
Parallelising Matrix Operations on Clusters for

an Optimal Control-Based Quantum Compiler

T. Gradl1, A. Spörl2, T. Huckle1, S.J. Glaser2, and T. Schulte-Herbrüggen2

1 Department of Mathematics and Computer Science
2 Department of Chemistry, Technical University Munich, Lichtenbergstrasse 4,

D-85747 Garching, Germany
huckle@in.tum.de and tosh@ch.tum.de

http://www5.in.tum.de/∼huckle/

Abstract. Quantum control plays a key role in quantum technology,
e.g. for steering quantum hardware systems, spectrometers or supercon-
ducting solid-state devices. In terms of computation, quantum systems
provide a unique potential for coherent parallelisation that may expo-
nentially speed up algorithms as in Shor’s prime factorisation. Translat-
ing quantum software into a sequence of classical controls steering the
quantum hardware, viz. the quantum compilation task, lends itself to
be tackled by optimal control. It is computationally demanding since
the classical resources needed grow exponentially with the size of the
quantum system. Here we show concepts of parallelisation tailored to
run on high-end computer clusters speeding up matrix multiplication,
exponentials, and trace evaluations used in numerical quantum control.
In systems of 10 spin qubits, the time gain is beyond a factor of 500 on
a 128-cpu cluster as compared to standard techniques on a single cpu.

We are currently in the midst of a second quantum revolution. The

first one gave us new rules that govern physical reality. The second

one will take these rules and use them to develop new technologies.

Dowling and Milburn, 2003 [1]

Scope

For exploiting the power of quantum systems, one has to steer them by classi-
cal controls such as voltage gates, radio-frequency pulses, or laser beams. Here
the aim is to provide computational infrastructure for doing so in an optimal
way, because the shapes of these controls critically determine the performance
of the quantum system in terms of overlap of its actual final states with the
desired target states. Standard engineering methods solve related problems for
systems of classical physics. For quantum control, however, the calculations of
optimal shapes become more complicated (on conventional classical computers):
the quantum states have to be represented by matrices, the dimensions of which
grow exponentially with system size.

Here we present the adaptation of a number of matrix operation routines to
high-end parallel computer clusters while using the symmetry of quantum spin

W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 751–762, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

http://www5.in.tum.de/~huckle/

752 T. Gradl et al.

Program, Module Quantum Algorithm, Module

Compiler

⏐
⏐
�

⏐
⏐
� Precompiler

⏐
⏐
�

⏐
⏐
�

Assembler Code “direct” Universal Gates by optimal control

Assembler

⏐
⏐
�

⏐
⏐
� Assembler

⏐
⏐
�

⏐
⏐
�

Machine Code Machine Code of Quantum Controls

Fig. 1. Compilation in classical computation (left) and quantum computation (right).
In the quantum scenario, the machine code has to be time-optimal or dissipation-
protected, otherwise decoherence wipes out the coherent superpositions the quantum
bits (qubits) build upon. By assembling universal quantum gates timeoptimality is in
general not reached, while compilation by quantum control lends itself to minimise
losses.

systems to minimise computational and communication effort as well as storage
costs.

These methods of using classical computer clusters are tantamount to exploit-
ing the power of present and future quantum resources.

1 Algorithms on Parallel Clusters for Quantum Control

1.1 Quantum Parallelism

Controlling quantum systems also offers a great potential for performing com-
putational tasks or for simulating the behaviour of other quantum systems [2,3].
This is because the complexity of many problems [4] reduces upon going from
classical to quantum hardware. It roots in Feynman’s observation [2] that the
resources required for simulating a quantum system on a classical computer in-
crease exponentially with the system size. In turn, he concluded that using quan-
tum hardware might therefore exponentially decrease the complexity of certain
classical computation problems. Coherent superpositions of quantum states used
as so-called ‘qubits’ can be viewed as a particularly powerful resource of quan-
tum parallelism unparalleled by any classical system. Important applications are
meanwhile known in quantum computation, quantum search and quantum sim-
ulation: most prominently, there is the exponential speed-up by Shor’s quantum
algorithm of prime factorisation [5,6], which relates to the general class of quan-
tum algorithms [7,8] solving hidden subgroup problems in an efficient way [9].

1.2 Quantum Compilation as Control Problem

Moore’s Law of increasing classical computing power concomitant to miniatur-
ising microchips is often quoted to make a strong case for predicting that within
the next decade computer hardware scales will reach sizes that inevitably have to
include quantum effects. Among the generic tools needed for advances in quan-
tum technology (see e.g. Ref. [1] for a survey), quantum control plays a major

Parallelising Matrix Operations on Clusters 753

2 3 4 5 6 7
0

10

20

30

40

50

60

70

number of qubits

nu
m

be
r

 o
f

el
em

en
ta

ry
 g

at
es

2 3 4 5 6 7
0

10

20

30

40

50

60

70

number of qubits

tim
e

 [1
/J

]

(a) (b)

Fig. 2. (a) Gate complexity of the qft in linear spin chains. Standard-gate decomposi-
tion (•) [13] and optimised scalable gate decomposition (�) [14]. (b) Time complexity
of the qft in linear spin chains. Upper traces give analytical times associated with the
decompositions of part (a): standard-gate decompositions (•) [13] and optimised scal-
able gate decompositions (�) [14]. Lowest trace: speed-up by time-optimal control with
shortest numerical realisations obtained (◦) rounded to 0.01 J−1. Details in Ref. [12].

role. As illustrated in Fig. 1, this may be exemplified by envisaging the process of
compiling a quantum module into the machine language of a concrete quantum
hardware device as an instance of quantum control. To this end, there are two
different approaches: one may either use (i) universal elementary quantum gates
[10] to synthesise a quantum computational module from prefabricated standard
building blocks, the so-called universal quantum gates, or (ii) one may prefer to
generate the quantum module directly from the experimentally available controls
with the help of gradient-flow based numerical algorithms implementing tools of
optimal control [11,12]. While decomposition into universal gates is inspired by
discrete level permutations, direct compilation exploits the differential geometry
of smooth manifolds for governing unitary quantum dynamics in an optimal way.
Recently we have shown that one may thus obtain dramatic speed-ups, e.g. for
the Quantum Fourier Transform (qft) in spin systems (see Fig. 2 and [12]) or
for realising multiply controlled gates in solid-state devices. Here the speed-up
translates into a gain of some two orders of magnitude in approaching the error-
correction threshold [15]. The approach is very general and holds for spin and
pseudo-spin systems whose dynamics are Lie-algebraically closed.

1.3 Gradient Flow Algorithms for Quantum Control

Our algorithmic tools of optimal quantum control [11] for obtaining these results
are based on gradient flows [16,17] tailored to the unitary group of Hamiltonian
quantum evolution [18,19,20]. Let UG denote the unitary representation of a
quantum gate, i.e. the target matrix. On the other hand, define by U(T) :=
e−itM HM · · · e−itkHk . . . e−it1H1 the propagator brought about by a sequence of

754 T. Gradl et al.

1. set initial controls u
(0)
j (tk) for all times tk with k = 1, 2, . . . M

at random or by guess;
2. starting from U0 = 1l, calculate the forward-propagation for all

t1, t2, . . . tk (for simplicity Δt := tk+1 − tk uniform)

U (r)(tk) = e−iΔtH
(r)
k e−iΔtH

(r)
k−1 . . . e−iΔtH

(r)
1 ;

3. likewise, starting with T = tM and λ(T) = const · UG, compute
the back-propagation for all tM , tM−1, . . . tk ;

λ(r)(tk) = eiΔtH
(r)
k eiΔtH

(r)
k+1 . . . eiΔtH

(r)
M λ(T) ;

4. calculate ∂h(U(tk))
∂uj

= Re tr{λ†(tk)(−iHj)U(tk)} ;

5. with u
(r+1)
j (tk) = u

(r)
j (tk)+ε ∂h

∂uj

∣
∣
t=tk

update all the piece-wise

constant Hamiltonians to H
(r+1)
k and return to step 2.

Fig. 3. Top trace: updating the vector of control amplitudes uj by the gradients (ar-
rows) evaluated via the iterative scheme, the grape-algorithm [11] in the box below.
Gradients are calculated in step 4, while the controls are updated as in step 5.

evolutions of the quantum system under M piece-wise constant Hamiltonians
Hk. Then the optimal control problem can be cast into the tasks:

maximise f(U(T)) = Re tr{U †
GU(T)}

subject to U̇(t) = −iHU(t) ,
(1)

where the Hamiltonian H comprises drift and control terms H = Hdrift +
∑

j ujHj with uj as element of the (real) control-amplitude vector. As usual,
the boundary condition may be included by a Lagrange parameter λ so that one
may finally exploit the corner stone of control theory, Pontryagin’s maximum
principle, in a quantum setting (for details see, e.g, [21,11]) to require for the
real-valued function h that ∂h

∂uj
= Re tr{λ†(−iHjU)} → 0 at all times tk. So the

task can readily be solved by gradient flows iteratively improving the classical
controls driving the quantum system into maximal overlap with the target.

1.4 Computational Tasks: Previous Performance and Goals

As sketched in Fig. 3, from a computational point of view, the grape-algorithm
makes heavy use of (1) matrix multiplication, (2) matrix exponentials, (3) trace

Parallelising Matrix Operations on Clusters 755

1

2

3

4

5

Redistribution

Redistribution

Exponentiate matrices

Propagate
forward & backward

Compute gradients

Fig. 4. Redistribution of matrices is needed between steps of the grape algorithm

evaluation, and (4) step-size optimisation in conjugate gradients. The standard
C++ code with cblas matrix-matrix multiplication [22,23,24] could deal with
quantum systems up to 7 spins on an amd Athlon Processor with 2.13 GHz and
1 mb ram, taking months of cpu time. With the cpu time roughly growing by
a factor of 8 per additional spin qubit, 10-spin systems are clearly out of reach
unless one could speed up the calculations some 500 times.

In the present work we set out to reach this benchmark on a high performance
cluster. The employed system consists of 128 amd Opteron 850 cpu (2.4 GHz),
four on each node; the nodes are connected with an Infiniband network1. For
parallel programming the mpi standard was used.

In order to exploit the power [25] of high-end computer clusters, here we
address features of distributed matrix multiplication, concepts of broadcasting
no more than the necessary information to the nodes of processors, reducing
communication effort between different processors as well as exploiting symme-
tries of the matrix representations of the pertinent quantum mechanical system
Hamiltonians for speeding up matrix exponentials. Some of the symmetries are
not coincidental: fully controllable quantum systems are Lie-algebraically closed
[19]. They are thus largely confined to finite-dimensional spin- or pseudo-spin
systems, whose representations in terms of Kronecker or tensor products of Pauli
matrices often entail persymmetric matrices (vide infra).

2 Parallel Matrix Multiplication

This section compares the implementation of two algorithms for multiplying a
series of matrices (“propagation”), as needed in steps 2 and 3 of the grape
algorithm. The algorithms differ in run-time and, as will turn out to be most
decisive, in memory demand. For comparing performance in terms of run-time,
just considering the time required in the propagation step does not suffice; as we
will see, it is also important to understand how it is embedded into the whole
of the grape algorithm. To this end, consider Fig. 4: the propagation (step 3 in
this figure) is preceded by the computation of the exponential matrices e±iΔtH

(r)
k

(step 1). The exponentials of all the matrices (k = 1 . . .M) are distributed over
1 http://www.lrr.in.tum.de/Par/arch/infiniband/

http://www.lrr.in.tum.de/Par/arch/infiniband/

756 T. Gradl et al.

(a) (b)

P0

P1

P2

P3

U02

P0

P1

P2

P3

U01

P0

P1

P2

P3

U0

U1 U2

...

...

P2

P2

P2

P2

P3 P3

P3

P3

P3

P2P0 P1

P0

P0

P0

P1

P1

P1

P0 P1

U01

U02 U03

U04 U05 U06 U07

 U2 U3 U4 U5 U6 U7

U0

 U1 Level

0

1

2

3

Fig. 5. (a) Slice-wise matrix multiplication provides a simple way of parallelisation.
U0k denotes the (k + 1)-fold product UkUk−1 · · ·U0 according to step 2 in the grape-
algorithm (Fig. 3). The resulting complexity is O(M ·N3/p). Communication between
the processors P is needed solely for broadcasting the matrices Uk prior to propagation.
(b) Scheme for tree-like propagation. In this example, propagation is carried out in three
steps. Red lines indicate communication between processors P0 through P3.

all the processors. However, in step 3 it is not granted every processor exactly
needs those matrices it computed in step 1. For this very reason an intermediate
redistribution of matrices among processors is required not only in step 2 but
also upon proceeding from step 3 to step 5 (gradient computation).

2.1 Slice-Wise Propagation

The matrix matrix multiplication AB can most easily be split into jobs dis-
tributed to different cpus by taking say the rows a� of A separately as

AB = (a1; a2; . . . aN)B = (a1B; a2B; . . . ; aNB) . (2)

This scheme is readily extendible to k out of the M matrices in step 2 and 3 of the
grape-algorithm above (see Fig. 5(a)). However, each processor then refers to
k−1 matrices, which means that they have to be broadcasted in step 2 of figure
4. Also, the workspace required by each processor is of the order of O(M · N2).
The time complexity in this straightforward scheme can easily be evaluated,
because the total number of operations is evenly distributed among the available
processors. So the order of operations is O(M · N3/p), where N := 2n denotes
the dimension of the matrix and p is the number of processors.

Moreover, here there are no stability concerns, as unitary matrices are known
to allow for numerically stable algorithms [26,27]: the computation of the product
of two unitary matrices is well-conditioned and this clearly extends to multiple
products in general. However, Section 2.2 will reveal this is not necessarily the
case in all other schemes.

For further acceleration some simplifying features can be used: step 4 of the
grape-algorithm, for instance, takes the trace Re tr{λ†HU}, where λ and U
are fully occupied, but H is a sparse matrix representation of the spin-control
Hamiltonian, which acts by permutation and scalar multiplication on the rows

Parallelising Matrix Operations on Clusters 757

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 9 8 7 6

C
P

U
 ti

m
e

[s
]

number of qubits

(a) broadcast (step 2)
propagation (step 3)
gradients (steps 4,5)

total

 0

 1

 2

 3

 4

 5

 6

 9 8 7 6

C
P

U
 ti

m
e

[s
]

number of qubits

(b) broadcast
propagation

gradients
total

Fig. 6. Comparison of performance against system size with (a) 32 and (b) 64 parallel
processors under slicewise (—) and tree-like (- -) propagation. Note the difference in
broadcasting time (red lines). Steps 2-5 refer to the numberings as in Fig. 4.

of U . Thus, instead of two matrix-matrix multiplications λ†H and (λ†H)U , a
multiplication of λ† with a row-transformed U suffices.

As shown in Fig. 6, all these considerations result in valuable speed-ups for
quantum systems of up to 9 spin qubits. In larger systems, though, workspace
becomes limiting, as every processor requires M matrices. A way of compensation
would be to compute the exponential matrices on demand, i.e. at forward and
backward propagation respectively. However, this would be a really bad solution
because computing the exponential takes most of the computation time already.
Therefore system sizes beyond 9 spins cannot be computed with the slice-wise
propagation and require alternative methods as described next.

2.2 Tree-Like Propagation: The Parallel Prefix Algorithm

A different approach for computing the propagation is the parallel prefix algo-
rithm [28] depicted in Fig. 5(b). In general, it is applicable to arbitrary com-
binations of number of processors p and digitisation M . Yet in this article we
confine ourselves to p = M/2, which is also the maximum reasonable num-
ber for p. Our code performs forward and backward propagation simultaneously
thus increasing the overall number of processes to M . Under the assumption
that p = M/2, the computation time of the algorithm is O(log2 M ·N3). In con-
trast to slice-wise propagation, parallel prefix requires communication during the
propagation (red lines in Fig. 5(b)): they sum up to

∑log2 M
l=2 [Broadcast(N3, p =

2l−1) + (l − 1) · Send(N3)], provided the times for Broadcast and Send are not
influenced by other ongoing communication. Recalling the computation time of
O(M · N3/p) for the slice-wise propagation and assuming p = M/2, parallel
prefix should never be faster (neglecting effects like memory prefetching). Fig. 6
shows this is indeed true. On the other hand, parallel prefix does not require all
the matrices U(tk) in all processes, which eliminates the broadcast time prior
to the propagation step (see Fig. 4). It is this advantage that is large enough to
outweigh the slower propagation time.

758 T. Gradl et al.

Even more important is yet another gain from this property: reduced memory
demand. In our current implementation the maximum number of matrices stored
at a single process is O(log2 M) [P0 produces one result in every level], which
is already much less than the O(M) of the slice-wise propagation. In case this
should be inacceptable, the number can be reduced to O(1) by implementing a
slightly different communication pattern from the one used here.

The stability of parallel prefix-matrix multiplication deserves a closer look
[29]: following Mathias [30], in the general case, this multiplication is numerically
unstable. He derives the following first-order upper bound to the error

∣
∣ rd(U1 · · ·UM) − (U1 · · ·UM)

∣
∣ ≤ 2(N − 1) ε

M−1
∑

k=1

|Bk| + O(ε2) , (3)

where |Bj | stands for the product of absolute values of the largest matrix ele-
ments within the factors Uk. However, with all these matrices being unitary in
our case, the same error estimate turns into the “well-behaved” form

∣
∣ rd(U1 · · ·UM) − (U1 · · ·UM)

∣
∣ ≤ 2(N − 1)Mε + O(ε2) . (4)

In coincidence with the linearity in M , we observed ||Utree − Ureg||2 increasing
linearly with the propagation step, where at k = M = 128, a value of 1.5 × 10−13

was reached in a nine-qubit system (not shown). This underpins the computation
is numerically stable for unitary matrices used in quantum dynamics.

3 Optimising Matrix Exponentials

Computing matrix exponentials numerically is a notoriously intricate problem
[31,32]. Here we compare the standard Padé-approximation with the generic qr-
approach and a symmetry-adapted qr-variant thus allowing optimised lapack
routines [33,34] to be employed. With controllable qubit systems permitting
pseudo-spin representations in terms of Pauli matrices, their Hamiltonian gen-
erators of the exponential map often show ‘persymmetry’ [26,35], i.e., a matrix
representation that is symmetric with respect to the anti-diagonal and which
may be induced by the Pauli matrices (vide infra). Defining JN as the N × N
reversal matrix (obtained by reversing the columns of the identity matrix), the
persymmetry of a matrix A is equivalent to the condition JNAJN = AT .

Lemma 1. (1) A (finite) Kronecker or tensor product of persymmetric matrices
is again persymmetric. (2) The same is true in the tensor product of an even
number 2r of matrices that are themselves ‘anti-persymmetric’ due to the sign
change JNAJN = −AT .

Proof. Assertion (1) simply follows from the fact that forming the tensor prod-
uct and taking the transpose with respect to the anti-diagonal commute. Part
(2) is due to the construction JN = J2 ⊗ J2 · · ·J2 ⊗ J2, since one finds
JN (A1 ⊗ · · · ⊗ Ak)JN = (J2A1J2 ⊗ · · · ⊗ J2AkJ2) = (−1)2r(AT

1 ⊗ · · · ⊗ AT
k). �

Parallelising Matrix Operations on Clusters 759

Remark. Let {σx, σy , σz} =
{

(0 1
1 0) ,

(
0 −i
i 0

)

,
(

1 0
0 −1

)}

be the Pauli matrices. By
(2), the drift term comprises the persymmetric terms σz⊗σz+α(σx⊗σx+σy⊗σy)
for any real α, while the control terms are tensor products of the unit matrix
with σx, σy, which in turn are persymmetric by (1).

Moreover, we can write the Hamiltonian H in the form H = D + C with a
real diagonal matrix D and a multilevel matrix C of the recursive form C =
C1 ⊗ · · · ⊗ Cn with 2 × 2 matrices

Ck :=
(

0 γk

γ∗
k 0

)

. (5)

Each of the small matrices Ck can be transformed into a real circulant matrix by
the unitary diagonal matrix Vk := diag(1, γk/|γk|). Therefore, by the Kronecker
products of the small matrices Vk we can transform the entire matrix H to a
real symmetric persymmetric matrix H̃ of the form

H̃ =
(

A1 r1l
r1l A2

)

(6)

with real r, symmetric A1 and A2, and the identity matrix 1l. Now, the persym-
metry leads to the relation A2 = JA1J and thereby to the similarity transform

(

1l 1l
J −J

) (

A1 r1l
r1l A2

) (

1l J
1l −J

)

=
(

A1 + A2 + 2r1l 0
0 A1 + A2 − 2r1l

)

. (7)

Consequently, the computation of the eigenvalues of H for the matrix exponential
exp(iτH) can be reduced to solving the same problem for two real matrices of
half the size. For the exponentials we have been using two different methods:

1. classical scaling and squaring algorithm based on the Padé approximation;
2. finding the eigendecomposition of persymmetric τH = UDU−1 for

exp(iτH) = exp(iUDU−1) = U exp(iD)U−1 = U diag
(

exp(i · dj)
)

U−1 ;

with H being hermitian, this method is numerically stable [31,32]; moreover,
using persymmetry, the eigendecomposition then reduces to real symmetric
matrices of just half the size.

The major disadvantage of the classical scaling and squaring method with full-
sized matrices can be circumvented by a series expansion instead of the Padé
approximation, because then only sparse matrix matrix products arise. Expand-
ing in terms of Chebychev polynomials is superior to a Taylor expansion [36,37].
Moreover, the error δ for approximating exp(iτH) by a Chebychev series with
m terms can asymptotically be estimated by the Bessel function of the first kind
|J(m, ||τH ||)| ≈ δ given the norm of the effective Hamiltonian ||τH ||. Thus one
can predict the number of steps required for a given accuracy. Unfortunately,
due to the control amplitudes sometimes ||τH || ≥ 100; then the Chebychev ex-
pansion only pays if low accuracy suffices. Yet in future code this approximation
will be included as an option for matrices of small norm or cases not demanding
high accuracy.

760 T. Gradl et al.

Table 1. Contributions of Parallelised Matrix Operations to Overall Speed-up

Subroutine Fraction of cpu Time Weighted
with 1 cpu with 128 cpus Speed-up

maxStepSize 0.9 0.713 521
getGradient 0.091 0.287 52.6

expm 0.075 0.049 43.0
propagation 0.01 0.194 6.0
gradient 0.006 0.044 3.5

optimiseCG 1 1 576

4 Conclusions and Outlook

We have shown how using the potential parallelism inherent in coherent quan-
tum superpositions relies on methods of classical control theory in order to steer
the quantum systems. By the nature of quantum matrix mechanics, this re-
quires powerful matrix calculations backed by architecture-adapted redistribu-
tion (Fig. 4). Here we demonstrated a speed-up by more than a factor of 500
for a 10 spin system by way of various matrix-operation techniques (see Tab. 1):
slice-wise propagation is advantageous in systems up to 9 spin qubits, while
tree-like propagation pays for systems from 10 qubits onwards. Moreover, by
making use of the symmetry properties induced by the pseudo-spin structure of
controllable spin-qubit systems, faster matrix exponentials are feasible. To fur-
ther improve gradient-flow algorithms, sparse Hamiltonians will be exploited for
matrix multiplications along the lines of Ref. [38] or by using Strassen’s method.

By the current extensions, larger spin-qubit systems are in reach thus allow-
ing a broader numerical basis for deducing quantum computational complexity
measures. Related symmetry properties can be used in wider classes of quantum
systems therefore making the presented tools broadly applicable in quantum
technology and control. From a general point of view of numerics, the partial
problems of computing the exponential exp(iH) for a hermitian matrix H and
furthermore the task of evaluating a sequence of products of unitary matrices
are of broader interest and important far beyond the grape-algorithm. Here,
the special case of unitary matrices may lead to improved stability and allow
algorithms that are fast but usually known to be unstable or only weakly stable.

Acknowledgements

This work was supported in part by the integrated eu project qap and by
Deutsche Forschungsgemeinschaft, dfg, in the incentive spp 1078 Quanten-
Informationsverarbeitung, qiv. Helpful discussion with Michael Riss on the ‘tree-
like’ matrix multiplication is gratefully acknowledged.

Parallelising Matrix Operations on Clusters 761

References

1. Dowling, J., Milburn, G.: Quantum technology: The second quantum revolution.
Phil. Trans. R. Soc. Lond. A 361 (2003) 1655–1674

2. Feynman, R.P.: Simulating physics with computers. Int. J. Theo. Phys. 21 (1982)
467–488

3. Feynman, R.P.: Feynman Lectures on Computation. Perseus Books, Reading, MA.
(1996)

4. Papadimitriou, C.H.: Computational Complexity. Addison Wesley, Reading, MA.
(1995)

5. Shor, P.W.: Algorithms for Quantum Computation. In: Proceedings of the Sym-
posium on the Foundations of Computer Science, 1994, Los Alamitos, California,
IEEE Computer Society Press, New York (1994) 124–134

6. Shor, P.W.: Polynomial-Time Algorithms for Prime Factorisation and Discrete
Logarithm on a Quantum Computer. SIAM J. Comput. 26 (1997) 1484–1509

7. Jozsa, R.: Quantum Algorithms and the Fourier Transform. Proc. R. Soc. A. 454
(1998) 323–337

8. Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum Algorithms Revisited.
Proc. R. Soc. A. 454 (1998) 339–354

9. Ettinger, M., Høyer, P., Knill, E.: The Quantum Query Complexity of the Hidden
Subgroup Problem is Polynomial. Inf. Process. Lett. 91 (2004) 43–48

10. Deutsch, D.: Quantum Theory, the Church-Turing Principle, and the Universal
Quantum Computer. Proc. Royal Soc. London A 400 (1985) 97–117

11. Khaneja, N., Reiss, T., Kehlet, C., Schulte-Herbrüggen, T., Glaser, S.J.: Optimal
Control of Coupled Spin Dynamics: Design of NMR Pulse Sequences by Gradient
Ascent Algorithms. J. Magn. Reson. 172 (2005) 296–305

12. Schulte-Herbrüggen, T., Spörl, A.K., Khaneja, N., Glaser, S.J.: Optimal Control-
Based Efficient Synthesis of Building Blocks of Quantum Algorithms: A Perspective
from Network Complexity towards Time Complexity. Phys. Rev. A 72 (2005)
042331

13. Saito, A., Kioi, K., Akagi, Y., Hashizume, N., Ohta, K.: Actual Computational
Time-Cost of the Quantum Fourier Transform in a Quantum Computer using Nu-
clear Spins . quant-ph/0001113 (2000)

14. Blais, A.: Quantum Network Optimisation. Phys. Rev. A 64 (2001) 022312
15. Spörl, A.K., Schulte-Herbrüggen, T., Glaser, S.J., Bergholm, V., Storcz, M.J., Fer-

ber, J., Wilhelm, F.K.: Optimal Control of Coupled Josephson Qubits. quant-
ph/0504202 (2005)

16. Brockett, R.W.: Dynamical systems that sort lists, diagonalise matrices, and solve
linear programming problems. In: Proc. IEEE Decision Control, 1988, Austin,
Texas. (1988) 779–803 see also: Lin. Alg. Appl., 146 (1991), 79–91.

17. Helmke, U., Moore, J.B.: Optimisation and Dynamical Systems. Springer, Berlin
(1994)

18. Glaser, S.J., Schulte-Herbrüggen, T., Sieveking, M., Schedletzky, O., Nielsen, N.C.,
Sørensen, O.W., Griesinger, C.: Unitary control in quantum ensembles: Maximising
signal intensity in coherent spectroscopy. Science 280 (1998) 421–424

19. Schulte-Herbrüggen, T.: Aspects and Prospects of High-Resolution NMR. PhD
Thesis, Diss-ETH 12752, Zürich (1998)

20. U. Helmke, K. Hüper, J.B. Moore, T. Schulte-Herbrüggen.: Gradient Flows Com-
puting the C-Numerical Range with Applications in NMR Spectroscopy. J. Global
Optim. 23 (2002) 283–308

762 T. Gradl et al.

21. Butkovskiy, A.G., Samoilenko, Y.I.: Control of Quantum-Mechanical Processes
and Systems. Kluwer, Dordrecht (1990)

22. Lawson, C.L., Hanson, R.J., Kincaid, D., Krogh, F.T.: Basic Linear Algebra Sub-
programs for FORTRAN usage. ACM Trans. Math. Soft. 5 (1979) 308–323

23. Dongarra, J.J., Croz, J.D., Hammarling, S., Hanson, R.J.: An Extended Set of
FORTRAN Basic Linear Algebra Subprograms. ACM Trans. Math. Soft. 14 (1988)
1–17

24. Dongarra, J.J., Croz, J.D., Hammarling, S.: A Set of Level 3 Basic Linear Algebra
Subprograms. ACM Trans. Math. Soft. 16 (1990) 1–17

25. Dongarra, J., Duff, I., Sørensen, D., van der Vorst, H.: Numerical Linear Algebra
on High-Performance Computers. SIAM (1998)

26. Golub, G.H., van Loan, C.F.: Matrix Computations. The Johns Hopkins University
Press, Baltimore (1989)

27. Higham, N.J.: Accuracy and Stability of Numerical Algorithms. SIAM (1996)
28. Ladner, R.E., Fischer, M.J.: Parallel Prefix Computation. J. ACM 27 (1980)

831–838
29. Demmel, J., Heath, M., van der Vorst, H.: Parallel Numerical Linear Algebra. Acta

Numerica 2 (1993) 111–198
30. Mathias, R.: The Instability of Parallel Prefix Matrix Multiplication. SIAM J. Sci.

Comput. 16 (1995) 956–973
31. Moler, C., van Loan, C.: Nineteen Dubious Ways to Compute the Exponential of

a Matrix. SIAM Rev. 20 (1978) 801–836
32. Moler, C., van Loan, C.: Nineteen Dubious Ways to Compute the Exponential of

a Matrix, Twenty-Five Years Later. SIAM Rev. 45 (2003) 3–49
33. Anderson, E., Bai, Z., Bischof, C., Blackford, L.S., Demmel, J., Dongarra, J., Croz,

J.D., Greenbaum, A., Hammarling, S., McKenney, A., Sørensen, D.: LAPACK
User’s Guide, Third Edition. SIAM (1999)

34. Blackford, L.S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Don-
garra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walkerx, D., Whaley,
R.C.: ScaLAPACK User’s Guide. SIAM (1997)

35. Cantoni, A., Butler, P.: Eigenvalues and Eigenvectors of Symmetric Centrosym-
metric Matrices. Lin. Alg. Appl. 13 (1976) 275–288

36. Rivlin, T.J.: The Chebychev Polynomials. Wiley, New York (1974)
37. Veshtort, M., Griffin, R.: SPINEVOLUTION: A Powerful Tool for the Simulation

of Solid and Liquid State NMR Spectra. J. Magn. Reson. 178 (2006) 248–282
38. Grote, M., Huckle, T.: Parallel Preconditioning with Sparse Approximate Inverses.

SIAM J. Sci. Comput. 18 (1997) 838–853

	Algorithms on Parallel Clusters for Quantum Control
	Quantum Parallelism
	Quantum Compilation as Control Problem
	Gradient Flow Algorithms for Quantum Control
	Computational Tasks: Previous Performance and Goals

	Parallel Matrix Multiplication
	Slice-Wise Propagation
	Tree-Like Propagation: The Parallel Prefix Algorithm

	Optimising Matrix Exponentials
	Conclusions and Outlook

