
Frontiers in Neuroinformatics www.frontiersin.org October 2009 | Volume 3 | Article 34 | 1

NEUROINFORMATICS

METHODS ARTICLE
published: 20 October 2009

doi: 10.3389/neuro.11.034.2009

2009). There are two basic components to CNARI: First is the use

of relational database technology to represent the diverse data types

of the study in a uniform representational framework that facili-

tates distributed data access, and permits powerful queries and data

reductions to be performed signifi cantly faster by parallelized sta-

tistical analysis procedures. Second is the use of “virtual data” grid

computing, in which data and data processing are widely distributed

on storage devices and computers, and where data transformation

and analysis is specifi ed in terms of abstract (“virtual”) procedure

descriptions. Together, these techniques enable a community of

researchers to access and share data and perform data preparation

and analysis without detailed knowledge of the internal workings

of distributed computing and storage systems or of the network

infrastructure that connects them.

Longitudinal functional brain imaging requires comparison of

brain activation images within a single individual over time, and

possibly also between single individuals and a group that repre-

sents some standard. For example, in a study of recovery from

brain injury, the individual data might be compared to a normative

(healthy) group. Although such comparisons can be performed

using various scalar indices, we have recently begun to do this with

entire activation networks. One way of modeling such networks of

activation is with structural equation modeling (SEM), a method

that uses known anatomy to augment the functional information

with structural connectivity information, to create a model of both

static and dynamic relationships (McIntosh and Gonzalez-Lima,

1994; Buchel and Friston, 1997; Horwitz et al., 1999). We have

developed several such models (Solodkin et al., 2004; Skipper et al.,

INTRODUCTION

CONCEPTS AND BACKGROUND ON CNARI AND DRIVING

NEUROSCIENCE USAGE MODEL

In the past decade, there has been tremendous growth in the number

and scope of functional brain imaging studies performed in the

basic and applied neurosciences. These studies have been more

complex than those of the past, often incorporating large numbers

of participants, multiple physical sites, longitudinal follow-up,

combinations of healthy groups and those with disease or injury,

and/or additional types of behavioral or biological measurements.

Although their numbers are increasing, the inherent complexity

of data management and processing in such studies, particularly

regarding anatomical and physiological data, represents a major

stumbling block to their ultimate success. In studies of recovery

from stroke, for example, medical data are stored in paper charts or

in hospital medical information systems, behavioral and linguistic

data are saved in spreadsheets on personal workstations, structural

and metabolic magnetic resonance imaging (MRI) data are stored

in manufacturer formats on scanners and/or with the functional

MRI data in the fi le systems of data processing workstations. With

these diverse representations of information, not even counting

the possible addition of electrophysiological and other structurally

unique data types, it is hard enough to perform single case studies

that attempt to relate these data to each other, let alone studies that

include statistically meaningful numbers of participants.

We have started building the Computational Neuroscience

Applications Research Infrastructure (CNARI) to address these

concerns (Stef-Praun et al., 2007; Hasson et al., 2008; Small et al.,

Parallel workfl ows for data-driven structural equation
modeling in functional neuroimaging

Sarah Kenny1*, Michael Andric2, Steven M. Boker3, Michael C. Neale4, Michael Wilde1,6 and Steven L. Small1,2,5

1 Computation Institute, The University of Chicago, Chicago, IL, USA
2 Department of Psychology, The University of Chicago, Chicago, IL, USA
3 Department of Psychology, University of Virginia, Charlottesville, VA, USA
4 Department of Psychiatry, Virginia Commonwealth University, Richmond, VA USA
5 Department of Neurology, The University of Chicago, Chicago, IL, USA
6 Mathematics and Computer Science Division, Argonne National Laboratories, Argonne, IL, USA

We present a computational framework suitable for a data-driven approach to structural equation

modeling (SEM) and describe several workfl ows for modeling functional magnetic resonance

imaging (fMRI) data within this framework. The Computational Neuroscience Applications

Research Infrastructure (CNARI) employs a high-level scripting language called Swift, which is

capable of spawning hundreds of thousands of simultaneous R processes (R Development

Core Team, 2008), consisting of self-contained SEMs, on a high performance computing

system (HPC). These self-contained R processing jobs are data objects generated by OpenMx,

a plug-in for R, which can generate a single model object containing the matrices and algebraic

information necessary to estimate parameters of the model. With such an infrastructure in place

a structural modeler may begin to investigate exhaustive searches of the model space. Specifi c

applications of the infrastructure, statistics related to model fi t, and limitations are discussed in

relation to exhaustive SEM. In particular, we discuss how workfl ow management techniques

can help to solve large computational problems in neuroimaging.

Keywords: exhaustive search, OpenMx, SEM, swift, workfl ows

Edited by:

John Van Horn, University of California

at Los Angeles, USA

Reviewed by:

Shantanu Joshi, University of California

at Los Angeles, USA

John Van Horn, University of California

at Los Angeles, USA

*Correspondence:

Sarah Kenny, Computation Institute,

University of Chicago, 5640 S Ellis

Avenue, Chicago, IL 60637, USA.

e-mail: skenny@uchicago.edu

Frontiers in Neuroinformatics www.frontiersin.org October 2009 | Volume 3 | Article 34 | 2

Kenny et al. Parallel workfl ows for SEM

2007, 2009; Walsh et al., 2008), based on a combination of primate

and human data (Ban et al., 1984, 1991; Petrides and Pandya, 1984,

1988, 1999; Rosa et al., 1993; Seltzer and Pandya, 1994; Rizzolatti

et al., 1997, 1998; Hackett et al., 1999; Barbas, 2000). In one of

these studies, we constructed a group network model for healthy

right handed individuals performing bimanual movements, and

compared this normative group model to two individuals with

different biological states, two healthy left handed people and one

individual with stroke. The fi t between a strong left hander (i.e.,

one who used his left hand for everything) and the model was very

tight if the hemispheres were fl ipped in the model. The fi ts between

either the weak left hander (i.e., someone more ambidextrous) or

the person with stroke and the group model were poor. These three

examples were highly informative for understanding the neurobiol-

ogy of bimanual movements (Walsh et al., 2008).

Building such models can be very complex and time consuming,

requiring advanced anatomical knowledge and skill. Furthermore,

while these previous methods have been useful for generating a

set of possible models in the absence of exhaustive techniques,

they are inherently fl awed since they are based on anatomical con-

nectivity data from non-human primates. In addition, the models

created depend on the hypotheses being tested, and thus there is

a large number of possible models for any particular set of fMRI

activation data. To address these issues, we have embarked on an

extension to CNARI that aims to facilitate a more objective type of

data-driven SEM via highly parallelized workfl ows for generating

and processing large numbers of models in a manner that is easily

reconfi gurable and replicable. The goal for this modeling approach

is to explore as much as possible of the entire space of plausible

models that account for the data. In this paper, we discuss the

nature of this grid-enabled SEM, and describe how it can be used

and applied to various research problems in brain imaging. One

of the original purposes of CNARI was to facilitate the study of

stroke recovery, with particular emphasis on natural recovery and

treatment for language problems (aphasia). In our presentation,

we will use specifi c examples from language processing, though the

workfl ows presented are generalizable to a wide variety of other

SEM problems.

CONCEPTS AND BACKGROUND ON SEM: THE MOTIVATION AND DESIGN

OF OPENMX

Structural equation modeling (SEM) has a long history dating

back to the development of path analysis by Wright (1921). SEM

is a statistical tool for estimating a set of predicted covariances

between variables that may be connected with either regression

(asymmetric, directional) parameters or covariance (symmetric,

non-directional) parameters (see Boker and McArdle, 2005, for

a review). The advent of high speed computers and high level

programming languages in the 1960s, together with advances in

statistical methodology led to the development of software for

fi tting models to observed covariance matrices by maximum likeli-

hood (Joreskog, 1967). This procedure is now commonly known

as SEM (see e.g., Bollen, 1989; Loehlin, 1992, for introductions; see

McIntosh and Gonzalez-Lima, 1994 for its use in neuroimaging).

SEM is widely used for fi tting statistical models to epidemiologi-

cal, psychological, sociological and econometric data where there

are multivariate outcomes and theoretical reasons to expect that

linear or non-linear systems of equations may provide explanatory

power in summarizing these large data sets. For instance, in an epi-

demiological study of heart disease, one may wish to control for a

wide variety of possible behavioral covariates while simultaneously

accounting for variance due to group membership or genetic vari-

ation. For such problems, SEM models represent state-of-the-art

in statistical techniques. Neuroimaging data, is a prime candidate

for modeling with SEM, given overlapping sources of variance

both across space and time within individual as well as sources

of variance across individuals due to group membership and

other covariates.

SEM models can be described as a function of two model matri-

ces, A, S, a fi lter matrix, F and a residual matrix U, such that the

expected covariance between observed variables is:

R = F(I − A)–1 S((I − A)–1)′F′ + U

where the model matrix A contains the asymmetric paths (regres-

sion coeffi cients), S contains the symmetric paths (covariance

coeffi cients), and the fi lter matrix, F, strips the latent variables

from the model matrices so that the result only contains expec-

tations for the observed covariances (McArdle and McDonald,

1984; McArdle and Boker, 1990). One implementation of SEM is

the software package Mx (Neale et al., 2003). The set of built-in

functions that Mx can optimize includes maximum likelihood,

generalized least squares, and full information maximum likeli-

hood analysis of covariance matrices and/or observed means. In

2007, the OpenMx development project was started in order to

rewrite Mx into open source, provide a scripting interface to the

R statistical language (Ihaka and Gentleman, 1996) and provide a

number of extensions to the software. Among these improvements

was integrating the Mx SEM optimization engine into parallel

workfl ow management software in order to be able to estimate

parameters for large numbers of SEM models simultaneously.

In this way, statistical resampling techniques such as bootstrap-

ping, simulations to verify the performance of new models, and

exhaustive search routines could make use of large-scale paral-

lel computing resources. The current article describes the fi rst

application of the OpenMx software to a real-world exhaustive

search problem.

WORKFLOW MANAGEMENT

BACKGROUND AND GOALS

The ability to submit a large number of processes simultaneously to

multiple grid sites is a major computational challenge and cannot

be accomplished without an evolved workfl ow management system.

In a related research project, we have been developing a workfl ow

system called Swift (Zhao, 2007), which has been our system of

choice for submission and management of large-scale workfl ows

for neuroimaging. Using Swift, individual researchers are able to

map large amounts of input and output explicitly and make calls

to the cataloged executables that sit on remote grid sites. We have

been investigating ways to execute and manipulate exhaustive or

partially pruned, data-driven SEM workfl ows using Swift to oper-

ate on covariance data derived from a relational fMRI experiment

database. From the standpoint of parallel computing and workfl ow

management this poses some interesting issues and also demon-

strates, quite strikingly, the convenience (to the research scientist)

Frontiers in Neuroinformatics www.frontiersin.org October 2009 | Volume 3 | Article 34 | 3

Kenny et al. Parallel workfl ows for SEM

of having an elegant, high-level means of expressing, reconfi guring

and rerunning such workfl ows. Here we present several examples

of such workfl ows and explain how they can be expressed and

run using Swift, OpenMx and the computational resources of the

TeraGrid (Catlett et al., 2007).

The availability of high performance computing systems (HPCs),

ranging from multi-core workstations to clusters, grids, clouds, and

now petascale supercomputers, creates opportunities to explore

experimental datasets with SEM in ways never before possible. The

availability of this computing power, however, can be diffi cult to

harness, particularly for a neuroscientist not versed in high per-

formance computing. For these researchers, it is undesirable to

divert mental and manual effort from scientifi c exploration to the

mechanics of large-scale parallel computing. At the same time, both

the complexity and the scale of high performance environments

makes it ever more challenging to assure the validity of scientifi c

results obtained via such systems.

What scientists in general - and neuroscientists in particular -

need, are ways to express the processing they want to perform in a

compact, abstract, high-level notation that specifi es only the logical

nature of their computations, but which abstracts and automates all

of the potential, varying details of implementing those computing

abstractions across a wide range of computing platforms.

SWIFT AND CNARI

For the past two years our group at the University of Chicago Human

Neuroscience Laboratory, in collaboration with the Computation

Institute, has been developing and evaluating Swift, a parallel

scripting language, for this purpose. Together with members of

the OpenMx project described above, we have recently focused

signifi cant effort to create a library of Swift procedures for the

fl exible processing and analysis of data from fMRI and other neu-

roscience experiments.

We employ a programming model that “loosely couples”

 application programs. In this model, complete programs

become our functions, and the arguments to, and results from

these functions can be fi les, fi le-structured datasets, as well as

database entries.

The goals of expressing data processing steps in an abstract

notation are multifold: 1) to distill the computation down to

the salient details and eliminate the mechanical details of fi le

manipulation from the expression of the basic workfl ow steps;

2) to abstract data at a high level to relieve the programmer of

concerns for the layout of the data on storage systems; 3) to enable

the automatic parallelization of scripts in which independent

streams of data are processed; and, 4) to enable the recording of

all of the steps of a computation in an automatic, transparent

manner. An overview of the scripting modules for SEM analysis,

coded by the research scientist within the CNARI framework can

be seen in Figure 1. The Swift programming language enables

this model by providing the ability to represent application pro-

grams as procedures, and to defi ne compound procedures that

permit the user to create libraries of higher level processes that

capture the essential protocols of an application’s data prepara-

tion and analysis. The language’s data model provides the ability

to describe the datasets that are consumed and produced by

the procedural abstractions by combining basic primitive data

type defi nitions with a mapping mechanism of on-disk directory

structures to form structures and arrays. These data objects are

then automatically and transparently sent across distributed exe-

cution environments to remote and parallel Swift procedures.

The Swift language has a C-like syntax, but enforces many of

the semantic aspects of a “functional” programming language.

Procedures are expressed as functions, permitted to return

 multiple values; statements are executed in data-dependency order;

 variables (including array elements and structure members) are

Swift:
scripting language, task coordination,
throttling, data management, restart

OpenMx:
R-based SEM package with built-in
optimizer

R:
general purpose, portable, open source
data analysis scripting language

R
Libraries

(remote site)

-in

Swift

scripts

SEM
models

(generated
by R script)

R script for

generating

models

R

Libraries

(remote site)

FIGURE 1 | User Interface: Overview of the CNARI scripting modules for SEM workfl ows.

Frontiers in Neuroinformatics www.frontiersin.org October 2009 | Volume 3 | Article 34 | 4

Kenny et al. Parallel workfl ows for SEM

single-assignment, making it signifi cantly simpler to determine

 independent operations and threads of control, and to execute

these threads in parallel; a construct called “mapping” is provided

to translate between the simple, clean regular abstract data model

of Swift and the potentially messy, complex model of real-world

directory structures and the fi le naming and structuring conven-

tions expected by real-world applications.

The notation provides a simple set of fl ow-of-control

 statements, such as if and switch (case) statements. The primary

way to express a set - potentially large - of parallel operations in

swift is to utilize the foreach() statement. This statement iterates

over a collection, assigning each member of the collection to a

control variable, and then evaluating the body of the foreach()

loop once for each value of the target collection. All iterations

of a foreach() are potentially (and conceptually) performed in

parallel; the runtime system provides appropriate “throttling”

and scheduling of the potentially enormous number of par-

allel operations that this construct can generate and submit

for processing.

Atomic procedures in Swift consist of wrappers around speci-

fi cations that detail the invocation of application programs. In

our SEM project, this mechanism is used by Swift to invoke the

individual parallel model optimizations of the many thousands

of models generated in an OpenMx SEM analysis workfl ow. “R”

is the application program of execution. The invoking (master)

program that calls the individual R programs creates a (potentially

very long) list of evaluations, each of which is an R expression that

embodies the OpenMx engine. The master program generates a

large set of model calls and marshals the model’s matrix into a

text character stream.

The Swift model of data abstraction was to some degree

inspired and motivated by the fi eld of fMRI data analysis. In

our earliest efforts to execute fMRI preprocessing workfl ows on

computing grids we observed that the data model of the fMRI

domain had a natural tree structure in which the vast number

of fi les stored in traditional fi le system directories had some-

what similar patterns. These fi les included data from myriad

experiments, test conditions and scans, and also included vari-

ous types of lower level data such as anatomical and time series

data represented in the image/header fi le pairs of the functional

data format (e.g., Analyze or AFNI formats). This suggested to

us that data defi nition constructs could be of signifi cant ben-

efi t for scientifi c workfl ow scripting, such that data could be

described in a “typed” fashion, much like the hierarchical model

of “structs” in C or “classes” in Java. To enable an organization

(or even a discipline, through community curation efforts such

as those managed by collaborations like BIRN)1 to defi ne and

standardize a uniform format for describing their common data

elements, Swift provides the notion of data type and “mapping”

of each type to a physical representation. The logical type is sim-

ple and abstract, and refl ects only the logical level of the data; the

“mapping” describes how each element of a structure is mapped

onto the structure’s physical representation on a fi le system. To

some extent, Swift emulates the mapped fi lesystem structure on

the remote resources where it instantiates processing. Generic

mappers with a modest degree of representational fl exibility are

pre-defi ned in the swift system; but additional mappers can be

created by users for their own communities and used throughout.

Figure 2 shows the Swift modules used for execution manage-

ment once a user has mapped his fi les, and defi ned processing

jobs within a Swift script.

Swift is easy for users to install, and its runtime system pro-

vides the client capabilities needed to use workstation, grid and

cluster computing resources. From a single client computer, e.g.,

a modest workstation or personal laptop, the user can launch and

control scripts that send parallel work for simultaneous execution

on clusters, grids and supercomputers. The user can test the correct

execution of the logical script workfl ow, just by executing directly

Swift
Script

Abstract
computation

Execution Engine

C

C C C

Swift runtime
callouts

Status reporting

Worker Nodes

file1

launcher

launcher

Provenance

data

Provenance

data

App
F1

App
F2

file2

file3

SwiftScript
Compiler

Specification Scheduling Execution Provisioning

Resource
Provisioners

Open Science Grid

Multicore systems

TeraGrid

PetaScale Clusters

FIGURE 2 | Swift architecture: Managing workfl ow execution within CNARI. Specifi cation and scheduling are implemented on the client side while execution is

implemented on the remote computing resources.

1http://www.loni.ucla.edu/BIRN/

http://www.loni.ucla.edu/BIRN/

Frontiers in Neuroinformatics www.frontiersin.org October 2009 | Volume 3 | Article 34 | 5

Kenny et al. Parallel workfl ows for SEM

on a local workstation. If the user’s workstation has multiple cores,

Swift can take advantage of those for modest but invaluable paral-

lelism. And as the user’s needs grow or the user is ready to scale

up to increasingly large systems, Swift can readily expand to those

systems with a single representation and a single client as we will

show in our example workfl ows.

Swift scripts afford a highly productive way to produce and

manage the software of neuroscience research units, whether they

be local campus departments or international collaborations. In

today’s practice, organizations that need to process data from fMRI

experiments typically develop and rely on locally produced sets of

ad hoc scripts, usually written in a Linux “shell” language such as

“c shell” (csh) or bash, or perhaps Perl, to organize the processing

protocols and processes of the collaborations. In Swift, however,

as all procedures are “typed” with a specifi c “signature” of data

types for the input and output arguments, a more rigorous and

less error-prone paradigm is imposed on the overall structure of

the scripts. Thus Swift procedures serve as an interface-defi nition

language for ordinary shell procedures. The overall higher-level

process is then defi ned in a multilevel fashion, from top (highest)

to bottom (lowest level) being:

• overall application (such as multiNetworkSEM)

• high-level scripts (such as getCovariance())

• low level Swift interfaces (atomic procedures) such as

mxModelProcessor()

• an external R wrapper script to do further argument manipu-

lation (RInvoke.sh)

• the R tool itself (R CMD BATCH)

Special power and structure is afforded when the tool being run is

not a “canned” compiled application, but rather itself a powerful data

manipulation environment such as Perl or Python, or more specifi c

to the model we describe in detail here, the R data analysis language

with its vast package library of statistical and analytical procedures,

including the OpenMx package used here. In this case, the actual

script to be performed can be dynamically generated or selected from

a template library, and sent to any computing site, which already has

a suitable version of R and the OpenMx package installed.

DESCRIPTION OF THE fMRI EXPERIMENT DATA: THE EMBLEM

DATABASE

We now give some concrete examples of how Swift can manipu-

late large datasets and enable novel analysis techniques by means

of effective workfl ow management. The example framework we

have employed our grid-enabled analysis techniques on is an fMRI

investigation of the neural processing associated with emblematic

gesture observation. Emblematic gestures (“emblems”) are goal-

directed, symbolic manual actions that, while expressed as cultur-

ally recognizable manual gestures, communicate a linguistically

associable propositional meaning. Four experimental conditions

were presented to participants in the MRI scanner: 1) Emblem,

the symbolic manual gestures; 2) Speech, the spoken form of the

linguistic propositions associated with the emblems; 3) Emblem

with Speech, simultaneous presentations of the emblems with their

verbalized linguistic associations; and 4) Grasping, observation of

another type of goal-directed manual action, for which the neural

regions associated with its processing have been well- characterized.

Data were processed with AFNI (Cox, 1996) and mean normalized

values of each of the hemodynamic response functions for every

condition at every voxel in the brain were projected to 2-D cortical

surface representations and spatially smoothed on the surfaces

using SUMA (Saad et al., 2004). These surface values were then

imported into MySQL database tables for relational indexing and

further analyses.

SEM WORKFLOWS IN SWIFT

We have begun exploring extremely large, exhaustive SEM

workfl ows as a means of investigating how effi cient workfl ow

tools can address computational problems that were previously

considered unmanageable. Particularly, in using SEM for look-

ing at functional connectivity many researchers are confi ned to

hypothesis-driven approaches because they lack the tools to reli-

ably implement data-driven methods; this situation can greatly

impact mining and interpretation of datasets. In an attempt to

address these issues, we are building an infrastructure that can

be used by researchers to iterate over various parameters within

these large sets in a reasonable amount of time and in a man-

ner that is both dynamic and reliable. The following workfl ows

were run on a TeraGrid HPC system known as Ranger. Ranger

comprises 3,936 16-way SMP compute nodes providing 15,744

AMD Opteron™ processors for a total of 62,976 compute cores.

The workfl ows were developed on and submitted (to Ranger)

from a single-core Linux workstation running an Intel® Xeon™

3.20 GHz CPU.

A model generator was developed for the OpenMx package and

is designed explicitly to enable parallel execution of exhaustive or

partially pruned sets of model objects. Given an n x n covariance

matrix, it can generate the entire set of possible models with any-

where from 0 to n2 connections; however, it can also take as input

a single index from that set and it will generate and run a single

model. What this means in the context of workfl ow design is that

the generator can be controlled (and parallelized) easily by a Swift

script. For example, using Swift as the interface to OpenMx we have

these few lines of code:

WORKFLOW 1: 4-REGION EXHAUSTIVE SEM FOR A SINGLE

EXPERIMENTAL CONDITION

 1. app (mxModel min) mxModelProcessor(file

 covMatrix, Rscript mxModProc, int modnum,

 float initweight, string cond){

 2. {

 3. RInvoke @filename(mxModProc) @

 filename(covMatrix) modnum initweight cond;

 4. }

 5. file covMatrix<single_file_

 mapper;file="speech.cov">;

 6. Rscript mxScript<single_file_mapper;file="sin-

 glemodels.R">;

 7. int totalperms[] = [1:65536];

 8. float initweight =.5;

 9. foreach perm in totalperms{

10. mxModel modmin<single_file_mapper; file=@

 strcat(perm,".rdata")>;

Frontiers in Neuroinformatics www.frontiersin.org October 2009 | Volume 3 | Article 34 | 6

Kenny et al. Parallel workfl ows for SEM

11. modmin = mxModelProcessor(covMatrix,

 mxScript, perm, initweight, "speech");

12. }

First, a covariance matrix containing activation data for 4 brain

regions, over 8 time points, averaged over a group of subjects in

the Speech condition was drawn from the experiment database and

its location (in this example, on the local fi le system, though the

fi le could be located anywhere) is mapped in line 5. Line 6 maps

the R processing script and lines 1 through 4 defi ne the atomic

procedure for invoking R. Each iteration of the foreach loop maps

its optimized model output fi le and calls mxModelProcessor()

with the necessary parameters to generate and run a model. Each

of these invocations of mxModelProcessor() is independent

and is submitted for processing in parallel. Swift passes 5 variables

for each invocation: (1) the covariance matrix; (2) the R script

containing the call to OpenMx; (3) the permutation number, i.e.,

the index of the model; (4) the initialization weight for the free

parameters of the given model; and (5) the experimental condition.

Clearly, in this workfl ow all free parameters of the given model

will have the same initialization weight as Swift is passing only one

weight variable. When the job reaches a worker node on Ranger

an R process is initialized, the generator creates the desired model

by calculating where in the array that permutation of the model

matrix falls. OpenMx then estimates the model parameters using a

non-linear optimization algorithm called NPSOL (Gill et al., 1986),

and the optimized model is returned and written out by Swift to

the location specifi ed in its mapping on line 10.

The above script completed in approximately 40 minutes. The

script can then be altered to run over multiple experimental condi-

tions by adding another outer loop:

WORKFLOW 2: 4-REGION EXHAUSTIVE SEM FOR 2 EXPERIMENTAL

CONDITIONS

1. string conditions[] = ["emblem", "speech"];

2. int totalperms[] = [1:65536];

3. float initweight =.5;

4. foreach cond in conditions{

5. foreach perm in totalperms{

6. file covMatrix<single_file_mapper;file=@

 strcat(cond,".cov")>;

7. mxModel modmin<single_file_mapper;file=@

 strcat(cond,perm,".rdata")>;

8. modmin= mxModelProcessor(covMatrix,

 mxScript,perm, initweight, cond);

9. }

When the outer loop is added, the new workfl ow consists

of 131,072 jobs since we are now running the entire set for two

conditions. This workfl ow completed in approximately 2 hours

(Figure 3).

WORKFLOW 3: 4-REGION EXHAUSTIVE SEM FOR MULTIPLE NETWORKS

In this workfl ow multiple 4-region networks are run for the Emblem

with Speech experimental condition. The regions of interest (ROIs)

designated are from FreeSurfer’s2 automatic parcellation of ana-

tomical regions, based on the Duvernoy atlas (1991), and further

manual subdivisions to delineate anterior and posterior extents of

the superior temporal gyrus and sulcus, as well as superior and

inferior segments of the precentral gyrus. Because Emblem with

Speech involved subjects’ perceiving simultaneously both spoken

(audiovisual) and manual information, here we chose candidate

regions expected to be involved in audiovisual recognition of

speech and manual action: occipital pole (OP), middle occipital

gyrus (MOG), anterior occipital sulcus (AOS), posterior superior

temporal sulcus (STSp), posterior superior temporal gyrus (STGp),

transverse temporal gyrus (TTG), and supramarginal gyrus (SMG).

Covariance matrices of activation data for Emblem with Speech for

several networks comprised of these ROIs were then queried from

the database:

network 1: {OP, STGp, TTG, AOS}

network 2: {OP, MOG, AOS, STSp}

network 3: {TTG, STGp, SMG, STSp}

 1. string conditions[] = ["emblemwithspeech"];

2000

1500

1000

e
v
e
n
ts

 i
n
 p

ro
g

re
s
s

500

0

0 2000 4000 6000 8000 10000 12000

3000

2500

2000

1500

1000

e
v
e
n
ts

 i
n
 p

ro
g

re
s
s

500

0

0 2000 4000 6000 8000 10000 1200014000 16000 18000

FIGURE 3 | Number of active processes during workfl ow execution: (left)

Processing of the 4-region workfl ow over 2 experimental conditions. (Right)

Processing of the 4-region workfl ow over multiple networks. The red line

represents the execution of jobs on Ranger, while the blue and green represent

the staging in and out of fi les respectively. Plots were generated by

swift-plot-log, part of the Swift suite of tools.

2http://surfer.nmr.mgh.harvard.edu/

http://surfer.nmr.mgh.harvard.edu/

Frontiers in Neuroinformatics www.frontiersin.org October 2009 | Volume 3 | Article 34 | 7

Kenny et al. Parallel workfl ows for SEM

 2. int networks[] = [1:3];

 3. int totalperms[] = [1:65536];

 4. float initweight =.5;

 5. foreach cond in conditions {

 6. foreach perm in totalperms {

 7. foreach n in networks {

 8. file covMatrix<single_file_mapper; file=@

 strcat("matrices/net",n,"_",cond,".

 cov")>;

 9. mxModel modmin<single_file_mapper; file=@

 strcat(n,"_",cond,"_",perm,".rdata")>;

 10. modmin = mxModelProcessor(covMatrix,mxScr-

 ipt,perm,initweight,

 11. condition,@

 strcat("net",n));

 12. }

 13. }

 14. }

This results in a workfl ow containing 196,608 processing jobs

(1 condition x 3 networks x 65536 models) and completed in

approximately 5 hours on Ranger. For an example of how this

might be used as part of a larger processing workfl ow see Section

“Language Study Workfl ow in Swift” in the Appendix.

DISCUSSION AND FUTURE WORK

The workfl ows presented here do not result in a single “best” model

representing connectivity amongst the four brain regions for the

given conditions. Rather, their value lies in that they produce an

exhaustive set of optimized models from which to begin searching

for good-fi tting models. Thus, a natural extension to this set of

workfl ows might be a model-selection component based on a fi t

statistic (e.g., Bayesian information criterion, Akaike information

criterion, RMSEA), an exploratory visualization component (see

“Language Study Workfl ow in Swift” in the Appendix) or perhaps

a combination of these methods. A “model-selection workfl ow”

based on one or more fi t statistics extending, for example, work-

fl ow 1 would extract the desired fi t statistic from each of the 65,536

optimized models and potentially keep or discard a given model

based on whether or not it is above or below a selected thresh-

old. It is worth noting that there is a good deal of controversy

around which measures provide the most accurate model-selec-

tion (Bullmore et al., 2000) as well as some variation in how SEM

software packages actually calculate those fi t statistics (Clayton

and Pett, 2008).

While the present workfl ows suggest new possibilities for exhaus-

tive search and large-scale, parallel analysis techniques, their utility

lies heavily in the ability to be easily replicated and reconfi gured

for use on varying datasets. Exhaustive search through a space of

structural equation models is, ab initio, an exploratory technique.

Thus, one cannot make statements concerning the probability that

there are signifi cant differences between models or that a selected

parameter is signifi cantly different from zero. The number of

tested models is so great that any statistical argument concerning

the likelihood of the data given a null hypothesis is overwhelmed

by the number of comparisons made. In addition, one must be

concerned about generalizability of results if a single data set was

used—the exhaustive search may have overfi t idiosyncrasies of the

target data. Thus, it is imperative to cross-validate results from

exhaustive search using other data sets.

On the other hand, an exhaustive search of the space of structural

equation models for a particular data set does result in an empirical

distribution of the fi t statistics of the models. By plotting the log likeli-

hood resulting from each fi t against the number of degrees of freedom

in its associated model, it is likely that clusters in the fi t statistics will

be observed. In this way, we may observe patterns of candidate models

that are roughly equivalent given the data. Some of these models may

be algebraically equivalent (vonOertzen, in press), and others may be

empirically equivalent given the data. We intend the CNARI develop-

ment effort to enable this type of data exploration.

Beginning with some basic pruning techniques, we can start to

narrow down the space of models in the exhaustive set while leverag-

ing Swift’s ability to submit large numbers of processes, resulting in

some powerful workfl ows. The fi rst reduction in the exhaustive set

of models is elimination of any models that are unidentifi ed, that is,

models containing negative degrees of freedom due to the presence

of more unconstrained than constrained variables. The degrees of

freedom can be easily calculated using the following formula:

(n(n+1)/2)-k

where n is the number of brain regions in the model and k is

the number of free parameters and if the result is negative, the

model is underidentifi ed (Bollen, 1989). Additionally, a model

with two-way symmetric connections is likely to fail attempts

at optimization. Such a connection represents a type of cycle. In

fact, most models containing cycles will be diffi cult to optimize as

they are not usually identifi ed in the absence of, e.g., longitudinal

data (Neale and Cardon, 1992; Heath, 1993; Neale et al., 1994).

The size if the acyclic set is given by

4((n*(n-1)/2).

An algorithm exists for fi nding cycles (Boker et al., 2002) that

could potentially be used to further prune the model set. In addition

to pruning cyclic and underidentifi ed models, the set may also be

pruned for models containing variables that lack residual error. The

fi t function cannot be evaluated under these circumstances, because

the predicted covariance matrix is singular; therefore its determinant

is zero, which results in the division of a negative quantity by zero in

the calculation of the multivariate normal distribution probability

density function, so optimization cannot be performed.

As Table 1 shows, with a moderate degree of pruning, the set

for four regions becomes trivial to run in the present infrastruc-

ture. Furthermore, the fi ve-region set, while still a large number of

processing jobs, becomes much more manageable.

Table 1 | Number of models produced for exhaustive and partially

pruned workfl ows.

Regions Exhaustive set Identifi ed Acyclic

4 65,536 50,642 4,096

5 33,554,431 26,434,915 1,048,576

6 68,719,476,736 54,802,674,727 1,073,741,824

Frontiers in Neuroinformatics www.frontiersin.org October 2009 | Volume 3 | Article 34 | 8

Kenny et al. Parallel workfl ows for SEM

CNARI has been developed with the aim of managing a broad

range of diverse neuroscience datasets and performing effi cient,

reliable parallel analysis workfl ows on them. Here we have dem-

onstrated workfl ows that fully exercise this capability by applying

this framework to large computational problems; namely, exhaus-

tive search SEM. The need for data-driven techniques in modeling

connectivity has emerged not only in our own work in studying

language and aphasia but in SEM in general (Bullmore et al.,

2000; Marrelec et al., 2007), though there has been little discus-

sion of workfl ow management and parallel computing as means

of addressing this need. Researchers, faced with seemingly insur-

mountable computational problems when selecting appropriate

models to test, are often forced to rely on less-than-satisfactory

approximations not only due to the sheer amount of processing

power required but because of the daunting task of distributing

those processing tasks in a cohesive manner such that the results

are useful and replicable. As CNARI continues to evolve, we hope

to expand these large-scale, data-driven workfl ows as we use them

to address the complex research questions facing us.

ACKNOWLEDGMENTS

This research is supported in part by NSF grant OCI-721939, NIH

grants DC08638, DA024304-02, DA-18673, 1R21DA024304—01,

R21/R33 DC008638 and R01 DC07488, the U.S. Dept. of Energy

under Contract DE-AC02-06CH11357, the James S. McDonnell

Foundation and the TeraGrid HPC resources of the Texas Advanced

Computing Center. The authors thank Ben Clifford and Mihael

Hategan for creating and supporting the Swift parallel scripting

system, and Michael Spiegal, Jeffrey Spies, and Tim Brick for devel-

oping and supporting the OpenMx system.

APPENDIX

LANGUAGE STUDY WORKFLOW IN SWIFT

The following is a prototype using Swift and demonstrating how the

above modules can be assembled into a larger exploratory workfl ow.

Exhaustive search is run for the Emblem with Speech condition on

several four-region networks, and the results of the optimized mod-

els are stored in a connectivity database for visualization, further

analysis, and pattern detection.

For each of the selected networks multiNetworkSEM is called with

confi guration fi les for the user to access the databases, information

on the network to be processed, and the total number of models in

the exhaustive set. First, the covariance data is pulled from the experi-

ment database. This is seen in the runQuery function, which is Swift’s

call to a python database interface (see Small et al., 2009 for a more

detailed description of this mediator component). Then for each

iteration of the loop in line 34, Swift invokes mxModelProcessor,

assigning each process a model to generate and optimize in OpenMx.

The instantiation of the OpenMx model object and the call to the

optimizer are encapsulated in the R script mapped on line 33, which

is also passed to mxModelProcessor. Each of these processes writes

out a fi le containing the result of the optimization, and these results

can be read and inserted into the connectivity database, which is done

with insertOptMod. It should be noted that both insertOptMod

and getCovariance operate on the same principle: the user assem-

bles a query that the python DBI will submit to the database. If the

user also passes an R script (as in line 62), it will process the query

result with that R script. Each result fi le is read, and its contents are

inserted into the connectivity database where they can be further

analyzed. A call to plotLogLik can be used to plot of the minimum

values obtained by OpenMx for each model allowing for identifi ca-

tion of patterns or clusters within the set (Figure 4).

 #### MultiNetworkSEM.swift

1. type file;

2. type mxMin;

3. type Rscript;

4. type dbConnect;

5. type mxModel{

6. int modnum;

7. int dof;

8. string best;

9. }

10.# ----------- atomic procedures ----------- #

11.

12.app (file matrix) runQuery (dbConnect dbconn,

 string query, Rscript calcCov){

13. }

14. mysqlPythonDBI query @calcCov @dbconn;

15. }

16.

17.app (external inserted) insertMxResult

 (dbConnect dbconn, string query, file

 datafile)

18. {

19. mysqlPythonDBI query @dbconn stdout=@

 filename(inserted) @datafile;

20. }

21. app (file min) mxModelProcessor (file

 cov, Rscript mxModProc, int modnum, float

 weight, string cond, int net)

22. {

23. RInvoke @mxModProc @filename(cov) modnum

 weight cond net;

24. }

25.

26. # ------ user-defined SEM procedures ------ #

27.

28. multiNetworkSEM(string condition,dbConnect

 emblemdb, dbConnect semdb, int n, string net,

 int totalperms[])

29. {

30. float initweight =.75;

31. file covariance<single_file_mapper;file=@

 strcat("net",n,"/",condition,".cov")>;

32. covariance = getCovariance(condition, n,

 net, emblemdb);

33. Rscript mxModProc<single_file_

 mapper;file="scripts/singlemodels.R">;

34. foreach perm in totalperms{

35. file modmin<single_file_mapper;file=@

 strcat("net",n,"/",condition,"_",perm,".

 stat")>;

Frontiers in Neuroinformatics www.frontiersin.org October 2009 | Volume 3 | Article 34 | 9

Kenny et al. Parallel workfl ows for SEM

36. modmin = mxModelProcessor(covariance,mxMod

 Proc,perm,initweight,condition,n);

37. external doneflag = insertOptMod(n, semdb,

 condition, modmin);

38. }

39.

40. (external ins) insertOptMod(int net,

 dbConnect dbconn, string cond, file modfile)

41. {

42. string mysqlstr = @strcat("INSERT

 INTO optimized_models (network, deg_of_

 freedom, mx_minimum, modnum, cond) VALUES

 (",net,",DOF,BEST,MODNUM,",cond,");");

43. string argList = @strcat(

44. " --query ", mysqlstr,

45. " --data ", @filename(modfile),

46. " --conf ", @filename(dbconn));

47. ins = insertMxResult(dbconn, argList,

 modfile);

48. }

49.

50. (file covariance) getCovariance (string cond,

 int net, string rois, dbConnect dbconn)

51. {

52. string mysqlstr = @strcat("SELECT

 avg(",cond,"0B), avg(",cond,"1B),

 avg(",cond,"2B),",

53. "avg(",cond,"3B), avg(",cond,"4B),

 avg(",cond,"5B),",

54. "avg(",cond,"6B), avg(",cond,"7B),

 avg(",cond,"8B) ",

55. "FROM emblemfemlh where roi in (",rois,")

worksta�on

covariance

models

Network1 Network2

Connec�vityDB

Network3

Ac�va�onDB

Visualiza�on

FIGURE 4 | Multinetwork Swift workfl ow for the Emblem with Speech condition.

Frontiers in Neuroinformatics www.frontiersin.org October 2009 | Volume 3 | Article 34 | 10

Kenny et al. Parallel workfl ows for SEM

71. " --conf ", @filename(dbconn),

72. " --query ", mysqlstr,

73. " --r_script ", "scripts/plotloglik.R",

74. " --r_swift_args ", @filename(plotfile));

75. plotfile = runQuery(dbconn, argList, rplot);

76.

77. # ---------------- Main ----------------- #

78.

79. string condition = "emblemwithspeech";

80. string networks[] = ["42, 34, 33, 60", "42,

 15, 60, 80", "33, 34, 23, 80"];

81. dbConnect emblemdb <single_file_mapper;

 file="./user.config">;

82. dbConnect semdb <single_file_mapper; file="./user2.

 config">;

83. int totalperms[] = [1:65536];

84. foreach net,n in networks{

85. multiNetworkSEM(condition,emblemdb,semdb,n,net,

 totalperms);

86. }

 group by roi ");

56. string argList = @strcat

57. " --conf ", "user.config",

58. " --query ", mysqlstr,

59. " --r_script ", "scripts/cov.R",

60. " --r_swift_args ", "matrices/net",net, "/",

 cond);

61. Rscript calcCov<single_file_

 mapper;file="scripts/cov.R">;

62. (covariance = runQuery(dbconn, argList,

 calcCov);

63. }

64. {

65. (file plotfile) plotLogLik(int net, string

 cond, dbConnect dbconn)

66.

67. Rscript rplot<single_file_

 mapper;file="scripts/plotloglik.R">;

68. string mysqlstr = @strcat("SELECT deg_of_

 freedom,mx_minimum FROM optimized_models",

69. " where network = ",net,";");

70. string argList = @strcat(

REFERENCES

Ban, T., Naito, J., and Kawamura, K.

(1984). Commissural afferents to the

cortex surrounding the posterior part

of the superior temporal sulcus in the

monkey. Neurosci. Lett., 49, 57–61.

Ban, T., Shiwa T., and Kawamura, K.

(2000). Cortico-cortical projections

from the prefrontal cortex to the

superior temporal sulcal area (STs)

in the monkey studied by means of

HRP method. Arch. Ital. Biol., 129,

259–272.

Barbas, H. (2000). Connections under-

lying the synthesis of cognition,

memory, and emotion in primate

prefrontal cortices. Brain Res. Bull.

52, 319–330.

Boker, S. M., and McArdle, J. J. (2005).

Path analysis and path diagrams. In

Encyclopedia of Statistics in Behavioral

Science Vol. 3, B. Everitt and D. Howell,

eds (New York, John Wiley & Sons),

pp. 1529–1531.

Boker, S. M., McArdle, J. J., and Neale, M.

(2002). An algorithm for the hierarchi-

cal organization of path diagrams and

calculation of components of expected

covariance. Struct. Equ. Modeling, 9,

174–194.

Bollen, K. A. (1989). Structural Equations

with Latent Variables. New York, John

Wiley & Sons.

Buchel, C., and Friston, K. J. (1997).

Modulation of connectivity in visual

pathways by attention: cortical inter-

actions evaluated with structural

equation modelling and fMRI. Cereb.

Cortex 7, 768–778.

Bullmore, E., Horwitz, B., Honey, G.,

Brammer, M., Williams, S., and

Sharma, T. (2000). How good is good

enough in path analysis of fMRI data?

NeuroImage, 11, 289–301.

Catlett, C. et al. (2007). TeraGrid: Analysis

of Organization, System Architecture,

and Middleware Enabling New

Types of Applications, HPC and

Grids in Action, L. Grandinetti, ed

(Amsterdam, IOS Press, Advances in

Parallel Computing Series).

Clayton, M. F., and Pett, M. A. (2008).

AMOS versus LISREL: One data

set, two analyses. Nursing Res., 57,

283–292.

Cox, R. W. (1996). AFNI: software for

analysis, and visualization of func-

tional magnetic resonance neu-

roimages. Comput. Biomed. Res. 29,

162–173.

Duvernoy, H. M. (1991). The Human

Brain: Surface, Three-dimensional

Sectional Anatomy, and MRI. New

York, Springer-Verlag.

Gill, P. E., Murray, W., Saunders, M. A.,

and Wright, M. H. (1986). User’s

Guide for NPSOL (Version 4.0):

A FORTRAN package for nonlin-

ear programming. Department

of Operations Research, Stanford

University, Stanford.

Hackett T. A., Stepniewska I., and

Kaas J. H. (1999) Callosal connec-

tions of the parabelt auditory cortex

in macaque monkeys. Eur. J. Neurosci.,

11, 856–866.

Hasson, U., Skipper, J. I., Wilde, M. J.,

Nusbaum, H. C., and Small, S. L.

(2008). Improving the analysis, stor-

age and sharing of neuroimaging

data using relational databases and

distributed computing. Neuroimage,

32, 693–706.

Horwitz, B., Tagamets, M. A., and

McIntosh, A. R. (1999). Neural mod-

eling, functional brain imaging, and

cognition. Trends Cogn. Sci. (Regul.

Ed.) 3, 91–98.

Ihaka, R., and Gentleman, R. (1996). R: A

language for data analysis and graphics.

J. Comput. Graph. Stat., 5, 299–314.

Joreskog, K. G. (1967). Some contribu-

tions to maximum likelihood factor

analysis. Psychometrika, 32, 443–482.

Loehlin, J. (1992). Latent Variable Models:

An Introduction to Factor, Path, and

Structural Analysis. Hillsdale, NJ:

Lawrence Erlbaum Associates.

Marrelec, G., Horwitz, B., Kim, J., Pelegrini-

Issac, M., Benali, H., and Doyon, J.

(2007). Using partial correlation to

enhance structural equation modeling

of functional MRI data. Magn. Reson.

Imaging, 25, 1181–1189.

McArdle, J. J., and Boker, S. M. (1990).

Rampath. Hillsdale, NJ: Lawrence

Erlbaum.

McArdle, J. J., and McDonald, R. P. (1984).

Some algebraic properties of the

reticular action model for moment

structures. Br. J. Math. Stat. Psychol.,

87, 234–251.

McIntosh A. R., and Gonzalez-Lima, F.

(1994) Structural equation model-

ling, and its application to network

analysis in functional brain imaging.

Hum. Brain Mapp., 2, 2–22.

Neale, M. C., Boker, S. M., Xie, G., and

Maes, H. H. (2003). Mx: Statistical

modeling, 6th edn. Richmond, VA:

Department of Psychiatry.

Neale, M. C., Eaves, L. J., and Kendler, K. S.

(1994). The Power of the Classical

Twin Study to Resolve Variation in

Threshold Traits. Vol. 24, Netherlands:

Springer.

Neale, M. C., and Cardon, L. R. (1992).

Methodology for Genetic Studies of

Twins and Families. NATO ASI Series.

Vol. 67. Dordrecht, Kluwer Academic

Publishers.

Petrides, M., and Pandya D. N. (1984).

Projections to the frontal cortex from

the posterior parietal region in the

rhesus monkey. J. Comp. Neurol., 228,

105–116.

Petrides, M., and Pandya D. N. (1988).

Association fi ber pathways to the fron-

tal cortex from the superior temporal

region in the rhesus monkey. J. Comp.

Neurol. 273, 52–66.

Petrides, M., and Pandya, D. N. (1999).

Dorsolateral prefrontal cortex: com-

parative cytoarchitectonic analysis in

the human, and the macaque brain,

and corticocortical connection pat-

terns. Eur. J. Neurosci. 11, 1011–1036.

R Development Core Team (2008). R: A

language and environment for statis-

tical computing. R Foundation for

Statistical Computing. Vienna, Austria.

ISBN: 3-900051-07-0, Available at:

http://www.R-project.org.

Rizzolatti, G., Luppino, G., and Matelli, M.

(1998). The organization of the cor-

tical motor system: new concepts.

Frontiers in Neuroinformatics www.frontiersin.org October 2009 | Volume 3 | Article 34 | 11

Kenny et al. Parallel workfl ows for SEM

Electroencephalogr. Clin. Neurophysiol.,

106, 283–296.

Rizzolatti, G., Fogassi, L., and Gallese, V.

(1997). Parietal cortex: from sight

to action. Curr. Opin. Neurobiol., 7,

562–567.

Rosa, M. G., Soares, J. G., Fiorani, M.

Jr., and Gattass, R. (1993). Cortical

 afferents of visual area MT in the

Cebus monkey: possible homologies

between New and Old World mon-

keys. Vis. Neurosci., 10, 827–855.

Saad, Z. S., Reynolds, R. C., Argall, B. D.,

Japee, S., and Cox, R. W. (2004). SUMA:

An interface for surface-based intra-

and inter-subject analysis with AFNI.

Arlington, VA, IEEE International

Symposium on Biomedical Imaging.

pp. 1510–1513.

Seltzer, B., and Pandya, D. N. (1994).

Parietal, temporal, and occipital

projections to cortex of the superior

temporal sulcus in the rhesus mon-

key: a retrograde tracer study. J. Comp.

Neurol., 343, 445–463.

Skipper, J. I., Godin-Meadow, S.,

Nusbaum, H. C., and Small, S. L.

(2007). Speech-associated gestures,

Broca’s area, and the human mirror

system. Brain Lang., 101, 260–277.

Skipper, J. I., Goldin-Meadow, S.,

Nusbaum, H. C., and Small, S. L.

(2009). Gestures orchestrate brain

networks for language understand-

ing. Curr. Biol. 19, 661–667.

Small, S. L., Wilde, M., Kenny, S.,

Andric, M., and Hasson, U. (2009).

Database-managed Grid-enabled anal-

ysis of neuroimaging data: The CNARI

framework. Int. J. Psychophysiol. 73,

62–72.

Solodkin, A., Hlustik, P., Chen, E. E., and

Small, S. L. (2004). Fine modulation

in network activation during motor

execution and motor imagery. Cereb.

Cortex, 14, 1246–1255.

Stef-Praun, I., Foster, U., Hasson, M.,

Hategan, S.L., and Wilde, S. M. (2007).

Accelerating medical research using the

Swift Workfl ow System. Paper Presented

at the HealthGrid 2007, Geneva.

vonOertzen, T. (in press). Power equiva-

lence in structural equation modeling.

Br. J. Math Stat. Psychol.

Walsh, R. R., Small, S. L., Chen, E. E., and

Solodkin, A. (2008). Network activation

during bimanual movements in

humans. Neuroimage, 43, 540–553.

Wright, S. (1921). Correlation and

 causation. J. Agr ic. Res., 20,

557–585.

Zhao, H., Clifford, F., von, L., Nefedova, R.,

and Stef-Praun, W. (2007). Swift: Fast,

Reliable, Loosely Coupled Parallel

Computation. IEEE Congress on

Services, pp. 199–206.

Conflict of Interest Statement: The

authors declare that the research was

conducted in the absence of any com-

mercial or financial relationships that

could be construed as a potential confl ict

of interest.

Received: 11 April 2009; paper pending

 published: 10 July 2009; accepted: 09

September 2009; published online: 20

October 2009.

Citation: Kenny S, Andric M, Boker SM,

Neale MC, Wilde M and Small SL (2009)

Parallel workfl ows for data-driven struc-

tural equation modeling in functional

neuroimaging. Front. Neuroinform. 3:34.

doi: 10.3389/neuro.11.034.2009

Copyright © 2009 Kenny S, Andric M, Boker

SM, Neale MC, Wilde M and Small SL. This

is an open-access article subject to an exclusive

license agreement between the authors and

the Frontiers Research Foundation, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the

original authors and source are credited.

