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Abstract. Sparse Grids (SG), due to Zenger, are the basis for efficient
high dimensional approximation and have recently been applied success-
fully to predictive modelling. They are spanned by a collection of simpler
function spaces represented by regular grids. The combination technique
prescribes how approximations on simple grids can be combined to ap-
proximate the high dimensional functions. It can be improved by iterative
refinement.
Fitting sparse grids admits the exploitation of parallelism at various
stages. The fit can be done entirely by fitting partial models on regular
grids. This allows parallelism over the partial grids. In addition, each
of the partial grid fits can be parallelised as well, both in the assembly
phase where parallelism is done over the data and in the solution stage
using traditional parallel solvers for the resulting PDEs. A simple timing
model confirms that the most effective methods are obtained when both
types of parallelism are used.

Keywords: predictive modelling, sparse grids, parallelism, numerical
linear algebra

1 Introduction

Data mining algorithms have to address two major computational challenges.
First, they have to be able to handle large and growing datasets and secondly,
they need to be able to process complex data. Datasets used in data mining
studies have been doubling in size every year and many are now in the terabyte
range. The second challenge is sometimes referred to as the curse of dimensional-
ity as the algorithmic complexity grows exponentially in the number of features
or dimension of the data. Data mining aims to find patterns or structure in the
data. Parallel processing is a major tool in addressing the large computational
requirements of data mining algorithms.
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One important type of pattern discovered in data mining algorithms is rep-
resented by functions among selected dataset features. In data mining, the dis-
covery of such functions is referred to as predictive modelling and includes both
classification and regression. Here we will consider regression but the same al-
gorithms are used in classification as well. Different types of models are ob-
tained from different functional classes. The classical methods of least squares
uses linear and nonlinear functions with relatively few parameters. Modern non-
parametric methods are characterised by large numbers of parameters and can
flexibly approximate general function sets. They include artificial neural nets,
Bayesian nets, classification and regression trees (CART) [1], Multivariate Adap-
tive Regression Splines (MARS) [2], Support Vector Machines, ANOVA splines
and additive models.

All approaches are able to characterise a large class of behaviours and involve
training or fitting the model to the dataset. For example, one may wish to predict
the vegetation cover of a particular region based on cartographic measurements
such as elevation, slope, distance to water, etc. Other examples are prediction of
the likelihood of a car insurance customer making a claim, a business customer
to purchase a product or a resident to commit taxation fraud.

For a given response variable y and predictor variables x1, . . . , xd a predictive
model is described by a function

y = f(x1, . . . , xd).

We will only consider the case where the function f is an element of a linear
space and we’ll discuss methods to compute the its representation from data in
then following.

2 Sparse Grids for Predictive Modelling

Recently a technique called sparse grids [3], based on a hierarchical basis ap-
proach, has generated considerable interest as a vehicle for reducing dimension-
ality problems where approximations of high dimensional functions are sought.
Generalised sparse grids functions f(x) are approximations which can be de-
scribed by additive models of the form

f(x) =
∑

α

fα(x) (1)

where the partial functions fα are simpler than f in some sense. Typically, the
partial functions only depend on a subset of the variables or the dependence has
a coarser scale as discussed below.

Sparse grids for the solution of partial differential equations, numerical inte-
gration, and approximation problems have been studied for more than a decade
by Griebel, Zenger et al. They also developed an algorithm known as the com-
bination technique [4] prescribing how the collection of standard grids can be
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combined to approximate the high dimensional function. More recently, Gar-
cke, Griebel and Thess [5,6] demonstrated the feasibility of sparse grids in data
mining by using the combination technique in predictive modelling.

Additive models of the form of equation (1) generalise linear models and thus
form a core technique in nonparametric regression. They include the Multivariate
Adaptive Regression Splines (MARS) [2], and the Additive Models by Hastie and
Tibshirani [7,8].

Challenges include the selection of function spaces, variable selection etc.
Here we will discuss algorithms for the determination of the function f and hence
the partial functions fα given observed function values when the function spaces
are given. For observed data points x1, . . . ,xn and function values y1, . . . , yn

we define the function f from some finite dimensional function space V to be
the solution of a penalised least squares problem of the form

J(f) =
1
n

n∑

i=1

(
f(x(i)) − yi

)2
+ β ‖Lf‖2 (2)

for some (differential) operator L. The solution of this problem can be viewed
as a projection of a generalised thin plate spline function, see [9]. If the partial
functions fα are known to be orthogonal with respect to the corresponding norm
(here the standard 2-norm), then they can be computed independently as minima
of J . A slightly more general case is considered in the case of the combination
technique where the projections into the spaces of the partial functions are known
to commute. In this case, if gα are the projections into the partial spaces, then
the partial functions are known to be multiples of these projections with known
(integer) coefficients, the combination coefficients cα and thus

f =
∑

α

cαgα.

However, these approximations can break down when the projections do not
commute. As a generalisation of this approach, an approximation has been sug-
gested in [9] where the partial functions are again multiples of the projections
gα but the coefficients are this time determined by minimising the functional J .
Thus one gets

f =
∑

α

γαgα.

This also generalises the approximations obtained from the additive Schwarz
method which is

f = γ
∑

α

gα

and experimental evidence shows that the performance is in many cases close to
that of the multiplicative Schwarz method, which in statistics is known under
the term of backfitting [7]. The approaches above can be further improved by
iterative refinement.
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The interesting aspect of these problems which we will discuss here is the
opportunities for parallel processing and the tradeoff between parallel processing
and the performance of the solvers. We use a two level iterative solver and
parallelism is exploited at both levels.

2.1 Multiresolution Analysis and Sparse Grids

The sparse grid idea stems from a hierarchical subspace splitting [3]. Consider
the space Vl, with l = (l1, ..., ld) ∈ Nd

0, of piecewise d-linear functions which is
spanned by the usual d-linear ’hat’ functions

ϕl,j(x) :=
d∏

t=1

ϕlt,jt
(xt), jt = 0, ..., 2lt .

Here, the 1 D functions ϕl,j(x) are

ϕl,j(x) =
{

1 − |2l · x − j|, x ∈ [ j−1
2l , j+1

2l ];
0, otherwise.

The number of basis functions needed to resolve any f ∈ Vl := Vl,... ,l is now
larger than 2ld. With a resolution of just 17 points in each dimension (l = 4),
say, a ten dimensional problem would require computation and storage of about
2 × 1012 coefficients which is more than one can expect on computers available
today – the curse of dimensionality.

Now we define the difference spaces Wl, with et denoting the t-th unit vector,

Wl := Vl −
d∑

t=1

Vl−et
.

These hierarchical difference spaces lead to the definition of a multilevel subspace
splitting, i.e., the definition of the space Vl as a direct sum of subspaces,

Vl :=
l∑

l1=0

...

l∑

ld=0

W(l1,..ld) =
⊕

|l|∞≤l

Wl, (3)

Figure 1, showing the norms of the errors for the reconstruction of a two-
dimensional function on a logarithmic scale, indicates that spaces Wl with large
|l|1 contribute very little. In fact, it can be shown [10,3] that the size of the error
committed by removing the space Wl is proportional to 2−r|l|1 , where r = 2 in
the case of piecewise linear functions. This suggests removing all spaces where
the sum of resolutions is ’large’. The choice of |l|1 ≤ l in (3) results in the sparse
grid of [3] (see Fig. 1 for an example in three dimensions) but the grids can be
chosen more generally.

Sparse grid spaces can also be achieved with the so-called combination tech-
nique [4] through the combination of certain spaces Vl instead of the difference
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Fig. 1. Left: Norms of errors of the difference spaces Wl on a logarithmic scale. The
example function is u(x1, x2) = e−(x2

1+x2
2) with (x1, x2) ∈ [0, 1] × [0, 1]. Right: Sparse

grid of refinement level l = 5 in three dimensions

spaces Wl. As mentioned the grids can be chosen more generally, so we will now
let the indices belong to an unspecified index set I, which leads to the generalised
sparse grid space

Sd
I =

⋃

l∈I

Vl. (4)

Each term in this sum is a tensor product of one dimensional spaces, but they
are now restricted by the index set I and will generally have a much lower
complexity.

See [4,6,9,10] for details and further references on this subsection.

2.2 Penalised Least Squares on Sparse Grids

To compute the partial functions fα = fl ∈ Vl on each grid, the functional
J(f) in equation (2) has to be minimised. Substituting the representation of
fl =

∑m
i αiϕi, with {ϕi}m

i=1 a basis of Vl, into (2) and differentiation with
respect to αi results in the linear system, in matrix notation,

(βC + BT B)α = BT y. (5)

Here C is a square m × m matrix with entries Cj,k = n (Lϕj , Lϕk)L2 ((·, ·)L2

denotes the standard scalarproduct in L2) and B is a rectangular n × m matrix
with entries Bi,j = ϕj(x(i)), i = 1, . . . n, j = 1, . . . m. Since n � m one stores
BT · B and not B, this also allows to only use one matrix structure for both C
and BT · B. See [6] for further details.
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3 Solution of the Penalised Least Squares System

The basis functions have typically a small compact support and thus the matri-
ces for the partial grids are sparse. However, for any given partial space many
variables do occur with a large scale. Consequently, the coefficient matrix of
equation (5) can have a fairly dense structure even though it has sparse diagonal
blocks. The following blocking of the matrix B originates from the partial grids:

B = [B1, . . . , Bk] . (6)

The system matrix then has blocks BT
i Bj + βCi,j where the blocks Ci,j are the

corresponding blocks of the penalty terms. Often, only diagonal blocks of the
penalty terms are considered.

Solving for the partial grids amounts to solving the (sparse) equations
(BT

i Bi + βCi,i)xi = BT
i y. In general, we cannot assume that the xi are good

approximations for the components of the solution to the full problem. However,
they are a good starting point. Note that in terms of the linear algebra, the
large system of linear equations is usually singular, as the spaces Vj have non-
trivial intersections. In fact, we will assume that the collection of partial spaces
Vj is relatively large, and, in particular, for each pair Vi and Vj the intersection
Vi ∩Vj is also a space Vk. Solving the partial problems amounts to a block Jacobi
preconditioning which does not directly lead to a good approximation. Instead
one uses the combination formula where the partial solutions are scaled with
a (combination) factor ci. The combination formula becomes necessary as the
same part of the solution may be contained in several different partial functions
and thus needs to be subtracted again. This only needs to be taken into account
for the block Jacobi variant; in the case of block Gauss-Seidel, the residuals
are subtracted from the right-hand side after every partial fitting step. This,
however, comes at a cost as the parallelism over the partial grids is lost as one
needs to update the right-hand-side between fitting partial grids. As we solve
our systems in parallel the block Gauss-Seidel method is less attractive.

Using the combination formula in the way described may lead to good so-
lutions, however, these are in general an approximation to the solution of the
full fitting problem. The solution can be improved with iterative refinement.
This provides a block Jacobi-like variant for the solution of the full problem
and thus we introduce an outer iteration to correct the approximation obtained
from the combination formula. This outer iteration should also deal with errors
introduced through the randomness of the data, which may be amplified by the
combination method. In terms of the outer iteration, the solution of the par-
tial systems together with the combination formula forms a preconditioner. We
further accelerate the convergence of this outer iteration by using conjugate gra-
dients. Experiments show that these outer iterations converge within a couple
of steps.

The partial problems themselves are solved iteratively as well using conjugate
gradients. While fitting to a regular grid is a standard procedure, it may converge
slowly. Thus the question arises if one can get away with only a few iteration
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steps for the inner iterations as well. We have conducted initial experiments
which show that the number of inner iterations can have a substantial influence
on the solution and we observed saturation effects, where the outer iterations did
not seem to be able to improve beyond a certain limit for low numbers of inner
iterations. This behaviour did seem to be dependent on the type of problem and
further investigations will be done to understand this better.

While this interaction between inner and outer iterations is an interesting
topic for further investigation we will not further pursue it here but discuss the
levels of parallelism which can be exploited both over the grids (corresponding to
the other iterations) and within the grids (corresponding to the inner iterations).

4 Strategies for Exploiting Parallelism

In general, coarse grain parallelism is preferred, in particular for the application
of distributed memory computing [11] as it typically has less (communication)
overhead. However, in many cases the amount of available coarse grain paral-
lelism of the algorithm is limited. If one would like to further parallelise the
computations (if sufficient parallel resources are available) one would need to
look at utilising finer grain parallelism as well. Such fine grain parallelism is also
well suited to some shared memory and vector computations, in which case it
can be competitive with the coarse grain parallelism.

The combination technique is straightforwardly parallel on a coarse grain
level [12]. A second level of parallelisation on a fine grain level for each problem
in the collection of grids can be achieved through the use of threads on shared-
memory multi-processor machines. Both parallelisation strategies, i.e., the direct
coarse grain parallel treatment of the different grids and the fine grain approach
via threads, can also be combined and used simultaneously. This leads to a
parallel method which is well suited for a cluster of multi-processor machines.
See [13] for first results concerning speedups and efficiency.

4.1 Parallelisation across Grids

The linear systems 5) for the partial functions fα of the collection of grids can be
computed independently of each other, therefore their computation in each outer
iteration step can be simply done completely in parallel. Each process computes
the solution on a certain number of grids. If as many processors are available as
there are grids in the collection of grids then each processor computes the solution
for only one grid. The control process collects the results and computes the final
function f on the sparse grid. Just a short setup or gather phase, respectively,
is necessary. Since the cost of computation is roughly known a-priori, a simple
but effective static load balancing strategy is available; see [14].

4.2 Parallelisation across Data

To compute BT · B in (5) for each data instance x(i), the product of the val-
ues of all basis function, which are non-zero at x(i), has to be calculated, i.e.,
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∑
j,k ϕj(x(i)) ·ϕk(x(i)), and the results have to be written into the matrix struc-

ture at
(
BT · B

)
j,k

. These computations only depend on the data and therefore
can be done independently for all instances. Therefore the d × n array of the
training set can be separated in p parts, where p is the number of processors
available in the shared-memory environment. Each processor now computes the
matrix entries for n/p instances. Some overhead is introduced to avoid memory
conflicts when writing into the matrix structure. In a similar way the evaluation
of the classifier on the data points can be threaded in the evaluation phase.

4.3 Parallelisation of Solvers

After the matrix is built, threading can be used on SMP architectures in the
solution phase as fine grain parallelism. Since we are using an iterative solver
most of the computing time is used for the matrix-vector-multiplication. Here
the vector α in (5) of size m can be split into p parts and each processor now
computes the action of the matrix on a vector of size m/p.

4.4 Combination of Coarse and Fine Grain Parallelism

We have seen in [13] that coarse grain parallelism yields the highest speedups and
the better efficiency. However, the number of grids may be such that the parallel
resources are not fully utilised. Here we show how much additional speedup to
expect when using fine grain parallelism in addition to the coarse grain paral-
lelism.

If p processors are used to parallelise a computation with k grids one can
expect a maximal speedup of k/�k/p�. This is displayed for the case of p = 30
and k = 1, . . . , 300 in Fig. 2. In order to use the fine grain parallelism we first
use the coarse grain approach for a first stage where p�k/p	 grids are processed
and then, in a second stage the processors are distributed evenly among the
remaining tasks. After the first step there are

px = k − p�k/p	 < p

tasks remaining. Thus one has pl = �p/px	 processors per remaining task. These
are then used to parallelise all the remaining tasks and one thus gets a total
speedup of

Sp,k = k/(�k/p	 + sign(px) ∗ (0.1 + 0.9/pl).

This is again displayed in Fig. 2. We assume here that the fine grain parallelism
has ten percent overhead which cannot be parallelised.

This approach can be refined further through the concurrent use of fine and
coarse grain parallelism, e.g., parallelising p/2 grids with the parallelism across
grids and a 2 processor shared memory parallelism for each grid.
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Fig. 2. Theoretical speedups for coarse grain parallelism (dashed line) and coarse grain
with added fine grain

5 Conclusion

In this paper we extend results from [13], where two parallelisation strategies for
the sparse grid combination technique where shown. Through the combination
of both strategies the speedup results can be further improved. This leads to a
parallel method which is well suited for a cluster of multi-processor machines.

The performance of the outer iteration using new combination coefficients
does depend on the commutation properties of the projection operators into
the partial spaces. In particular, if the projection operators commute, the outer
iteration gives the correct result after one step. In addition, the performance
depends on the partial spaces in a different way: If all the partial spaces are
one-dimensional, then the outer iteration again gives the exact result after one
step. Alternatively, if the spaces form an ordered sequence V1 ⊂ V2 ⊂ . . . Vm and
the dimensions are dim(Vk) = k then again the new combination method gives
an exact result after one step (which can be seen by using orthogonalisation).
It would thus seem that in general more spaces would provide better conver-
gence of the outer iteration. In the case of the solution of the Laplace equation
with finite elements, it is known that the classical combination method acts like
extrapolation and larger error terms cancel [4]. Note that these classical combi-
nation methods do also use a large number of subspaces. Thus larger numbers of
subspaces would appear to provide better performance. The extrapolation prop-
erties of the general combination method for fitting problems will be further
investigated in the future.
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