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Parallelism and Evolutionary Algorithms
Enrique Alba and Marco Tomassini

Abstract—This paper contains a modern vision of the paral-
lelization techniques used for evolutionary algorithms (EAs). The
work is motivated by two fundamental facts: first, the different
families of EAs have naturally converged in the last decade while
parallel EAs (PEAs) seem still to lack unified studies, and second,
there is a large number of improvements in these algorithms and in
their parallelization that raise the need for a comprehensive survey.
We stress the differences between the EA model and its parallel im-
plementation throughout the paper. We discuss the advantages and
drawbacks of PEAs. Also, successful applications are mentioned
and open problems are identified. We propose potential solutions
to these problems and classify the different ways in which recent
results in theory and practice are helping to solve them. Finally, we
provide a highly structured background relating PEAs in order to
make researchers aware of the benefits of decentralizing and par-
allelizing an EA.

Index Terms—Evolutionary algorithms, first hitting time, popu-
lation, time complexity.

I. INTRODUCTION

E VOLUTIONARY algorithms (EAs) are stochastic search
methods that have been applied successfully in many

search, optimization, and machine learning problems [68], [49],
[88], [14]. Unlike most other optimization techniques, EAs
maintain a population of -encoded tentative solutions that are
manipulated competitively by applying some variation operators
to find a satisfactory, if not globally optimum solution. Several
other heuristics such as simulated annealing [74], tabu search
[48], and their combinations and variations [123] have been used
with comparable results but will not be reviewed here.

The goal of this paper is to bring uniformity and structure
to the different research issues concerning parallel EAs (PEAs).
We will address the algorithms, as well as the machines and soft-
ware for PEAs, and at the same time, we will stress their rela-
tionship with practice, theory, and applications in a novel way.
Thus, we need to offer some history, as well as the present and
future trends in this field of the evolutionary computation (EC)
discipline. Our review is an up-to-date discussion about the main
parallel achievements in the algorithmic families included in the
EC. We review parallel models, parallel implementations, theo-
retical issues, and the applications of these algorithms, stressing
the importance of unification in the PEA’s field.

Let us begin by outlining the skeleton of a standard EA. An
EA (see the following pseudocode) proceeds in an iterative
manner by generating new populations of individuals
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from the old ones . Every individual
in the population is the encoded (binary, real,) version
of a tentative solution. An evaluation function associates a
fitness value to every individual indicating its suitability to the
problem. The canonical algorithm applies stochastic operators
such as selection, crossover, and mutation on an initially
random population in order to compute a whole generation of
new individuals. In a general formulation, we apply variation
operators to create a temporary population , evaluate the
resulting individuals, and get a new population by
either using or, optionally, . The halting condition is
usually set as reaching a preprogrammed number of iterations
of the algorithm, or to find an individual with a given error if
the optimum, or an approximation to it, is known beforehand.

Evolutionary Algorithm
;

initialize and evaluate ;
while not stop condition do

;
;

;
;

end while ;

Often, the fields of evolutionary computing, neural networks,
and fuzzy logic, are listed together as techniques for solving
problems by using numeric knowledge representation, in
opposition to traditional artificial intelligence, where symbolic
knowledge representation is used. Unlike conventional algo-
rithms, they are tolerant of imprecision, uncertainty, and partial
truth. These features make them less brittle than standard
approaches and, as a consequence, they offer adaptivity. This
broader research field, which also comprises other techniques
such as rough sets and probabilistic networks, is known assoft
computing(see [127] for further readings on this matter).

The right side of Fig. 1 details the well-accepted subclasses
of EAs, namely genetic algorithms (GA), evolutionary pro-
gramming (EP), evolution strategies (ES), and others not shown
here.1 (See [13] for learning how similar the different EA
families are.)

For nontrivial problems, executing the reproductive cycle of a
simple EA on long individuals and/or large populations requires
high computational resources. In fact, although many EA fami-
lies, such as GAs or ESs, use a string of numeric values, many
other EAs (e.g., genetic programming (GP) and EP) use indi-
viduals having acomplex internal data structurerepresenting

1The reader can find a great deal of structured and useful information about
evolutionary computing in theHandbook of EC[14].
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Fig. 1. Soft computing and EAs.

the problem in a more sophisticated way (e.g., a symbol tree).
In general, evaluating a fitness function for every individual in
order to compute its quality as a solution is frequently the most
costly operation of the EA. Consequently, a variety of algo-
rithmic issues are being studied to design efficient EAs. These
issues usually consist of defining new operators, hybrid algo-
rithms, parallel models, and so on. We develop our work in
one of such research lines consisting in using parallel models
of EAs. In this field, there exists a large number of implementa-
tions and algorithms, although not much effort has been devoted
to the algorithm design. We can find in [118] a first attempt at
designing algorithms in the framework of the PAPAGENA Eu-
ropean project; also, in [9], a software engineering point of view
for PEAs can be found.

But efficiency and design are not the only important issues
with PEAs [64]. First of all, PEAs are naturally prone to paral-
lelism, since most variation operations can be easily undertaken
in parallel. Using a PEA often leads to not only a faster algo-
rithm, but also to a superior numerical performance. However,
the truly interesting observation is that the use of astructured
population, that is, a spatial distribution of individuals, either in
the form of a set of islands [126] or a diffusion grid [81], [116],
is the responsible of such benefits. As a consequence, many au-
thors do not use a parallel machine at all to run structured-pop-
ulation models, and still get better results than with serial tradi-
tional EAs [54].

In classical PEA studies (e.g., in PGAs [26]), it is assumed
that the model maps directly onto the parallel hardware, thus
making no distinction between the model and its implemen-
tation. However, once a structured-population model has been
designed, it can be implemented in any monoprocessor or par-
allel machine. This conception (see Section IV) of model versus
implementation raises several questions. First, any EA can be
run in parallel, although high efficiency is not always possible
[17]. Second, analyzing PEAs suggests the necessity of using a
complex and heterogeneous test suite [133] (e.g., multimodal,
deceptive, and epistatic problems). Third, special care must be
taken to ensure that the experiments will be replicable to allow
future extensions. Finally, some questions are open in relation
to the physical, numerical, and parallel execution of the models.
We must notice that additional parameters are needed to deter-
mine the search in a PEA, thus requiring further research to un-
derstand their importance.

PEAs have deserved several reviews in the past that can be
used for tracking their evolution in time. (See, for example,
[26], [1], [5], [21].) We now turn to justify thecontributions

and the distinctive aspects of the present work with respect to
previous similar review work. We think that this review rep-
resents an original way of presenting the material that is scat-
tered in many places to practitioners of the EA field. It care-
fully separates models from implementations, and accurately
describes suitable computing environments and communication
paradigms taking into account modern trends in distributed sys-
tems. This, to our knowledge, has never been done before in
a single place. Moreover, theoretical aspects are described in a
readable way and with many key references, something that has
also been overlooked in the past, since theory is quite new and
empirical considerations were preferred in previous reviews. To
this, we add a very broad spectrum of related information that
includes a section on nonuniform PEAs, the seldom discussed
concept of speedup, and an effort to include EAs other than GAs.
All this has not been considered in existing previous work.

The organization of this paper is as follows. First, we offer a
summary of the most important milestones in the PEA history.
Then,panmictic, i.e., the standard model inwhich thewholepop-
ulation is dealt with as a single pool of individuals, and structured
EAs (where some partition of the single pool is undertaken) are
discussed from a unified viewpoint. Next, the implementation of
EAs on parallel machines is presented by discussing hardware,
software, and algorithmic alternatives for building an efficient
PEA. A further section is devoted to the theoretical advances re-
lating structured and PEAs, including a discussion of speedup in
PEAs. Finally, severalPEAclassificationsare given tooffera full
overview of the state of the art. Future trends and open problems
are identified throughout, and a carefully chosen bibliography is
referenced to guide the reader.

II. HISTORY

The intrinsically parallel and distributed nature of EAs
did not escape the attention of early researchers. Holland
[68] offered some steps toward defining a parallel computing
architecture for reproductive plans. In fact, the first ideas about
using multiple competing subpopulations can be traced back to
the work of Bossert [19] who proposed them as a procedure
to improve diversity and delay stagnation. However, although
the main ideas were understood, the technology of parallel and
distributed computing was in a primitive stage in the 1960s.
It was, therefore, difficult to create practical implementations
and simulations. The field had to wait until the early 1980s for
suitable parallel implementations to appear. Grefenstette [59]
was one of the first in examining a number of issues pertaining
to the parallel implementations of GAs in 1981. Grosso [61]
is another early attempt to introduce parallelism through the
use of a spatial multipopulation model. This was followed
by more systematic studies by Cohoon, Tanese, Pettey and
Leuze, Gorges-Schleuter and Mühlenbein, and Manderick
and Spiessens. Tanese [125] and Cohoon [30] employed the
novel (at the time) hypercube parallel architecture by placing
subpopulations at the hypercube nodes. For ES, Rudolph
[105] implemented one of the first distributed models. For EP,
Duncan [38] was an important milestone. The early work of
Pettey and Leuze [97] is also significant because it was the first
in trying to model multipopulation GA dynamics theoretically.
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Fig. 2. Panmictic EAs: from steady state to generational algorithms.

All these studies pertain to what has been called a coarse-grain
or island model (see Section IV). Another related spatial model
was popularized by early work of Gorges–Schleuter [55].
It is called a diffusion, cellular, or fine-grained model (see
Section IV) and is based on a spatially distributed population
in which genetic interactions may only take place in a small
neighborhood of each individual. Related work was done at the
same time by Manderick and Spiessen [81].

III. PANMICTIC EVOLUTIONARY ALGORITHMS

In EC, it is customary to find algorithm families in which
the population structure is panmictic (see Section I). Thus, se-
lection takes place globally and any individual can potentially
mate with any other. The same holds for the replacement op-
erator, where any individual can potentially leave the pool and
be replaced by a new one. A different (decentralized) selection
model exist in which individuals are arranged spatially, there-
fore giving place tostructured EAs(see Section IV). Most other
operators, such as recombination or mutation, can be readily ap-
plied to these two models.

There exist two popular classes of panmictic EAs having dif-
ferent granularity at the reproductive step [122]. The first one is
called a “generational” model, in which a whole new population
of individuals replaces the old one (right part of Fig. 2, where

is the population size). The second type is called “steady
state,” since usually one or two new individuals are created
at every step of the algorithm and then they are inserted back
into the population, consequently coexisting with their parents.
In the mean region, there exists a plethora of selection models
generically termed as “generation gap” algorithms, in which a
given percentage of the individuals are replaced with the new
ones. Clearly, generational and steady-state selection are two
special subclasses of generation gap algorithms.

Centralized versions of selection are typically found in serial
EAs, although some parallel implementations have also used it.
For example, theglobal parallelismapproach evaluates in par-
allel the individuals of the population while still using a cen-
tralized selection performed sequentially in the main processor
guiding the base algorithm [76]. This algorithm is the same as
the sequential one, although it is faster, especially for time-con-
suming objective functions. Usually, the other parts of the algo-
rithm are not worth parallelizing, unless some population struc-
turing principle is used (see Section IV).

Most PEAs found in the literature utilize some kind of spatial
disposition for the individuals, and then parallelize the resulting
chunks in a pool of processors. We must stress at this point of
the discussion that parallelization is achieved by first structuring
the panmictic algorithm and then parallelizing it. This is why
we distinguish throughout the paper between structuring pop-
ulations and making parallel implementations, since the same
structured EA can admit many different implementations. In
fact, we have just drawn some ideas as to how panmictic EAs

can be parallelized. Section IV is devoted to explaining different
ways of structuring the populations. The resulting model can
be executed in parallel or not, although some structured models
suggest a straightforward parallel implementation.

IV. STRUCTUREDEAs

There exists a long tradition in using structured populations in
EC, especially associated to parallel implementations. Among
the most widely known types of structured EAs, thedistributed
(dEA) andcellular (cEA) algorithms are very popular optimiza-
tion procedures [5].

Decentralizing a single population can be achieved by par-
titioning it into several subpopulations, where island EAs are
run performing sparse exchanges of individuals (dEAs), or in
the form of neighborhoods (cEAs). These two EA types, along
with a panmictic EA, are schematically depicted in Fig. 3.

In dEAs, additional parameters controlling when migration
occurs and how migrants are selected/incorporated from/to the
source/target islands are needed [17], [126]. In cEAs, the exis-
tence of overlapped small neighborhoods helps in exploring the
search space [16]. These two kinds of EAs seem to provide a
better sampling of the search space and improve the numerical
and runtime behavior of the basic algorithm in many cases [10],
[54].

The main difference in a cEA, with respect to a panmictic
EA, is its decentralized selection and variation. In cEAs, the re-
productive loop is performed inside every one of the numerous
individual pools. In a cEA, one given individual has its own pool
of potential mates defined by neighboring individuals; at the
same time, one individual belongs to many pools. This one-di-
mensional (1-D) or two-dimensional (2-D) structure with over-
lapped neighborhoods is used to provide a smooth diffusion of
good solutions across thegrid. We mentioned a 2-D grid of
individuals due to its generality [108]. A cEA can be imple-
mented in a distributed memory MIMD computer [84], although
its more natural implementation is on a SIMD computer (see
some well-accepted computer architecture descriptions in Sec-
tion V-A and also Fig. 5).

A dEA is a multipopulation (island) model performing sparse
exchanges of individuals among the elementary populations.
This model can be readily implemented in distributed memory
MIMD computers, which provides one main reason for its pop-
ularity. A migration policy controls the kind of dEA being used.
The migration policy must define the island topology, when mi-
gration occurs, which individuals are being exchanged, the syn-
chronization among the subpopulations, and the kind of integra-
tion of exchanged individuals within the target subpopulations.
The advantages of a distributed model (either running on sepa-
rate processors or not) is that it is usually faster than a panmictic
EA. The reason for this is that the run time and the number of
evaluations are potentially reduced thanks to its separate search
in several regions from the problem space. A high diversity and
species formation are two of their well-reported features.

In Fig. 4, we plot a three-dimensional (3-D) representation of
structured algorithms based on the number of subpopulations,
the number of individuals in each one, and the degree of inter-
action among them.



446 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 5, OCTOBER 2002

(a) (b) (c)

Fig. 3. A panmictic EA has all its individual’s black points in the same population and, thus, (a) each of them can potentially mate with any other. Structuring the
population usually leads to a distinction between (b) dEAs and (c) cEAs. These latter models are usually implemented on MIMD and SIMD machines (see Fig. 5),
respectively, although nothing prevents other kinds of implementations.

Fig. 4. Structured-population EA cube.

(a)

(b)

(c)

Fig. 5. Flynn’s taxonomy for computer architectures. (a) SISD architecture.
(b) SIMD architecture. (c) MIMD architecture.

While a dEA has a large subpopulation, usually much larger
than one individual, a cEA has typically one single individual in
every subpopulation. In a dEA, the subpopulations are loosely
coupled, while for a cEA they are tightly coupled. Additionally,
in a dEA, there exist only a few subpopulations, while in a cEA
there is a large number of them. We use this cube to provide a
generalized way for classifying structured EAs; we include pan-
mictic EAs in it to clarify the figure. However, the points in the
cube indicating dEA and cEA are only “centroids”; this means

that we could find or design an algorithm that can be hardly
classified as belonging to one of such two classes of structured
EAs because its depends strongly on the selection of the values
in each axis of the algorithm.

A. Nonstandard Structured EA Models

So far, we have made the implicit hypothesis that the genetic
material, as well as the evolutionary conditions, such as selec-
tion and recombination methods, were the same for all the in-
dividuals and all the populations of a structured EA. Let us call
these algorithm typesuniform. If one gives up some of these
constraints and allows different subpopulations to evolve with
different parameters and/or with different individual represen-
tations for the same problem, then new distributed algorithms
may arise. We will name these algorithmsnonuniformparallel
or dEAs. Tanese did some original work in the field and was the
first in studying the use of different mutation and crossover rates
in different populations [125]. Another more recent example of
this class is theinjection island GA(iiGA) of Lin et al. [78].
In an iiGA, there are multiple populations that encode the same
problem using a different representation size, and thus different
resolutions in different islands. The migration rules are also spe-
cial in the sense that migration is only one-way, going from a
low- to a high-resolution node. According to Linet al., such
a hierarchy has a number of advantages with respect to a stan-
dard island algorithm. A similar hierarchical topology approach
has been recently used in [112] with some differences such as
real-coded GAs and two-way migration. The purported advan-
tages are: no need for representation conversion, better preci-
sion, and better exploration of the search space using a nonuni-
form mutation scheme.

A related proposal has been offered by Herreraet al. [66].
Theirgradual distributed real-coded GAinvolves a hierarchical
structure in which a higher level nonuniform distributed GA
joins a number of uniform distributed GAs that are connected
among themselves. The uniform distributed GAs differ in
their exploration and exploitation properties due to different
crossover methods and selection pressures. The proposed
topology is the cube-connected cycle in which the lower level
distributed GAs are rings at the corners of the cube and rings are
connected at the higher level along the edges of the cube. There
are two types of migration: a local one among subpopulations
in the same lower level distributed GA and global migrations
between subpopulations belonging to different lower level
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distributed GAs. According to [65], the proposed scheme
outperforms other distributed GAs on the set of test functions
that were used in the paper.

In biological terms, different semi-isolated populations
in which evolution takes place at different stages and with
different, but compatible, genetic material makes sense: it
might also be advantageous for EAs. Genetic programming,
in particular, might benefit from these ideas, since the choice
of the function and terminal sets is often a fuzzy and rather
subjective issue.

Another class of nonstandard PEAs is given bycoevolu-
tionary approaches. The most well-known example is Hillis’
method for finding minimal sorting networks by simulated evo-
lution [67]. Hillis’ approach consisted in a massively parallel
cellular algorithm in which there are two independent pools
or populations, each evolving according to a standard GA on
the same grid. One population, the “hosts,” represents sorting
networks, while the other pool, the “parasites,” represents test
cases. The fitness of the sorting networks is given by measuring
how well they sort the test cases provided by the parasites at
the same grid location. Conversely, the parasites are scored
according to how well they find flaws in the corresponding
sorting networks. An “arms race” thus takes place that is
beneficial for the evolution of the pseudoecology, resulting
in exceptionally good sorting networks, very close to the
best-known hand-made solution.

Another interesting coevolutionary variation of the cellular
model is Sipper’scellular programming algorithm[114]. Cel-
lular programming has been used extensively to evolve cellular
automata for performing computational tasks and is based on the
topological coevolution of neighboring cellular automata rules.

V. PEAs

In this section, our goal is to present a structured vision of
the architecture, software tools, and parallel implementations of
EAs. Therefore, Sections V-A to V-C are devoted to these three
issues. Section V-E, discussing speedup and PEAs, is included
because of the relevance of this measure in any domain relating
to parallel algorithms.

A. Parallel Computer Architectures: An Overview

Parallelism can arise at a number of levels in computer
systems: the task level, instruction level, or at some lower
machine level. The standard model of Flynn is still widely
accepted for classifying computer architectures [69]. But the
reader should be aware that it is a coarse-grain classification.
For instance, even today’s serial processors are, in fact, parallel
in the way in which they execute instructions, as well as with
respect to the memory interface and many parallel architectures
are hybrids of the base classes. For a comprehensive treatement
of the subject, the reader is referred to Hwang’s text [69].
Flynn’s taxonomy is based on the notion of instruction and data
streams. There are four possible combinations, conventionally
called single instruction, single data stream (SISD), single
instruction, multiple data stream (SIMD), multiple instruction,
single data stream (MISD), and multiple instruction, multiple

data stream (MIMD). Fig. 5 schematically depicts the three
most important model architectures.

The SISD architecture corresponds to the classical monopro-
cessor PC or workstation.

In the SIMD architecture, the same instruction is broadcast to
all processors. The processors operate in lockstep, executing the
given instruction on different data stored in their local memo-
ries (hence the name single instruction, multiple data). The pro-
cessor can also remain idle, if this is appropriate. SIMD ma-
chines exploit spatial parallelism that may be present in a given
problem and are suitable for large, regular data structures. If the
problem domain is spatially or temporally irregular, many pro-
cessors must remain idle at a given time step, with the ensuing
loss in the amount of parallelism that can be exploited.

In the MIMD class of parallel architectures, multiple proces-
sors work together through some form of interconnection. Dif-
ferent programs and data can be loaded into different processors,
which means that each processor can execute different instruc-
tions at any given point in time. Of course, the processors will
usually require some form of synchronization and communica-
tion in order to cooperate on a given application. This class is
usually the most useful one, and most commercial parallel and
distributed architectures belong to it.

There has been little interest in the MISD class since it does
not lend itself to readily exploitable programming constructs.
Systolic arrays belong to this class and are used in specialized
applications such as signal processing.

Another important design decision is whether the system
memory spans a single address space or it is distributed into
separated chunks that are addressed independently. The first
type is calledshared memory, while the latter is known as
distributed memory. This is only a logical subdivision that is
independent of how the memory is physically built. In shared
memory multiprocessors, all data are accessible by all the
processors. This poses some design problems for data integrity
and efficiency. Fast cache memories next to the processors are
used in order to speed up memory access to often-used items.
Cache coherency protocols are then needed to ensure that all
processors see the same value for the same piece of data.

Distributed memory is also a popular architecture for mul-
ticomputers, which is well suited to most parallel workloads.
Since the address spaces of each processor are separate, commu-
nication among processors must be implemented through some
form of message passing. Networked computer clusters belong
to this class. The drawbacks are that parallel computing perfor-
mance is limited by high communication latencies and by the
fact that the machines may have different workloads and are pos-
sibly heterogeneous. But these problems can be overcome, to a
large extent, by using networked computers in dedicated mode
with a high-performance communication network. In addition to
the well-known fast-Ethernet networks, many other communi-
cation networks belonging to this class of low-latency high-per-
formance systems can be created by using ATM or even Myrinet
networks, allowing fast bit-transfer rates (150 Mb/s and 2 Gb/s,
respectively).

Finally, we should not forget that the World Wide Web
provides important infrastructures for distributed computation.
Harnessing the Web or some other geographically distributed
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computer resource so that it looks like a single computer to
the user is calledmetacomputing. The concept is attractive, but
many challenges remain (see Section V-B).

Instead of describing the many special architectures and pro-
gramming constructs that have been used for PEAs, in Sec-
tion V-B we center the discussion on those parallel and dis-
tributed programming models that are independent of the partic-
ular hardware architecture, essentially those based on message
passing in distributed memory architectures.

B. Tools for Parallelizing an EA

Here, we review some popular communication tools for im-
plementing a PEA. Almost all the PEA toolkits are implemented
by using the message passing model of communication, since
it naturally allows profiting from multicomputers having dis-
tributed memory which are the most usual hardware found in
universities and research institutes.

In the message passing model, processes in the same or on
physically different processors communicate by sending mes-
sages to each other through a communication medium, such as
a standard or specialized network connection. The two basic
primitives aresendand receiveroutines. In its simplest form,
sendspecifies a local data buffer that is to be transmitted, and a
receiving process identifier, usually in a different address space
than that of the sending process. Areceiveoperation usually
specifies the sending process and a local data buffer into which
the incoming data is to be stored. Together, asend/receivepair
effects a memory-to-memory copy and an implicit process syn-
chronization operation.

We include in the discussion basic tools such as sockets and
more sophisticated environments, such as parallel virtual ma-
chine (PVM), message passing interface (MPI), Java, common
object request broker architecture (CORBA), and Globus that
provide a much richer set of functionalities than a simple mes-
sage passing service. Section V-B9 is devoted to compare them
from the point of view of PEAs.

1) Sockets:The BSD socket interface (see e.g., [31]) is a
widely available message-passing programming interface. A
set of data structures andfunctions allow the programmer to
establish full-duplex connections between two computers with
TCP for implementing general purpose distributed applications.
Also, an unreliable service over UDP (and directly over IP) is
available for applications needing such a facility. Synchronous
and asynchronous parallel programs can be developed with
the socket application programmer’s interface (API), with the
added benefits of common availability, high standardization,
and complete control over the communication primitives.
But programming with sockets is error-prone and requires
understanding low level characteristics of the network. Also, it
does not include any process management, fault tolerance, task
migration, security options, or other features usually requested
by modern parallel applications.

2) PVM: The PVM [119] is a software system that supports
the message-passing paradigm and permits the utilization of a
heterogeneous network of parallel and serial computers as a
single general and flexible concurrent computational resource.

PVM offers a suite of user interface primitives for communi-
cation and other chores. Application programs are composed of

componentsthat are subtasks at a moderately large level of gran-
ularity. The advantages of PVM are its wide acceptability and
its heterogeneous computing facilities, including fault-tolerance
issues and interoperability [120]. Managing a dynamic collec-
tion of potentially heterogeneous computational resources as a
single parallel computer is the real appealing treat of PVM. De-
spite its advantages, PVM has recently begun to be unsupported
(no further releases), and users are shifting from PVM to more
efficient paradigms, such as MPI.

3) MPI: The MPI is a library of message-passing routines
[45] similar to PVM but more complete. The MPI API was
defined in the mid-1990s by a large group of people from
academia, government, and industry. The interface reflects
people’s experiences with earlier message-passing libraries,
such as PVM. The goal of the group was to develop a single
library that could be implemented efficiently on the variety of
multiple processor machines. MPI has now become ade facto
standard, and several implementations exist, such as MPICH
and LAM/MPI.2

The MPI functions support process-to-process communica-
tion, group communication, setting up and managing commu-
nication groups, and interacting with the environment. In addi-
tion, wide-area-network (WAN) facilities will be provided for
MPI users in the near future.

4) Java-Remote Method Invocation (RM)I:The imple-
mentation of remote procedure calls (RPC) in Java is called
Java-RMI [70]. RPC allows invoking of remote services in
a transparent fashion and, therefore, is a natural step for
programmers having “sequential” habits. The RMI in Java
allows an application to use a remote service with the added
advantages of being platform-independent and able to access
the rest of the useful Java characteristics when dealing with
distributed computing and the Internet in general.

The client/server model used by Java-RMI is, however, some-
what slow in the current implementations of Java, at least for sci-
entific calculations, an especially important consideration when
dealing with optimization algorithms.

5) CORBA: Although many systems currently deal with
multithreaded, parallel, and/or distributed programs, some
higher level research is devoted to how to glue together
existing or future applications so they can work seamlessly
in a distributed environment. Software systems that provide
this glue have come to create the term “middleware,” from
which CORBA is one of the best known examples [129].
CORBA is based on object-oriented technologies. CORBA is
a collection of specifications and tools to solve problems of
interoperatibility in distributed systems.3

CORBA is especially important because it is growing on the
application side rapidly; it allows clients to invoke operations
on distributed objects without concern for object location,
programming language, operating system, communication
protocol, or hardware.

6) Globus: Globus is a new, extremely ambitious project to
provide a comprehensive set of tools for building metacom-
puting applications [46]. Globus thus builds upon, and vastly

2[Online] Available: http://www.mcs.anl.gov/mpi/mpich and http://www.
mpi.nd.edu/lam

3[Online] Available: http://www.omg.org
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extends, the services provided by earlier systems such as PVM,
MPI, and Legion [60].

The Globus toolkit consists of several modules that are used
to help to implement high-level application services. One such
service is what is called an Aadaptive wide-area resource envi-
ronment (AWARE). It will contain an integrated set of services,
including “metacomputing enabled” interfaces to an implemen-
tation of the MPI library, various programming languages, and
tools for constructing virtual environments (CAVEs).4

7) OpenMP: OpenMP is a set of compiler directives and li-
brary routines that are used to express shared-memory paral-
lelism.5 The OpenMP API was developed by a group repre-
senting the major vendors of high-performance computing hard-
ware and software. Fortran and C++ interfaces have been de-
signed, with some efforts to standardize them. The majority of
the OpenMP interface is a set of compiler directives. The pro-
grammer adds these to a sequential program to tell the com-
piler what parts of the program to execute concurrently, and to
specify synchronization points. The directives can be added in-
crementally, so OpenMP provides a path for parallelizing ex-
isting software. This contrasts with the Pthreads and MPI ap-
proaches, which are library routines that are linked with and
called from a sequential program, and which require the pro-
grammer to manually divide the computational work.

8) Internet-Based PEAs:To support the idea of the rapid
evolution of PEA’s technologies, we are including this section
to deal with the new issues relating PEAs and the Internet as
the new natural platform for computing. Basically, the Internet
is a new domain for PEAs characterized by: 1) the large amount
of available (dedicated or not) machines; 2) large heterogeneity
of operating systems and configurations; and 3) the set of com-
munication protocols, access restrictions, and failure conditions
that need to be taken into account.

Some of the considerations for running a PEA in a general
WAN also hold in the Internet domain, but there are other added
difficulties for performing PEAs in Internet. Some of them are
the access and potential failure of geographically distant ma-
chines computing in parallel and the dynamic load balancing
needed by some solution techniques. Also, there exists consid-
erable influence of the Internet features on the numeric behavior
of the algorithms and the difficulty of implementing really effi-
cient algorithms in Internet. The latter is a challenging research
line: researchers must report not just that an algorithm is viable,
but also address its competitiveness with other algorithms.

Despite the numerous problems, some Internet algorithms
exist that are facing such tasks for the first time. For example,
in [27], the author develops and tests a distributed GP (DGP)
program written in Java with an architecture specially devised
to deal with Internet. DGP has been tested by running, in par-
allel, clients and servlets on heterogeneous machines available
on tje Internet; also, it has been compared with traditional GP
and LAN-distributed GP on various problems. A free distribu-
tion exists with graphical interface and the preliminary results
show that this alternative is feasible and even performs a better
search than other techniques on the tested problems.

4See [47] and the Globus Web site for detailed information and current status
of the project. [Online] Available: http://www.globus.org

5[Online] Available: http://www.openmp.org

Also, much still must be said as to new Internet technologies.
We here spread some seminal ideas about what the new trends
will be. First, involving Extensible Markup Language (XML)
in algorithm definition (parameters) and information exchanges
is a clearly desirable use of new technologies. This will help
in unifying different implementations and could allow different
researchers to interact through generic XML connectors.

Next, there is an obvious extension of present PEAs with re-
spect to new languages such as C# and J# (the .NET version
of Java). Deploying existing algorithms in these platforms is
a clear way of achieving larger impact in final users with Mi-
crosoft Windows technology. Finally, using some of the multi-
language support forSimple Object Access Protocol (SOAP)will
help in developing optimization repositories in Internet for re-
mote access to developed algorithms.6 Some of these ideas are
being used in our own and other’s projects,7 while still much
must be said about the efficiency and real use of these systems;
in addition, some running projects such as DREAM8 are devel-
oping high abstract environments for optimization and artificial
life in the Internet.

9) Comments on These Communication Tools and
PEAs: Although a number of PVM and socket imple-
mentations exist for PEAs, future trends will have to deal
with the Internet as a pool of computational resources. Many
problems arise when a PEA has to be implemented on a het-
erogeneous WAN linking computers with different operating
systems. Some of these requirements are:

• transparent exchanges of data types in the Internet;
• remote execution and tracing;
• security issues (firewalls, proxies, etc.) relating access,

data communication, and process execution;
• process migration between clusters for PEA applications

which are time-consuming (real-world problems);
• adaptation to the dynamic behavior of the links and com-

puters involved in the execution of the PEA;
• fault tolerance.

All these requirements naturally lead to using Java, MPI, and,
maybe in the future, Globus. Despite the advantages of Java
for multiplatform execution, communication, and related tasks,
the present execution speed of Java for scientific computations
could be a drawback for some PEA applications. In fact, there
exists some PEA systems such as MARS [124] and the the
MALLBA library 9 that account for some of these requirements.
A great deal of information on networking and EAs can be found
in the NEO server.10

We think that MPI is currently the better choice for imple-
menting large-scale and general-purpose PEAs because of its
present and future advantages. In the case that Globus will domi-
nate the metacomputing field, MPI has a bridge to access Globus
services. Other communication models such as the one offered
by CORBA are also important for implementing PEAs, since
computations can be coded in C++ and sophisticated services

6For more on Internet technologies: [Online] Available: http://www.w3.org
7[Online] Available: http://neo.lcc.uma.es and http://geneura.ugr.es
8[Online] Available: http://www.dcs.napier.ac.uk/benp/dream/dream.htm
9[Online] Available: http://www.lsi.upc.es/mallba
10[Online] Available: http://neo.lcc.uma.es
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(a) (b) (c) (d) (e) (f)

Fig. 6. Different models of PEA: (a) global parallelization; (b) coarse grain; and (c) fine grain. Many hybrids have been defined by combining PEAs at two levels:
(d) coarse and fine grain; (e) coarse grain and global parallelization; and (f) coarse grain at the two levels.

can be directly and transparently managed by the object broker
system. Although Java-RMI and CORBA provide a very good
level of flexibility for PEAs, they are still far from allowing sci-
entific efficient programs to run in a competitive time with C or
even C++.

At present, new domains and potentially new research
lines are being open because of new protocols such as SOAP
for remote method invocation and message passing, or the
Microsoft .NET environment, with new interesting program-
ming languages such as C#. Also, integrating XML in PEAs
for exchanging data or configuring the algorithms are new
possibilities which have become available only in the past two
or three years.

Nonetheless, regardless of the degree of sophistication of the
tool, each user potentially has different necessities, and thus
many users can still benefit from using PVM or other commu-
nication libraries for locally managed clusters. In fact, we can
find PEAs implemented with almost any of the mentioned par-
allel programming paradigms, in particular using the more tra-
ditional MPI, sockets, and PVM.

C. Parallel Implementations of EAs

Whichever computer and software are being used to build a
PEA, a researcher usually pursuits several goals. The expected
advantages coming from the parallelization of EAs can be sum-
marized as follows:

• finding alternative solutions to the same problem;
• parallel search from multiple points in the space;
• easy parallelization as islands or neighborhoods;
• more efficient search, even when no parallel hardware is

used;
• higher efficiency than sequential EAs, in many cases;
• easy cooperation with other (EA and traditional) search

procedures;
• speedup due to the use of multiple CPUs (faster search).

These advantages contrast with the features of other heuristic
algorithms which usually impose artificial constraints, which
search from only one point to another new point, or which find
one single solution at a time, and have a higher probability of
getting stuck in local optima than EAs.

Now, let us go back to the study of existing implementations
of PEAs. Some of the most well-known parallel implementa-
tions are depicted in Fig. 6.Global parallelization, shown in
Fig. 6(a), provides a panmictic-like evolution with evaluations
performed in parallel. This is faster than a sequential panmictic
EA and does not require load balancing except in the case of
GP, where individuals to be evaluated can be of very different
complexity, or in special cases such as some robotics applica-

tions, where the evaluation cost of a solution is not constant.
Genetic programming can be efficiently parallelized at the fit-
ness-evaluation level by using steady-state reproduction instead
of the usual generational algorithm [11], [28]. (See [130] for an
example of global parallelism in ES.) Another example of the
use of global parallelism for evolving artificial neural networks
with EP is given in [103]. The efficiency of global paralleliza-
tion has been analyzed in [96] for GP and, in a very thorough
manner, by Cantú-Paz for GAs [22], where the model is called
a master–slave.

Automaticparallelism is not presented in this paper, since
compilers introducing parallel search in a sequentially written
algorithm are rare in the EC field. Nonetheless, some automatic
parallel Fortran such as Vienna Fortran [18] could be used to
provide parallel execution of sequential EAs.

Also, many researchers use a pool of processors to speed up
the execution of a sequential algorithm, just becauseindepen-
dent runscan be made more rapidly by using several processors
than by using a single one. In this case, no interaction at all exists
between the independent runs. This extremely simple method
of doing simultaneous work can be very useful. For example, it
can be used to run several versions of the same problem with
different initial conditions, thus allowing gathering statistics on
the problem. Since EAs are stochastic in nature, being able to
collect this kind of statistic is very important.

Neither of the above adds anything new to the nature of the
EAs, but the time savings can be significant. In Fig. 6(b), we can
also see the popular multipopulation orisland model, in which
several EA subalgorithms run in parallel in a connected mode
(by exchanging individuals during their search). This model
can have a MIMD implementation in a straightforward way, by
mapping every island to one processor. New parameters such
as the number of individuals being exchanged, the frequency
of migration, the selection/replacement of individuals, and the
topology need to be set. Once again, Tanese performed some of
the first measurements of the influence of migration frequency
and number of individuals exchanged [126]. (See [7], and [22]
for further indications of the values to be used for several het-
erogeneous problem benchmarks in GAs and [43] for GP.)

ThecEA, shown in Fig. 6(c), is usually parallelized on SIMD
machines, since the individual-processor mapping is quite direct
[128], [94]. However, nothing prevents one from using a single
processor for executing a cEA [6], [54], nor an MIMD imple-
mentation [84], [115].

Fig. 6(d)–(f) shows threehybrid algorithmsin which a two-
level approach of parallelization is undertaken. In the three cases
the higher level for parallelization is a dEA (coarse-grain imple-
mentation). The model shown in Fig. 6(d) was initially used by
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[63] and has received some attention in works like [7], [8], [56],
and [79]. In this model, the basic islands perform a cEA, thus
trying to get the combined advantages of the two models. In Fig.
6(e) (see, e.g., [49]), we have many global parallelization farms
connected in a distributed (migration) fashion, thus exploiting
parallelism for making fast evaluations and for obtaining sepa-
rate population evolution at the same time. Finally, in Fig. 6(f),
we present several farms of distributed algorithms with a still
higher level dEA making migrations among connected farms.
Although these combinations may give rise to interesting and
efficient new algorithms, they have the drawback of having even
more new parameters to account for the more complex topolog-
ical structure. (See details on this and the rest of models also in
[21].)

As we have seen, both panmictic and structured models can
be parallelized in many ways, and can be implemented on
monoprocessor machines. The classical relationship between
distributed/cEAs and coarse-/fine-grain parallelization is thus
an artificial one to a large extent, and need not concern any
longer.

D. Measuring the Speedup Is Controversial

Computing the speedup of a parallel algorithm is a well-ac-
cepted way of measuring its efficiency. Although speedup is
very common in the deterministic parallel algorithms field, it
has been adopted in the PEA’s field in different flavors, not all
of them with a clear meaning. In this section, we will present
speedup, discuss its meaning, and several applications for mea-
suring the efficiency of a given PEA.

Our goal is to review and discuss the existing works whose
contents are relevant for studying the speedup in PEAs (see
Table. I). Let us begin first by revisiting its traditional definition.
The well-known definition of speedup (see e.g., [3]) relates the
(worst) execution time of the best sequential versionto the
(worst) execution time of the parallel version of the algorithm
being evaluated on processors

With this definition, we can distinguish amongst

• sublinear speedup ;
• linear speedup ;
• super-linear speedup .

The first modification which we need to introduce in the stan-
dard speedup definition is to consider average times in the ratio.
The reason is that EAs are stochastic algorithms in which one
single execution is not statistically significant. This means we
need to average a given number of statistically independent runs
in order to have representative time values

Even by using average times, the traditional definition re-
mains unclear in the field of EAs, since it makes the assump-
tion of being aware of the best algorithm to solve the problem.
We will call it thestrong definitionof speedup (see Table I, type
I). Some practical problems arise with this definition. First, it is

TABLE I
TAXONOMY OF SPEEDUPMEASURES

difficult, if not impossible, to decide whether or not a sequential
EA is the best algorithm, since many times it is the only existing
algorithm being tried for the problem (e.g., new applications).
Second, in analyzing EAs, it is usual to study a large set of prob-
lems; the strong definition requires the researcher to be aware of
the faster algorithm solving any of the problems being tackled.
This scenario is often not a realistic situation.

These reasons had traditionally led researchers to measure the
speedup by comparing their own sequential and parallel algo-
rithms. We will define aweak definitionof speedup (see Table I,
type II) as the extent to which it is possible that a different algo-
rithm exists (probably not an EA) that solves the problem faster
in sequential mode. This definition will allow us to compare our
PEA against well-known sequential EAs, therefore studying the
speedup without needing to involve nonEAs in the analysis.

The next important point relating a weak definition is the
stopping criterion. Speedup could be studied by imposing a
predefined global number of iterationsboth to the sequential
and to the PEA. We call this a measure of type II.B (Table I).
In general, we dislike this kind of measure, since it compares
two algorithms that are working out solutions of different
fitness (quality), thus breaking the fundamental statement of
being “solving” the same problem with the “same” precision.
This stopping criterion can be useful in some other situations
where, e.g., the same effort is allocated to different algorithms
to compare their final error, but not when speedup is to be
measured. Important papers in this field such as [64] and [23]
also make the same considerations we have just pointed out.

Therefore, we need a meaningful and fair termination crite-
rion. The obvious candidate is to stop the comparison of algo-
rithms when a solution of the same quality had been found, usu-
ally an optimal solution. We call this anorthodox weakdefini-
tion or type II.A.2 (Table I).

Let us gain a deeper understanding of the orthodox weak def-
inition. One important consideration is the composition of the
sequential EA. By following the old-fashioned concept that a
“sequential” EA is a “panmictic” EA, we would compare a pan-
mictic (sequential single population) EA with, e.g., a dEA of
islands, each one running on a different processor. We call this
aversus panmixia weakcomparison (Table I, type II.A.1). But,
the algorithm running in one processor is panmictic in this case,
while the islands that are using processors represent a dis-
tributed migration model whose algorithmic behavior is quite
different from the panmictic one. This could sometimes pro-
voke a very different result for the numerical effort needed to
locate the solution, and thus very different search times can be
obtained (in general, faster search for the distributed version). In
fact, it could lead to obtain a super-linear speedup of a consid-
erably high magnitude, since the dEA running parallel islands
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can locate a solution more thantimes faster than the panmictic
one [8], although this need not always be the case, as has been
shown by Punch for certain problems in parallel genetic pro-
gramming [99].

In order to have a fair and meaningful speedup definition for
PEAs, we need to consider exactly the same algorithm (for ex-
ample, the distributed one withislands) and then only change
the number of processors, from 1 to, in order to measure the
speedup (orthodox weak definition). In any case, the speedup
measure should be as fair and as close to the traditional defini-
tion of speedup as possible.

In addition, we must mention an obvious result, namely that
adding more processors is not always more efficient for any par-
allel system. Only some models are scalable (more efficient)
with an increasing number of processors.

We now present a striking point. Many authors have analyzed
PEAs attending to different criteria, and many of them came out
with super-linear speedup when using a parallel machine [12],
[17], [113], [62]. After having discussed alternative methods
to measure the speedup we have still to address one question:
is it really possible, to get super-linear speedup in PEAs? The
answer to this question isyes. In short, the sources for super-
linear speedup are (see [4] for more details):

• the higher chances of finding an optimum by using more
processors, due to the intrinsically heuristic multipoint na-
ture of PEAs;

• splitting the global large population into smaller subpop-
ulations that fit into the processor caches provides faster
algorithms than using a single main memory;

• the operators work on much smaller data structures, and
they do so in parallel, which is an additional source of
speedup.

VI. EMPIRICAL BEHAVIOR OF PARALLEL EAS

In this section, we summarize some important results for
PEAs from a practitioners’ point of view. Our aim is to offer
some guidelines for researchers dealing with structured EAs,
either parallelized or not.

Let us begin with dEAs. Many approaches have been em-
ployed in order to discover the best topology for a multipopula-
tion algorithm, especially when the island is a GA. The results
are often inconclusive, since sometimes a hypercube is more ef-
ficient than a ring, and sometimes a mesh is more/less efficient
than the previous ones [17], [24]. The same holds for the migra-
tion rate (although quite a small number of individuals seems
the best approach) and the migration frequency (although infre-
quent migration seems to be the best choice). As noted before,
leading work on migration rates and frequencies was performed
by Tanese [126]. Some additional research has been conducted
from a practical point of view for an assorted set of problems
and distributed models (e.g., [7]), in which some parameters are
set and some others are left free in order to change the behavior
of the algorithm. For example, a ring is a good idea since mi-
grations can be made in a constant and small time [23]. Also,
by sending one single individual, we are free of tuning the mi-
gration frequency to achieve an efficient algorithm [7]. See also
[43] and [42] for a consistent set of empirical results on dis-

tributed GP concerning the sizing of populations, topologies,
and migration rates.

A heuristic conclusion (not valid in every case, of course)
is that migrating the best individual in the island might be
worthwhile for function optimization, although migration of
a random individual can be preferable for combinatorial opti-
mization and highly epistatic problems (parameter correlation),
since premature convergence is not enforced in the distributed
subalgorithms. This “conquest” effect is a hard problem in
complex domains.

With respect to cEAs, it seems appropriate to use a rectan-
gular grid instead of a square one as the default disposition of in-
dividuals for problems with intrinsic epistasis [6]. Square grids
provide faster evolution for nonepistatic problems [10]. Also,
introducing some kind of problem-specific local-search into the
cEA is a good idea in order to quickly tune solutions in function
optimization, and in general, in order to speed up the conver-
gence, since the basic property of cEAs is that of maintaining a
high level of diversity [91].

VII. T HEORY OFPEAs

EC is a relatively novel research field in optimization,
learning, and numerous application areas. Many advances have
appeared concerning the theoretical foundations of EAs, espe-
cially for GAs and ES. However, the results are not conclusive
yet and the area is still open.

In order to get a structured picture of the existing theoretical
advances and future issues, we proceed to classify them into
several subfields in which theory is especially important:

• representation theories;
• operator theories;
• structured algorithms;
• convergence theories;
• fitness landscape theories;
• unification theories;
• working model theories;
• speciation theories and niches.

Among these, structured algorithms, unification theories, and
working model theories are directly related to PEAs. The rest
can be linked to PEAs, as well as to any other EA.

We definerepresentation theoriesto include all formal expla-
nations that lead to an understanding of the behavior of a given
genotype-phenotype mapping. The basic notion ofschema[68]
andforma[100] can be included here. These theories help in se-
lecting more appropriate representations for the symbol strings
of a given new application. These theories usually relate the be-
havior of the operators and fitness landscape to the kind of geno-
type in hands, as just stated in [37] and [44]. Studying the the-
oretical implications of using an assorted set of representations
in a PEA is an open research line.

We calloperator theoriesthe formal characterizations of the
work of variation operators such as recombination, mutation,
local search operators, etc. Interesting results in this sense are
the definition of uniform crossover [121], the role of mutation
[15], and a framework for hybridizing EAs [33]. Operator the-
ories to explain the behavior of the migration just as a new op-
erator that maps the present set of search-points to next one are
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sought. Also, defining different sets of operators and/or control
parameters for each of the component subalgorithms is an inter-
esting open research line.

Works formalizing structured algorithmsare especially
important for the focus of this paper since there is an impor-
tant link between using structured populations and running
parallel algorithms. Defining how a panmictic algorithm can
be extended to a multipopulation distributed algorithm, or
how introducing neighborhood locality into the population can
enhance the search, are two examples of such results. In multi-
population algorithms, some theoretical advances relating the
optimum subpopulation sizes and coupling can be found in [24]
and [50]. The similarities between the punctuated equilibrium
evolution and the search in a multipopulation algorithm are
stressed in [30], while other (experimental) results concerning
the degree of interconnection depending on the kind of problem
can be found in [7]. Also, the use of a cellular (neighborhood)
model has been modeled in [108] to calculate the selection
pressure, and in [25] to give some useful statistical measures
for tracking and understanding the search of such an EA. A
more detailed discussion of these issues is found in Sections
VII-A and VII-B.

Some basicconvergence theoriesexist for sequential EAs.
They are generally useful for calculating convergence rates.
Some especially interesting results can be found in relation to
the response to selection in [90], defined by the differ-
ence between the population mean fitness of two consecutive
generations: . In their paper, the
authors provided a very useful tool for analyzing EAs in terms
of a new concept calledselection intensity. Also, important
milestones relating takeover regimes in traditional domains like
GAs [51] can be included in this class. These theories must be
extended to deal with convergence in PEAs, just like the results
in [22] in relation to convergence times, deme size, or speedup.
Also, an exceptionally interesting work unifying the study of
panmictic and structured EAs through the use of hyper-graphs
can be found in [117], which additionally helps in predicting
takeover times and probabilities.

Some theories relating theproperties of the fitness landscapes
and the search of the EA have been proposed. For example, sto-
chastic reverse hill-climbing allows incorporating into the al-
gorithm explicit information about the landscape with the goal
of using this information within some genetic operator [32].
Also, fitness landscapes have been classified, attending to sev-
eral features in order to help researchers to known how difficult
a problem is. In particular, the degree of epistasis in the individ-
uals has been usually considered a criterion to rank problems
[93]. The number of optima (multimodality) and the number of
local optima in the landscape are two important factors deter-
mining the difficulty of a problem. Domains which require lo-
cating many optima at the same time [35], managing restrictions
[29], dynamic fitness landscapes [52], or having time due dates
[72] usually impose some requirements to the kind of opera-
tors and fitness measures being used. The information on the
fitness landscape can be used statically by selecting the kind of
EA beforehand, or alternatively it can be fed somehow into the
algorithm at run time in order to adapt the PEA for searching
in the more promising regions. In general, PEAs have been de-

veloped to cope with these problems, such as [110] for using
cEAs in dynamic environments, some works dealing with mul-
timodality and epistasis in dEAs [7] and cEAs [6], and the close
relationship between the work of Daidaet al.[33] on hybridiza-
tion (i.e., adding problem knowledge to the EA) and granular
EAs (i.e., structured EAs).

We refer tounification theoriesas the set of formal descrip-
tions of separate EA models as if they were instances of a higher
level metaheuristic. These theories allow, for example, unifi-
cation of PEAs under a common formalization, showing that
coarse-grain, fine-grain, structured, and panmictic EAs can be
studied under a common point of view. An example of such
theory is the mentioned unified description that Sprave has cre-
ated for PEAs based on the concept of hypergraphs [117]. By
defining the subpopulations (whatever their size is) as vertex in
the hypergraphs and their relationships as the edges, structured
and panmictic algorithms can be characterized in a natural way.
Since PEAs are usually parallel implementations of structured
EAs, the behavior of the algorithm can be studied. Furthermore,
PEAs could be described after the basic notion of the Adaptive
Granulated System, derived from the initial model of Holland
[68] for an adaptive algorithm. In addition, unification models
for the search with heuristic models in general, or for represen-
tation and operators in particular, help in knowledge exchanges
[44].

We separately listed theworking modelsfrom the rest of
theories since, although they have much to do with them,
the working models focus on providing executable versions
of the behavioral run-time properties of EAs. Such a model
for a sequential GA can be found in [132], where the bases
for an executable model of a simple GA are discussed. More
sophisticated and even exact models for sequential GAs can be
found in [86]. In relation to PEAs, there are similar results that
we will discuss in the following sections.

Finally, we must point out that the research performed on
PEAs and onspeciation methodsshare some similarities [35].
Speciation EAs aim to locate several optima at the same time.
To achieve this goal, speciating algorithms explicitly maintain
different solution species during the optimization process by ap-
plying specific techniques (e.g.,sharing). PEAs lead naturally
and implicitly to creating multiple niches of solution species,
just as speciation EAs. However, the latter dynamically allo-
cate a different number of trials and a different fitness value
to individuals in every niche. This concentrates effort on more
promising peaks, while still maintaining individuals in other
areas of the search space. dEAs provide only constant-sized
niches, and no fitness changes are associated to any standard
parallel model. On the other hand, cEAs allow speciation, e.g.,
in a grid, but one particular species will eventually take over the
whole population if no specific operators are included. Hence,
PEAs can be used for multimodal optimization, but they usually
need to be combined with specialized operations to deal with
nichesin their traditional acceptation in optimization.

A. dEAs

Because of established tradition in using distributed models
of EAs, many works deal with theoretical issues for dEAs.
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We can find these algorithms under different names, such as
multipopulation EAs, coarse-grain EAs, island-model EAs,
and others. Designing efficient dEAs and understanding their
dynamical behavior are difficult problems due to the number of
parameters and their nonlinear interactions which are not well
understood. Therefore, it would be most useful to have some
theory behind the setting of those parameters, a setting which
is most often done by empirical trial and error.

Let us begin with early work relating dEAs and the building-
block hypothesis. The work of Pettey and Leuze [97] was one of
the first in stating that a PGA with uniform communications can
be expected to allocate trials to schemata in a exponentially in-
creasing (decreasing) fashion, i.e., in a manner consistent with
Holland’s original schema theorem for sequential GAs. They
backed up these results by also undertaking practical applica-
tion of their theory on De Jong functions [71] and the travelling
salesman problem (TSP). The experiments were made with a
hypercube multiprocessor containing eight nodes. In the same
vein, Munetomoet al. [92] relate the decreasing values of the
mean fitness of the island model to a decrease in the number of
building blocks being processed in parallel. Therefore, they state
the importance of maintaining diversity, and propose a special
asynchronous migration model for enhancing building blocks
management.

Although the main focus of the present review is on PEAs
for search and optimization in science and engineering, and not
on biological population modeling, it is worth mentioning an-
other early work by Cohoonet al. [30], in which it is argued
that the success that is often empirically observed in PGAs may
be due to a phenomenon similar to punctuated equilibria. Punc-
tuated equilibrium theory states that natural evolution is char-
acterized by long periods of relative stasis, punctuated by pe-
riods of geologically rapid change associated with speciation
events. According to Cohoonet al., migration between demes
can trigger such rapid evolutionary changes. A recent reference
to work along these lines by the same group is [83].

The work from Goldberg [50] provided a firmer footing on
optimal population sizes for both serial and parallel GAs. He
used a figure of merit, the real-time rate of schema processing, in
order to calculate the relationship between population size and
the elapsed time until convergence for the population. His re-
sults suggested the use of small/large populations in serial/par-
allel implementations of GAs. Also, some recommendations
were made for applying and extending the provided theory to
problems not covered by the assumptions made in his study.

The most relevant work on the dynamics, convergence, and
efficiency of parallel and distributed GAs in the last years has
been done by Cantú-Paz and Goldberg. This groundbreaking
work is summarized nicely in [22]. In relation to real-time mea-
sures for parallel GAs, the contributions in [24] predicting the
scalability of parallel GAs are most appealing. First, they com-
pute the optimal number of processors that can be used by dif-
ferent types of GAs in order to determine the optimal number
of processors to minimize the execution time. Also, this work
offers some bounds for the topology, rate, and frequency of mi-
grations. They assume a model in which migration occurs after
convergence of the subpopulations or at every generation, which
is not the case in many applications and parallel models where

migrations typically occur every few generations. However, they
showed that the optimal number of processorsthat minimizes
the execution time is directly proportional to the square root of
the population size and the fitness evaluation time , and in-
versely proportional to the mean time to communicate with one
processor , as follows:

This formally states that many practical applications can ben-
efit from using large numbers of processors, since these two fac-
tors increase as the domain becomes more difficult. The analysis
also shows that simply distributing the available individuals into
multiple islands without communication does not offer a signif-
icant improvement over a panmictic population.

As for the choice of the communication topology, the conclu-
sions of the model are that islands with many neighbors are more
effective than sparsely commected demes. This brings forth a
tradeoff between computation and communication. Following
the model, optimal choices of the degree of the topology that
minimizes the total cost can be made [22].

Cantú-Paz also treats the often neglected effect of the choice
of migrants and the individual replacement policy and shows
that choosing the migrants and replacing according to fitness
increases selection pressure and accelerates convergence. All
these results, though pertaining to PGAs, should prove useful
to pave the way for a more principled study of other PEAs as
well.

A work from Niwa and Tanaka [95] performs a Markov chain
analysis based on the Wright–Fisher model found in population
genetics. The model leads to the computation of the mean con-
vergence time under genetic drift, which is found to be propor-
tional to the population size, with the coefficient being larger
with smaller migration rates. Besides and especially, they de-
rived the most effective migration rate for a simplification of the
island model GA. In fact, they propose to send one single indi-
vidual for each generation. They also show that the distributed
GA is not only better in managing larger population sizes than
the panmictic one, but also in keeping the diversity in popula-
tion better than usual GAs.

Speedup and convergence results are obviously important, but
another fundamental area of research is the characterization of
the class of problems for which the use of multiple populations
would be beneficial. Whitleyet al. [134] have presented an ab-
stract model along these lines and made experiments of when
one might expect the island model to outperform single popu-
lation GAs on separable problems. Linear separable problems
are those problems in which the evaluation function can be ex-
pressed as a sum of independent nonlinear contributions. The
authors find indications that partitioning the population may be
advantageous in this case. This is a good starting point, but much
remains to be done in this area.

B. cEAs

cEAs are a kind of stochastic cellular automata [131], [128]
where the cardinality of the symbol alphabet is equal to the
number of points in the search space. To our knowledge, the
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only theoretical model of cEAs is the one proposed by Rudolph
and Sprave. In [106], they show how cellular GAs can be mod-
eled by a probabilistic automata network and give a proof of
complete convergence to a global optimum based on Markov
chain analysis. This result was obtained under the assumption
that each individual’s fitness value in the grid has to be better
than a certain threshold which depends on past fitness values and
on the current generation number. Local fitness-proportionate
selection was used for reproduction, which is not the customary
choice for cellular GAs, but has some theoretical advantages. It
was also remarked that rather large neighborhood sizes (tens of
grid points) were needed for good behavior in the 1–D (ring)
case, while subsequent work on 2-D grids (torus) [107] showed
that the ideal neighborhood size is much smaller, of the order of
five, which confirms the empirical findings of other studies.

Statistical and empirical analyzes of the dynamical behavior
of cGAs have been performed by Sarma and De Jong [108] and
by Capcarrèreet al. [25]. Sarma and De Jong’s work concen-
trated on the effect of the neighborhood’s size and shape on the
selection pressure and on the local selection method. In [108],
De Jong and Sarma studied the influence of choosing a partic-
ular selection method for use in cellular GAs. Due to the lack
of a good model of the dynamics of cellular GAs operating with
overlapping neighborhoods, this study is necessarily empirical,
making use of repeated measures of the relevant quantities on
a number of well-known test functions. Three standard selec-
tion algorithms were used: fitness-proportionate, linear ranking,
and binary tournament. The cellular GA structure was a 2-D
toroidal grid of size 32 32 with three different neighborhood
shapes with five, nine, and 13 neighbors respectively, which are
the most common in practice.

In order to study only the induced selection pressure (without
introducing the perturbing effect of recombination and muta-
tion operators) a standard technique is to let reproduction be the
only active operator and to monitor the growth rate of the best
individual in the initial population. A first remark is that when
we move from a panmictic population to a spatially structured
one of the same size, the global selection pressure induced on
the entire population is qualitatively similar but weaker. In the
spatially distributed case it was observed that for all three men-
tioned neighborhoods the performance of fitness-proportionate
selection was inferior to that of linear ranking and binary tour-
nament, with binary tournament being roughly equivalent to
ranking as the neighborhood size increases.

To understand why this is so, De Jong and Sarma, using the
same initial population for the three selection methods, moni-
tored the actual number of offspring produced by each member
of the population. The experiences were repeated a large
number of times with different random number seeds in order
to estimate the variance due to sampling errors. It was found
that fitness-proportionate selection induces a much uniform but
weaker global selection pressure than either ranking or binary
tournament selection. It is well-known that ranking and binary
tournament produce a constant selection pressure independent
of the actual fitness values, while proportionate selection is
obviously quite sensitive to actual fitness values. In the case
of cEAs with small local selection pools, it appears thus that
local selection methods based on ranking or binary tournament

offer superior performance. In terms of the tradeoff between
efficiency and simplicity, De Jong and Sarma conclude that
local binary tournament combined with an elitist policy for the
replacement of an individual seems to offer the best solution,
and this is in qualitative agreement with what other researchers
have been doing empirically in the past.

In a subsequent study, Sarma and De Jong [109] performed
a more detailed empirical analysis of the effects of the neigh-
borhood’s size and shape on the local selection algorithms. Five
different neighborhoods with up to 13 neighbors were taken into
account and two selection methods were used: fitness-propor-
tionate and linear ranking. Again, the growth rate of the best
individual was studied using a 2-D toroidal grid of size 3232.
As in the previous case, it was found that the global selection
pressure has the same qualitative behavior in the panmictic case
as well as in the grid, but it is weaker in the structured popu-
lation, with linear ranking being stronger than fitness-propor-
tionate in both cases. The difference in intensity was attributed
by Sarma and De Jong to the finite propagation speed of the indi-
viduals through the grid in the spatially structured case. In fact,
they were able to show that propagation times are closely related
to the neighborhood size, with larger neighborhoods giving rise
to stronger selection pressures. However, they also found that
two neighborhoods having the same linear extension but a dif-
ferent number of neighbors show nearly identical results.

In conclusion, these studies have put the choice of some crit-
ical parameters of the cellular model on a firmer and more sys-
tematic basis, whereas previous work had been empirical and
tentative in character. Along the same lines, the work of Alba
and Troya [6] discusses the effect of the ratio depending on
the kind of problem, as well as they propose a tunable cEA in
which the ratio between the radii can change during evolution.
It is worth noting that a similar study has been recently done by
Gorges–Schleuter [58] for ES.

Capcarrèreet al.defined a number of statistical measures that
are useful for understanding the dynamical behavior of cEAs.
Two kinds of statistics were used:genotypicand phenotypic.
Genotypic measures embody aspects related to the genotypes of
individuals in a population. Phenotypic statistics concern prop-
erties of individual performance, essentially fitness (see [25] for
the exact definitions).

Among the genotypic statistics, quantities that measure how
individuals are spatially distributed were defined. One of these
is the frequency of transitions, which is equal to the number of
borders between homogeneous blocks of cells having the same
genotype divided by the number of distinct couples of adjacent
cells. In practice, this measures the probability that two adjacent
individuals have different genotypes. To measure the genotypic
diversit,y the customary population entropy was used, as well as
a diversity index, defined as the probability that two randomly
chosen individuals have different genotypes. It was shown that
there is a relationship between the diversity index and the pre-
viously defined frequency of transitions indicator: the diversity
index is just the expectation value of the frequency of transi-
tions.

Phenotypic statistics deal with properties of phenotypes, prin-
cipally fitness. The performance of a population is defined as
its average fitness. The diversity at the phenotypic level is cus-
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tomarily defined as the variance of its fitness distribution and
its definition is identical in cellular algorithms and in panmictic
EAs. More interesting are the new measures that apply in the
cellular case and that do not have a counterpart in the global
case. Capcarrèreet al.defined a new metric called therugged-
ness, which measures the dependency of an individual’s fitness
on its neighbor’s fitness, giving the fitness correlation between
neighboring sites.

VIII. N EW TRENDS IN PEAs

In this section, we focus on some of the most promising re-
search lines in the field of PEAs. Future achievements should
take note these issues.

• Tackling dynamic function optimization problems (DOP):
PEAs will have an important role in optimizing a complex
functionwhoseoptimavary in time (learning-like process).
Such problems consist in optimizing a successive set of fit-
ness functions, each one usually being a (high/small) per-
turbation of the precedent one. Industrial processes, such
as real task-scheduling, and daily life tasks such as control-
linganelevatoror thetraffic lightsystem,canbemodeledby
dynamic systems. Some PEAs, like cEAs [110] and dEAs,
can deal with such DOP environments successfully thanks
to their natural diversity enhancements and speciation-like
features.Since structuredEAs keepdiversityhigh, they can
react quickly to a change in the environment (optimum lo-
cation). At the moment of the environmental change, a new
fitness function is now to be optimized, and PEAs will find
diverse genotypic material to redirect the search toward the
new optimum location. This is a natural advantage of these
algorithmswithrespect tomostsequentialand/orpanmictic
EAs.

• Developing theoretical issues: Improving the formal
explanations on the influence of parameters on the con-
vergence and search of PEAs will endow the research
community with tools allowing to analyze, understand,
and customize an EA family for a given problem. Ad-
vances relating the number and size of subpopulations
and the degree of connectivity between the subalgorithms
or neighborhoods will have a special interest. In addition,
extending traditional deterministic measures and results
to analyze stochastic PEAs will endow this EA branch
with a more serious set of tools to characterize them.

• Relationship between PEAs and other nonEAs: This is
a large area that is important in practice. Comparing
PEAs with other search heuristics will allow to interface
algorithms coming from different users and with different
search properties to work together in order to solve a
single complex task in parallel. Of course, there is no
a priori reason for an EA to be superior to another
search technique; and this clearly advocates to employ
hybrid techniques to obtain a better algorithm. This is
very important from a theoretical and practical point of
view, since hybridizing and parallelizing are two growing
trends in solving complex problems.

• Running PEAs on geographically separated clusters: This
will allow a user to utilize sparsely located computational

resources in a metacomputing fashion in order to solve
his/her optimization problem. A distinguished example of
such a system is to use the Web as a pool of processors to
run PEAs for solving the same problem.

• Benchmarking soft computing techniques: At present, it
is clear that a widely available and large set of problems
is needed to assess the quality of existing and new EAs.
Problem instances of different difficulty specially targeted
to test the behavior of EAs and related techniques can
greatly help practitioners in choosing the most suitable EA
or hybrid algorithm for the task at hand. Some important
classes of problems show epistasis, multimodality, nonsta-
tionarity, constrains, and learning processes, all of which
are important components of real-life problems.

IX. CLASSIFICATION OF PEA IMPLEMENTATIONS

In this section, we discuss briefly the main features of some
PEAs by presenting a structured classification from three points
of view: by model, by type, and by application.

A. By Model

Previous research has been conducted on PEA models
separately, but much can be gained by studying them under a
common viewpoint.

In Fig. 7, we provide a quick overview of different PEAs to
point out important milestones in parallel computing with EAs.
These “implementations” have rarely been studied as “parallel
models.” Instead, usually only the implementation itself is eval-
uated.

Some coarse-grain algorithms like dGA [126], DGENESIS
[85], GALOPPS [53], PARAGENESIS [118], and PGA 2.511

are relatively close to the general model of migration islands.
They often include many features to improve efficiency. Some
other coarse-grain models like CoPDEB [2] and GDGA [65]
have been designed for specific goals, such as providing explicit
exploration/exploitation by applying different operators on each
island. Another recent example of this class is the (iiGA) [78],
which promotes coding and operator heterogeneity (see Sec-
tion IV). A further parallel environment that offers adaptation
with respect to the dynamic behavior of the computer pool and
fault tolerance is MARS, described by Talbiet al. in [124].

Some other PGAs execute nonorthodox models of
coarse-grain evolution. This is the case of GAMAS [98],
based on using different alphabets in every island, and GEN-
ITOR II [135], based on a steady-state reproduction.

On the other hand, massive PEAs have been strongly asso-
ciated to the machines on which they run: ASPARAGOS [55]
and ECO-GA [34]. This is also the case of models of diffi-
cult classification (although most of the mentioned ones are of
difficult classification!) like PEGAsuS [102], SP1-GA [75], or
SGA-Cube [40]. As to the global parallelization model, some
implementations, such as EnGENEer [104] or PGAPack [76],
are available.

Finally, some efforts to construct general frameworks for
PEAs are GAME [118], PEGAsuS, and RPL2 [101]. The

11[Online] Available: http://www.aic.nrl.navy.mil/galist/src/pga-2.5.tar.Z
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Fig. 7. A quick survey of the features of several parallel EAs.

Fig. 8. Classification of EA implementations by type.

mentioned systems are endowed with “general” programming
structures intended to ease the implementation of any model
of PEA. The user must particularize these general structures
to define his own algorithm. The result is sometimes called an
algorithmic skeleton. Nowadays, many researchers are using
object-oriented programming(OOP) to create better software
for PEAs, but unfortunately some of the most important issues
typical in OOP (such as making meaningful designs) are
continuously being ignored in the resulting implementations.
The reader can find some general guidelines for designing
object-oriented PEAs in [9].

All these models and implementations offer different levels
of flexibility, ranging from a single PEA to the specification of
general PEA models. This list is not complete, of course, but it
helps in describing the current “state of the art.”

B. By Type

In order to complete our review, we now provide an extensive
classification of sequential EAs and PEAs into three major cat-
egories [102], [5], according to their specific objectives (Fig. 8).

1) Application Oriented:These are black-box systems de-
signed to hide the details of EAs and help the user in
developing applications for specific domains. Some of
these are useful for different purposes, such as sched-
uling or telecommunications (e.g., PC/BEAGLE). Others
are much more application oriented (like OMEGA for fi-
nance). Usually, they are menu-driven and easily param-
eterizable.

2) Algorithm Oriented:Based on specific algorithms. The
source code is available in order to provide an easy incor-
poration into new applications. This class may be further
subdivided into the following.

a) Algorithm Specific:They contain one single EA
(e.g., GENESIS). Their users are system devel-
opers (for making applications) or EA researchers
(interested in extensions).

b) Algorithm Libraries:They support a group of algo-
rithms in a library format (e.g., OOGA). They are
highly parameterized and contain many different
operators to help future applications.
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3) Tool Kits: These are flexible environments for program-
ming a range of different EAs and applications. They can
be subdivided into the following.

a) Educational:Used for introducing EA concepts to
novice users (e.g., GA Workbench). The basic tech-
niques to track executions and results during the
evolution are easily managed.

b) General Purpose:Useful for modifying, devel-
oping, and supervising a wide range of operators,
algorithms and applications (e.g., Splicer).

Deeper explanations of these systems, detailed references,
and up-to-date Internet pointers can be found in [5].

C. By Application

Parallel EAs and dEAs have been shown to be useful in
practice in a number of industrial and commercial applications.
Many real-life problems may need days or weeks of computing
time to solve on serial machines. Although the intrinsic time
complexity of a problem cannot be lowered by using a finite
amount of computing resources in parallel, parallelism often
allows reducing these times to reasonable levels. This can be
very important in an industrial or commercial setting where
the time to solution is instrumental for decision making and
competitivity. Furthermore, the new models offered by struc-
tured populations often allow better exploration of alternative
solutions of the design space.

PEAs have been used successfully in operations research
(OR), engineering, and manufacturing, finance, VLSI, and
telecommunication problems, among others. It is impossible
to review such work in a small space, since in fact this would
need a separate survey to deal with the so wide spectrum
of optimization tasks in which PEAs are being used with
success. However, for the sake of completeness, we do provide
a description of a few successful and real-world important
applications in very relevant fields of the optimization with
PEAs. The references therein are intended to help the reader
find more information on the subject.

Combinatorial optimization and OR:Many important
combinatorial optimization problems, according to present
knowledge, do not admit efficient, polynomial-time determin-
istic algorithms. It is thus worth looking for heuristic algorithms
that are able to find at least good, if not optimal, solutions, but
without any guarantee. EAs are heuristics that have been much
used in the field of combinatorial optimization, usually with
very satisfactory results. Allowing PEAs does not change the
intrinsic complexity of the problem, but can be a big help both
for reducing the execution time as well as to better explore the
search space. There exist several studies dealing with parallel
and dEAs in combinatorial optimization. Here, we mention
the articles of Gorges–Schleuter [57] and Mühlenbein [89], in
which large versions of the TSP and other prototypical prob-
lems in combinatorial optimization were solved satisfactorily.
Parallel ESs have also been used for combinatorial optimization
(see, for instance, [41] and [111]). It was shown by the authors
that various forms of PEAs are competitive with other methods
and sometimes even superior.

Telecommunication Network Design:In mobile telecommu-
nication network design, two major problems have to be solved:
the placement of the antennas and the frequency assignment.
Both are hard multiobjective optimization problems and both
have been satisfactorily solved with PEAs. The frequency as-
signment problem (FAP) consists in attributing frequencies to a
number of radio links in such a way as to simultaneously satisfy
a large number of constraints and use as few distinct frequen-
cies as possible. Meunieret al. have recently used a parallel
multiobjective GA for the FAP [87]. Since the fitness function is
very expensive to evaluate in this problem and has a distinct spa-
tial structure, its calculation was parallelized in a master–slave
manner with PVM, with each worker taking care of a portion
of a geographical area. The algorithm has been applied to real
cases with good results. Also, we can find in [82] a good work
in solving different instances of several FAP benchmarks by ap-
plying ant colony optimization algorithms (ACO). On the other
side, see [20] for learning about a PEA used for radio network
design (placement of antennas).

Financial Applications: Financial markets are inherently un-
predictable since, according to a widely held view, the price
time series essentially follows a random walk. However, more
recent work has convincingly shown that although the broad pic-
ture is correct, there are still some significant deviations from a
strict random process that can be made use of (see, for example
[80]). Some of the technologies aiming at market forecasting
make use of so-calledindicators, which are simply elaborate
statistics computed from observed prices. Once suitable indi-
cators have been computed, they can be combined according
to logical rules to buildtrading models, which are combina-
tions of indicators and trading rules that can be used to generate
trading recommendations. However, indicator computation is
an extremely lengthy process and choosing between alternative
trading models is a hard problem. Chopardet al. [28] used par-
allel multipopulation genetic programming techniques to speed
up the search for good trading models with good results. The
trading models induced with parallel GP are robust, yield good
out-of-sample performance, and are produced in hours instead
of days or weeks.

Design of Analog Electronic Circuits: Modern circuit design
is a difficult task that poses a number of challenges to engineers.
While considerable progress has been made in automating the
design in the case of digital circuits, analog and analog-dig-
ital circuit design has not enjoyed similar developments and
somehow remains a form of art rather than solid engineering.
By using heavy-duty parallel genetic programming, Koza and
coworkers [73] have been able to synthesize complex analog
circuits automatically from a high-level description of the cir-
cuit’s desired function. Genetic programming has produced de-
signs that are competitive with human-designed circuits, and
even better in some cases. Furthermore, the GP approach is not
limited to particular cases; it can be generalized directly to other
problems. Parallelism has been instrumental in these calcula-
tions since they are extremely time-consuming.

VLSI Design:VLSI routing and placement problems are very
important industrial problems. They are notoriously difficult to
solve with standard algorithms due to the exponential time com-
plexity increase with the instance size. Heuristic and approx-
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imate algorithms are thus the only practical way of obtaining
good solutions in reasonable times. An interesting application
of parallel GAs to optimize routing in VLSI circuits subject to
other industrially relevant constraints is presented in [77]. The
author uses a classical island model with grid communication
topology among subpopulations and also examines several poli-
cies for the selection of migrants and the migration frequency.
The results are at least as good as those obtained with other pop-
ular methodologies, including sequential EAs, on a number of
standard benchmark problems in the field.

Engineering Design:Good examples of parallel GAs in engi-
neering design can be found, for example, in the work of Doorly
and his group on aeronautical design optimization [36]. For an-
other successful application, in [39] the authors combined par-
allel GAs with finite element methods for the optimization of
flywheels. They compare a number of optimization methods in-
cluding a standard island-parallel GA and the iiGA [78], which
has been described in Section IV. In [39], the authors show
that the iiGA is the most effective for the flywheel optimiza-
tion problem and offers a number of distinct advantages over
standard PEAs and over other commonly used methods such as
simulated annealing. Again, the time to solution using PEAs al-
lows one to either afford a better solution quality for a given
problem size in less time, or a solution to a more realistic and
bigger problem instance in the same time, which are both valu-
able improvements in engineering practice.

X. SUMMARY

This paper contains a modern survey of parallel models and
implementations of EAs. We have stressed not only the associ-
ated algorithmic issues, but also the parallel tools for building
PEAs. By summarizing the parallel algorithms, their applica-
tions, classes, and theoretical foundations, we intend to offer
valuable information not only for beginners, but also for re-
searchers working with EAs or heuristics in general.

The list of references has been elaborated to serve as a direc-
tory for granting the reader access to the valuable results that
PEAs are offering to the research community. Most important
trends have been discussed, yielding what we hope is a unified
overview and a useful text.
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