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The short-term memory study published by Saul Stern-
berg in 1966 has led to numerous empirical, applied, and
theoretical investigations of search in human short-term
memory. Nevertheless, a survey of the literature suggests
that even now, the case is not closed with regard to the men-
tal architecture and processes associated with Sternberg’s
task. Here we will briefly review the issues involved and
then introduce a new and powerful methodology based on
metatheoretical developments and a novel experimental
strategy. We propose that this new approach can help settle
critical questions in applied, basic memory, and perceptual
research.

In the Sternberg (1966) paradigm, a small set of items
is quickly memorized, and this is followed by the pre-
sentation of a target item. The experimental participant
indicates, usually with one of two buttonpresses, whether
the target item was present in (a “yes” response) or ab-
sent from (a “no” response) the memory set. The primary
measure of interest in such studies is response time (RT);
response errors are generally less than 10%, and error
rates at this level are thought to be largely unconnected

with the major aspects of processing in such an experi-
ment (Swanson & Briggs, 1969).1 In Sternberg’s original
study and in most subsequent experiments, the primary
interest has been in whether comparisons of target and
memory set items take place as serial (one at a time) or
parallel (simultaneous) processing, and the mean RTs
enable the researcher to make this determination.

Although Sternberg (1975) argued forcefully that pro-
cessing in such short-term memory search is indeed serial,
not all studies and approaches have led to the same con-
clusion (Ashby, Tein, & Balakrishnan, 1993; McElree &
Dosher, 1989; Ratcliff, 1978). It is also apparent that within
the common paradigms that are used to assess serial ver-
sus parallel processing, models of either kind could be
mathematically prescribed to mimic the opposite kind of
processing (Townsend, 1969, 1971, 1990; Townsend &
Ashby, 1983). Such findings have portended thorny chal-
lenges concerning our ability to empirically pry these no-
tions apart. In addition, a related challenge has been to
test entire categories of models—in this case, parallel
versus serial, rather than, say, specific models based on
particular probability distributions on processing times.
Therefore, early on, Townsend and colleagues maintained
that more powerful methods were required in order to
settle the case for broad classes of parallel and serial
models (i.e., rather than those restricted to special cases;
e.g., Townsend, 1974; Townsend & Schweickert, 1985).

We now turn to a more detailed introduction of the
characteristics of the basic model within the classic search
design. Serial models assume that within the short-term
memory search task, each item in memory is compared
with the target in sequence, so that a comparison on an
item must be completed before the next comparison can
begin. Parallel models assume, in contrast, that all items
are compared with the target simultaneously, although
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Indiana University, Bloomington, Indiana

Many mental tasks that involve operations on a number of items take place within a few hundred mil-
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comparisons on different items can be finished at differ-
ent times. It is generally taken for granted that the com-
parison times and therefore the RTs are probabilistic in
nature and thus must be described by their frequency
functions (e.g., cumulative distribution functions) or var-
ious statistics such as the mean and variance.

On target-present trials, it may be possible for the
comparisons to cease once the target has been located in
the memory set, permitting the “yes” response to be im-
plemented before all the items in the memory set have
been compared with the target. This is known as self-
terminating processing. On target-absent trials, however,
all memory items must be compared before the partici-
pant can be certain that the target was not present; only
then can a participant make a correct “no” response.
Such processing is referred to as exhaustive processing.
Target-absent trials will be the focus of the present in-
vestigation, in which we employ recently designed theo-
retical and methodological tools to attempt to settle the
parallel–serial issue.

Sternberg (1966) varied the number of items (digits in
this case, but the design has since been carried out over
a huge array of stimulus types) was varied from n � 1 to
n � 6 (i.e., less than the usual upper bound on short-term
memory). Sternberg’s main finding was that mean RTs
gathered under conditions of very low error rates were es-
sentially an increasing linear function of n, with a slope
of about 40 msec and an intercept of around 400 msec.

Sternberg (1966) showed how such a finding could re-
sult from a serial model, with each item consuming the
same duration, on average, for its comparison. However,
he was also able to falsify an important class of parallel
models. That class is now referred to as unlimited-capacity,
independent parallel processing (Townsend & Ashby,
1983). The “unlimited-capacity” designation indicates
that the speed of any individual item, reflected in its pro-
cessing time distribution, does not change and, in par-
ticular, does not exhibit a slow-down (e.g., by shifting its
cumulative distribution function or mean upward). The
“independent” designation indicates that the joint distri-
bution function for the completion times of the various
item comparisons is composed of the product of the indi-
vidual item distributions; that is, they are stochastically
independent. Employing certain mathematical results
from statistics, Sternberg (1966) showed that even the
fastest growing RT curve possible, associated with such
parallel models, had to be negatively accelerated and
could not keep pace with the linear slope of the obtained
data. Subsequently, Townsend and Ashby (1983) proved
that every independent, unlimited-capacity model had to
be negatively accelerated—not just the class of models
producing the fastest growing RT curves.

It was later demonstrated, however, that a different
type of parallel model could predict linear mean RT
curves such as those found in the data (Atkinson, Holm-
gren, & Juola, 1969; Murdock, 1971; Townsend, 1971;
Townsend & Ashby, 1983). This kind of model is called
limited capacity, since it allows for the processing rates

of individual items to decrease as the memory set size n
increases. Many investigators find such models to be
quite plausible, given that limitations in human cogni-
tive, perceptual, and motor performance abound in the
cognitive and human performance literature.

On the other hand, if the RT curves were completely
flat or almost so, parallel processing would be supported.
Serial models have to increase their individual item pro-
cessing speed proportionately to n and thus are usually
unrealistic theoretical competitors in the face of such re-
sults. Although self-terminating standard types of paral-
lel models (e.g., unlimited capacity and independent)
naturally predict flat RT functions with one target pres-
ent (Van Zandt & Townsend 1993), exhaustive parallel
processing by such systems cannot produce a nonin-
creasing RT function of n. It requires supercapacity par-
allel models to make such predictions; that is, the aver-
age rates on individual channels must actually increase
their processing speed as the overall load (here, the set
size) increases. Such curves are empirically rare but do
occur (albeit in visual search or search involving visual
features; see, e.g., Egeth, Jonides, & Wall, 1972; Nielsen
& Smith, 1973; Schneider & Shiffrin, 1977).

Since Sternberg’s (1966) original study, quantitative
methods have been devised that permit stronger tests of
parallel versus serial processing for a broad set of per-
ceptual, cognitive, and performance tasks (Townsend,
1990). Several of these methods are not afflicted with the
dilemma posed by limited-capacity parallel models. One
especially promising methodology grew out of another
innovation by Sternberg—the additive factors method
(Sternberg, 1969). This method tests whether processing
is serial by manipulating experimental variables that se-
lectively affect (assumption of selective influence) the
different stages (e.g., item comparisons) of processing.
If mean RTs are additive in the experimental variables,
then the RTs are compatible with serial processing. If
mean RTs are interactive across the factor manipulation,
then Sternberg’s original method either concludes that
one of the factors affected both stages, or that two sepa-
rate serial stages simply do not exist.

A useful statistic to capture an interaction between
two factors with two levels is the mean interaction con-
trast, MIC � RTll � RTlh � (RThl � RThh ) (e.g., Stern-
berg, 1969). In this formula, the left subscript designates
the level of one factor (e.g., the factor affecting the item’s
comparison time in first position of presentation, in a
spatial or temporal sense; h � high, indicating fast RTs,
and l � low, indicating slow RTs) and the second sub-
script designates the level of the other factor (e.g., the
factor affecting the processing time of the item in the
second position). Notice that the mean interaction con-
trast is basically a difference across the first factor, of
two differences across the second factor. If the mean
interaction is 0, as predicted by serial processing with
exhaustive processing, then MIC � 0.

A limitation of the original additive factors method
was that it did not encompass parallel or more complex
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kinds of systems. That is, within the original methodol-
ogy, if a nonzero interaction was detected, the prescribed
inference was either that selective influence was failing or
that, simply speaking, two separate and serial stages did
not exist. Thus, there was no provision for how architec-
tures other than serial might behave if the items or chan-
nels were selectively influenced by experimental factors.

The scope of factorial methodologies was gradually ex-
panded to include parallel and more complex architectures,
assuming selective influence on the various subsystems,
items, or processing stages (Schweickert, 1978; Schweick-
ert & Townsend, 1989; Townsend & Ashby, 1983; Towns-
end & Schweickert, 1985). If processing obeys an exhaus-
tive stopping rule (due, for instance, to no target’s being
present in a search task), then parallel models predict that
MIC � 0 (see, e.g., Townsend & Ashby, 1983, p. 373) rather
than MIC � 0, as in the case of serial processing.

We have recently developed a curve that captures fac-
torial interactions at a considerably more sensitive level
than is the case with MIC. For instance, whereas MIC is a
relatively coarse point (i.e., single number) measure, the
new measure delivers an entire curve theoretically and as
many points as are used across time to estimate the fre-
quency functions for each setting of the factors (Townsend
& Nozawa, 1995). Basically, if Fij(t) represents the cu-
mulative distribution function for factor settings i, j, then
let Sij(t) � 1 � Fij(t), a mathematical curve known in in-
formation processing (and statistics) as the survivor
function (Townsend & Ashby, 1983, p. 27). Then we de-
fine the survivor interaction contrast function as SIC(t) �
Sll(t) � Slh(t) � [Shl(t) � Shh(t)]. Observe that the same
logical sequence of terms relative to the factor levels is
used as in the case of MIC, but now there is an approxima-
tion of an entire curve, given by the appropriate values of
the survivor functions at the time bins used for sampling
RTs.

In addition, the new interaction contrast statistical
function SIC(t) permits discrimination of processing mod-
els that make the same prediction when only MIC is used
(Townsend & Nozawa, 1995). For instance, there are
presently two major types of parallel processing. The first,
which we could call “regular” or “separate decisions”
parallel processing, assumes that each channel possesses
its own detection stage (e.g., a criterion indicating pres-
ence of a feature). After one or more channels have a cri-
terial quantity of information (activation, etc.), subse-
quent logical gates may apply (e.g., OR, AND, XOR, etc.).
(For instance, in an OR design, the first channel or item
completed determines the correct response, whereas in an
AND design, both channels or items must be completed to
ensure a correct response.) In contrast, the second major
type of parallel processing, called “coactive,” assumes
that before any decision is made, the various channels
pool their combined activation or information into a
common resultant channel, after which a criterion can be
reached and a response made. Townsend and Nozawa
(1995) showed that regular and coactive parallel models
make the same mean interaction contrast prediction for

OR designs. However, they proved that the two parallel
types of predictions differ when the more powerful sur-
vivor interaction contrast assays are employed.

Furthermore, the qualitative form of the SIC(t) func-
tion is distribution free (i.e., any probability distribution,
such as gamma, Weibull, ex-Gaussian, etc., must predict
the same qualitative form). These distribution-free char-
acteristics render the SIC(t) functions, like their prede-
cessor, the MIC statistic, considerably more powerful
than model predictions that may depend on specific dis-
tributional assumptions.

The upshot is that now it becomes theoretically feasible,
under the assumption of selective influence, to rigorously
investigate parallel, serial, and even considerably more
complex systems (e.g., Schweickert & Giorgini, 1999) in
ways not troubled by limited-capacity concerns, since the
number of subprocesses (e.g., item comparisons) need not
be varied. Recall that in the standard approach, the rate of
ascent of the mean RT curves as functions of number of
items, n, was used to test serial versus parallel processing.
Unfortunately, as noted earlier, limited-capacity parallel
models could mimic serial models (e.g., Townsend, 1969,
1971).

Even the stopping rule can be simultaneously (i.e.,
from the same blocks of trials) assessed with this method-
ology. Recall that the stopping rule refers to when the
system allows itself to stop, as a function of the accu-
mulated information. For instance, in the standard Stern-
berg paradigm, on trials when no targets appear (i.e., all
the stimuli are distractors), a correct “no” response can
be made only after exhaustive processing on all the dis-
tractors has taken place. This situation is equivalent to
an AND condition on the distractors. On the other hand,
when a single target is present among n � 1 distractors,
in principle the system can cease when the target is pro-
cessed, thus implying “self-terminating” processing.

If all the items on a trial are targets, a special kind of
self-termination called “first termination” (Colonius &
Vorberg, 1994), “minimum processing time processing”
(Townsend & Nozawa, 1995), or simply a “race” (Raab,
1962) is possible. The latter type of paradigm constitutes
an OR condition. Of course, in any of these cases, the sys-
tem might nevertheless employ the exhaustive process-
ing rule wherein all items are processed regardless of
when the target is found and processed. Sternberg (1966,
1975) advocated the latter possibility even in circum-
stances where self-termination would be possible. The
fact that the stopping rule is also assessable within the
same blocks of trials that are employed to determine ar-
chitecture and capacity is a marked asset (Townsend &
Nozawa, 1995). Since we will focus on exhaustive pro-
cessing, guaranteed by observing behavior on target-
absent trials, we can confine the parallel and serial pre-
dictions for SIC(t) to that type of stopping rule.

The predictions relevant to this study are shown in
Figure 1. They are based on exponential distributions, but
the general qualitative form of the functions does not de-
pend on particular distributions. Note that whereas ex-
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haustive serial processing predicts MIC � 0, contrast-
ingly, in the case of SIC(t), we learn that exhaustive ser-
ial processing reveals an interesting S-shaped curve
going from negative to positive. It is important to ob-
serve that the exact form of the curve is predicted; thus,
an S-curve beginning positive and then going negative
or some other function would not be compatible with ex-
haustive serial processing. Note that the predictions of
the serial and parallel models were developed before any
intuitions about differential behaviors were forthcoming.
This is one of the major powers of mathematical theo-
rization.

Nevertheless, an intuition can be gained about the ser-
ial survivor contrast curves by the following analysis: To
simplify the discussion, assume that the two serial stages
with times Tl and T2 are governed by the same probability
distributions; that is, Tl and T2 are random variables with
the same underlying probability distribution (i.e., their
probability density functions, the cumulative distribu-
tions, and the survivor functions are identical).This means
that they are identical random variables, although on any
one trial, of course, they will typically have different val-
ues. In fact, we assume that Tl and T2 have the same dis-
tributions under both low and high conditions. Letting the
symbol “�:” signify that two random variables are iden-
tical, we then see that Tl , i �: T2,i , where i represents i � l
for the low condition or i � h for the high condition (this
assumption just simplifies the presentation and is not at all
necessary). Hence, to simplify the notation even further,
we can set Tl , i �: T2,i �: Ti , dropping the stage index but
retaining the factor level index i. However, we still need to
write the overall serial RT(i, j) as Ti � T ¢j (note the prime
on the second T ) even if the two levels are the same (i�j),
because each time is a sample from its own distribution.

Hence, for the low–low condition, the response time
random variable RT(l,l) � Tl � T ¢l. Likewise, RT(l,h) �
RT(h,l) � Tl � T ¢h, and finally, RT(h,h) � Th � T ¢h. We
know, of course, that the mean, or expected value, of

MIC � RT(l,l) � RT(l,h) � [RT(h,l) � RT(h,h)] is zero.
Now, it turns out that for short times, the sum of the two
stage times is determined more by the longest of the two
times than by the shortest. Since RT(l,l) and RT(l,h) both
contain a random time that tends to be quite slow, whereas
both components of RT(h,h) tend to be fast, the survivor
functions (or the cumulative distribution functions for
that matter) of RT(l,l) and RT(l,h) are closer than are
RT(l,h) and RT(h,h) (see Figure 2A). Just the reverse
happens for long durations. The longest times are highly
probable only if both the times in the sum tend to be
long—that is, if both are distributed as Tl. If either one
or two of the times tend to be shorter, exceedingly long
times are less likely, meaning that their two survivor
functions are closer together.

Our theory also predicted that the negative region must
be equal in area to the positive region (Townsend &
Nozawa, 1995). This prediction follows from the fact that
the integral (i.e., summed area) of a survivor function on
time equals the mean processing time. Then, the integral of
the double difference that defines the survivor contrast
must equal the mean contrast, and hence the negatively
signed area must equal the positive signed area. The pre-
dicted form of the SIC(t) function is a prime example of
where mathematically oriented theoretical work can derive
interesting, unexpected, or even seemingly bizarre predic-
tions (from the associated theorems) in the absence of
a priori intuition. We had no prior intuition—in fact, we
were rather surprised that the survivor function contrast
was not predicted by our theory to be identically zero (i.e.,
zero at every point of the curve).

In contrast to the serial effects, the exhaustive parallel
prediction is for an entirely negative SIC(t). Although this
prediction too was originally developed in the absence
of intuition, it is readily apparent that in exhaustive par-
allel processing, the overall RT is given by the maximum
of the individual item times (an AND gate following sep-
arable parallel channel processing produces a “slowest

Figure 1. Predictions of survivor interaction contrast functions (SIC) for simple serial exhaustive (A) and
parallel exhaustive (B) processing models. Corresponding mean interaction contrasts (MIC) for each model
are presented in the lower right corner of each figure.
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horse” result). Thus, the RT is determined by the longest
item time. Since on an lh (or hl) trial, the longest time tends
to be closer to the longest time on an ll trial, the difference
Sll(t) � Slh(t) tends to be smaller than the difference Shl(t)
� Shh(t), because the longest time on an hh trial is still de-
termined by a fast-finishing item (see Figure 2B). This fact
can aid us in our statistical analyses, as we shall find.

The number of studies employing the expanded method-
ology at least for MIC has grown over the past two decades.
It has been applied successfully to paradigms where a
single target or target item is presented first and a multi-
item set is presented second—for instance, visually
(Egeth & Dagenbach, 1991; Townsend & Nozawa,
1995). The new statistical curve, SIC(t), has begun to be
applied (Wenger & Townsend, 2001).

To our knowledge, no factorial investigation to deter-
mine parallel versus serial processing has been applied,
even using MIC, to the original progenitor, Sternberg’s
short-term memory scanning task. The reason is proba-
bly that it is much easier to manipulate experimental
variables in a visual search task (e.g., brightness, noise
level, etc.) than in an internal memory search task. We
introduce a method that employs phonemic dissimilarity
among items as a method of influencing processing speed
of the target-to-memory-item comparisons.

It has been suggested that the interstimulus interval
(ISI) that separates the presentation of the memory set
and the presentation of the target item might affect pro-
cessing strategy (parallel vs. serial) (Atkinson, Herrman,
& Westcourt, 1974; Forrin & Cunningham, 1973). Short
ISIs usually produce a recency effect—that is, faster pro-
cessing of last presented items. Some researchers have
suggested that recency could be due to a processing mech-
anism different from that providing for the main compar-

ison process: last items are stored in a visual or iconic-
like memory store that could be accessed by a fast paral-
lel or direct access mechanism. Older (i.e., earlier) items
are, according to this scenario, stored in the short-term
memory store and are likely, according to this scenario,
to be serially processed. In his original study, Sternberg
(1966) used a longer exposure time (1,200 msec) for
each item and a longer ISI (2,000 msec); therefore, under
this interpretation, perhaps the rapid parallel stage is ab-
sent and the short-term store is accessed in a serial fash-
ion. We ran two conditions, one with the ISI equal to
700 msec and the other with the ISI equal to 2,000 msec,
expecting that the former condition might be more likely
to lead to parallel processing than the latter.

The experimental variation of distractor–probe pho-
nemic similarity is by itself not a new manipulation (Dick
& Hochhaus, 1975; Huesmann & Woocher, 1976). How-
ever, to our knowledge, the present strategy is novel in that
it has not been employed heretofore in parallel–serial
factorial methodologies. The introduction of distractors
with varying similarity to the target, while straightforward
to analyze in target-absent data, is more methodologically
complex on target-present trials, due to possible interac-
tions of the similarity manipulation with the present target.
Hence, we confine the present analyses and tests to the
target-absent data.

We note prior to the Method section that we have con-
tinued the convention (e.g., Townsend & Ashby, 1983) of
indicating the level of a factor as “high” which speeds
up the subprocess and as “low” when (relatively speak-
ing) it slows down the subprocess. This convention im-
plies that high dissimilarity will be designated as a high
level of the factor and low dissimilarity (i.e., high simi-
larity) will be designated as a low level of the factor.
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Figure 2. Two demonstrations of survivor functions generated from the serial (A) and parallel (B) ex-
haustive independent processing models, under selective influence. Each survivor function is based on a
joint exponential density distribution of two processing channels where either of them could be in either
of two states (low or high). The S shape of the serial exhaustive survivor interaction contrast function SIC
(A) is calculated by taking the difference between four survivor functions (on the left); it is obvious that the
difference HH � LH is negative and bigger than the difference HL � LL for some short RTs. This rela-
tionship tends to reverse for longer RTs. In contrast, the parallel exhaustive SIC difference stays negative
for all RTs (B).
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METHOD

Participants
Five participants (2 female and 3 male) were paid for their par-

ticipation.

Materials
The experiment was carried out in Belgrade, using stimuli crafted

from Serbian linguistic features. In the Serbian language, one let-
ter represents one sound, so grapheme-to-phoneme correspondence
is straightforward. Stimuli were pseudowords in consonant-vowel-
consonant (CVC) form.2 The middle letter (voice) was “A” in all
cases. Two sets of mutually confusable consonants were used: frica-
tives (F,S,V) and semivocals (L,M,N). Letters from each separate
group were used to design one pseudoword. For example, six pos-
sible combinations were formed from one group of letters (e.g., for
semivocals, MAL, LAM, NAL, LAN, MAN, and NAM; for frica-
tives, FAS, SAF, SAV, VAS, FAV, and VAF). A total of 12 stimuli
were constructed from both groups of letters. In order to produce
factorially combined dissimilarity/item conditions (item being des-
ignated by position of presentation), target items and memory-set
items were drawn from both sets. Examples of high–high, high–low,
low–high, and low–low are shown in Table 1. Each pseudoword ap-
peared with the same probability in each position of the memory set
and as a target.

Design and Procedure
There were two types of trials, one half in which the target was

present in the memory set and one half from which it was absent,
randomly arranged. In the use of factorial methodology, the factors
were manipulated for a constant set size, n � 2. Participants signified
their answers as “yes” with one index finger or “no” with the other.
On target-absent trials, neither, either one, or both of the items in a
memorized set (distractors) could be of high or low dissimilarity to
the target. On the basis of unrelated literature on acoustic similar-
ity of auditory linguistic features, we expected high-dissimilar dis-
tractors to be rejected faster than low-dissimilar distractors, and this
was verified in pilot experiments. The target-absent data exhibit
particularly clear evidence concerning processing strategies, so we
focus on those. As noted, we also manipulated the ISI between
memorized set and a target (700 and 2,000 msec).

Each trial consisted of a fixation point and warning low-pitch
tone for 1 sec, successive presentation of two items in the memory

set for 1,200 msec, an ISI, and a target. The ISI period started with
a fixation point and a second warning high-pitch tone that lasted for
700 msec. Onset of this second warning signal was activated so that
its end coincided with the end of the ISI period. Thus, for short
ISI � 700 msec, the ISI started with both fixation point and second
warning tone, and for ISI � 2,000 msec, the warning tone was ac-
tivated at 1,300 msec from the beginning of the ISI period. Partici-
pants were run for 44 blocks of 128 trials each. Each block was di-
vided into 6 subblocks of 20 trials (except the last one, which had
28 trials). The participants were requested to achieve very high ac-
curacy, and usually only 1 block was completed on a particular test
day. Thus, each mean RT in a specific ISI condition and particular
factorial combination represented 300–400 trials per participant
(depending on duration of participation). Brief rest periods were al-
lowed every 24 trials.

RESULTS AND DISCUSSION

Averaged percentages of errors over all participants for
all target-absent factorial conditions (hh, hl, lh, ll) was
less than 1% (0.81%). Out of 5 participants � 4 factor-
ial conditions, errors greater than 2% were found in only
three factorial conditions, all from Participant 5, with
5.97% being the largest. No evidence of speed–accuracy
tradeoff was found. These figures are well within the
usual standards for concentration on RT.

Our major focus is on the set of SIC(t) curves, owing
to their powerful qualitative features, which are distrib-
ution free. Nevertheless, traditional analyses of variance
(ANOVAs) are useful too; they can affirm or disconfirm
interaction in the predicted direction. Recall that the in-
tegral of the SIC(t) curve equals MIC. Since exhaustive
parallelism predicts an SIC(t) that is always negative, we
can expect a negative interaction on the means. Simi-
larly, the integral of a serial SIC(t) function must be 0, the
same as the standard result. It will be helpful therefore,
to discuss the results for the MIC and SIC(t) together, for
individual participants. However, it is worth observing
that if we had averaged individual data, the ANOVA re-
sults would have completely obscured the individual dif-
ferences and the conclusion would have been additivity
and therefore seriality, as verified by express analyses.
As we shall see, this is a far different conclusion from
what we found when we assessed individual patterns.

The SIC curves appear in Figure 3A, and the MIC graphs
in Figure 3B. Table 2 exhibits the ANOVA results. We
used the general linear model to test F statistics for the
following fixed factors: position of an item in a set (first,
second), phonemic dissimilarity of item to the target
(high, low), and order of blocks of trials. Recall that each
participant completed around 40 blocks, approximately
20 for each ISI level. The variable order of blocks was in-
cluded in the analysis in order to account for any vari-
ability that comes from learning effects during the ex-
periment. Analysis was performed for each participant
on the separate ISIs. The SIC points represent the data;
the continuous curves represent theoretical predictions
also discussed below. To calculate the respective sur-
vivor functions, a bin size of 10 msec was used. The re-

Table 1
Several Examples of Target-Absent (“No”) Experimental Trials

for Each Factorial Combination of Item Position (First and
Second) and Item-to-Target Dissimilarity (Low and High)

Factorial Combination of Position 
and Phonemic Dissimilarity Memorized Set Target

LL MAL, NAM NAL

FAS, SAV VAF

HL NAM, SAV VAS

FAS, NAM LAM

LH NAL, FAS NAM

VAS, MAL FAV

HH VAS, FAV NAL

MAN, NAL FAS

Note—The memorized set consists of two items, both pseudowords. In
Condition LL, both first and second pseudowords in the memorized set
possessed low dissimilarity to the target (H, high dissimilarity). Each fac-
torial condition could be formed from different phonemic groups (nasals
and fricatives). Duration between the memorized set and the target was
manipulated (ISI � 700 or 2,000 msec) in all experimental conditions.
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sults differ across participants, revealing some apparent
individual differences; ISI effects were present as well.

Participant 1’s SIC curves as well as the ANOVA strik-
ingly suggest seriality in both ISI conditions. That is, the
two SIC curves follow the negative-to-positive S shape,
whereas the MIC values are not close to significance at
any reasonable level.

Participant 3 revealed overwhelmingly negative func-
tions for both ISIs. Thus, Participant 3 evidenced paral-
lelism in both ISI conditions. This conclusion is backed
up by the ANOVA, as can be seen in Table 2, with sig-
nificant MIC results in the case of short as well as long
ISIs.

Contrastingly, Participants 2, 4, and 5 manifest a tran-
sition from approximately equal positive and negative
areas for the short ISI in the prototypical serial fashion
to preponderantly negative areas for the long ISI, again
suggesting exhaustive parallelism in the latter condition.
In fact, Participants 2 and 5 revealed very large p values
in the short ISI condition, and significance at the a �
.05 level or better in the long ISI condition.

Participant 4’s short-ISI curve appears somewhat more
positive than negative while basically exhibiting the serial
type of profile. The ANOVA suggests that the excess pos-
itive part of the curve may be a little worrisome, since p is
near statistical significance at the .10 level. However, with
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the high power afforded by the large number of trials run,
we are willing to tentatively accept the serial inference at
this point in time, especially since the parallel prediction
goes in the opposite direction. This individual’s long-ISI
curve is negative, indicating parallel processing, which is
strongly supported by the ANOVA results. Therefore, we
provisionally group Participant 4 together with Partici-
pants 2 and 5 in basically revealing a transition from se-
rial to parallel in moving from the short-ISI to the long-
ISI condition.

Finally, some very simple models (e.g., Townsend &
Ashby, 1983, p. 50), based on exponential processing times
at the individual item level, were fit to the individual data
using the nonlinear regression package in Mathematica 3.0.
To find the best least-square fits, we used the Levenberg–
Marquardt search method, which is considered to be one
of the standard methods for fitting nonlinear models. In
addition, constant residual RT components were esti-
mated (i.e., it was assumed that the additional time con-
sumed by nonsearch processes was a constant for each
individual and ISI condition). Note that the residual time
parameter was fixed across factor levels.

Thus, for each participant and each ISI condition, there
were three free parameters: one exponential rate param-
eter, whether serial or parallel, for the high and for the low
factor conditions, plus the residual time component. The
smooth curves in the SIC graphs in Figure 3A depict these
fits. The r2 for Participant 4 in the short-ISI condition was
fairly low, and we recall that this individual’s positive
area was a bit larger than expected on the basis of true se-
rial processing. Nevertheless, given the extreme sim-
plicity of these models, the fits appear remarkably close,
in terms of the r 2 and the appearances as well. Further-
more, the fits of the appropriate models were always sub-
stantially better than those for the inappropriate models.

CONCLUSIONS

We employed new factorial methodology in order to
assess processing architecture in a classical short-term
memory search task. Our focus was on target-absent tri-

als, which naturally force exhaustive processing. Ac-
cording to the serial exhaustive prediction, we expected
zero MIC and negative-to-positive S-shaped SIC curves. It
can hardly be overemphasized that these strong predic-
tions hold for the vast class of all serial models, not just
the standard serial models that predict equal mean pro-
cessing times on the various items (e.g., Sternberg, 1966;
Townsend & Ashby, 1983) or those based on specific
stochastic processes, such as the gamma or ex-Gaussian
distributions, and so forth.

In dramatic contrast, parallel exhaustive models pre-
dict a negative MIC and a completely negative SIC func-
tion. Again, all parallel models with exhaustive process-
ing must make this prediction. Indeed, we found that all
significant MIC values were negative and associated with
the survivor contrasts decisively supporting parallelism.
Where MIC suggested additivity, the associated SIC obeyed
the profile of seriality as predicted.

Three participants (2, 4, and 5) revealed a striking trend
from seriality to parallelism in moving from the short- to
the long-ISI condition. One participant (1) strongly ad-
hered to a serial profile in both ISI conditions; another
participant (3) exhibited parallel-like RT evidence in both
ISI conditions.

Recall that earlier we pointed out that some investiga-
tors have suggested that short ISIs may be more likely to
encourage parallel processing, whereas long ISIs may re-
sult in serial processing (Atkinson et al., 1974; Forrin &
Cunningham, 1973). If anything, the reverse was pre-
ponderant in our data (serial-to-parallel in moving from
the short to the long ISI). Nonetheless, we are in no po-
sition to draw strong inferences concerning the form of
individual differences or, for that matter, strong conclu-
sions concerning the effects of the ISI. Our findings in
this domain must be regarded as extremely tentative, if
rather provocative.

A bedrock assumption underlying all the factorial
methodologies is that of selective influence, as men-
tioned in the introduction. Although to test this assump-
tion in an absolute fashion is not trivial, Schweickert and
Giorgini (1999) and Townsend and Thomas (1994) have
discussed its viability, with most evidence pointing to its
support. In addition, it seems fair to question whether
and how failures of selective influence could promote
the fine-grained profiles predicted by the two opposed
serial versus parallel architectures. Indeed, we view the
new survivor contrast measures combined with the tra-
ditional mean interaction contrast, plus present and other
recent applications (e.g., Townsend & Nozawa, 1995;
Wenger & Townsend, 2001) as providing cogent support
for the methodologies.

A related issue is whether a particular factorial ma-
nipulation might alter the very processing mechanisms
that the researcher is investigating. Needless to say, this
is a common obstacle in psychological domains, and in
fact, to varying degrees, in any scientific program. More
experimentation with and without the factorial strategies
will at least be able to show whether typical aspects are
similar—for instance, the approximation to linearity

Table 2
General Linear Model F Statistics of Interaction 

(Test of Parallelism� Seriality), 
Together With Mean Interaction Contrast (MIC)

Participant df1 df2 F p MIC Power

Short ISI (700 msec)

1 1 291 .83 .362 �11 0.15
2 1 545 .297 .586 �5 0.09
3 1 130 11.42 �.01 �37 0.92
4 1 310 2.53 .11 �15 0.35
5 1 351 .472 .492 �10 0.10

Long ISI (2,000 msec)

1 1 295 0.317 .345 �7 0.09
2 1 606 4.13 �.05 �21 0.53
3 1 129 15.812 �.01 �43 0.98
4 1 303 8.26 �.01 �27 0.82
5 1 324 4.4 �.05 �36 0.56
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with set size. At this point, we can emphasize only the
fact that in this specific paradigm, we now appear to pos-
sess clear evidence for either serial or parallel process-
ing, depending on the participant and experimental con-
dition. And, the results are startlingly different from our
findings so far with visual patterns such as facial fea-
tures, where highly consistent evidence for parallelism
has arisen (e.g., Wenger & Townsend, 2001) .

Questions arise concerning memory set size. First, it
is worth noting that even for our small set size value of
two, we have found evidence of serial processing. We
must confess that we will be surprised if we should dis-
cover more evidence for parallel processing with larger
set sizes, but that remains to be seen. An even more im-
portant matter concerns the viability of our factorial
methodology with large set sizes. In principle, of course,
the methodology should generalize. At present, however,
we must be cautious. We have obtained some data for a
set size of four, using our distractor-similarity factorial
manipulation. Some theoretical work in conjunction with
beginning analyses of the data suggest that there may be
several different approaches to performing tests, some of
them requiring more assumptions than others. Some of
the tests appear to rest on assumptions that are stronger
than what the data allow, but others are more promising.
We are presently laboring on these fronts.

Whereas Sternberg’s original conclusions and subse-
quent research (e.g., Roberts & Sternberg, 1993) favored
serial processing or at least were compatible with it (e.g.,
Ashby & Townsend, 1980; Snodgrass & Townsend, 1980,
the latter in visual pattern matching), a number of studies
have yielded evidence consistent with parallelism (Rat-
cliff, 1978; Townsend & Ashby, 1983). Our results sug-
gest that different individuals, and even the same indi-
viduals in distinct conditions, may evince either parallel
or serial processing; again, these results must be accom-
panied by caveats about the exact nature of individual
differences in relation to ISI at present. Nevertheless,
these results, plus the fact that averaging individual data
in our study obscured the sizeable individual differences,
supplement those of other recent studies calling into
question the usual strategy of averaging across partici-
pants (Ashby, Maddox, & Lee, 1994; Estes, 1956).

Interesting research remains to be done: attempts to pin
down when and why distinct strategies occur, including
attempts to replicate our basic individual difference/ISI
results. Another interesting issue is whether the parallel
or serial strategy can be brought under voluntary control.
More secure linkages with the sizeable literature on vi-
sual search would also be an appropriate goal. In addi-
tion, it would be helpful to attempt to provide an overall
perspective that includes both RT and accuracy and re-
lates to other approaches such as that of McElree and
Dosher (1989). Finally, we look forward to allying our
procedures with neurocognitive strategies (Chelazzi,
1999; Rahman & Sommer, 2002) and neural computa-
tional models (Luck, 1994) in order to provide even
stronger tests and a physiologically sensible mathemati-
cal theory.
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NOTES

1. However, in certain approaches, accuracy has been varied on pur-
pose, and we contend that the type of processing is the same for low and
high accuracy (McElree & Dosher, 1989).

2. In fact four of the stimulus words have meaning in the Serbian lan-
guage (LAN, NAM and SAV, and VAS) and are not considered to be
pseudowords. However, possible systematic confounding effects were
prevented by including these words in each experimental condition as
members of a memorized set and as targets, with the same probability.
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