
NASA TECHNICAL NASA TM X-62,370
MEMORANDUM

PARALLEL TRIDIAGONAL EQUATION SOLVERS

Harold S. Stone

Ames Research Center
Moffett Field, Calif. 94035

and S&

Digital Systems Laboratory
Departments of Electrical Engineering & Computer Science AOl A e
Stanford University
Stanford, California

April 1974

(N ASA-Tl-X-62370) PARALLEL TRIDIAGONAL N74- 33004
EQUATION SOLVERS (NASA) 42 p RC $3.25

CSCL 12A
Unclas

G3/19 47918

CS 422
SEL TR 79 NASA TMX-62,370

PARALLEL TRIDIAGONAL EQUATION SOLVERS

by

Harold S. Stone

Ames Research Center
Moffett Field, Calif. 94305

and

Digital Systems Laboratory

Departments of Electrical Engineering and Computer Science

Stanford University

Stanford, California

April 1974

Parallel Tridiagonal Equation Solvers

by Harold S. Stone

ABSTRACT

This paper compares three parallel algorithms for the direct

solution of tridiagonal linear systems of equations. The algorithms

are suitable for computers such as ILLIAC IV and CDC STAR.

For array computers similar to ILLIAC IV, cyclic odd-even reduc-

tion has the least operation count for highly structured sets of

equations, and recursive doubling has the least count for relatively

unstructured sets of equations. Since the difference in operation

counts for these two algorithms is not substantial, their relative

running times may be more related to overhead operations, which are

not measured in this paper. The third algorithm, based on Buneman's

Poisson solver, has more arithmetic operations than the others, and

appears to be the least favorable. For pipeline computers similar to

CDC STAR, cyclic odd-even reduction appears to be the most preferable

algorithm for all cases.

When the tridiagonal system satisfies a strong diagonal dominance

condition, the intermediate values computed by cyclic odd-even reduction

form a rapidly convergent sequence, and thus the algorithm can be termin-

ated early when values are correct to within machine accuracy. The

convergence is linear until off diagonal terms fall below 1/3 the magni-

tude of the diagonal element, at which point the convergence becomes

quadratic. The quadratic convergence is superior to the linear convergence

reported by Traub for several parallel iterative tridiagonal solvers.

Parallel Tridiagonal Equation Solvers

by Harold S. Stone

I. Introduction

Within the last few years new techniques have appeared for

solving tridiagonal systems of equations efficiently with a parallel

processor. Cyclic odd-even reduction [Buzbee et al., 1970] is an

algorithm for the direct solution of two-dimensional Poisson problems.

It can be applied to one-dimensional Poisson problems as well, which are

nothing more than tridiagonal linear systems of a special form.

Buzbee et al. [1970] also describe an algorithm attributed to

Buneman which solves two-dimensional Poisson problems directly.

Like cyclic odd-even reduction, the Buneman algorithm can be applied

to one-dimensional problems, and thus can also solve tridiagonal systems.

Both of these algorithms differ from conventional tridiagonal solvers

in that they are suitable for parallel computers. Stone [1973] reported

a tridiagonal solver based on a recursive doubling technique and

specifically designed for the ILLIAC IV. The computation time for a

system of dimension N for all three algorithms is proportional to log 2 N

on a parallel array computer with N processors, so that relative speed

differences depend very strongly on the number of operations per iteration. A

conventional tridiagonal solver requires time proportional to N

on a serial machine, and cannot be run faster on a parallel machine

-2-

because of the highly serial nature of the computation.

In this paper we measure the number. of arithmetic operations

per iteration for each of the three algorithms when applied to

tridiagonal systems with varying amounts of structure. For array

computers cyclic odd-even reduction and recursive doubling are relatively

close in arithmetic operation count with the former preferred for highly

structured systems and the latter preferred for unstructured systems. The

relative preferences may change if we take into account the overhead opera-

tions such as indexing, routing, and memory accesses. Buneman's algorithm

requires substantially more arithmetic operations per iteration and is the

least preferable of the three algorithms for this problem.

The analysis is slightly different for pipeline computers of the CDC

STAR class. For these computers computation time depends not only on the

number of vector arithmetic operations but also on the total number of

individual arithmetic operations. Since the recursive doubling algorithm

requires 0(N log2 N) arithmetic operations as compared to O(N) for cyclic

odd-even reduction and Buneman's algorithm, it is quite unattractive for

pipeline computers as originally formulated. In this paper we present a

modification of the recursive doubling algorithm suitable for pipeline

machines in that the number of arithmetic operations is reduced to O(N).

Nevertheless, the operation count for cyclic odd-even reduction is less

for both the modified recursive doubling and Buneman algorithms.

Under conditions of diagonal dominance, cyclic odd-even reduction

and Buneman's algorithm both compute intermediate values that converge to

-3-

a solution. so both may be used as iterative rather than as direct

methods. Again cyclic odd-even reduction appears to be superior to

Buneman's algorithm. We show that convergence is linear then changes

to quadratic when the magnitude of off-diagonal terms becomes much less than

the magnitude of the diagonal terms. The parallel iterative methods

studied by Traub [1973] appear to have:inherent linear convergence

and thus are likely to be uncompetitive with cyclic odd-even reduction

for quadratically convergent cases.

As a final point of comparison, we investigate the additional cost

of solving a tridiagonal system for a new right-hand side, after having

a solution for a first right-hand side. The number of arithmetic operations is

reduced by about 2/3 under these circumstances, so it is worthwhile to

take advantage of this reduction when circumstances permit. As before,

recursive doubling has a slightly lower count for the general case, and

cyclic odd-even reduction has a lower count for highly structured cases.

The counts are very close, however, so the comparisons are inconclusive

in obtaining measures of the relative speeds.

In Section II of this paper we examine the three algorithms in their

most general form. The symmetric constant diagonal case, which is the most

familiar for cyclic odd-even reduction and Buneman's algorithm, is analyzed

in Section III. Section IV contains the analysis for the CDC STAR class of

computers. Convergence rates are compared in Section V, and Section VI

examines the additional computation required to solve a set of equations

with a new right-hand side.

-4-

II. The tridiagonal equation solvers

In this section we examine the tridiagonal equation solvers

in their most general forms, and obtain the arithmetic operation

counts. The cyclic odd-even reduction and Buneman algorithms described here

are direct generalizations of the algorithms given in Buzbee et al.

[1970, and have not appeared before in this form. The recursive

doubling algorithm is taken from Stone [1973].

We wish to solve a set of N linear equations of the form A x = y

where A is the tridiagonal matrix

d f

e2 d2 f2

e3 d3 f

eN-1 dN-l N-1

eN d

-5-

For cyclic odd-even reduction and the Buneman algorithm, it is most

convenient if N = 2m -1, while for recursive doubling we should have

N = 2m for greatest efficiency. In this discussion we assume

N = 2m -1 and ignore the slight inefficiencies introduced in the

'recursive doubling algorithm.

The general scheme of cyclic odd-even reduction and the Buneman

algorithm are similar. Consider the ith row of A, for ieven. This row

has the form (.... O eidi, f, ...). Multiples of row i+l and row

i-1 are added to a multiple of this row to form the new row whose

form is (....ei,O,d ,O,fi,...). This operation creates a tridiagonal

system from the 2m-1-1 even rows of A. Although the odd rows have

been eliminated, the odd unknowns can be obtained from the even unknowns

by back substitution. Given the system of 2m-l- equations involving

just the even unknowns, we can eliminate every other row by repeating

the process above, leaving a set of 2m-2-1 equations involving unknowns

whose subscripts are multiples of 4. This process is repeated until we

obtain a single equation for x m- l which can be readily solved. Then by

back substitution, we can compute the eliminated unknowns in the reverse

of the order in which they were eliminated.

th
To describe the algorithm, let (....O,e,d,f,O) be the i row

whose new values will be (....e',0,d',0, f',), and let the rows below

+ + +
and above which are added to this row be respectively, (... .e, d ,f)

and (....e-,d ,f-..). For the first iteration, these rows have index

i+l and i-i, respectively, and for the k th iteration they have index

-6-

i+2k- 1 and 1-2k -l

The inner loop of the reduction process of cyclic odd-even

reduction then becomes:

d' = d+ef- + dfe+ - d-d+d

e' = d ee

f' = d ff

+ - + +
y' = d ey + d fy - dd y

These equations are obtained by adding ed times the equation

above, and fd times the equation below to -d-d' times the middle

equation.

Back substitution requires the solution of equations of the form

- +
ex + dx + fx = y

for x when both x and x are known. Thus the inner loop of the back

substitution operation has the form

x = (y - ex - fx+)/d (2)

where e, d, and f represent intermediate rather than initial values of

thq variables.

For the reduction and back substitution the first and last equations

are special cases because only one row is combined with these rows. For

a parallel computer, they must be processed by the same vector instructions

as the interior equations. This is usually done with the aid of masks or

other artifices to obtain the correct answers. There is essentially no

time lost or gained in processing the boundary equations, so we ignore

these special conditions in the remainder of this paper.

-7-

+ +
To evaluate (1) efficiently, we suggest that d d , de, and

d f be computed first, then used where needed to compute the new

variables. This gives 11 multiplications and four additions per

iteration to compute (1). When we account for the back substitution

(2) and note that Flog 2 Ni - 1 iterations of (1) and (2) are required,

we find the total number of operations for cyclic odd-even reduction

to be as shown in Table I.

Turning now to the Buneman algorithm, the derivation for it

comes from (1) where we write for y'

+ - + +
y' = d ey + d fy+ - dd y

=(d+ef- + d fe+ - ddd+) y/d (3)
+ - +

+ d ey + d fy+ (y/d) (d+ef- + d-fe+)

Now we introduce quantities p and q such that

y = dp + q (4)

and similarly we write

+ ++ +
y = dp + q

(5)

y = dp +q

Placing (3) into the form of (4) we find

y' = d'p' + q' (6)

-8-

Table I

Operation counts for parallel tridiagonal solvers

(Array computer)

Cyclic
odd-even Buneman's Recursive

Equation type reduction algorithm doubling

(...ei,di,fi,...) K(13M + 6A + D) K(15M + 10A + 2D) K(12M + 5A)
+ 2M + A + 4D

(..e f... --- --- K(11M + 5A)
+ M + A + 4D

[+3D]

(...ei,di,1/ei+ 1 ..) --- K(9M + 5A)
+ M + A + 4D

[+ KM + 3D]

(...ei,,ei...) --- --- K(11M + 5A)
+ M + A + 4D

[+2D]

(... l,d.,....) K(9M + 5A)

+ M + A + 4D

[+2D]

(...e,d,e...) K(5M + 6A + D) K(6M + 10A + 2D)

K(2M + ~A + D) K(M + 9A + 2D)

[+D] [+DJ

K = Flog 2 NI - 1

M = Multiplications

A = Additions

D = Divisions

Bracketed expressions show the number of operations

required to normalize into the given form.

-9-

where d' = d ef + d fe - ddd+

e' = d ee

f' = d ff+

P' = p + (q- ep - fp+)/d (7)

q' = d eq - + dfq+ - (d+ef + d fe+)p'

The inner loop of the reduction process for the Buneman algorithm

consists of repeating (7) where the primed variables have subscripts

of the form i.2 k in the k t h iteration, until, at the last iteration,

we obtain a single equation for x ml. Back substitution proceeds

as with cyclic odd-even reduction by solving the equation

ex + dx + fx = y = dp + q

or

x = p + (q - ex- - fx+)/d. (8)

Here the variable x has an odd subscript, and x- and x+ have even sub-

scripts in the reduced set of equations and are known from the previous

iteration of the back substitution process. As before, variables are

recovered in the reverse order in which they are eliminated.

To evaluate (7) and (8), the best method appears to be to compute

d+e, d-f, and then (d+ef + d fe). These quantities appear at least

twice in (7). From this we obtain 13 multiplications per iteration for

(7). The total number of operations for (7) and (8) combined appears

in Table I.

The last of three tridiagonal solvers, recursive doubling, is

described in detail in Stone[73 . The algorithm has three parts, namely,

the computation of the LU decomposition of A., a forward sweep through

-10-

a lower bidiagonal system, and a backward sweep through an upper

bidiagonal system. In the LU decomposition phase, during each

iteration we update the values of variables ri, si, and ti,

1 i N, from their previous values. Let vi = e ifi 1 for

2 i N, and note that the v. vector can be computed by a single
1

multiplication before we perform the iteration below. During the

kth iteration, we compute the updated values ri', Si', and t ' of

ri, s i and ti by the formulas:
1

r i sisi- 2 k+l i-2k+2 riri-2k

(9)

s i = tisi-2k v i- 2 k+s iri- 2 kl

t disi - r '
S= i- i i-2.

Here the subscript expressions with terms of the form 2k are written

out explicitly, whereas they are implicit in the superscript notation

of (1) to (8).

The forward and backward sweeps have identical form, as indicated

th
for the i equations below:

y' = y + y m (10)

m' = mm

Here the minus sign superscript denotes a variable with subscript i-2 k

in the kt h iteration for the forward sweep. Equation (10) describes the

forward sweep. The backward sweep is obtained by replacing y and m by

y+ and m + . In addition to the operations that occur in loops described

-11-

by.(9) and (10), there are two multiplications, one addition, and four

divisions required to initialize loops. The operation count for

recursive doubling is summarized in Table I. Note that we assume the

array computer has N processors and the system is.of order N in

obtaining these counts.

Recursive doubling has an advantage not shared by the other two

algorithms in that it lends itself to solving normalized equations.

In (9), either the vi s or the di's can be normalized to unity with a

consequent saving in multiplications. The di's can be normalized by

dividing the ith equation by di, and di 's remain normalized throughout

the algorithm. To normalize equations for which each d. is nonzero on a1

parallel computer with N processors we simply perform three divisions by.

di to compute the normalized values of ei, fi, and yi, respectively. The

operation count for this solution is shown in Table I for the problem

labeled (...ei ,fi ...).

Note that when division is much longer than multiplication, there may

be no real gain from this normalization unless N is very large. However,

a different normalization is possible that is more likely to result in a

gain in speed. For the second normalization we set vi = 1 for 2 i N-1.

We let primes indicate the normalized values of e. and fi., and we set out to
1 1

make vi = e 'f ' = 1 by setting f ' = l/e.'. By dividing equation N-1

by eNfN-i we obtain fN-I' = I/eN, so vN = 1. Similarly, dividing equation

N-2 by eN-l' fN-2 = (eN-lfN-2)/(eN fN-l) yields vN 1l = 1. Fortunately

we can compute all of the normalization divisors in parallel using recursive

th
doubling. If ui is the divisor of the i equation, then we have

-12-

UN = eNfN-
1

and

u.i = (eifi-l)/ui+ 1 for 1 i ! N-I

Note that we can compute ui from ui+2 by substituting for ui+ 1 above,

and we find:

u i = ui+2 .(e i fi- l)/(e i +1 fi) for 1 5 i N-2

Recursive doubling can be applied directly to this form of the recurrence,

to yield an efficient parallel method [Stone, 19 7 3J. The N-2 constants

of the form (eif _1)/(ei+lfi) can be computed with a single parallel multi-

plication and a single parallel division, and then from these constants

all of the divisors ui can be computed in Flog 2 Ni - 2 parallel multi-

plications. The normalization itself requires two divisions to compute

normalized values of d and yi. The operation count for this method

is shown in Table I in the column labeled (...e,di,/ei+l...). For both

normalization methods the overhead for normalization is shown in brackets,

and the unbracketed terms indicate the operation count for the normalized

solutions.

While on the subject of normalization, we should also treat the

symmetric case for which ei = fi for 2 i N-1. Again, the cyclic odd-even

reduction and Buneman algorithms have no specific advantage for this case

because both the symmetry and the unit coefficients are destroyed after one

-13-

iteration. For recursive doubling, the symmetric case can be

normalized either into the form (...ei,l,ei...) or into the form

(...l,di,l...) depending on how we select the normalizing constants.

The former case is solved in the same manner as the unsymmetric case

(...e,l,fi...) except that two, rather than three, divisions are

required to create the normalized form since ei = f In the latter

case, after normalization the solution is identical to the solution

for the case (...ei,d/,I/ei+l...), but the normalization cost is

reduced from three divisions and Flog 2 Ni - 1 multiplications to just

two divisions, since the normalization constant for the ith equation

is just ei. The two symmetric cases with normalization are also listed

in Table I.

To summarize the results of Table I, for the general form

(...ei,di,f...) the algorithm with the least operation count per

iteration is recursive doubling, with 17 operations per iteration, and

cyclic odd-even reduction trails slightly behind at 20 operations per

iteration. Buneman's algorithm has the highest count with 25 operations

per iteration, and is particularly at a disadvantage on a machine with

relatively slow division since it has two divisions per iteration as

compared to one for odd-even reduction and zero for recursive doubling.

Using normalization in the recursive doubling algorithm may result in a

slightly faster algorithm for large N, but the gain may be insignificant

for N=63 and N=127. For the general case, recursive doubling appears to

be slightly preferrable to cyclic odd-even reduction and quite preferable

-14-

to Buneman's algorithm. The comparison with odd-even reduction is so

close as to be inconclusive, since careful consideration of overhead

computations such as memory fetching, indexing, and routing can change the

relative speed estimates. For symmetric matrices with nonconstant diagonals,

the analysis indicates a much stronger preferance for recursive doubling,

with 14 operations per iteration as compared to 20, which suggests a speed

differential of 30% or more might exist in this case. Again a more careful

analysis of the overhead operations is required because the true speed

differential may be much smaller than indicated here.

-15-

III. The symmetric constant-diagonal case

In this section we examine the tridiagonal equation solvers when

operating on matrices of the form

d e

e d e

e d e

e d e

e d e

e d

which in shorthand notation we denote as the (...e, d, e ...) case.

For this case the cyclic odd-even reduction and Buneman algorithms

are greatly simplified. Consider the three adjacent rows of A

e d e

e d e

e d e

and note that the middle row can be changed from the form (...O,e,d,e,...)

into the form (...e',O,d',O,e'...) by subtracting d times it from e times

the sum of the first and third rows. This gives the following iteration:

d' = 2e - d2

e' =e (11)

+ -
v' = e(y + y) - dy

-16-

As before, the odd indexed equations are eliminated in the first

iteration, and at each subsequent iteration the odd equations of the

reduced tridiagonal system are eliminated. This is exactly the

iteration described by Buzbee et al. [1970] for the solution to

two-dimensional Poisson problems. The back substitution involves

+ -
substituting for x and x in the equation

ex + dx + ex = y

or

x = (y - e(x + x))/d (12)

Counting multiplication by a constant 2 as an addition. we find the

cost in arithmetic operations per iteration of (11) and (12) is five

multiplications, six additions and one division.

Buneman's algorithm uses intermediate variables p and q such that

y.= dp + q.

With appropriate modifications to (11) we find the reduction

iteration to be

d' = 2e - d

e' = e2

P' = p + [q - e(p + + p)]/d (13)
+ 2

q' = e(q + q-) - 2e 2P'

Back substitution involves solution of the equation

-17-

e(x+ + x-) + dx = y = dp + q

which yields

x = p + [q - e(x + x-)I/d (14)

Again counting multiplication by 2 as an addition, we find the per

iteration cost of (13) and (14) to be six multiplications, 10 additions,

and two divisions.

The cost for these two algorithms is summarized in Table I in

the column labeled (,,.eYd,e...). To compare recursive doubling to

these algorithms, use the analysis for the (...l,dil...) case for

recursive doubling since the presence of constant diagonals does not

change the recursive doubling algorithm. The best algorithm for the

symmetric constant diagonal case appears to be cyclic odd-even reduction.

The Buneman algorithm has a higher iteration count than recursive doubling

for the (...l,di,l...) case, so it again appears to be uncompetitive with

the two other algorithms.

Both the Buneman and the cyclic odd-even reduction algorithms enjoy a

significant speed increase when the e coefficients are initially equal to

unity. For cyclic odd-even reduction, they remain unity throughout the

computation, and thereby reduce the number of multiplications and additions

per iteration to two and five, respectively. The number of operations for

this case is summarized in Table I in the column labeled (... l,d,l...).

Likewise, the number of operations for the Buneman algorithm can be reduced

as indicated in Table I. Note that the (...e,d,e...) case can be normalized

into the (...1,dl...) form by two divisions to normalize d and y. On most

-18-

parallel computers the normalized values of d and y can be computed

simultaneously, since d is a constant. It can be treated as an additional

of y for the normalization, and then can be broadcast in a separate operation

to the vector storage area for d. Consequently, the cost of normalization

is given as one division rather than two.

For both algorithms the multiplications in each iteration have

almost been eliminated and the operation counts are significantly re-

duced. Thus the symmetric constant diagonal case almost certainly should

be normalized into the (...1,d,l...) form to obtain greater speed.

Note that for the present case these two algorithms should be

compared to the (...1,di,l...) case for recursive doubling as indicated

before, and the comparison shows that cyclic odd-even reduction is the

most preferable with eight operations per iteration as compared to 12 for

Buneman's algorithm and 14 for recursive doubling. The fact that division

is usually more time consuming than addition or multiplication makes the

cyclic odd-even reduction algorithm a little less attractive than indicated

here,. but its operation count is so much better than the other two

algorithms that it is almost certainly the fastest of the three for this

case. For the ILLIAC IV computer, for which A = M = D/5, recursive

doubling is likely to be as fast or faster than the Buneman algorithm.

The conclusions to be drawn from Table I suggest that both cyclic odd-

even reduction and recursive doubling are attractive for implementation,

with recursive doubling slightly favored for the general tridiagonal system,

and a much stronger preferance for cyclic odd-even reduction for symmetric,

constant diagonal systems. The operation counts are sufficiently close in

-19-

most cases to make our estimates of relative speed subject to error due

to failure to consider the cost of overhead operations. It is worthwhile

to mention that all of the cases shown in Table I can be solved efficiently

by implementing just two different subroutines. A single recursive

doubling subroutine can treat all of the cases in the first five rows

without change. The subroutine should test to see if the matrix is

symmetric and if so, it should normalize the matrix into the (...1,di.1...)

form. Otherwise the matrix should be normalized into the (...eidi,/ei...

form. A single recursive doubling subroutine solves both of these forms,

and thus is suitable for each of the first five cases of Table I when

normalization is used. The last two cases can be solved with a single

cyclic odd-even reduction subroutine. Thus it is easy to take advantage

of the special form of certain tridiagonal matrices to increase the speed

of computation.

While the differences in computation speed between the recursive

doubling and odd-even reduction algorithms are not substantial in most

cases, the Buneman algorithm does appear to be uniformly slower than either

of the other two algorithms. Its value, of course, lies in its application

to two-dimensional problems and for the solutior of the corresponding block-

tridiagonal systems, primarily because of its good numerical stability.

-20-

IV. The solution of tridiagonal systems on pipeline computers

Under the assumptions of the previous analysis, the computer is

a vector processor that can perform up to N identical operations

simultaneously, and we have carefully restricted the problems to be of

order N. This is a reasonable model for the ILLIAC IV computer where

N = 64 and N = 128 in double and single precision modes, respectively.

On pipeline machines our analysis is not accurate because computation

time on such machines depends not only on the number of vector instructions

executed, but on the total number of elementary arithmetic operations as

well. The Buneman and cyclic odd-even reduction algorithms both require

O(N) elementary arithmetic operations, while the recursive doubling

algorithm requires 0(N log 2 N) elementary arithmetic operations, so that

for sufficiently large N it is guaranteed to be slower than the other

algorithms. In this section we present a variation of the recursive

doubling algorithm with O(N) arithmetic operations, and compare the

three algorithms when executing on a pipeline computer.

Let V indicate the number of vector arithmetic instructions issued

during the execution of a program, and let T denote the total number of

elementary arithmetic operations performed by these instructions. That is,

th
if the i vector arithmetic instruction operates on n. pairs of operands to

1

produce ni results, then T = E ni . The computation time of a program on a

pipeline processor such as CDC STAR is then approximated by the expression

clV + c T where cI and c2 are constants. For the CDC STAR c1 is the larger

-21-

constant, about 100 to 200 times larger than C2 depending on factors

related to the storage of the data and type of operation. For the problem

at hand V is 0(log2 N) and T is O(N) so that the first term in the

expression dominates for small N and the second for large N, with a cross-

over point somewhere in the region 64 N : 1024, depending on factors not

treated here. Our previous analysis has measured V, and in this section we

measure T, since it clearly contributes to the computation time, and in

many cases is the dominant term.

We begin by deriving a variation of the recursive doubling algorithm

in Stone [19 7 3] that requires only O(N) arithmetic operations. Then we

compare the three tridiagonal solvers. The major issue concerns the number

of operations required to solve recurrence relations with associative

operators. As a typical example, consider the solution of the recurrence

xi = ai + xi_1 2 i N

= a = (15)

when the coefficients a. are given. This can obviously be solved sequenti-1

ally to obtain xi for 2 ! i. N with N - 1 additions. Recursive doubling

yields an algorithm to compute all of the xi's with Flog N vector operations,

but the number of additions increases to O(N log 2 N). The increase comes

about because for each vector operation, at least N/2 additions occur.

The goal is to compute all of the xi s in 0(log2 N) vector operations

while holding the number of additions to 0(N). This turns out to be very

easy tg do given the capabilities of a pipeline computer like the CDC STAR.

The algorithm that we describe here is suitable for the CDC STAR, but

because of the differences between STAR and ILLIAC, it has no particular

-22-

advantage for the ILLIAC.

For convenience in this discussion we shall assume that N = 2m

The algorithm to solve (15) involves the computation of a sequence of

vectors X(k), 1 < k log2 N, where X(k) has length N/ 2 k. When we obtain

X(m), we then sweep backwards through the vectors, updating them so that

after the last step of the computation the updated vector X(1) contains

the values of x.

The algorithm is given below in a ALGOL-like notation. Here the

vector a[i] contains the coefficients ai . The parenthesized expressions

appearing after assignment statements give the values of the indexvariable i

for.which the vector operation is performed. The algorithm makes use of vectors

X(k), 1 < k ! m, with X(k) of length N/ 2 k-l

x(1) [i l := a[i], (1 5 i 9 N);

comment forward sweep. Log2 N = m;

for k := I1 step 1 until m-i do

begin

x(k+l)[i] := x(k)[2i] + X(k)[2i-1, (1 i < N/2k);

end;

comment backward sweep;

for k := m-l step -1 until 1 do

begin

X(k)[i] := X(k+l)[i/2], (i even, 2 ! i N/ 2 k-1l);

x(k)[ij := X(k+l)[(i-1)/2] + X(k)[i], (i odd, 3 < i N/ 2 k-1);

end;

An example of the algorithm for N = 8 appears in Fig. 1.

-23-

i = 1 2 3 4 5 6 7 8

x()[i] 1 2 3 4 5 6 7 8

x(2)[i] 1-2 3-4 5-6. 7-8

x(3)[i] 1-4 5-6

x(4) [i 1-8

x(3)[i] 1-4 1-8

x(2)[i] 1-2 1-4 1-6 1-8

x()[i] 1 1-2 1-3 1-4 1-5 1-6 1-7 1-8

Each entry indicates the range of subscripts of

the ai's in a partial summation.

Fig. 1. A sample execution of the modified

recursive doubling algorithm.

- 24-

The figure shows that the algorithm proceeds in the forward sweep in

the familiar way, that is, it computes sums of adjacent pairs, then of

adjacent quadruples, and then obtains the sum of all elements. The

backward sweep simply uses the stored information to compute the final

values of x, first for i = 4, then for i = 2 and 6, and finally for i

odd. The strategy in this algorithm is essentially the same strategy

followed by cyclic odd-even reduction and the Buneman algorithm. We

give no formal proof of correctness here because the algorithm is quite

straightforward.

We should mention that the number of vector arithmetic operations

for this algorithm is 2[log2 NI rather than Flog 2 Ni which holds for

the more usual recursive doubling algorithm. The overhead for this

algorithm is also quite high, and does not appear in this analysis. Con-

sequently, for small N, the new algorithm is not recommended.

To modify the recursive doubling tridiagonal solver into the new

form, we simply note that the addition in (15) can be replaced by any

associative operator. The solution of tridiagonal equations involves the

solution recurrences of the form of (15) in which the variables xi are

vectors of length 2, the variables ai are 2-X 2 matrices, and the operation

is matrix multiplication. The recurrences appear once in the calculation

of the LU decomposition, once in the forward sweep of a bidiagonal system,

and once in the backward sweep of a bidiagonal system. Thus these three

recurrence systems can each be evaluated by the algorithm given here,

provided we replace each X(k)[i] by a 2 X 2 matrix, and we change the

addition in the algorithm to matrix multiplication.

-25-

The cost in arithmetic operations per iteration for the modified

recursive doubling algorithm is 50% larger than the cost for the

unmodified algorithm. The matrix multiplication for the LU decomposition

requires eight multiplications and four additions for the forward sweep,

but only half of this for the backward sweep. The matrices for the two

bidiagonal systems have the special form:

a b

Multiplication of matrices in this form requires only two multiplications

and one addition. This is done twice for each of the bidiagonal systems to

yield a total of eight multiplications and four additions. Special forms

of the tridiagonal matrix do not appear to offer a reduction in arithmetic

operations in the LU decomposition computation,for this algorithm.

To compare the three algorithms, we can use the data from Table I, and

we discover that the relative costs of the algorithms are not significantly

different for the pipeline computer except that recursive doubling is less

attractive, particularly when division has a high cost. The total number of

arithmetic operations for all three algorithms is O(N) times the number of

arithmetic operations per iteration, even though the number of iterations

is O(log 2 N). This follows because the lengths of vectors treated are of

the form 2i -1, 1 ! i 5 m, which when summed yields a total of 2 m+l _ 1 - m

= O(N) when m = Flog 2 N .

Table II summarizes the count of the total number of arithmetic operations

for eac of the algorithms. In each case terms of order less O(N) are omitted.
/

-26-

Table II

Operation counts for tridiagonal solvers

(Pipeline computer)

Cyclic
odd-even Buneman's Recursive

Equation type reduction algorithm doubling

(...e,d,f...) N(13M + 6A + D) N(15M + 10A + 2D) N(22M + 11A + 4D)

(...e,d,e...) N(5M + 6A + D) N(6M + 10A + 2D)

(..., d, 1...) N(2M + A + D) N(M + 9A + 2D)
[+NDJ [+ND)

Only terms of order N are shown.

-27-

The terms of lower order may be significant in many cases, and tend to

make cyclic odd-even reduction even more attractive than it appears to

be in Table II. Since recursive doubling requires four vector divisions

as part of its overhead, these operations contribute substantially to its

operation count. The number of vector instructions executed in each case

is not shown in the figure, but for every case this number is O(log2 N),

and can be ignored for large N. For small values of N, the relative

costs of the algorithms tends toward the data given in Table I since this

accounts for the number of vector instructions.

Table II shows that cyclic odd-even reduction has a very large

advantage over the other algorithms in operation count, and is therefore

likely to be the fastest of the three algorithms. Again we must account

for computational overhead which may alter relative desirability somewhat

but is unlikely to change the general conclusions.

-28-

V. Semi-direct methods

The three algorithms under investigation are direct methods.for the

solution of tridiagonal equations, but under special conditions the

Buneman and cyclic odd-even reduction algorithms behave like iterative

methods. The values of intermediate quantities converge to final values,

and may reach the final values to within machine accuracy well before the

full number of iterations have been done. The convergence can be tested,

and the algorithms can be terminated early when full machine accuracy is

attained.

Traub [1973] discusses several iterative algorithms for the parallel

solution of tridiagonal equations. One is a direct method in the sense

that in the absence of round-off error it terminates with the exact

solution in a fixed number of iterations. However, it is clearly itera-

tive in intent, since it is designed to obtain a convergent sequence of

intermediate solutions, with early termination of the algorithm when

convergence is reached. And indeed, when used as an iterative algorithm,

there is a substantial improvement in computation speed. Consequently, the

algorithm analyzed by Traub, like cyclic odd-even reduction and Buneman's

algorithm, is semi-direct (or perhaps, should be called semi-iterative).

In this section we review the convergence rates of the iterative and

semi-direct algorithms proposed by Traub and compare them to the convergence

of the Buneman and cyclic odd-even reduction algorithms. We find the con-

vergence rates of the Traub algorithms are linear, whereas the convergence

rates of the other algorithms are linear when diagonal dominance is small,

but change rapidly to quadratic as dominance increases. Thus, cyclic odd-

-29-

even reduction and the Buneman algorithm appear to be quite efficient as

iterative algorithms when conditions permit.

Traub analyzes four parallel algorithms based on well-known serial

algorithms for the solution of tridiagonal systems. They are respectively

called parallel Gauss, Jacobi, parallel Gauss-Seidel, and parallel optimal

SOR. He also reports a parallel iterative algorithm based on the LU

decomposition method, whose convergence rate is that of the parallel Gauss

algorithm. We do not treat the LU decomposition algorithm separately here.

For an algorithm to be convergent, some dominance conditions must

hold for the tridiagonal system of equations. Most often it is convenient

to assume the system is diagonally dominant. For our purposes we assume

a particularly strong form of dominance, and we note our assumptions are

sufficient for convergence, but not necessary. The assumptions greatly

simplify the comparison of several different algorithms. Specifically we

assume:

je1 , If < Id/21 1 i ! N

When these assumptions hold, we can normalize into the form (...,ei,,f1...)

and bound the convergence by calculating the convergence of the more slowly

convergent constant diagonal system (...l,I/e,l...) where e = max(ei,fi)
i

of the normalized system.

These assumptions are at least as strong as the assumptions of Traub,

so that all of the algorithms he describes are convergent under these

assumptions.

-30-

To briefly summarize his results, an upper bound on the number of

iterations required to reduce the error in an initial approximation by

an amount 2- b grows linearly in b for the parallel Gauss and Jacobi

algorithms, and grows as the square of b for the parallel Gauss-Seidel

and parallel optimal SOR algorithms. Thus, if the bounds on convergence

rates are accurate estimates, the best convergence rates from this class

of algorithms might be linear in order. Traub reports numerical experi-

ments that tend to confirm that the parallel Gauss and Jacobi algorithms

have convergence rates predicted by the bounds.

Now we show that the Buneman and cyclic odd-even reduction algorithms

converge linearly or quadratically under the stated assumptions. Since the

two algorithms compute .equivalent, but not identical, quantities during a

computation, it is sufficient to show that either of the algorithms converges,

for if one does, then both do. In using the algorithms as semi-direct

algorithms, the strategy is to compute a sequence of tridiagonal systems,

one in each iteration, and to check the diagonal dominance of each new

system as it is computed. Under convergent conditions the ratios

ii -b
e,/dil and If /dil eventually become less than 2- b where b is the machine

accuracy. At this time the tridiagonal system is declared to be a diagonal

system that can be solved directly, and whose solutions can be used

immediately in the backward sweep of the back substitution. This idea has

been used successfully to solve two-dimensional Poisson problems. [Hockney,

1965].

The convergence of the cyclic odd-even reduction algorithm is easily

discovered by examining (11). To find a lower bound on convergence of the

system (...eidi.fi.....) we mentioned above that we can use the more slowly

-31-

convergent system (...,l,l/e,l,...) where e is the maximum normalized

off-diagonal element. Thus it is sufficient to consider the symmetric

constant diagonal case (...,l,d,l,...). When Idj > 2, convergence occurs

when the diagonal elements overflow, that is when Idl 2b , since the off-

diagonal elements remain at unity throughout the computation, and thus

Ie/dl j 2- b at overflow. Convergence in this iteration is essentially

linear or quadratic depending on whether Idl is respectively less than or

greater than 3. The transition between linear and quadratic behavior

occurs when Idl 3.

To determine the convergence rate, we define e(k) = Id(k) - 2 a 0

where d(k) is the diagonal element computed during the kth iteration. We

attempt to measure how fast Id(k) grows as a function of k, as it grows

toward 2b . From (11) we have:

d(k + l) = 2- [d(k)]2

so that

Id(k+l) = 2- [2 + e(k)]2

k 2 + 4c(k) + [e(k)]2

Thus

e(k+l) 4e(k) + [(k)]2 (16)

For e(k < 1 we have

G(k+l) 4e(k) (17)

and the rate of growth is at least first order or better. For e(k) > I,

we have

-32-

c(k+1) Z [S(k)]2 (18)

at which point the rate of growth is quadratic or better. Since

c = Idl - 2, the breakpoint comes roughly at Idl = 3 as indicated above.

The number of iterations required to increase Id(0) I from 2 + e(0)

to 3 is the number of iterations, k, such that

G(k) 1

but from (16) it follows that

s(k) k 4kC(O) (19)

Solving the inequality 4ke (0) Z i, for k yields

k log 2e(O (20)
2

is sufficient to insure that d(k) a 3. Note that if e(O) is of size 2- t
,

then the number of iterations is roughly t/2. The number of iterations to

raise Id(0)I from 3 to full machine size of 2 b is obtained from (18T to be

the least k such that

C(k) [E(0)2k 2b

or

k log 2 b - log2 log 2 E(0) (21)

Thus when dominance is sufficiently great in a tridiagonal system, (21)

guarantees extremely fast convergence of the direct methods. The convergence

-33-

rate for less dominance as indicated by (20) is of the same order as

the convergence found by Traub, so that at least in this region the

direct methods still converge as rapidly but not dramatically faster

than the algorithms described by Traub.

The very good convergence of cyclic odd-even reduction and Buneman

algorithm has a simple intuitive explanation. The solution of a tri-

diagonal system requires that every equation influence every other

equation. For diagonally dominant systems the influence diminishes with

the distance between equations, and in fact, for strong dominance, the

influence of one equation is neglible many equations away. In the two

direct algorithms, during the k t h iteration, each equation spreads its

influence over equations up to 2k rows away in each direction. Thus, when

the system is strongly diagonally dominant, the algorithms can terminate

early when each equation has spread its influence to all equations within

the range of its influence.

The algorithms studied by Traub are structured so that during each

successive iteration the sphere of influence of each equation increases by

at most one equation in each direction, rather than doubles in size as is

the case for the algorithms above. Thus the number of iterations required

to spread the influence of each equation sufficiently far is greater than

the number of iterations required for the direct algorithms.

We mention in closing that the algorithms studied by Traub are particu-

larly amenable to contexts in which a good initial guess is available. This

occurs frequently when a sequence of slightly perturbed equations are solved.

The two direct methods do not make use of initial guesses,.and are likely to

be slower when good initial guesses are available.

-34-

VI. Repeated solutions with new right-hand sides

In some contexts, particularly in the solution of Poisson's

equation on a rectangle, one system of tridiagonal equations must be

solved repeatedly with different right-hand sides. In these contexts

it is possible to reduce computation time substantially by taking

advantage of intermediate results produced during the first solution

of a set of equations. The classic example is the repeated use of the

LU decomposition of a system. Since the recursive doubling algorithm

computes the LU decomposition, it offers some advantage when equations

are solved repeatedly. The cyclic odd-even reduction algorithm also

offers some benefit. In this section we reexamine these algorithms and

compare their relative costs for repeated solutions.

From the description of the cyclic odd-even reduction algorithm in

Section II, it is clear that we need not repeat the computations for d',

e', and f' in (1) when we solve a system with a new right-hand side. We

must save the intermediate variables, and then apply the equation for y'

in (1) repeatedly, log2 N times. At this point we can do the normal back

substitution process of (2), and find the new solution. If we assume that

we have saved the values of d-d , d+ e, and d f, then at most three multi-

plications and two additions per iteration are required in the forward

process, and the backward substitution remains unchanged with two multi-

plications, one division, and two subtractions. These results are summarized

in Table III. The analysis of the various special cases is similar to our

previous analysis and is not repeated here. Golub [19 7 14] has made this

Table III

Operation counts for each additional solution

after first solution.

Cyclic
odd-even Buneman' s Recursive

reduction algorithm doubling

(...ei,difi...) K(5M + 4A + D) K(7M + 8A + 2D) K(4M + 2A) + D

(...e,d,e...) K(3M + 4A + D) K(4M + 8A + 2D)

(...ld, l...) K(M + 4A + D) K(9A + 2D)

[+D] C+D

-36-

algorithm explicit by exhibiting a matrix factorization for the cyclic

odd-even reduction algorithm that is roughly analgous to an LU decomp-

osition.

Buneman's algorithm also lends itself to repeated solutions of one

set of equations, but the savings is relatively less than obtained for

cyclic odd-even reduction. We summarize its costs as obtained from (7)

and (8) in Table III. There is negligible savings except for the

interesting special cases.

Recursive doubling is reduced in complexity by roughly 2/3 when the

LU decomposition of (9) is saved and not recomputed. The summary of the

analysis for recursive doubling appears in Table III.

Table III follows the general trend set by the previous tables. For

the general case, recursive doubling has the least operation count. For

the special case of constant symmetric diagonals, cyclic odd-even reduc-

tion is relatively efficient and is approximately equal in operation

count to recursive doubling. To establish the fastest algorithm for this

case, it is essential to account for overhead computations and other factors

besides the arithmetic operations enumerated here.

We should mention that the machine model assumed for Table III is an

array processor. For a pipeline processor the number of arithmetic

operations for recursive doubling is approximately twice that shown in

parenthesis in Table III, and thus cyclic odd-even reduction is likely to

be uniformly better than the other algorithms when executed on a pipeline

computer.

-37-

VII. Summary and conclusions

In comparing the three algorithms, the operation count for

recursive doubling tends to make it the most attractive when the system

of equations has no particular special structure. Cyclic odd-even

reduction has the least operation count of the three when the system

is symmetric with constant.diagonals. Cyclic odd-even reduction appears

to be the most efficient algorithm for a pipeline computer in virtually

all cases. Moreover, when the system of equations permits cyclic odd-

even reduction to be used as an iterative algorithm, it converges as

fast or faster than other parallel iterative methods proposed recently.

The analysis focuses on arithmetic operations and does not enumerate

the number of memory references, shifts, index calculations, and other

overhead. In many instances, the algorithms are sufficiently close in

operation count to make a timing evaluation inconclusive, because the

overhead computations have not been taken into account. We have recently

been informed of a report that does in fact make the careful analysis of

overhead to provide relative timings for the CDC STAR computer [Lambiotte

and Voigt, 1974]. That report generally substantiates our conclusion that

cyclic odd-even reduction is the most desirable algorithm of the ones

studied here.

We have also not considered the relative stability of the algorithms.

If a system is not diagonally dominant, then the computation of the LU

decomposition in the recursive doubling algorithm might fail. Likewise

the stability of cyclic odd-even reduction and Buneman's algorithm is in

question under these conditions, with Buneman's algorithm possibly having

-38-

greater stability than cyclic odd-even reduction [Buzbee et al., 1970].

We have omitted all questions of relative stability in this analysis and

leave such questions for future research.

-39-

Acknowledgement

The author is deeply indebted to Prof. Gene Golub of Stanford

University for many discussions, comments, and suggestions regarding

this paper. We also acknowledge helpful suggestions and conversations

with Prof. Joseph Traub of Carnegie-Mellou University, Dr. Robert G.

Voigt of ICASE and Dr. Jules J. Lambiotte of NASA Langley Research

Center.

-40-

References

Buzbee, B. L., G. H. Golub and C. W. Nielson [1970]. "On direct
method for solving Poisson's equations," SIAM J. Numer. Anal.,
Vol. 7, No. 4, pp. 627-656, Dec. 1970.

Golub, G. H. [1973]. Private communications.

Hockney, R. W. [1965]. "A fast direct solution of Poisson's equation
using Fourier analysis," J. ACM, Vol. 12, No. 1, pp. 95-113,
Jan. 1965.

Lambiotte' J. J., and R. G. Voigt [1974]. "The solution of tridiagonal
linear systems on the CDC STAR-100 computer," ICASE Report, June
1974.

Stone, H. S. [1973]. "An efficient parallel algorithm for the solution
of a tridiagonal linear system of equations," J. ACM, Vol. 20, No. 1,
pp. 27-38, January 1973.

Traub, J. F. [1973]. "Iterative solution of tridiagonal systems on

parallel or vector computers," in Complexity of Sequential and

Parallel Numerical Algorithms, J. F. Traub, ed., Academic Press,
New York, 1973.

