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2009). There are two basic components to CNARI: First is the use 

of relational database technology to represent the diverse data types 

of the study in a uniform representational framework that facili-

tates distributed data access, and permits powerful queries and data 

reductions to be performed signifi cantly faster by parallelized sta-

tistical analysis procedures. Second is the use of “virtual data” grid 

computing, in which data and data processing are widely  distributed 

on storage devices and computers, and where data transformation 

and analysis is specifi ed in terms of abstract (“virtual”) procedure 

descriptions. Together, these techniques enable a community of 

researchers to access and share data and perform data preparation 

and analysis without detailed knowledge of the internal workings 

of distributed computing and storage systems or of the network 

infrastructure that connects them.

Longitudinal functional brain imaging requires comparison of 

brain activation images within a single individual over time, and 

possibly also between single individuals and a group that repre-

sents some standard. For example, in a study of recovery from 

brain injury, the individual data might be compared to a normative 

(healthy) group. Although such comparisons can be performed 

using various scalar indices, we have recently begun to do this with 

entire activation networks. One way of modeling such networks of 

activation is with structural equation modeling (SEM), a method 

that uses known anatomy to augment the functional information 

with structural connectivity information, to create a model of both 

static and dynamic relationships (McIntosh and Gonzalez-Lima, 

1994; Buchel and Friston, 1997; Horwitz et al., 1999). We have 

developed several such models (Solodkin et al., 2004; Skipper et al., 
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In the past decade, there has been tremendous growth in the number 

and scope of functional brain imaging studies performed in the 

basic and applied neurosciences. These studies have been more 

complex than those of the past, often incorporating large  numbers 

of participants, multiple physical sites, longitudinal follow-up, 

combinations of healthy groups and those with disease or injury, 

and/or additional types of behavioral or biological measurements. 

Although their numbers are increasing, the inherent complexity 

of data management and processing in such studies, particularly 

regarding anatomical and physiological data, represents a major 

stumbling block to their ultimate success. In studies of recovery 

from stroke, for example, medical data are stored in paper charts or 

in hospital medical information systems, behavioral and linguistic 

data are saved in spreadsheets on personal workstations, structural 

and metabolic magnetic resonance imaging (MRI) data are stored 

in manufacturer formats on scanners and/or with the functional 

MRI data in the fi le systems of data processing workstations. With 

these diverse representations of information, not even counting 

the possible addition of electrophysiological and other structurally 

unique data types, it is hard enough to perform single case studies 

that attempt to relate these data to each other, let alone studies that 

include statistically meaningful numbers of participants.

We have started building the Computational Neuroscience 

Applications Research Infrastructure (CNARI) to address these 

concerns (Stef-Praun et al., 2007; Hasson et al., 2008; Small et al., 
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2007, 2009; Walsh et al., 2008), based on a combination of primate 

and human data (Ban et al., 1984, 1991; Petrides and Pandya, 1984, 

1988, 1999; Rosa et al., 1993; Seltzer and Pandya, 1994; Rizzolatti 

et al., 1997, 1998; Hackett et al., 1999; Barbas, 2000). In one of 

these studies, we constructed a group network model for healthy 

right handed individuals performing bimanual movements, and 

compared this normative group model to two individuals with 

different biological states, two healthy left handed people and one 

individual with stroke. The fi t between a strong left hander (i.e., 

one who used his left hand for everything) and the model was very 

tight if the hemispheres were fl ipped in the model. The fi ts between 

either the weak left hander (i.e., someone more ambidextrous) or 

the person with stroke and the group model were poor. These three 

examples were highly informative for understanding the neurobiol-

ogy of bimanual movements (Walsh et al., 2008).

Building such models can be very complex and time consuming, 

requiring advanced anatomical knowledge and skill. Furthermore, 

while these previous methods have been useful for generating a 

set of possible models in the absence of exhaustive techniques, 

they are inherently fl awed since they are based on anatomical con-

nectivity data from non-human primates. In addition, the models 

created depend on the hypotheses being tested, and thus there is 

a large number of possible models for any particular set of fMRI 

activation data. To address these issues, we have embarked on an 

extension to CNARI that aims to facilitate a more objective type of 

data-driven SEM via highly parallelized workfl ows for generating 

and processing large numbers of models in a manner that is easily 

reconfi gurable and replicable. The goal for this modeling approach 

is to explore as much as possible of the entire space of plausible 

models that account for the data. In this paper, we discuss the 

nature of this grid-enabled SEM, and describe how it can be used 

and applied to various research problems in brain imaging. One 

of the original purposes of CNARI was to facilitate the study of 

stroke recovery, with particular emphasis on natural recovery and 

treatment for language problems (aphasia). In our presentation, 

we will use specifi c examples from language processing, though the 

workfl ows presented are generalizable to a wide variety of other 

SEM problems.

CONCEPTS AND BACKGROUND ON SEM: THE MOTIVATION AND DESIGN 

OF OPENMX

Structural equation modeling (SEM) has a long history dating 

back to the development of path analysis by Wright (1921). SEM 

is a statistical tool for estimating a set of predicted covariances 

between variables that may be connected with either regression 

(asymmetric, directional) parameters or covariance (symmetric, 

non-directional) parameters (see Boker and McArdle, 2005, for 

a review). The advent of high speed computers and high level 

programming languages in the 1960s, together with advances in 

statistical methodology led to the development of software for 

fi tting models to observed covariance matrices by maximum likeli-

hood (Joreskog, 1967). This procedure is now commonly known 

as SEM (see e.g., Bollen, 1989; Loehlin, 1992, for introductions; see 

McIntosh and Gonzalez-Lima, 1994 for its use in neuroimaging). 

SEM is widely used for fi tting statistical models to epidemiologi-

cal, psychological, sociological and econometric data where there 

are multivariate outcomes and theoretical reasons to expect that 

linear or non-linear systems of equations may provide explanatory 

power in summarizing these large data sets. For instance, in an epi-

demiological study of heart disease, one may wish to control for a 

wide variety of possible behavioral covariates while simultaneously 

accounting for variance due to group membership or genetic vari-

ation. For such problems, SEM models represent state-of-the-art 

in statistical techniques. Neuroimaging data, is a prime candidate 

for modeling with SEM, given overlapping sources of variance 

both across space and time within individual as well as sources 

of variance across individuals due to group membership and 

other covariates.

SEM models can be described as a function of two model matri-

ces, A, S, a fi lter matrix, F and a residual matrix U, such that the 

expected covariance between observed variables is:

R = F(I − A)–1 S((I − A)–1)′F′ + U

where the model matrix A contains the asymmetric paths (regres-

sion coeffi cients), S contains the symmetric paths (covariance 

coeffi cients), and the fi lter matrix, F, strips the latent variables 

from the model matrices so that the result only contains expec-

tations for the observed covariances (McArdle and McDonald, 

1984; McArdle and Boker, 1990). One implementation of SEM is 

the software package Mx (Neale et al., 2003). The set of built-in 

functions that Mx can optimize includes maximum likelihood, 

generalized least squares, and full information maximum likeli-

hood analysis of covariance matrices and/or observed means. In 

2007, the OpenMx development project was started in order to 

rewrite Mx into open source, provide a scripting interface to the 

R statistical language (Ihaka and Gentleman, 1996) and provide a 

number of extensions to the software. Among these improvements 

was integrating the Mx SEM optimization engine into parallel 

workfl ow management software in order to be able to estimate 

parameters for large numbers of SEM models simultaneously. 

In this way, statistical resampling techniques such as bootstrap-

ping, simulations to verify the performance of new models, and 

exhaustive search routines could make use of large-scale paral-

lel computing resources. The current article describes the fi rst 

application of the OpenMx software to a real-world exhaustive 

search problem.

WORKFLOW MANAGEMENT

BACKGROUND AND GOALS

The ability to submit a large number of processes simultaneously to 

multiple grid sites is a major computational challenge and cannot 

be accomplished without an evolved workfl ow management system. 

In a related research project, we have been developing a workfl ow 

system called Swift (Zhao, 2007), which has been our system of 

choice for submission and management of large-scale workfl ows 

for neuroimaging. Using Swift, individual researchers are able to 

map large amounts of input and output explicitly and make calls 

to the cataloged executables that sit on remote grid sites. We have 

been investigating ways to execute and manipulate exhaustive or 

partially pruned, data-driven SEM workfl ows using Swift to oper-

ate on covariance data derived from a relational fMRI experiment 

database. From the standpoint of parallel computing and workfl ow 

management this poses some interesting issues and also demon-

strates, quite strikingly, the convenience (to the research scientist) 
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of having an elegant, high-level means of expressing, reconfi guring 

and rerunning such workfl ows. Here we present several examples 

of such workfl ows and explain how they can be expressed and 

run using Swift, OpenMx and the computational resources of the 

TeraGrid (Catlett et al., 2007).

The availability of high performance computing systems (HPCs), 

ranging from multi-core workstations to clusters, grids, clouds, and 

now petascale supercomputers, creates opportunities to explore 

experimental datasets with SEM in ways never before possible. The 

availability of this computing power, however, can be diffi cult to 

harness, particularly for a neuroscientist not versed in high per-

formance computing. For these researchers, it is undesirable to 

divert mental and manual effort from scientifi c exploration to the 

mechanics of large-scale parallel computing. At the same time, both 

the complexity and the scale of high performance environments 

makes it ever more challenging to assure the validity of scientifi c 

results obtained via such systems.

What scientists in general - and neuroscientists in particular - 

need, are ways to express the processing they want to perform in a 

compact, abstract, high-level notation that specifi es only the logical 

nature of their computations, but which abstracts and automates all 

of the potential, varying details of implementing those computing 

abstractions across a wide range of computing platforms.

SWIFT AND CNARI

For the past two years our group at the University of Chicago Human 

Neuroscience Laboratory, in collaboration with the Computation 

Institute, has been developing and evaluating Swift, a parallel 

scripting language, for this purpose. Together with members of 

the OpenMx project described above, we have recently focused 

signifi cant effort to create a library of Swift procedures for the 

fl exible processing and analysis of data from fMRI and other neu-

roscience experiments.

We employ a programming model that “loosely couples” 

 application programs. In this model, complete programs 

become our functions, and the arguments to, and results from 

these  functions can be fi les, fi le-structured datasets, as well as 

database entries.

The goals of expressing data processing steps in an abstract 

notation are multifold: 1) to distill the computation down to 

the salient details and eliminate the mechanical details of fi le 

manipulation from the expression of the basic workfl ow steps; 

2) to abstract data at a high level to relieve the programmer of 

concerns for the layout of the data on storage systems; 3) to enable 

the automatic parallelization of scripts in which independent 

streams of data are processed; and, 4) to enable the recording of 

all of the steps of a computation in an automatic, transparent 

manner. An overview of the scripting modules for SEM analysis, 

coded by the research scientist within the CNARI framework can 

be seen in Figure 1. The Swift programming language enables 

this model by providing the ability to represent application pro-

grams as procedures, and to defi ne compound procedures that 

permit the user to create libraries of higher level processes that 

capture the essential protocols of an application’s data prepara-

tion and analysis. The language’s data model provides the ability 

to describe the datasets that are consumed and produced by 

the procedural abstractions by combining basic primitive data 

type defi nitions with a mapping mechanism of on-disk directory 

structures to form structures and arrays. These data objects are 

then automatically and transparently sent across distributed exe-

cution environments to remote and parallel Swift procedures.

The Swift language has a C-like syntax, but enforces many of 

the semantic aspects of a “functional” programming language. 

Procedures are expressed as functions, permitted to return 

 multiple values; statements are executed in data-dependency order; 

 variables (including array elements and structure members) are 

Swift:
scripting language, task coordination, 
throttling, data management, restart

OpenMx:
R-based SEM package with built-in 
optimizer

R:
general purpose, portable, open source 
data analysis scripting language

R
Libraries 

(remote site)

-in 

Swift

scripts

SEM 
models

(generated
by R script)

R script for

generating

models

R

Libraries

(remote site)

FIGURE 1 | User Interface: Overview of the CNARI scripting modules for SEM workfl ows.
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single-assignment, making it signifi cantly simpler to determine 

 independent operations and threads of control, and to execute 

these threads in parallel; a construct called “mapping” is provided 

to translate between the simple, clean regular abstract data model 

of Swift and the potentially messy, complex model of real-world 

directory structures and the fi le naming and structuring conven-

tions expected by real-world applications.

The notation provides a simple set of fl ow-of-control 

 statements, such as if and switch (case) statements. The primary 

way to express a set - potentially large - of parallel operations in 

swift is to utilize the foreach() statement. This statement iterates 

over a collection, assigning each member of the collection to a 

control variable, and then evaluating the body of the foreach() 

loop once for each value of the target collection. All iterations 

of a foreach() are potentially (and conceptually) performed in 

parallel; the runtime system provides appropriate “throttling” 

and scheduling of the potentially enormous number of par-

allel operations that this construct can generate and submit 

for processing.

Atomic procedures in Swift consist of wrappers around speci-

fi cations that detail the invocation of application programs. In 

our SEM project, this mechanism is used by Swift to invoke the 

individual parallel model optimizations of the many thousands 

of models generated in an OpenMx SEM analysis workfl ow. “R” 

is the application program of execution. The invoking (master) 

program that calls the individual R programs creates a (potentially 

very long) list of evaluations, each of which is an R expression that 

embodies the OpenMx engine. The master program generates a 

large set of model calls and marshals the model’s matrix into a 

text character stream.

The Swift model of data abstraction was to some degree 

inspired and motivated by the fi eld of fMRI data analysis. In 

our earliest efforts to execute fMRI preprocessing workfl ows on 

computing grids we observed that the data model of the fMRI 

domain had a natural tree structure in which the vast number 

of fi les stored in traditional fi le system directories had some-

what similar patterns. These fi les included data from myriad 

experiments, test conditions and scans, and also included vari-

ous types of lower level data such as anatomical and time series 

data represented in the image/header fi le pairs of the functional 

data format (e.g., Analyze or AFNI formats). This suggested to 

us that data defi nition constructs could be of signifi cant ben-

efi t for scientifi c workfl ow scripting, such that data could be 

described in a “typed” fashion, much like the hierarchical model 

of “structs” in C or “classes” in Java. To enable an organization 

(or even a discipline, through community curation efforts such 

as those managed by collaborations like BIRN)1 to defi ne and 

standardize a uniform format for describing their common data 

elements, Swift provides the notion of data type and “mapping” 

of each type to a physical representation. The logical type is sim-

ple and abstract, and refl ects only the logical level of the data; the 

“mapping” describes how each element of a structure is mapped 

onto the structure’s physical representation on a fi le system. To 

some extent, Swift emulates the mapped fi lesystem structure on 

the remote resources where it instantiates processing. Generic 

mappers with a modest degree of representational fl exibility are 

pre-defi ned in the swift system; but additional mappers can be 

created by users for their own communities and used throughout. 

Figure 2 shows the Swift modules used for execution manage-

ment once a user has mapped his fi les, and defi ned processing 

jobs within a Swift script.

Swift is easy for users to install, and its runtime system pro-

vides the client capabilities needed to use workstation, grid and 

cluster computing resources. From a single client computer, e.g., 

a modest workstation or personal laptop, the user can launch and 

control scripts that send parallel work for simultaneous execution 

on clusters, grids and supercomputers. The user can test the correct 

execution of the logical script workfl ow, just by executing directly 

Swift
Script

Abstract
computation

Execution Engine

C

C C C

Swift runtime
callouts

Status reporting

Worker Nodes

file1

launcher

launcher

Provenance

data

Provenance

data

App
F1

App
F2

file2

file3

SwiftScript
Compiler

Specification Scheduling Execution Provisioning

Resource
Provisioners

Open Science Grid

Multicore systems

TeraGrid

PetaScale Clusters

FIGURE 2 | Swift architecture: Managing workfl ow execution within CNARI. Specifi cation and scheduling are implemented on the client side while execution is 

implemented on the remote computing resources.

1http://www.loni.ucla.edu/BIRN/

http://www.loni.ucla.edu/BIRN/
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on a local workstation. If the user’s workstation has multiple cores, 

Swift can take advantage of those for modest but invaluable paral-

lelism. And as the user’s needs grow or the user is ready to scale 

up to increasingly large systems, Swift can readily expand to those 

systems with a single representation and a single client as we will 

show in our example workfl ows.

Swift scripts afford a highly productive way to produce and 

manage the software of neuroscience research units, whether they 

be local campus departments or international collaborations. In 

today’s practice, organizations that need to process data from fMRI 

experiments typically develop and rely on locally produced sets of 

ad hoc scripts, usually written in a Linux “shell” language such as 

“c shell” (csh) or bash, or perhaps Perl, to organize the processing 

protocols and processes of the collaborations. In Swift, however, 

as all procedures are “typed” with a specifi c “signature” of data 

types for the input and output arguments, a more rigorous and 

less error-prone paradigm is imposed on the overall structure of 

the scripts. Thus Swift procedures serve as an interface-defi nition 

language for ordinary shell procedures. The overall higher-level 

process is then defi ned in a multilevel fashion, from top (highest) 

to bottom (lowest level) being:

• overall application (such as multiNetworkSEM)

• high-level scripts (such as getCovariance())

• low level Swift interfaces (atomic procedures) such as 

mxModelProcessor()

• an external R wrapper script to do further argument manipu-

lation (RInvoke.sh)

• the R tool itself (R CMD BATCH)

Special power and structure is afforded when the tool being run is 

not a “canned” compiled application, but rather itself a powerful data 

manipulation environment such as Perl or Python, or more specifi c 

to the model we describe in detail here, the R data analysis language 

with its vast package library of statistical and analytical procedures, 

including the OpenMx package used here. In this case, the actual 

script to be performed can be dynamically generated or selected from 

a template library, and sent to any computing site, which already has 

a suitable version of R and the OpenMx package installed.

DESCRIPTION OF THE fMRI EXPERIMENT DATA: THE EMBLEM 

DATABASE

We now give some concrete examples of how Swift can manipu-

late large datasets and enable novel analysis techniques by means 

of effective workfl ow management. The example framework we 

have employed our grid-enabled analysis techniques on is an fMRI 

investigation of the neural processing associated with emblematic 

gesture observation. Emblematic gestures (“emblems”) are goal-

directed, symbolic manual actions that, while expressed as cultur-

ally recognizable manual gestures, communicate a linguistically 

associable propositional meaning. Four experimental conditions 

were presented to participants in the MRI scanner: 1) Emblem, 

the symbolic manual gestures; 2) Speech, the spoken form of the 

linguistic propositions associated with the emblems; 3) Emblem 

with Speech, simultaneous presentations of the emblems with their 

verbalized linguistic associations; and 4) Grasping, observation of 

another type of goal-directed manual action, for which the neural 

regions associated with its processing have been well- characterized. 

Data were processed with AFNI (Cox, 1996) and mean normalized 

values of each of the hemodynamic response functions for every 

condition at every voxel in the brain were projected to 2-D  cortical 

surface representations and spatially smoothed on the surfaces 

using SUMA (Saad et al., 2004). These surface values were then 

imported into MySQL database tables for relational indexing and 

further analyses.

SEM WORKFLOWS IN SWIFT

We have begun exploring extremely large, exhaustive SEM 

workfl ows as a means of investigating how effi cient workfl ow 

tools can address computational problems that were previously 

considered unmanageable. Particularly, in using SEM for look-

ing at functional connectivity many researchers are confi ned to 

hypothesis-driven approaches because they lack the tools to reli-

ably implement data-driven methods; this situation can greatly 

impact mining and interpretation of datasets. In an attempt to 

address these issues, we are building an infrastructure that can 

be used by researchers to iterate over various parameters within 

these large sets in a reasonable amount of time and in a man-

ner that is both dynamic and reliable. The following workfl ows 

were run on a TeraGrid HPC system known as Ranger. Ranger 

comprises 3,936 16-way SMP compute nodes providing 15,744 

AMD Opteron™ processors for a total of 62,976 compute cores. 

The workfl ows were developed on and submitted (to Ranger) 

from a single-core Linux workstation running an Intel® Xeon™ 

3.20 GHz CPU.

A model generator was developed for the OpenMx package and 

is designed explicitly to enable parallel execution of exhaustive or 

partially pruned sets of model objects. Given an n x n covariance 

matrix, it can generate the entire set of possible models with any-

where from 0 to n2 connections; however, it can also take as input 

a single index from that set and it will generate and run a single 

model. What this means in the context of workfl ow design is that 

the generator can be controlled (and parallelized) easily by a Swift 

script. For example, using Swift as the interface to OpenMx we have 

these few lines of code:

WORKFLOW 1: 4-REGION EXHAUSTIVE SEM FOR A SINGLE 

EXPERIMENTAL CONDITION

 1. app (mxModel min) mxModelProcessor(file

    covMatrix, Rscript mxModProc, int modnum,

    float initweight, string cond){

 2. {

 3.      RInvoke @filename(mxModProc) @

    filename(covMatrix) modnum initweight cond;

 4. }

 5. file covMatrix<single_file_

    mapper;file="speech.cov">;

 6. Rscript mxScript<single_file_mapper;file="sin-

    glemodels.R">;

 7. int totalperms[] = [1:65536];

 8. float initweight =.5;

 9. foreach perm in totalperms{

10.    mxModel modmin<single_file_mapper; file=@

    strcat(perm,".rdata")>;
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11.    modmin = mxModelProcessor(covMatrix, 

       mxScript, perm, initweight, "speech");

12. }

First, a covariance matrix containing activation data for 4 brain 

regions, over 8 time points, averaged over a group of subjects in 

the Speech condition was drawn from the experiment database and 

its location (in this example, on the local fi le system, though the 

fi le could be located anywhere) is mapped in line 5. Line 6 maps 

the R processing script and lines 1 through 4 defi ne the atomic 

procedure for invoking R. Each iteration of the foreach loop maps 

its optimized model output fi le and calls mxModelProcessor() 

with the necessary parameters to generate and run a model. Each 

of these invocations of mxModelProcessor() is independent 

and is submitted for processing in parallel. Swift passes 5 variables 

for each invocation: (1) the covariance matrix; (2) the R script 

containing the call to OpenMx; (3) the permutation number, i.e., 

the index of the model; (4) the initialization weight for the free 

parameters of the given model; and (5) the experimental condition. 

Clearly, in this workfl ow all free parameters of the given model 

will have the same initialization weight as Swift is passing only one 

weight variable. When the job reaches a worker node on Ranger 

an R process is initialized, the generator creates the desired model 

by calculating where in the array that permutation of the model 

matrix falls. OpenMx then estimates the model parameters using a 

non-linear optimization algorithm called NPSOL (Gill et al., 1986), 

and the optimized model is returned and written out by Swift to 

the location specifi ed in its mapping on line 10.

The above script completed in approximately 40 minutes. The 

script can then be altered to run over multiple experimental condi-

tions by adding another outer loop:

WORKFLOW 2: 4-REGION EXHAUSTIVE SEM FOR 2 EXPERIMENTAL 

CONDITIONS

1. string conditions[] = ["emblem", "speech"];

2. int totalperms[] = [1:65536];

3. float initweight =.5;

4. foreach cond in conditions{

5.    foreach perm in totalperms{

6.     file covMatrix<single_file_mapper;file=@

       strcat(cond,".cov")>;

7.     mxModel modmin<single_file_mapper;file=@

       strcat(cond,perm,".rdata")>;

8.     modmin= mxModelProcessor(covMatrix,

       mxScript,perm, initweight, cond);

9. }

When the outer loop is added, the new workfl ow consists 

of 131,072 jobs since we are now running the entire set for two 

conditions. This workfl ow completed in approximately 2 hours 

(Figure 3).

WORKFLOW 3: 4-REGION EXHAUSTIVE SEM FOR MULTIPLE NETWORKS

In this workfl ow multiple 4-region networks are run for the Emblem 

with Speech experimental condition. The regions of interest (ROIs) 

designated are from FreeSurfer’s2 automatic parcellation of ana-

tomical regions, based on the Duvernoy atlas (1991), and further 

manual subdivisions to delineate anterior and posterior extents of 

the superior temporal gyrus and sulcus, as well as superior and 

inferior segments of the precentral gyrus. Because Emblem with 

Speech involved subjects’ perceiving simultaneously both spoken 

(audiovisual) and manual information, here we chose candidate 

regions expected to be involved in audiovisual recognition of 

speech and manual action: occipital pole (OP), middle occipital 

gyrus (MOG), anterior occipital sulcus (AOS), posterior superior 

temporal sulcus (STSp), posterior superior temporal gyrus (STGp), 

transverse temporal gyrus (TTG), and supramarginal gyrus (SMG). 

Covariance matrices of activation data for Emblem with Speech for 

several networks comprised of these ROIs were then queried from 

the database:

network 1: {OP, STGp, TTG, AOS}

network 2: {OP, MOG, AOS, STSp}

network 3: {TTG, STGp, SMG, STSp}

 1. string conditions[] = ["emblemwithspeech"];
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FIGURE 3 | Number of active processes during workfl ow execution: (left) 

Processing of the 4-region workfl ow over 2 experimental conditions. (Right) 

Processing of the 4-region workfl ow over multiple networks. The red line 

represents the execution of jobs on Ranger, while the blue and green represent 

the staging in and out of fi les respectively. Plots were generated by 

swift-plot-log, part of the Swift suite of tools.

2http://surfer.nmr.mgh.harvard.edu/

http://surfer.nmr.mgh.harvard.edu/
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 2. int networks[] = [1:3];

 3. int totalperms[] = [1:65536];

 4. float initweight =.5;

 5. foreach cond in conditions {

 6.   foreach perm in totalperms {

 7.    foreach n in networks {

 8.     file covMatrix<single_file_mapper; file=@

        strcat("matrices/net",n,"_",cond,".

        cov")>;

 9.     mxModel modmin<single_file_mapper; file=@

        strcat(n,"_",cond,"_",perm,".rdata")>;

 10.    modmin = mxModelProcessor(covMatrix,mxScr-

        ipt,perm,initweight,

 11.                             condition,@

                                strcat("net",n));

 12.    }

 13.  }

 14. }

This results in a workfl ow containing 196,608 processing jobs 

(1 condition x 3 networks x 65536 models) and completed in 

approximately 5 hours on Ranger. For an example of how this 

might be used as part of a larger processing workfl ow see Section 

“Language Study Workfl ow in Swift” in the Appendix.

DISCUSSION AND FUTURE WORK

The workfl ows presented here do not result in a single “best” model 

representing connectivity amongst the four brain regions for the 

given conditions. Rather, their value lies in that they produce an 

exhaustive set of optimized models from which to begin searching 

for good-fi tting models. Thus, a natural extension to this set of 

workfl ows might be a model-selection component based on a fi t 

statistic (e.g., Bayesian information criterion, Akaike information 

criterion, RMSEA), an exploratory visualization component (see 

“Language Study Workfl ow in Swift” in the Appendix) or  perhaps 

a combination of these methods. A “model-selection workfl ow” 

based on one or more fi t statistics extending, for example, work-

fl ow 1 would extract the desired fi t statistic from each of the 65,536 

optimized models and potentially keep or discard a given model 

based on whether or not it is above or below a selected thresh-

old. It is worth noting that there is a good deal of controversy 

around which measures provide the most accurate model-selec-

tion (Bullmore et al., 2000) as well as some variation in how SEM 

software packages actually calculate those fi t statistics (Clayton 

and Pett, 2008).

While the present workfl ows suggest new possibilities for exhaus-

tive search and large-scale, parallel analysis techniques, their utility 

lies heavily in the ability to be easily replicated and reconfi gured 

for use on varying datasets. Exhaustive search through a space of 

structural equation models is, ab initio, an exploratory technique. 

Thus, one cannot make statements concerning the probability that 

there are signifi cant differences between models or that a selected 

parameter is signifi cantly different from zero. The number of 

tested models is so great that any statistical argument concerning 

the likelihood of the data given a null hypothesis is overwhelmed 

by the number of comparisons made. In addition, one must be 

concerned about generalizability of results if a single data set was 

used—the exhaustive search may have overfi t idiosyncrasies of the 

target data. Thus, it is imperative to cross-validate results from 

exhaustive search using other data sets.

On the other hand, an exhaustive search of the space of structural 

equation models for a particular data set does result in an empirical 

distribution of the fi t statistics of the models. By plotting the log likeli-

hood resulting from each fi t against the number of degrees of freedom 

in its associated model, it is likely that clusters in the fi t statistics will 

be observed. In this way, we may observe patterns of candidate models 

that are roughly equivalent given the data. Some of these models may 

be algebraically equivalent (vonOertzen, in press), and others may be 

empirically equivalent given the data. We intend the CNARI develop-

ment effort to enable this type of data exploration.

Beginning with some basic pruning techniques, we can start to 

narrow down the space of models in the exhaustive set while leverag-

ing Swift’s ability to submit large numbers of processes, resulting in 

some powerful workfl ows. The fi rst reduction in the exhaustive set 

of models is elimination of any models that are unidentifi ed, that is, 

models containing negative degrees of freedom due to the presence 

of more unconstrained than constrained variables. The degrees of 

freedom can be easily calculated using the following formula:

(n(n+1)/2)-k

where n is the number of brain regions in the model and k is 

the number of free parameters and if the result is negative, the 

model is underidentifi ed (Bollen, 1989). Additionally, a model 

with two-way symmetric connections is likely to fail attempts 

at optimization. Such a connection represents a type of cycle. In 

fact, most models containing cycles will be diffi cult to optimize as 

they are not usually identifi ed in the absence of, e.g., longitudinal 

data (Neale and Cardon, 1992; Heath, 1993; Neale et al., 1994). 

The size if the acyclic set is given by

4((n*(n-1)/2).

An algorithm exists for fi nding cycles (Boker et al., 2002) that 

could potentially be used to further prune the model set. In addition 

to pruning cyclic and underidentifi ed models, the set may also be 

pruned for models containing variables that lack residual error. The 

fi t function cannot be evaluated under these circumstances, because 

the predicted covariance matrix is singular; therefore its determinant 

is zero, which results in the division of a negative quantity by zero in 

the calculation of the multivariate normal distribution probability 

density function, so optimization cannot be performed.

As Table 1 shows, with a moderate degree of pruning, the set 

for four regions becomes trivial to run in the present infrastruc-

ture. Furthermore, the fi ve-region set, while still a large number of 

processing jobs, becomes much more manageable.

Table 1 | Number of models produced for exhaustive and partially 

pruned workfl ows.

Regions Exhaustive set Identifi ed Acyclic

4 65,536  50,642  4,096

5 33,554,431  26,434,915  1,048,576

6 68,719,476,736  54,802,674,727 1,073,741,824
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CNARI has been developed with the aim of managing a broad 

range of diverse neuroscience datasets and performing effi cient, 

reliable parallel analysis workfl ows on them. Here we have dem-

onstrated workfl ows that fully exercise this capability by  applying 

this framework to large computational problems; namely, exhaus-

tive search SEM. The need for data-driven techniques in modeling 

connectivity has emerged not only in our own work in studying 

language and aphasia but in SEM in general (Bullmore et al., 

2000; Marrelec et al., 2007), though there has been little discus-

sion of workfl ow  management and parallel computing as means 

of addressing this need. Researchers, faced with seemingly insur-

mountable computational problems when selecting appropriate 

models to test, are often forced to rely on less-than-satisfactory 

approximations not only due to the sheer amount of processing 

power required but because of the daunting task of distributing 

those processing tasks in a cohesive manner such that the results 

are useful and replicable. As CNARI continues to evolve, we hope 

to expand these large-scale, data-driven workfl ows as we use them 

to address the complex research questions facing us.
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APPENDIX

LANGUAGE STUDY WORKFLOW IN SWIFT

The following is a prototype using Swift and demonstrating how the 

above modules can be assembled into a larger exploratory workfl ow. 

Exhaustive search is run for the Emblem with Speech condition on 

several four-region networks, and the results of the optimized mod-

els are stored in a connectivity database for visualization, further 

analysis, and pattern detection.

For each of the selected networks multiNetworkSEM is called with 

confi guration fi les for the user to access the databases, information 

on the network to be processed, and the total number of models in 

the exhaustive set. First, the covariance data is pulled from the experi-

ment database. This is seen in the runQuery  function, which is Swift’s 

call to a python database interface (see Small et al., 2009 for a more 

detailed description of this mediator  component). Then for each 

iteration of the loop in line 34, Swift invokes  mxModelProcessor, 

assigning each process a model to generate and optimize in OpenMx. 

The instantiation of the OpenMx model object and the call to the 

optimizer are encapsulated in the R script mapped on line 33, which 

is also passed to mxModelProcessor. Each of these processes writes 

out a fi le containing the result of the optimization, and these results 

can be read and inserted into the connectivity database, which is done 

with insertOptMod. It should be noted that both insertOptMod 

and getCovariance operate on the same principle: the user assem-

bles a query that the python DBI will submit to the database. If the 

user also passes an R script (as in line 62), it will process the query 

result with that R script. Each result fi le is read, and its contents are 

inserted into the connectivity database where they can be further 

analyzed. A call to plotLogLik can be used to plot of the minimum 

values obtained by OpenMx for each model allowing for identifi ca-

tion of patterns or clusters within the set (Figure 4).

 #### MultiNetworkSEM.swift

1. type file;

2. type mxMin;

3. type Rscript;

4. type dbConnect;

5. type mxModel{

6. int modnum;

7. int dof;

8. string best;

9. }

10.# ----------- atomic procedures ----------- #

11.

12.app (file matrix) runQuery (dbConnect dbconn,

   string query, Rscript calcCov){

13.     } 

14.     mysqlPythonDBI query @calcCov @dbconn;

15.    }

16.

17.app (external inserted) insertMxResult 

   (dbConnect dbconn, string query, file 

    datafile)

18.    {

19.     mysqlPythonDBI query @dbconn stdout=@

        filename(inserted) @datafile; 

20.    }

21. app (file min) mxModelProcessor ( file 

    cov, Rscript mxModProc, int modnum, float

    weight, string cond, int net) 

22.      {

23.     RInvoke @mxModProc @filename(cov) modnum 

        weight cond net;

24.    }

25. 

26. # ------ user-defined SEM procedures ------ #

27. 

28. multiNetworkSEM(string condition,dbConnect 

    emblemdb, dbConnect semdb, int n, string net,

    int totalperms[])

29. {

30.  float initweight =.75; 

31.  file covariance<single_file_mapper;file=@

     strcat("net",n,"/",condition,".cov")>;

32.  covariance = getCovariance(condition, n,

     net, emblemdb);

33.  Rscript mxModProc<single_file_

     mapper;file="scripts/singlemodels.R">; 

34.  foreach perm in totalperms{

35.    file modmin<single_file_mapper;file=@

       strcat("net",n,"/",condition,"_",perm,".

       stat")>;
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36.    modmin = mxModelProcessor(covariance,mxMod

       Proc,perm,initweight,condition,n);

37.    external doneflag = insertOptMod(n, semdb,

       condition, modmin); 

38. }

39. 

40. (external ins) insertOptMod(int net,

    dbConnect dbconn, string cond, file modfile)

41. {

42.  string mysqlstr = @strcat("INSERT 

     INTO optimized_models (network, deg_of_

     freedom, mx_minimum, modnum, cond) VALUES

     (",net,",DOF,BEST,MODNUM,",cond,");");

43.  string argList = @strcat(

44.  " --query ", mysqlstr,

45.  " --data ", @filename(modfile),

46.  " --conf ", @filename(dbconn));

47.  ins = insertMxResult(dbconn, argList,

     modfile);

48. }

49. 

50. (file covariance) getCovariance (string cond,

    int net, string rois, dbConnect dbconn) 

51. {

52.  string mysqlstr = @strcat("SELECT 

     avg(",cond,"0B), avg(",cond,"1B),

     avg(",cond,"2B),",

53. "avg(",cond,"3B), avg(",cond,"4B), 

     avg(",cond,"5B),",

54. "avg(",cond,"6B), avg(",cond,"7B), 

     avg(",cond,"8B) ",

55. "FROM emblemfemlh where roi in (",rois,")

worksta�on

covariance

models

Network1 Network2

Connec�vityDB

Network3

Ac�va�onDB

Visualiza�on

FIGURE 4 | Multinetwork Swift workfl ow for the Emblem with Speech condition.
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71.  " --conf ", @filename(dbconn),

72.  " --query ", mysqlstr,

73.  " --r_script ", "scripts/plotloglik.R",

74.  " --r_swift_args ", @filename(plotfile));

75.  plotfile = runQuery(dbconn, argList, rplot);

76.  

77.  # ---------------- Main ----------------- #

78. 

79. string condition = "emblemwithspeech";

80. string networks[] = ["42, 34, 33, 60", "42, 

    15, 60, 80", "33, 34, 23, 80"];

81. dbConnect emblemdb <single_file_mapper;

    file="./user.config">;

82. dbConnect semdb <single_file_mapper; file="./user2.

  config">;

83. int totalperms[] = [1:65536];

84. foreach net,n in networks{

85.   multiNetworkSEM(condition,emblemdb,semdb,n,net,

    totalperms);

86.   }

     group by roi "); 

56. string argList = @strcat

57. " --conf ", "user.config",

58. " --query ", mysqlstr,

59. " --r_script ", "scripts/cov.R",

60. " --r_swift_args ", "matrices/net",net, "/",

    cond);

61. Rscript calcCov<single_file_

    mapper;file="scripts/cov.R">;

62. (covariance = runQuery(dbconn, argList,

    calcCov);

63. }

64. {

65. (file plotfile) plotLogLik(int net, string 

    cond, dbConnect dbconn)

66.  

67.  Rscript rplot<single_file_

     mapper;file="scripts/plotloglik.R">;

68.  string mysqlstr = @strcat("SELECT deg_of_

     freedom,mx_minimum FROM optimized_models",

69.  " where network = ",net,";");

70.  string argList = @strcat(
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