ) · CT(o, τ) (4)

Here, parameter λ ∈ [0, 1] controls the relative importance of

the spatial and temporal correlations. The value of λ can be

adjusted at query time.

2.4 Problem Definition

Given a set T of trajectories, a set O of locations, and a

threshold θ, the trajectory-to-location join (TL-Join) returns

the set A of all (trajectory, location) pairs from the two

sets whose spatiotemporal correlations are at least θ, i.e.,

∀(τi, oj) ∈ A (CST(τi, oj) ≥ θ) ∧ ∀(τ ′i , o
′
j) ∈ ((T × O) \

A)(CST(τ
′
i , o

′
j) < θ).

3 PARALLEL TEMPORAL-FIRST SEARCH

3.1 Basic Idea

Parallel temporal-first (PTF) search is a baseline approach to

TL-Join processing. We improve the equal-partition grid index

used in the TS-Join [16], and we propose a new balanced

hierarchical grid index in the temporal domain (Section 3.2).

We also define upper and lower bounds to prune the search

space in the spatial and temporal domains. PTF refines the

(trajectory, location) pairs in the same leaf node and merges the

results from the leaf nodes towards the root. The join result is

then obtained from the root. The computations at the nodes at

the same level occur in parallel (Section 3.3). The pseudocode

of PTF and its time complexity are given in Section 3.4.

3.2 Balanced Grid Index

In the TS-Join [16], the temporal domain is partitioned into

m equal-sized time slots, each of which is assigned to a leaf

node. The drawback of this approach is that the distributions

of trajectories and locations are imbalanced, and different leaf

nodes may have quite different numbers of trajectories (e.g.,

peak hours may have more, off-peak hours may have fewer,

and midnight may have none). Such imbalance yields poor

performance in parallel processing. To address this issue, we

propose a new balanced grid index in the temporal domain



1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2854705, IEEE

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, JANUARY XXXX 5

0:00 24:00

n1 n3

time

n10

n13 n14

n15

Balanced grid index

Temporal Domain

Spatial Domain

τ

v3.pv2.pv1.p

o.p

v4.p

v5.p v6.p v7.p v8.p v9.p

v10.p v11.p v12.p

n4

n9 n11 n12

n2 n5 n6 n7 n8

12:00 18:0015:006:003:00 7:30 9:00

Level 3

Level 2

Level 1

Level 0

Fig. 3. Example of PTF

for PTF. Here, each leaf node n has a matching-times upper

bound M ≥ |nτ | × |no|, where nτ and no are the sets of

trajectories and locations contained in n. The optimal value

of M that achieves the highest performance is determined

through extensive experiments. Notice that the balanced grid

index is a temporal index, which indexes the time ranges of

trajectories and locations. Other trajectory indexes (e.g., [5],

[9], [14]) are spatial index, and they are not suitable for this

scenario.

The balanced grid index is constructed as follows. Given a

value of M and a slot s = [0, 24:00], we recursively partition

s into two equal-sized nodes if |sτ |× |so| > M , where sτ and

so are sets of trajectories and locations in slot s. For example,

given a trajectory τ = 〈v1, v2, ..., vi〉, its temporal range

range(τ) = [v1.t, vi.t]. If range(τ) ⊆ range(s), τ is contained

in s. Similarly, given a location o, if o.R ⊆ range(s), o is

contained in s. For example, given range(s) = [9:00, 12:00],

range(τ) = [10:00, 11:00], and o.R = [9:30, 11:30], τ and o
are contained in s.

Once the partitioning terminates, each slot corresponds to a

leaf node. We build a tree structure bottom-up. Assume that

there are m nodes at the leaf level. Then we build ⌈m2 ⌉ parent

nodes. We do this recursively until there is one parent, which

is the root. The height of the tree is ⌈log(m)⌉+1. An example

is shown in Figure 3, where n1, n2,...,n8 are leaf nodes and

n15 is the root. Each trajectory τ and each location o are stored

in the lowest node n that fully covers its temporal range, i.e.,

range(τ) ⊆ range(n) and o.R ⊆ range(n) and range(τ) and

o.R are not contained in the range of any child node of n.

For example, given o′.R = [9:30, 17:30], o′ is stored in n14

(range(n14) = [9:00, 24:00]) because o′.R ⊆ range(n14) and

o′.R * range(n11) and o′.R * range(n12) (n11 and n12 are

child nodes of n14).

3.3 Filtering, Refinement, and Merging

In the example in Figure 3, a trajectory τ and a location o are

stored in node n3. As they are temporally close to each other,

we estimate the upper bound on their temporal correlation

CT(o, τ) (cf. Equation 3) as follows.

|{vj |vj ∈ Kτ ∧ vj .t ∈ o.R}| ≤ kτ

⇒ CT(o, τ).ub = 1 ≥ CT(o, τ) (5)

By substituting Equation 5 into Equation 4, we have that

CST(o, τ) = λ · CS(o, τ) + (1− λ) · CT(o, τ) ≥ θ

⇒ CS(o, τ) ≥
θ − (1− λ) · CT(τ1, τ2).ub

λ
=

θ − 1 + λ

λ

For each “qualified” (trajectory, location) pair (o, τ) (i.e.,

CST(o, τ) ≥ θ), its spatial correlation exceeds the value of
θ−1+λ

λ
. We define a global lower bound LBS of the spatial

correlation between (trajectory, location) pairs in the same leaf

node as follows.

LBS =
θ − 1 + λ

λ
(6)

We use network expansion to compute the spatial correlation

CS(o, τ) (Equation 2). The network expansion is performed

from location o using Dijkstra’s algorithm [10]. Dijkstra’s

algorithm always selects the vertex with the minimum distance

label for expansion. Hence, the first kτ sample points in τ
scanned by the expansion are just the top-kτ sample points

closest to o. For example, in Figure 3, assuming kτ = 5 and

v7.p, v8.p, ..., v11.p are top-5 first scanned sample points in

τ . According to Equation 2, CS(o, τ) = 1
5 (e

−d(v7.p,o.p) +
e−d(v8.p,o.p) + ... + e−d(v11.p,o.p). If CS(τ, o) < LBS , then

CST(o, τ) < θ, and the (trajectory, location) pair (o, τ) can be

pruned safely. Otherwise, we compute the exact spatiotemporal

correlation CST(o, τ) (Equation 4) and compare to θ to check

the pair’s validity. The computations in different leaf nodes

are independent and occur in parallel.

Having computed the spatiotemporal correlations of the

(trajectory, location) pairs in the leaf nodes, we merge the

results from the leaf level to the root level (bottom-up). At

each level, when two nodes n and n′ have the same parent

n′′, we merge their results and assign this to the parent (e.g.,

merge n3, n4, and n10 to obtain the result for n10 in Figure 3).

In addition to these qualified results (CST(o, τ) ≥ θ), we

also need to consider the (trajectory, location) pairs (o, τ) in

the following three cases: (i) one item is stored in n or n′

and another item is stored in n′′ (e.g., range(τ) ⊆ range(n)
and o.R ⊆ range(n′′)); (ii) two items are stored in n′′ (e.g.,

range(τ) ⊆ range(n′′) and o.R ⊆ range(n′′)); (iii) one

item is stored in n and another item is stored in n′ (e.g.,

range(τ) ⊆ range(n) and o.R ⊆ range(n′)).
For the first and the second cases, we use the same lower

and upper bounds (Equations 5 and 6) and pruning techniques

as we use for the (trajectory, location) pairs in the same node.

The qualified pairs are stored in n′′. For the third case, as

trajectory τ and location o are stored in different nodes, we

have that CT (τ, o) = 0. By substituting this into Equation 4,

we have that

CST (τ, o) ≥ θ ⇔ CS(τ, o) ≥
θ

λ
(7)

As the value of CS(τ, o) is in the range [0, 1], if θ > λ,

(trajectory, location) pair (τ, o) is pruned directly. Otherwise,



1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2854705, IEEE

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, JANUARY XXXX 6

we compute the spatiotemporal correlation CST (τ, o) and

compare to θ to check the pair’s validity.

The merging processes of adjacent node pairs (e.g., merge

n1 and n2 to n9, n3 and n4 to n10) at the same level of the

tree are independent. Thus they again occur in parallel. Having

merged the computation results from the leaf nodes all the way

to the root node, the join result in [0:00, 24:00] is found.

3.4 Algorithm and Time Complexity

Algorithm 1: PTF Search

Data: a balanced grid index tree Tr, a trajectory set T , a

location set O, and a threshold θ
Result: {(τ, o)|CST(τ, o) ≥ θ, ∀τ ∈ T, ∀o ∈ O }
h← Tr.hight− 1;1

compute LBS ;2

for each leaf node n in Tg do3

for each (trajectory, location) pair (τ, o) in n do4

compute CS(τ, o);5

if CS(τ, o) < LBS then6

prune (τ, o);7

compute CST(τ, o);8

if CST(τ, o) ≥ θ then9

Pn.add(τ, o);10

while true do11

if na, nb ∈ level h, na.parent = nb.parent = nc12

then

merge na, nb, and nc;13

compute and store qualified (trajectory, location)14

pairs in Pnc
;

if h = 1 then15

return Pnc
;16

h← h− 1;17

The pseudocode of PTF is shown in Algorithm 1. The

computation is bottom-up, and h is the current level of com-

putation. Initially, we compute the global spatial lower bound

LBS (Equation 6) for leaf nodes (lines 1–2). For each (tra-

jectory, location) pair (τ, o) in n (i.e., range(τ) ⊆ range(n)
and o.R ⊆ range(n)), we compute its spatial correlation

CS(τ, o) (Equation 2), and if CS(τ, o) is less than LBS , pair

(τ, o) is pruned (lines 3–7). Otherwise, we compute the exact

spatiotemporal correlation CST(τ, o) (Equation 4), and if it

is no less than θ, we store (τ, o) in Pn (lines 8–10). Having

refined all leaf nodes, we merge the results from the leaf level

towards the root. If two nodes na and nb are at the same level

and they have the same parent node nc, we merge the results

for na, nb, and nc (e.g., n1, n2, and n9 in Figure 3) and

store the qualified (trajectory, location) pairs in Pnc
(lines 11–

14). If h = 1, the root node nc is reached, and all (trajectory,

location) pairs stored in Pnc
are returned. Otherwise, we repeat

the procedure for the next level of the tree (line 15–17).

Let |T | and |O| denote the cardinalities of trajectory set T
and location set O. We use |V | and |E| to denote the numbers

of vertices and edges in G. Then O(|V | log |V | + |E|) is the

time complexity of computing the spatial correlation between

a trajectory and a location by using Dijkstra’s algorithm. PTF

follows the filter-and-refine paradigm, and the time complexity

of the filtering phase is O((|V | log |V |+ |E|)|T ||O|).
The time complexity to verify candidates by computing

their exact spatiotemporal correlations is O(kτ |C|) (the spatial

correlations are computed in the filtering phase, so in the

refinement phase we only need to compute the temporal

correlations), where |C| is the cardinality of the candidate set

and C ⊆ P×O. The total time complexity is O((|V | log |V |+
|E|)|T ||O|) + kτ |C|) = O((|V | log |V | + |E|)|T ||O|), which

does not depend on the candidate set size.

The computations for nodes at the same level of the tree

occur in parallel. If we have multiple cores and threads (each

leaf node corresponds to a thread), it is possible to accelerate

the computation at the leaf level by generating many leaf nodes

and processing them in parallel. However, more leaf nodes also

leads to more tree levels (m is the number of leaf number, and

the height of the tree is ⌈log(m)⌉ + 1), which increases the

merging cost.

4 PARALLEL SPATIAL-FIRST SEARCH

4.1 Basic Idea

PTF has three weaknesses. (i) Weak spatial pruning power:

the pruning is driven by the temporal domain so it has low

effectiveness in the spatial domain. (ii) High merging cost:

more leaf nodes (each leaf node corresponds to a thread)

lead to a higher merging costs, which decreases performance.

(iii) Additional network distance computations are needed to

compute the spatial correlations (Equation 2), which again

yields poor performance.

Parallel spatial first (PSF) search is another baseline for

TL-Join computation. Its parallel mechanism is shown in

Figure 4(a). For each location o ∈ O, we search the trajectories

with high spatiotemporal correlations to o. The trajectory-

search processes at different locations are performed in par-

allel. In the spatial domain, we use network expansion [10]

to explore the spatial network and to find trajectories spatially

close to o (spatial correlation). In the temporal domain, we

check whether the corresponding timestamps are within the

time range of o (temporal correlation). Upper and lower

bounds on the spatiotemporal correlations are defined to prune

the search space. By merging the search results from each

location, the solution of the TL-join is found. Compared to

PTF, PSF has two advantages. First, its result merging cost

is independent of the degree of parallelism. We can simply

combine the trajectory-search results of all locations to get

the solution. Second, the network distances for the spatial

correlation computation can be acquired during the trajectory-

search processes. PSF has better time complexity than PTF.

4.2 Filtering, Refinement, and Merging

An example of PSF is given in Figure 4(b), where o is

a location and o.R is its time range; τ1, τ2, and τ3 are

trajectories; v1.p and v2.p are the top-2 vertices in τ3 spatially



1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2854705, IEEE

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, JANUARY XXXX 7

For each location, search the 

matching trajectories

Result merging

Join results

Locations Trajectories

(a) Parallel Mechanism

τ1

Spatial Domain

τ3

Temporal Domain of PSF

0 time

rs

o.p

v1.p

τ2

v2.p

v3.p

v4.p v5.p v6.p

v7.p

Temporal Domain of PCol

0 time

o.R

v3.t v4.t v5.t v6.t v7.t

dc dc

t1 t2 t3 t4

v1.t v2.t

rt rt

o.R

v3.t v4.t v5.t v6.t

 

                                

v1.t v2.t v7.t

(b) Trajectory Search

Fig. 4. Examples of PSF and PCol

closest to o; v3.p, v4.p,..., v7.p are the top-5 vertices in τ1
spatially closest to o, and v1.t,...,v7.t are the corresponding

timestamps. Assuming kτ1 = kτ2 = kτ3 = 5.

In the spatial domain, network expansion is performed

from o according to Dijkstra’s algorithm [10]. The explored

space is a circular region (o, rs) with center o and radius

rs. As Dijsktra’s algorithm always selects the vertex with the

minimum distance label for expansion, the top-k first scanned

vertices in τ are the top-k vertices spatially closest to o. For

example, in Figure 4(b), v1.p and v2.p are the top-2 first

scanned vertices in τ3, and v3.p, v4.p,..., v7.p are the top-5

first scanned vertices in τ1.

Assuming a trajectory τ has τ.k vertices that have been

scanned by the expansion from o. If τ.k ≥ kτ , trajectory τ
is called “fully scanned” (e.g., τ1 in Figure 4(b)). If kτ >
τ.k > 0, τ is called “partly scanned” (e.g., τ3 in Figure 4(b)).

If τ.k = 0, τ is called “unscanned” (e.g., τ2 in Figure 4(b)).

For a partly scanned trajectory τ ′, we estimate an upper

bound on its spatial correlation as follows. Assuming that

vj .p ∈ τ ′ is an unscanned vertex in the spatial domain, we

have:

rs < sd(o.p, vj .p)⇒ e−sd(o.p,vj .p) < e−rs

By substitution into Equation 2, the spatial correlation upper

bound CS(τ, o).ub is defined as follows.

CS(τ, o).ub =

∑

vi.p∈Vs
e−sd(o.p,vi.p) +

∑

vj .p∈Vu
e−rs

kτ
(8)

Here, Vs is a set of scanned vertices in τ (Vs ⊂ Kτ ), and Vu

is the set of unscanned top-kτ vertices in τ (Vs ∪ Vu = Kτ

and |Vs ∪ Vu| = kτ ). Among all partly scanned trajectories in

the spatial domain, we define a global upper bound on spatial

correlation as

UBS = max
τ∈Tp

{CS(τ, o).ub}, (9)

where Tp is a set of partly scanned trajectories in the spatial

domain, and the value of UBS changes dynamically during

the query processing.

Filter-and-Refine: if UBS < θ, we prune all partly scanned

and unscanned trajectories. For fully scanned trajectories, we

compute the exact spatial (Equation 2) and temporal (Equa-

tion 3) correlations. The spatiotemporal correlation CST (τ, o)
is derived by combining them (Equation 4). For example, in

Figure 4(b), τ1 is fully scanned, so we compute CS(τ1, o.p) =
1
5 (e

−d(v3.p,o.p) + e−d(v4.p,o.p) + e−d(v5.p,o.p) + e−d(v6.p,o.p) +

e−d(v7.p,o.p)), CT (τ1, o) = |{v3.t,v4.t}|
5 = 2

5 = 0.4, and

CST (τ1, o.p) = λ · CS(τ1, o.p) + (1 − λ) · CT (τ1, o). If the

spatiotemporal correlation CST (τ, o) does not exceed θ, we

prune trajectory τ . Otherwise, (trajectory, location) pair (τ, o)
is stored in Mo (the set of matched (trajectory, location)

pairs of o). By combining Mo of all objects in O, the result
⋃

o∈O Mo of the TL-Join is found.

Notice that we do not maintain upper bounds on the

unscanned trajectories to reduce the computation and storage

cost. Given a partly scanned trajectory τ and an unscanned

trajectory τ ′ (e.g., τ2 in Figure 4(b)), according to Equations 8

and 9, we have:

CS(τ
′, o).ub =

∑

vj .p∈Vu
e−rs

k′τ
= e−rs < CS(τ, o).ub ≤ UBS

(10)

Here, Vu = Kτ and |Vu| = k′τ . If UBS < θ, we have that

CS(τ
′, o).ub < θ. So the unscanned trajectories can be pruned

safely, and it is not necessary to maintain spatial upper bounds.

4.3 Algorithm and Time Complexity

PSF adopts a divide-and-conquer strategy. For each location o
in set O, we retrieve the trajectories with high spatiotemporal

correlation to o. The search processes for different locations

are independent so they are performed in parallel. Unlike

for PTF, PSF has a constant merging cost (its merging cost

is independent of the degree of parallelism, and we simply

combine the search result of each location to achieve join

result). The pseudocode of PSF is shown in Algorithm 2.

Initially, for each location o ∈ O, the set of its matched

(trajectory, location) pairs Mo is set to ∅. The global spatial



1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2854705, IEEE

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, JANUARY XXXX 8

upper bound UBS is set to 0. For each trajectory τ ∈ T , the

number of its scanned vertices τ.k is set to 0. We perform

network expansion from each location o to explore the spatial

network (lines 1–4). For each newly scanned vertex p, all

trajectories passing P have one more scanned vertex (lines

5–7). If the number of scanned vertices of τ is equal to kτ
(τ is fully scanned), we compute its spatiotemporal correlation

CST (τ, o) (Equation 4). If the value of CST (τ, o) exceeds that

of θ, we store (trajectory, location) pair (τ, o) in Mo. Then,

we remove τ from the partly scanned trajectory set Tp and

update the value of UBS (lines 8–13). If τ is partly scanned

(0 < τ.k < kτ ), we compute its spatial correlation upper

bound CS(τ, o).ub, and we update the value of the global

spatial upper bound UBS (lines 14–17). If the value of UBS

does not exceed that of θ, the expansion from o terminates

(lines 18–20). Having searched all locations, we combine their

results and get the result
⋃

o∈O Mo of the TL-Join (line 21).

Algorithm 2: PSF Search

Data: a set O of locations, a set T of trajectories, and a

threshold θ
Result:

⋃

o∈O Mo

∀o ∈ O(Mo ← ∅);1

for each location o in O do2

UBS ← 0;3

∀τ ∈ T (τ.k ← 0);4

p←expand(o);5

for each trajectory τ passing p do6

τ.k ← τ.k + 1;7

if τ.k = kτ then8

compute CST (τ, o);9

if CST (τ, o) ≥ θ then10

Mo.add(τ, o);11

Tp.remove(τ);12

update UBS ;13

if 0 < τ.k < kτ then14

update CS(τ, o).ub;15

if CS(τ, o).ub > UBS then16

UBS ← CS(τ, o).ub;17

if UBS < θ then18

store Mo;19

break;20

return
⋃

o∈O Mo;21

Let |O| denote the cardinality of location set O and let

Tθ denote the scanned trajectory set for the search process

from each location, which includes the partly and fully s-

canned trajectories (Tθ = Tp ∪ Tf ). According to Equa-

tions 8 and 9, the maximum spatial expansion radiuses rs

is inversely proportional to θ. Assuming the trajectories are

uniformly distributed in the spatial domain, it follows that

|Tθ| is inversely proportional to θ. Thus, |Tθ| is sensitive

to the value of threshold θ and the pruning effectiveness.

We use |V | and |E| to denote the numbers of vertices and

edges in G. Then O(|V | log |V |+ |E|) is the time complexity

of network expansion using Dijkstra’s algorithm. The time

complexity of PSF is O(|Tθ||O|(|V |log|V | + |E|)). If the

value of θ is sufficiently large, the time complexity is close to

O(|O|(|V |log|V |+ |E|)).

5 PARALLEL COLLABORATIVE SEARCH

5.1 Basic Idea

The main weakness of PSF lies in its weak temporal pruning

power since its pruning is driven by the spatial domain. To

overcome that weakness and to process the TL-Join more

efficiently, we propose a parallel collaborative (PCol) search

algorithm that improves PSF. In contrast to PSF, PCol perform-

s trajectory search in the spatial and temporal domains concur-

rently. An upper bound on the spatiotemporal correlation and

a heuristic search strategy are proposed to prune the search

space. PCol follows the same parallel mechanism as PSF (cf.

Figure 4(a)). Compared to PSF, PCol has stronger pruning

power, which should translate into higher performance.

5.2 Upper Bound

In the spatial domain, PCol, like PSF, adopts network expan-

sion [10] to explore the spatial network and to find trajectories

with high spatial correlation to the query location o. In the

temporal domain, we partition time range o.R into three parts

(if |o.R| > 2dc). An example is shown in Figure 4(b), where

|range(t1, t2)| = |range(t3, t4)| = dc and dc is the coupling

duration between τ and o. Initially we search the trajectory

timestamps in range(t2, t3), and then we expand the search

from t2 and t3 concurrently towards the boundaries of o.R,

and rt is the radius of the search space. If |o.R| ≤ 2dc, we

only partition o.R into two parts from the middle point (i.e.,

merging t2 and t3 in Figure 4(b) to the middle point), and

then we expand the search from the middle point towards the

boundaries.

We estimate the upper bound on the temporal correlation of

an unscanned trajectory τ as follows.

|range(t1, t2 − rt)| = |range(t3 + rt, t4)| = dc − rt

⇒ CT (τ, o).ub =
⌊ |range(t1,t2−rt)|

τ.sr
⌋+ 1

kτ
=
⌊dc−rt

τ.sr
⌋+ 1

kτ
(11)

Here, τ.sr is the sampling rate of trajectory τ , and

range(t1, t2 − rt) and range(t3 + rt, t4) are the unscanned

spaces in o.R. Because trajectories are sampled continuous-

ly and uniformly and because range(t2 − rt, t3 + rt) has

been scanned in the current step, it is impossible for an

unscanned trajectory to appear in both range(t1, t2 − rt) and

range(t3+rt, t4). Notice that for trajectories with non-uniform

sampling rate, we simply need to count the number n of

sample points in the corresponding time range, or to use the

minimum sampling rate of τ to compute the bounds.

By combining the upper bounds on the spatial (Equa-

tion 10) and temporal (Equation 11) correlation according to

Equation 4, we obtain an upper bound CST (τ.o).ub of the

spatiotemporal correlation. The value of CST (τ.o).ub is used

as a global upper bound UB for all unscanned trajectories



1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2854705, IEEE

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, JANUARY XXXX 9

in both domains, and it changes dynamically during query

processing.

CST (τ.o).ub = λ · CS(τ.o).ub+ (1− λ) · CT (τ.o).ub

⇒ UB = CST (τ.o).ub = λ·e−rs+(1−λ)·
⌊dc−rt

τ.sr
⌋+ 1

kτ
(12)

5.3 Filtering and Refinement

If the value of spatiotemporal upper bound CST (τ.o).ub is

less than θ, the search in the spatial and temporal domains

terminate and all unscanned trajectories are pruned. Then we

refine the fully and partly scanned trajectories in the two

domains. If a trajectory τ is fully scanned in the spatial

domain, we compute its exact spatial, temporal, and spa-

tiotemporal correlations according to Equations 2, 3, and 4.

If CST (τ, o) ≥ θ, we store (trajectory, location) pair (τ, o) in

the set of the matched pairs of o. Otherwise, trajectory τ is

pruned.
If a trajectory τ ′ = 〈v1, v2, ..., vn〉 is partly scanned in the

spatial domain and is unscanned in the temporal domain, we
estimate the temporal correlation upper bound CT (τ

′, o).ub as
follows.

CT (τ
′

, o).ub =
1

k′
τ

(

⌊

|range(v1.t, tn.t) ∩ range(t1.t, t2.t− rt)|

τ ′.sr

⌋

+

⌊

|range(v1.t, tn.t) ∩ range(t3.t+ rt, t4.t)|

τ ′.sr

⌋

+ 1) (13)

If a trajectory τ ′ is scanned in the temporal domain, its

temporal correlation upper bound is defined as follows.

CT (τ
′, o).ub =

1

k′τ
(

⌊

|range(v1.t, tn.t) ∩ o.R|

τ ′.sr

⌋

+ 1) (14)

By combining the spatial correlation upper bound (Equa-

tion 8) and temporal correlation upper bound (Equations 13

and 14) according to Equation 4, we obtain a spatiotemporal

correlation upper bound CST (τ
′, o).ub as follows.

CST (τ
′, o).ub =















λ · CS(τ
′, o).ub

+(1− λ) · CT (τ
′, o).ub if Case 1

(1− λ) · CT (τ
′, o).ub if Case 2

(15)

Case 1: τ ′ is partly scanned in the spatial domain.

Case 2: τ ′ is unscanned in the spatial domain.

If the value of CST (τ
′, o).ub is less than that of θ, we prune

trajectory τ ′. Otherwise, we refine the trajectory in the spatial

domain until it is fully scanned. Then we compute its exact

spatiotemporal correlation and compare to θ.

5.4 Heuristic Scheduling

We propose a heuristic method to schedule the two query

sources in the spatial and temporal domains (i.e., expansion

center o.p in the spatial domain, and expansion centers t2
and t3 in the temporal domain). Our target is to let more

trajectories be scanned in the both domains, which is helpful

to (i) reduce the number of scanned trajectories to be refined

and to (ii) improve the pruning power of Equation 16.

For example, TS is the set of scanned trajectories in the

spatial domain, and TT is the set of scanned trajectories in

the temporal domain. We refine |TS ∪TT | trajectories in total.

If we are able to increase the intersection between TS and TT

(the trajectories that have been scanned in both domains), we

can reduce the total number of trajectories to be refined and

can improve the query efficiency correspondingly. Moreover,

we can use the spatial and temporal correlation upper bounds

(Equation 16) of the trajectories in TS∩TT to prune the search

space, which yields better pruning than using only the spatial

or the temporal upper bound (if trajectories only have been

scanned in one domain).

Priority labels of the query sources in the two domains are

then defined as follows. At each time, we only search the top-

ranked query source (the query source has a larger value of

its label) until a new query source takes its place.

q.l =

{

λ · |(TS ∪ TT ) \ TS | if Case 3
(1− λ) · |(TS ∪ TT ) \ TT | if Case 4

(16)

Case 3: q is in the spatial domain (q = o.p).

Case 4: q is in the temporal domain (q is for t2 and t3).

Here λ and (1 − λ) control the relative importance of the

spatial and the temporal domains (Equation 4).

5.5 Algorithm and Time Complexity

The PCol search procedure is detailed in Algorithm 3. The

query arguments include a location o, a trajectory τ , and a

threshold θ. The query result is returned in
⋃

o∈O Mo. Initially,

UB and the priority labels are set to 0 and Mo is set to ∅. If the

value of 2dc is less than that of |o.R|, we scan the timestamps

in range(t2, t3) (cf. Figure 4(b))(lines 1–5). We select the top-

ranked query source q from heap H as the current-search query

source, and we expand the search from q. We update the value

of UB (Equation 12). If the value of UB is less than θ, we

prune all unscanned trajectories in the two domains (lines 6–

11). Then we refine all scanned trajectories in the two domains.

If a trajectory τ is fully scanned in the spatial domain,

we compute its exact spatiotemporal correlation CST (τ.o)
(Equation 4) and compare it to θ. If CST (τ.o) ≥ θ, (trajectory,

location) pair (τ, o) is added in Mo. Otherwise, τ is pruned

(lines 12–17). If a trajectory τ ′ is partly scanned, we compute

its spatiotemporal upper bound CST (τ
′.o).ub (Equation 16). If

CST (τ
′.o).ub < θ, τ ′ is pruned. Otherwise, we further refine

trajectory τ ′ and compute CST (τ
′.o). If CST (τ

′.o) ≥ θ, (τ ′, o)
is added to Mo. Otherwise, τ ′ is pruned (lines 18–27). Set Mo

is stored. If q is not at the top of heap H , we update q to be

the top-ranked query source (lines 28–31). By combining the

matching sets of all locations, the solution
⋃

o∈O Mo of the

TL-Join is found (line 32).

Let T ′
θ denote the scanned trajectory set for the

search process from each location. In the spatial do-

main, the time complexity is O(|T ′
θ||O|(|V |log|V | + |E|))

(the same as PSF), while in the temporal domain, the

time complexity is O(|Tθ||O|). The time complexity of

PCol is O(|T ′
θ||O|(|V |log|V | + |E|)) + O(|T ′

θ′ ||O|) =
O(|T ′

θ||O|(|V |log|V |+ |E|)). If the value of θ is sufficiently

large, the time complexity is close to O(|O|(|V |log|V |+|E|)).



1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2854705, IEEE

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, JANUARY XXXX 10

Algorithm 3: PCol Search

Data: a set O of locations, a set T of trajectories, and a

threshold θ
Result:

⋃

o∈O Mo

∀o ∈ O(Mo ← ∅);1

for each location o in O do2

UB ← 0; ∀q ∈ H(q.l← 0);3

if 2dc < |o.R| then4

scan timestamps in range(t2, t3);5

q ← H.top;6

while true do7

expand(q);8

update UB ;9

if UB < θ then10

prune all unscanned trajectories;11

for each spatially fully scanned trajectory τ12

do

compute CST (τ.o);13

if CST (τ.o) ≥ θ then14

Mo.add(τ, o);15

else16

prune τ ;17

for each partly scanned trajectory τ ′ do18

compute CST (τ
′.o).ub;19

if CST (τ
′.o).ub < θ then20

prune τ ′;21

else22

refine τ ′ and compute CST (τ
′.o);23

if CST (τ
′.o) ≥ θ then24

Mo.add(τ
′, o);25

else26

prune τ ′;27

store Mo;28

break;29

if q 6= H.top then30

q ← H.top;31

return
⋃

o∈O Mo;32

The time complexity of PCol is the same as that of PSF, and

the advantage of PCol lies in that it has a higher pruning power

and defines a smaller candidate set T ′
θ.

6 EXPERIMENTAL RESULTS

We report on experiments with real and synthetic spatial

data that offer insight into the properties of the developed

algorithms.

6.1 Settings

We use two spatial networks, namely the Beijing Road Net-

work (BRN) and the New York Road Network (NRN)10, which

10. https://publish.illinois.edu/dbwork/open-data/

contain 28,342 vertices and 27,690 edges, and 95,581 vertices

and 260,855 edges, respectively. The graphs are stored using

adjacency lists. In BRN, we use a real taxi trajectory data

set collected by the T-drive project [27], while in NRN, we

use a real taxi trajectory data set from New York10. The time

range of a trajectory is 1–2 hours. We use real location data in

BRN, i.e., for POIs (e.g., restaurants and shopping malls), we

use real locations and real time ranges (opening hours, e.g.,

3–5 hours for a restaurant, 7–10 hours for a shopping mall),

and for accidents, we use real locations and synthetic time

ranges (e.g., 0.5–2 hours), and we use synthetic location data

in NRN.

In the experiments, the index structure of PTF (cf. Section

3) and the spatial networks of PSF and PCol (when running

Dijkstra’s expansion [10], cf. Sections 4 and 5) are memory

resident, as the memory occupied is 34 MB and 44 MB for

BRN and 42 MB and 55 MB for NRN. Trajectories and

locations are also memory resident for all algorithms, and

they occupy 279 MB for BRN and 2.2 GB for NRN. All

algorithms are implemented in Java and run on a cluster

with 10 data nodes. Each node is equipped with two Intelr

Xeonr Processors E5-2620 v3 (2.4GHz) and 128GB RAM.

Unless stated otherwise, experimental results are averaged over

10 independent trials using different query inputs. The main

performance metrics are runtime and the number of location-

trajectory pair visits. The number of location-trajectory visits

is used as a metric because it reflects the number of data

accesses. In multi-threaded executions, the total runtime is the

maximum runtime among all individual threads.

Trajectories in T are selected randomly from the real data

sets. The parameter settings are listed in Table II. For PTF

(Section 3), the best performance is achieved when the index

contains 56 leaf nodes for BRN and 545 leaf nodes for NRN,

and when each leaf node contains at most 8,192 (trajectory,

location) pairs (M = 8, 192) in BRN and at most 16,384

(trajectory, location) pairs (M = 16, 384) in NRN. Compared

to the equal-partition grid index [16], the performance of the

balanced grid index is improved by around 20%. Because

computing network distances online is time-consuming, we

pre-compute the all-pairs shortest paths distances in the graphs

(for PTF only, not for PSF and PCol). PTF, PSF (Section 4),

and PCol (Section 5) are denoted by “PTF,” “PSF,” and

“PCol” in subsequent figures. The PCol algorithm without the

heuristic scheduling strategy is denoted by “PCol-w/o-h.”

6.2 Pruning Effectiveness

First, we study the pruning effectiveness of the algorithms

using the default settings. The results are shown in Table III,

where the reported candidate and pruning ratios are defined as

follows.

Candidate ratio =
|C|

|T ||O|

Pruning ratio = 1− Candidate ratio,

where |C| is the size of the candidate set. The pruning ratio

shows how many trajectory-location pairs are pruned, while

the candidate ratio shows how many trajectory-location pair

remains (to be processed in the next step). The candidate ratio



1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2854705, IEEE

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, JANUARY XXXX 11

Table II: Parameter Settings
NRN BRN

Trajectory
cardinality |T |

1,000,000–
10,000,000 /default
1,000,000

50,000–200,000
/default 100,000

Location cardinali-
ty |O|

500,000–2,000,000
/default 500,000

25,000–100,000
/default 50,000

Average location
time range o.R

1–7 hours /default 1
hour

1–7 hours /default
1 hour

Coupling duration
dc

20–40 minutes /de-
fault 25 minutes

20–40 minutes /de-
fault 25 minutes

Threshold θ 0.9–0.98/ default
0.96

0.9–0.98/ default
0.96

Preference param-
eter λ

0.1–0.9/ default 0.5 0.1–0.9/ default
0.5

Thread count m 24–120/ default 24 24–120/ default 24

is directly proportional to the running time. We see that the

candidate ratio of PCol is only 6.1–11.5% of that of PTF and

12–37.5% of that of PSF. Further, the heuristic scheduling

strategy reduces the candidate ratio by 14–25%.

Table III: Pruning Effectiveness for TL-Join
PTF PSF PCol-

w/o-h
PCol

Candidate ratio (BRN) 0.98% 0.51% 0.07% 0.06%

Pruning ratio (BRN) 99.02% 99.49% 99.93% 99.94%

Candidate ratio (NRN) 0.26% 0.08% 0.04% 0.03%

Pruning ratio (NRN) 99.74% 99.92% 99.96% 99.97%

6.3 Effect of Trajectory Cardinality |T |

25

50

75

100

125

150

175

200

50K 100K 150K 200K

R
u

n
ti

m
e 

(s
)

Cardinality |T|

PCol
PCol-w/o-h

PSF
PTF

(a) BRN

100

1000

10000

1M 4M 7M 10M

R
u

n
ti

m
e 

(s
)

Cardinality |T|

PCol
PCol-w/o-h

PSF
PTF

(b) NRN

20

40

60

80

100

120

50K 100K 150K 200KL
o

ca
ti

o
n

-T
ra

je
ct

o
ry

 P
ai

r 
V

is
it

s 
(M

)

Cardinality |T|

PCol
PCol-w/o-h

PSF
PTF

(c) BRN

1000

2000

3000

4000

1M 4M 7M 10ML
o

ca
ti

o
n

-T
ra

je
ct

o
ry

 P
ai

r 
V

is
it

s 
(M

)

Cardinality |T|

PCol
PCol-w/o-h

PSF
PTF

(d) NRN

Fig. 5. Effect of Trajectory Cardinality |T |

Figure 5 shows the effect of trajectory cardinality |T | on

the performance of the algorithms. Intuitively, a larger |T |
causes more (trajectory, location) pairs to be processed (cf. the

complexity analysis in Sections 3.4, 4.3, and 5.5), meaning that

the runtime and the number of (trajectory, location) pair visits

are expected to increase for all algorithms. We see that PCol

outperforms PTF by almost an order of magnitude and that it

outperforms PSF by 230–300% in terms of both runtime and

(trajectory, location) pair visits; and we see that the heuristic

scheduling strategy can further improve PCol by 15–33% in

terms of both runtime and (trajectory, location) pair visits.

PCol is able to process 1 M trajectories (|T | = 1 M and

|O| = 0.5 M) in 314 seconds and 10 M trajectories (|T | =

10 M and |O| = 0.5 M) in 1,874 seconds with the default

24 threads (see Figure 5(b)). These results demonstrate the

importance of balancing the pruning power in the spatial and

temporal domains (Section 5.2) and the benefit of the heuristic

scheduling strategy (Section 5.4).

The runtime is not fully aligned with the number of (tra-

jectory, location) pair visits because the algorithms expend

computational effort on maintaining the bounds and priority

labels (for PCol) used to prune the search space. The resulting

cost may offset the benefits of the reduction in the number of

(trajectory, location) pair visits. In particular, the filter phase

of PTF computes and maintain bounds for almost all trajectory

pairs.

6.4 Effect of Location Cardinality |O|

25

50

75

100

125

25K 50K 75K 100K

R
u

n
ti

m
e 

(s
)

Cardinality |O|

PCol
PCol-w/o-h

PSF
PTF

(a) BRN

100

1000

10000

0.5M 1.0M 1.5M 2.0M

R
u

n
ti

m
e 

(s
)

Cardinality |O|

PCol
PCol-w/o-h

PSF
PTF

(b) NRN

20

40

60

80

25K 50K 75K 100KL
o

ca
ti

o
n

-T
ra

je
ct

o
ry

 P
ai

r 
V

is
it

s 
(M

)

Cardinality |O|

PCol
PCol-w/o-h

PSF
PTF

(c) BRN

1000

2000

3000

4000

0.5M 1.0M 1.5M 2.0ML
o

ca
ti

o
n

-T
ra

je
ct

o
ry

 P
ai

r 
V

is
it

s 
(M

)

Cardinality |O|

PCol
PCol-w/o-h

PSF
PTF

(d) NRN

Fig. 6. Effect of Location Cardinality |O|

Next, we study the effect of location cardinality |O| on

the performance of the algorithms. Similar to the effect of

the trajectory cardinality |T |, a larger |O| implies a longer

runtime and more (trajectory, location) pairs to be processed

for all algorithms. From Figure 6, we see that PCol has a

clear advantage over PTF, PSF, and PCol-w/o-h. PCol is able

to process 2 M locations (|T |=1 M and |O|= 2 M) in 815

seconds (see Figure 6(b)).

6.5 Effect of Average Location Time Range o.R

Figure 7 shows the effect of varying location time range o.R
on efficiency. A larger o.R may lead to a higher temporal

correlation (cf. Equation 3). So we may have more qualified

(trajectory, location) pairs to refine, meaning that the runtime

and the number of (trajectory, location) pair visits are expected

to increase for all algorithms. Moreover, for PTF, a larger o.R
leads to more locations to be stored in non-leaf nodes, which



1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2854705, IEEE

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, JANUARY XXXX 12

20

40

60

80

100

120

140

1 3 5 7

R
u

n
ti

m
e 

(s
)

Average location time range (hours)

PCol
PCol-w/o-h

PSF
PTF

(a) BRN

0

1000

2000

3000

1 3 5 7

R
u

n
ti

m
e 

(s
)

Average location time range (hours)

PCol
PCol-w/o-h

PSF
PTF

(b) NRN

10
20
30
40
50
60
70
80
90

1 3 5 7L
o

ca
ti

o
n

-T
ra

je
ct

o
ry

 P
ai

r 
V

is
it

s 
(M

)

Average location time range (hours)

PCol
PCol-w/o-h

PSF
PTF

(c) BRN

0

500

1000

1500

2000

1 3 5 7L
o

ca
ti

o
n

-T
ra

je
ct

o
ry

 P
ai

r 
V

is
it

s 
(M

)

Average location time range (hours)

PCol
PCol-w/o-h

PSF
PTF

(d) NRN

Fig. 7. Effect of Average Time Range o.R

offsets the benefit of parallel processing. For PCol, a larger o.R
may weaken its pruning power (Equation 11). So the runtime

and the number of (trajectory, location) pair visits of PTF and

PCol increase faster than those of PSF. But PCol still holds a

clear advantage over PTF, PSF, and PCol-w/o-h.

6.6 Effect of Coupling Duration dc

20

40

60

80

100

20 25 30 35 40

R
u

n
ti

m
e 

(s
)

Coupling duration (mins)

PCol
PCol-w/o-h

PSF
PTF

(a) BRN

0

500

1000

1500

2000

2500

20 25 30 35 40

R
u

n
ti

m
e 

(s
)

Coupling duration (mins)

PCol
PCol-w/o-h

PSF
PTF

(b) NRN

10

20

30

40

50

20 25 30 35 40L
o

ca
ti

o
n

-T
ra

je
ct

o
ry

 P
ai

r 
V

is
it

s 
(M

)

Coupling duration (mins)

PCol
PCol-w/o-h

PSF
PTF

(c) BRN

0

500

1000

1500

20 25 30 35 40L
o

ca
ti

o
n

-T
ra

je
ct

o
ry

 P
ai

r 
V

is
it

s 
(M

)

Coupling duration (mins)

PCol
PCol-w/o-h

PSF
PTF

(d) NRN

Fig. 8. Effect of Coupling Duration dc

The next study concerns the effect of coupling duration dc
on the efficiency of the algorithms. As can be seen in Figure 8,

a larger dc leads to a larger kτ and may lead to a smaller

temporal correlation (cf. Equation 3). So we may have fewer

qualified (trajectory, location) pairs to refine, meaning that the

runtime and number of (trajectory, location) pair visits are

expected to decrease for all algorithms. In addition, a larger

dc may enhance the pruning power of PCol (cf. Equations 11

and 12).

6.7 Effect of Threshold θ

20

40

60

80

100

0.90 0.92 0.94 0.96 0.98

R
u

n
ti

m
e
 (

s)

Threshold

PCol
PCol-w/o-h

PSF
PTF

(a) BRN

500

1000

1500

2000

2500

3000

0.90 0.92 0.94 0.96 0.98

R
u

n
ti

m
e
 (

s)

Threshold

PCol
PCol-w/o-h

PSF
PTF

(b) NRN

20
40
60
80

100
120
140
160
180
200
220

0.90 0.92 0.94 0.96 0.98L
o

ca
ti

o
n

-T
ra

je
ct

o
ry

 P
ai

r 
V

is
it

s 
(M

)

Threshold

PCol
PCol-w/o-h

PSF
PTF

(c) BRN

10

100

1000

10000

0.90 0.92 0.94 0.96 0.98L
o

ca
ti

o
n

-T
ra

je
ct

o
ry

 P
ai

r 
V

is
it

s 
(M

)

Threshold

PCol
PCol-w/o-h

PSF
PTF

(d) NRN

Fig. 9. Effect of Threshold θ

We show results when varying threshold θ in Figure 9. A

larger θ leads to higher pruning effectiveness (cf. Sections

3.3, 4.2, and 5.3). Thus, the larger θ becomes, the smaller

the search space becomes. Therefore, the runtime and number

of (trajectory, location) pair visits are expected to decrease

correspondingly for all algorithms. In addition, in PTF, a

larger θ is useful in reducing the similarity computation

(see Equation 6), which further enhances the efficiency. In

Figure 9(b), we see that when θ = 0.98, PCol is able to

process 1 M trajectories (|T | = 1 M and |O| = 0.5 M) in

174 seconds.

We also test that when θ = 0.5 in BRN and NRN, PCol is

able to process 100 K and 1 M trajectories under 240 threads

in 33 seconds and 2440 seconds.

6.8 Effect of Preference Parameter λ

Figure 10 shows the effect of varying preference parameter

λ. Parameter λ enables adjusting the relative preference of

spatial and temporal similarity (see Equation 4). When λ =

1, the TL-Join is in the spatial domain only, and when λ =

0, only temporal similarity is considered. Figure 10 shows

that the spatial domain needs more search effort than the

temporal domain. When λ increases, the pruning power of

PTF is weakened because its pruning is driven by the temporal

domain (cf. Section 3.3). On the other hand, the pruning power

of PSF is enhanced as it uses spatial upper bound to prune

the search space (cf. Section 4.2). When λ is close to 1, the

efficiency of PSF is very close to that of PCol.

6.9 Effect of Thread Count m

We study the effect of thread count m on the efficiency of the

algorithms using large trajectory data sets (|T | = 200 K and

|O| = 100 K for BRN and |P | = 10 M and |O| = 0.5 M for

NRN). The results are shown in Figure 11. We see that PCol

outperforms PTF by almost an order of magnitude in term



1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2854705, IEEE

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, JANUARY XXXX 13

20

40

60

80

100

0.1 0.3 0.5 0.7 0.9

R
u

n
ti

m
e 

(s
)

Preference parameter

PCol
PCol-w/o-h

PSF
PTF

(a) BRN

100

1000

10000

0.1 0.3 0.5 0.7 0.9

R
u

n
ti

m
e 

(s
)

Preference parameter

PCol
PCol-w/o-h

PSF
PTF

(b) NRN

20

40

60

80

0.1 0.3 0.5 0.7 0.9L
o

ca
ti

o
n

-T
ra

je
ct

o
ry

 P
ai

r 
V

is
it

s 
(M

)

Preference parameter

PCol
PCol-w/o-h

PSF
PTF

(c) BRN

100

1000

10000

0.1 0.3 0.5 0.7 0.9L
o

ca
ti

o
n

-T
ra

je
ct

o
ry

 P
ai

r 
V

is
it

s 
(M

)

Preference parameter

PCol
PCol-w/o-h

PSF
PTF

(d) NRN

Fig. 10. Effect of Preference Parameter λ

20

40

60

80

100

120

140

48 72 96 120

R
u

n
ti

m
e
 (

s)

Thread Counts

PCol
PCol-w/o-h

PSF
PTF

(a) BRN

100

1000

10000

48 72 96 120

R
u

n
ti

m
e
 (

s)

Thread Counts

PCol
PCol-w/o-h

PSF
PTF

(b) NRN

Fig. 11. Effect of Thread Count m

of runtime and outperforms PSF by almost 300% in term of

runtime. In BRN, PCol is able to process 200 K × 100 K

(trajectory, location) pairs with 120 threads in 8.3 seconds,

while in NRN, the PCol is able to process 10 M × 0.5 M

(trajectory, location) pairs with 120 threads in 651 seconds.

We increase the thread count from 48 to 120 (2.5 times).

This improves the runtimes of PSF and PCol by a factor of

around 2.1, while the runtime of PTF is improved by a factor

of around 1.8. The main reason for the smaller improvement

of PTF is that more threads (more leaf nodes) leads to a higher

merging cost (see Section 3).

7 RELATED WORK

7.1 Trajectory-to-Location Matching

Existing trajectory-to-location matching studies typically con-

sider (i) matching solely in the spatial domain [15], [18], [20]–

[22], [25], [28] or (ii) use point-to-point matching [18], [19],

[21], [28] in the spatial or temporal domain. For the first case,

the matching results do not support time-aware applications,

while for the second case, the matched (trajectory, location)

pairs are unable to capture the continuous correlations between

trajectories and locations in the spatial and temporal domains.

The so-called Semantic Enrichment approach [12] utilizes

the stay time at a location to infer a traveler’s activity. It

uses point-to-point matching in the spatial domain and range

matching in the temporal domain. This matching scheme is

not feasible for location recommendation because it relies on

a constraint on the stay time (e.g., 30 minutes) of travelers

at a location. For example, if a traveler stay at some points

of interest (e.g., restaurants, shopping malls, and sightseeing

places) for more than 30 minutes, we can infer the trajectory

accompanied activities (e.g., dinner, shopping, and tourist).

Trajectory-to-location matching may bring significant ben-

efits to diverse applications. RPNN (reverse path nearest

neighbor query [21]) targets the application of location ranking

and recommendation. For example, when setting a new facility,

RPNN uses the number of matched trajectories to define the

influence factors of location candidates, and then finds the

most influential location for the new facility to maximize its

commercial value. ATSQ [28], UOTS [18], and PTM [19] are

location-based trajectory search queries and they are useful in

travel planning and carpooling recommendation (e.g., using

historic trajectories for travel planning, or recommending

travelers with similar travel trajectories for carpooling). The

Semantic Enrichment [12] uses trajectories to analyze travel-

er’s activities.

Most existing centralized trajectory-to-location join algo-

rithms (e.g., VID Joins [20], [25]) operate in Euclidean space

and cannot process large trajectory data sets. From the ex-

periments reported in the literature [20], [25], the VID joins

can process at most 12 K trajectories. In contrast, the TL-

Join is performed in a spatial network and can process 10 M

trajectories with a reasonable runtime, some three orders of

magnitude more trajectories than for the VID joins.

7.2 Trajectory Similarity Join

Trajectory similarity joins [2], [3], [7], [11], [14], [16], [23]

target applications such as trajectory near-duplicate detection,

data cleaning, ridesharing recommendation, and traffic con-

gestion prediction. Developing such joins typically involves a

definition step and a query processing step. First, a similarity

function, e.g., Sim, is defined to evaluate the spatial and

temporal similarities between two trajectories, e.g., τ and τ ′.
Second, an efficient algorithm is developed to retrieve the spa-

tiotemporally similar trajectory pairs. The trajectory similarity

function should be symmetrical, i.e., Sim(τ, τ ′) = Sim(τ ′, τ).
Most existing trajectory similarity joins (e.g., [2], [3], [7],

[11], [14], [23]) use a time interval threshold to constrain the

temporal proximity of two trajectories. In contrast, the TS-

Join [16] defines trajectory similarity in a continuous manner.

The best connected trajectory (BCT) [8] and its variants [18],

[19], [28] cannot be used in the trajectory similarity joins due

to being asymmetric. Several similarity functions for time-

series data also exist, including Dynamic Time Warping [26],

Longest Common Subsequence [1], and Edit Distance on Real

sequence [6].

The TS-Join [16], [17] is based on a divide-and-conquer

strategy. For each trajectory τ , the algorithm retrieves trajec-

tories that are similar to τ . The trajectory-search processes

are independent of each other and are performed in parallel.

The TS-Join algorithm cannot process the TL-Join due to

their different query arguments (trajectories vs. trajectories and



1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2854705, IEEE

Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, JANUARY XXXX 14

locations), and their different matching functions (point-to-

point matching vs. range-based matching). The TL-Join needs

its own specific solutions.

8 CONCLUSION AND FUTURE WORK

We studied the efficient processing of a novel Trajectory-to-

Location join (TL-Join) operation in spatial networks, which

may benefit diverse applications such as location recom-

mendation, and trajectory activity analysis. We developed

three parallel algorithms: parallel temporal-first search (PTF),

parallel spatial-first search (PSF), and parallel collaborative

search (PCol). We also defined upper and lower bounds and a

heuristic scheduling strategy to enable effective search space

pruning. The performance of the developed algorithms were

studied empirically in extensive experiments on large spatial

data sets.

Two future research directions exist. First, it is of interest

to take the visiting sequence of trajectory sample points into

account when matching trajectories and locations. To do this,

new upper and lower bounds on the spatiotemporal correlation

and a new heuristic scheduling strategy are needed. Second,

it is of interest to extend existing techniques to support a

top-k TL-Join without a matching threshold θ. This calls for

updated pruning techniques, including adding pruning to the

same thread and updating the corresponding upper and lower

bounds (without a given threshold).

REFERENCES

[1] R. Agrawal, K. Lin, H. S. Sawhney, and K. Shim. Fast similarity search
in the presence of noise, scaling, and translation in time-series databases.
In VLDB, pages 490–501, 1995.

[2] P. Bakalov, M. Hadjieleftheriou, E. J. Keogh, and V. J. Tsotras. Efficient
trajectory joins using symbolic representations. In MDM, pages 86–93,
2005.

[3] P. Bakalov and V. J. Tsotras. Continuous spatiotemporal trajectory joins.
In GSN, pages 109–128, 2006.

[4] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On map-matching
vehicle tracking data. In VLDB, pages 853–864, 2005.

[5] V. P. Chakka, A. Everspaugh, and J. M. Patel. Indexing large trajectory
data sets with SETI. In CIDR, 2003.

[6] L. Chen, M. T. Özsu, and V. Oria. Robust and fast similarity search for
moving object trajectories. In SIGMOD, pages 491–502, 2005.

[7] Y. Chen and J. M. Patel. Design and evaluation of trajectory join
algorithms. In ACM GIS, pages 266–275, 2009.

[8] Z. Chen, H. T. Shen, X. Zhou, Y. Zheng, and X. Xie. Searching
trajectories by locations: an efficiency study. In SIGMOD, pages 255–
266, 2010.

[9] V. T. de Almeida and R. H. Güting. Indexing the trajectories of moving
objects in networks. GeoInformatica, 9(1):33–60, 2005.

[10] E. W. Dijkstra. A note on two problems in connection with graphs.
Numerische Math, 1:269–271, 1959.

[11] H. Ding, G. Trajcevski, and P. Scheuermann. Efficient similarity join of
large sets of moving object trajectories. In TIME, pages 79–87, 2008.

[12] B. Furletti, P. Cintia, C. Renso, and L. Spinsanti. Inferring human
activities from GPS tracks. In UrbComp@KDD 2013, pages 5:1–5:8,
2013.

[13] A. Guttman. R-trees: A dynamic index structure for spatial searching.
In SIGMOD, pages 47–57, 1984.

[14] S. Ray, A. D. Brown, N. Koudas, R. Blanco, and A. K. Goel. Parallel
in-memory trajectory-based spatiotemporal topological join. In 2015

IEEE International Conference on Big Data, pages 361–370, 2015.
[15] S. Shang, L. Chen, C. S. Jensen, J. Wen, and P. Kalnis. Searching

trajectories by regions of interest. IEEE Trans. Knowl. Data Eng.,
29(7):1549–1562, 2017.

[16] S. Shang, L. Chen, Z. Wei, C. S. Jensen, K. Zheng, and P. Kalnis.
Trajectory similarity join in spatial networks. PVLDB, 10(11):1178–
1189, 2017.

[17] S. Shang, L. Chen, Z. Wei, C. S. Jensen, K. Zheng, and P. Kalnis. Parallel
trajectory similarity joins in spatial networks. VLDB J., 27(3):395–420,
2018.

[18] S. Shang, R. Ding, B. Yuan, K. Xie, K. Zheng, and P. Kalnis. User
oriented trajectory search for trip recommendation. In EDBT, pages
156–167, 2012.

[19] S. Shang, R. Ding, K. Zheng, C. S. Jensen, P. Kalnis, and X. Zhou. Per-
sonalized trajectory matching in spatial networks. VLDB J., 23(3):449–
468, 2014.

[20] S. Shang, K. Xie, K. Zheng, J. Liu, and J. Wen. VID join: Mapping
trajectories to points of interest to support location-based services. JCST,
30(4):725–744, 2015.

[21] S. Shang, B. Yuan, K. Deng, K. Xie, and X. Zhou. Finding the
most accessible locations: reverse path nearest neighbor query in road
networks. In ACM GIS, pages 181–190, 2011.

[22] S. Shang, K. Zheng, C. S. Jensen, B. Yang, P. Kalnis, G. Li, and J. Wen.
Discovery of path nearby clusters in spatial networks. IEEE Trans.

Knowl. Data Eng., 27(6):1505–1518, 2015.
[23] N. Ta, G. Li, and J. Feng. Signature-based trajectory similarity join.

IEEE TKDE, 29(4):870–883, 2017.
[24] C. Wenk, R. Salas, and D. Pfoser. Addressing the need for map-matching

speed: Localizing global curve-matching algorithms. In SSDBM, pages
379–388, 2006.

[25] K. Xie, K. Deng, and X. Zhou. From trajectories to activities: a spatio-
temporal join approach. In LBSN, pages 25–32, 2009.

[26] B. Yi, H. V. Jagadish, and C. Faloutsos. Efficient retrieval of similar
time sequences under time warping. In ICDE, pages 201–208, 1998.

[27] J. Yuan, Y. Zheng, X. Xie, and G. Sun. T-drive: Enhancing driving
directions with taxi drivers’ intelligence. IEEE TKDE, 25(1):220–232,
2013.

[28] K. Zheng, S. Shang, N. J. Yuan, and Y. Yang. Towards efficient search
for activity trajectories. In ICDE, pages 230–241, 2013.

Shuo Shang is a research scientist at KAUST. He obtained his Ph.D.
in computer science from The University of Queensland, Australia. His
research interests include spatiotemporal databases, spatial trajectory
computing, urban computing, and location based social media. He is
the Track Co-chair of the 2018 IEEE International Congress on Big
Data and the Demo Co-chair of the of the 2017 APWeb/WAIM Joint
Conference. He has served as PC member, session chair, guest editor,
and invited reviewer for many prestigious conferences and journals,
including SIGMOD, VLDB, ICDE, CIKM, TKDE, The VLDB Journal, ACM
TIST, IEEE TITS, ACM TSAS, GeoInformatica, and WWW Journal.

Lisi Chen is Lecturer of computer science at University of Wollongong.
He obtained his Ph.D. in computer science from Nanyang Technological
University. His research interests include geo-textual data management,
spatial keyword query evaluation, and location based social networks.

Kai Zheng is a full Professor with the University of Electronic Science
and Technology of China. He received his PhD degree in Computer
Science from The University of Queensland in 2012. He has been
working in the area of spatial-temporal databases, uncertain databases,
social-media analysis, and in-memory databases.

Christian S. Jensen is Obel Professor of Computer Science at Aalborg
University, Denmark. He was recently at Aarhus University for three
years and at Google Inc. for one year. His research concerns data
management and data-intensive systems, and its focus is on temporal
and spatiotemporal data management. Christian is an ACM and an
IEEE fellow, and he is a member of the Academia Europaea, the Royal
Danish Academy of Sciences and Letters, and the Danish Academy
of Technical Sciences. He is editor-in-chief of ACM Transactions on
Database Systems and was an editor-in-chief of The VLDB Journal from
2008 to 2014.

Zhewei Wei is an associate professor at Renmin University of China.
He obtained his Ph.D in Computer Science and Engineering from The
Hong Kong University of Science and Technology. His research interests
include streaming algorithms and data structures.

Panos Kalnis is a professor at KAUST. He received his Diploma in
Computer Engineering from the Computer Engineering and Informatics
Department, University of Patras, and PhD from HKUST. His research
interests include Database outsourcing and Cloud Computing, Mobile
Computing, and Spatiotemporal and High-dimensional Databases. He
is an associate editor of TKDE, and The VLDB Journal.


