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Parallelism and Evolutionary Algorithms

Enrique Alba and Marco Tomassini

Abstract—This paper contains a modern vision of the paral- from the old onegt = 0,¢ = 1,¢ = 2,...). Every individual
lelization techniques used for evolutionary algorithms (EAs). The in the population is the encoded (binary, real,) version
work is motivated by two fundamental facts: first, the different of a tentative solution. An evaluation function associates a

families of EAs have naturally converged in the last decade while fit lue t individual indicating it itability to th
parallel EAs (PEAs) seem still to lack unified studies, and second, Itness value to every individual indicaling Its suitabifity to the

there is alarge number of improvements in these algorithms and in Problem. The canonical algorithm applies stochastic operators
their parallelization that raise the need for a comprehensive survey. such as selection, crossover, and mutation on an initially

We stress the differences between the EA model and its parallelim- random population in order to compute a whole generation of
plementation throughout the paper. We discuss the advantages and new individuals. In a general formulation, we apply variation

drawbacks of PEAs. Also, successful applications are mentioned t ¢ t ¢ aties luate th
and open problems are identified. We propose potential solutions operators to create a temporary populatioitt), evaluate the

to these problems and classify the different ways in which recent resulting individuals, and get a new populatiétit + 1) by
results in theory and practice are helping to solve them. Finally, we either usingP’(¢) or, optionally,P(¢). The halting condition is

provide a highly structured background relating PEAs in orderto  ysually set as reaching a preprogrammed number of iterations
make researchers aware of the benefits of decentralizing and par- ¢ ihe algorithm, or to find an individual with a given error if

allelizing an EA. the optimum, or an approximation to it, is known beforehand.
Index Terms—Evolutionary algorithms, first hitting time, popu-
lation, time complexity.
Evolutionary Algorithm

t = 0,

initialize and evaluate P®];
VOLUTIONARY algorithms (EAs) are stochastic searchvhile not stop  _condition do
methods that have been applied successfully in manyP’(t) := variation [P(t)];

search, optimization, and machine learning problems [68], [49], evaluate [P'(t)];

[88], [14]. Unlike most other optimization techniques, EAs P(t+1) := select [P/(t),P(t)];

maintain a population gfi-encoded tentative solutions thatare t := t + 1;

manipulated competitively by applying some variation operatognid while ;

to find a satisfactory, if not globally optimum solution. Several

other heuristics such as simulated annealing [74], tabu searc

[48], and their combinations and variations [123] have been us, . . : )
with comparable results but will not be reviewed here. &hd fuzzy logic, are listed together as techniques for solving

The goal of this paper is to bring uniformity and structurgrObIemS by using numeric knowledge representation, in
g pape g un Y position to traditional artificial intelligence, where symbolic
to the different research issues concerning parallel EAs (PEA@Sh
oI

I. INTRODUCTION

ften, the fields of evolutionary computing, neural networks,

We will address the algorithms, as well as the machines and sg owledge representation is used. Unlike conventional algo-
9 . . ) ithms, they are tolerant of imprecision, uncertainty, and partial
ware for PEAs, and at the same time, we will stress their relﬁgat

. N . L : h. These features make them less brittle than standard
tionship with practice, theory, and applications in a novel way, - .
rEJéJroaches and, as a consequence, they offer adaptivity. This
!

Thus, we need to offer some history, as well as the present ) . ' ;
future trends in this field of the evolutionary computation (ECE ader research field, which also comprises other techniques
y P uch as rough sets and probabilistic networks, is knowsoés

discipline. Our review is an up-to-date discussion about the m%'gmputing(see [127] for further readings on this matter)
parallel achievements in the algorithmic families included in the The right side of Fig. 1 details the well-accepted sub.classes

EC.' W? review parallel mogjel;, parallel |mplemeptat|ons, the f EAs, namely genetic algorithms (GA), evolutionary pro-
retical issues, and the applications of these algorithms, stresswrlgmmin (EP), evolution strategies (ES), and others not shown
the importance of unification in the PEA's field. J 9 . 9 '

. . = .
Let us begin by outlining the skeleton of a standard EA. Aher;?l-ies(sa?g )[13] for learning how similar the different EA

ign(r?;e t;[he ];c::lgr\’:t?ng pﬁfxdogosgtig,;;fegfs irzr:jisir&ul;;atlve For nontrivial problems, executing the reproductive cycle of a
y 9 9 Pop simple EA on long individuals and/or large populations requires
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Soft and _the di§tinctive a_spects of the prgsent Work_ with _respect to
Computing previous S|m|!ar review work. We _thlnk that thls_ review rep-
resents an original way of presenting the material that is scat-
Evolutionary Computing EP tered in many places to practitioners of the EA field. It care-
fully separates models from implementations, and accurately
—{ Artificial Neural Networks 1 ES describes suitable computing environments and communication
_[ Fuzzy Logi 7 : paradigms taking into account modern trends in distributed sys-
zzy Logic : i
tems. This, to our knowledge, has never been done before in
a single place. Moreover, theoretical aspects are described in a
readable way and with many key references, something that has
also been overlooked in the past, since theory is quite new and
empirical considerations were preferred in previous reviews. To
the problem in a more sophisticated way (e.g., a symbol tret)is, we add a very broad spectrum of related information that
In general, evaluating a fitness function for every individual iincludes a section on nonuniform PEAs, the seldom discussed
order to compute its quality as a solution is frequently the mogencept of speedup, and an effort to include EAs other than GAs.
costly operation of the EA. Consequently, a variety of algdll this has not been considered in existing previous work.
rithmic issues are being studied to design efficient EAs. TheseThe organization of this paper is as follows. First, we offer a
issues usually consist of defining new operators, hybrid alggsmmary of the most important milestones in the PEA history.
rithms, parallel models, and so on. We develop our work ihhenpanmictici.e., the standard modelinwhichthe whole pop-
one of such research lines consisting in using parallel modelation is dealt with as a single pool of individuals, and structured
of EAs. In this field, there exists a large number of implement#&As (where some partition of the single pool is undertaken) are
tions and algorithms, although not much effort has been devoigcussed from a unified viewpoint. Next, the implementation of
to the algorithm design. We can find in [118] a first attempt &As on parallel machines is presented by discussing hardware,
designing algorithms in the framework of the PAPAGENA Eusoftware, and algorithmic alternatives for building an efficient
ropean project; also, in [9], a software engineering point of vieREA. A further section is devoted to the theoretical advances re-
for PEAs can be found. lating structured and PEAs, including a discussion of speedup in
But efficiency and design are not the only important issué¥=As. Finally, several PEA classifications are givento offer a full
with PEAs [64]. First of all, PEAs are naturally prone to paraloverview of the state of the art. Future trends and open problems
lelism, since most variation operations can be easily undertak@® identified throughout, and a carefully chosen bibliography is
in parallel. Using a PEA often leads to not only a faster alg¢eferenced to guide the reader.
rithm, but also to a superior numerical performance. However,
the truly interesting observation is that the use atractured
population that is, a spatial distribution of individuals, either in
the form of a set of islands [126] or a diffusion grid [81], [116], The intrinsically parallel and distributed nature of EAs
is the responsible of such benefits. As a consequence, manygid- not escape the attention of early researchers. Holland
thors do not use a parallel machine at all to run structured-pdp8] offered some steps toward defining a parallel computing
ulation models, and still get better results than with serial tradirchitecture for reproductive plans. In fact, the first ideas about
tional EAs [54]. using multiple competing subpopulations can be traced back to
In classical PEA studies (e.g., in PGAs [26]), it is assumeatie work of Bossert [19] who proposed them as a procedure
that the model maps directly onto the parallel hardware, thtesimprove diversity and delay stagnation. However, although
making no distinction between the model and its implemethe main ideas were understood, the technology of parallel and
tation. However, once a structured-population model has bedistributed computing was in a primitive stage in the 1960s.
designed, it can be implemented in any monoprocessor or pamwas, therefore, difficult to create practical implementations
allel machine. This conception (see Section IV) of model versaad simulations. The field had to wait until the early 1980s for
implementation raises several questions. First, any EA candigtable parallel implementations to appear. Grefenstette [59]
run in parallel, although high efficiency is not always possibl&as one of the first in examining a number of issues pertaining
[17]. Second, analyzing PEAs suggests the necessity of using ahe parallel implementations of GAs in 1981. Grosso [61]
complex and heterogeneous test suite [133] (e.g., multimodal,another early attempt to introduce parallelism through the
deceptive, and epistatic problems). Third, special care mustyse of a spatial multipopulation model. This was followed
taken to ensure that the experiments will be replicable to alldwy more systematic studies by Cohoon, Tanese, Pettey and
future extensions. Finally, some questions are open in relatibeuze, Gorges-Schleuter and Miihlenbein, and Manderick
to the physical, numerical, and parallel execution of the modetnd Spiessens. Tanese [125] and Cohoon [30] employed the
We must notice that additional parameters are needed to detevel (at the time) hypercube parallel architecture by placing
mine the search in a PEA, thus requiring further research to wubpopulations at the hypercube nodes. For ES, Rudolph
derstand their importance. [105] implemented one of the first distributed models. For EP,
PEAs have deserved several reviews in the past that canfhencan [38] was an important milestone. The early work of
used for tracking their evolution in time. (See, for exampl&ettey and Leuze [97] is also significant because it was the first
[26], [1], [5], [21].) We now turn to justify thecontributions in trying to model multipopulation GA dynamics theoretically.

Fig. 1. Soft computing and EAs.

Il. HISTORY
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r=1 1<A<p A= can be parallelized. Section IV is devoted to explaining different
@ ® ways of structuring the populations. The resulting model can
steady-state generational be executed in parallel or not, although some structured models

Fig. 2. Panmictic EAs: from steady state to generational algorithms. suggesta Stralghtforward paraIIeI |mpIementat|on.

All these studies pertain to what has been called a coarse-grain IV. STRUCTURED EAS

orisland model (see Section IV). Another related spatial modelThere exists a long tradition in using structured populations in
was popularized by early work of Gorges-Schleuter [S5c, especially associated to parallel implementations. Among
It is called a diffusion, cellular, or fine-grained model (seg e most widely known types of structured EAs, thstributed

Section 1V) and is based on a spatially distributed populatiQiea) andcellular (CEA) algorithms are very popular optimiza-
in which genetic interactions may only take place in a smg|p, procedures [5].

neighborhood of each individual. Related work was done at theDecentraIizing a single population can be achieved by par-

same time by Manderick and Spiessen [81]. titioning it into several subpopulations, where island EAs are
run performing sparse exchanges of individuals (dEAS), or in
IIl. PANMICTIC EVOLUTIONARY ALGORITHMS the form of neighborhoods (CEAs). These two EA types, along

In EC, it is customary to find algorithm families in whichwith a panmictic EA, are schematically depicted in Fig. 3.
the population structure is panmictic (see Section ). Thus, sedn dEAs, additional parameters controlling when migration
lection takes place globally and any individual can potentiallgccurs and how migrants are selected/incorporated from/to the
mate with any other. The same holds for the replacement gource/target islands are needed [17], [126]. In cEAs, the exis-
erator, where any individual can potentially leave the pool arieince of overlapped small neighborhoods helps in exploring the
be replaced by a new one. A different (decentralized) selectis@arch space [16]. These two kinds of EAs seem to provide a
model exist in which individuals are arranged spatially, thergetter sampling of the search space and improve the numerical
fore giving place tstructured EA¢see Section IV). Most other and runtime behavior of the basic algorithm in many cases [10],
operators, such as recombination or mutation, can be readily Ept].
plied to these two models. The main difference in a cEA, with respect to a panmictic

There exist two popular classes of panmictic EAs having diEA, is its decentralized selection and variation. In cEAs, the re-
ferent granularity at the reproductive step [122]. The first one fsoductive loop is performed inside every one of the numerous
called a “generational” model, in which a whole new populatiomdividual pools. In a cEA, one given individual has its own pool
of X individuals replaces the old one (right part of Fig. 2, wheref potential mates defined by neighboring individuals; at the
4 is the population size). The second type is called “steadpme time, one individual belongs to many pools. This one-di-
state,” since usually one or two new individuals are createslensional (1-D) or two-dimensional (2-D) structure with over-
at every step of the algorithm and then they are inserted bdakped neighborhoods is used to provide a smooth diffusion of
into the population, consequently coexisting with their parenigood solutions across thgrid. We mentioned a 2-D grid of
In the mean region, there exists a plethora of selection modgldividuals due to its generality [108]. A cEA can be imple-
generically termed as “generation gap” algorithms, in whichraented in a distributed memory MIMD computer [84], although
given percentage of the individuals are replaced with the néi& more natural implementation is on a SIMD computer (see
ones. Clearly, generational and steady-state selection are seme well-accepted computer architecture descriptions in Sec-
special subclasses of generation gap algorithms. tion V-A and also Fig. 5).

Centralized versions of selection are typically found in serial A dEA is a multipopulation (island) model performing sparse
EAs, although some parallel implementations have also usedeitchanges of individuals among the elementary populations.
For example, thglobal parallelismapproach evaluates in par-This model can be readily implemented in distributed memory
allel the individuals of the population while still using a cenMIMD computers, which provides one main reason for its pop-
tralized selection performed sequentially in the main procesadarity. A migration policy controls the kind of dEA being used.
guiding the base algorithm [76]. This algorithm is the same d$e migration policy must define the island topology, when mi-
the sequential one, although it is faster, especially for time-cagration occurs, which individuals are being exchanged, the syn-
suming objective functions. Usually, the other parts of the algohronization among the subpopulations, and the kind of integra-
rithm are not worth parallelizing, unless some population strutten of exchanged individuals within the target subpopulations.
turing principle is used (see Section IV). The advantages of a distributed model (either running on sepa-

Most PEAs found in the literature utilize some kind of spatiakte processors or not) is that it is usually faster than a panmictic
disposition for the individuals, and then parallelize the resultifgA. The reason for this is that the run time and the number of
chunks in a pool of processors. We must stress at this pointesfaluations are potentially reduced thanks to its separate search
the discussion that parallelization is achieved by first structuririgg several regions from the problem space. A high diversity and
the panmictic algorithm and then parallelizing it. This is whgpecies formation are two of their well-reported features.
we distinguish throughout the paper between structuring pop-In Fig. 4, we plot a three-dimensional (3-D) representation of
ulations and making parallel implementations, since the sasteuctured algorithms based on the number of subpopulations,
structured EA can admit many different implementations. line number of individuals in each one, and the degree of inter-
fact, we have just drawn some ideas as to how panmictic EAstion among them.
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Workers Workers
(@) (b) (c)

Fig. 3. A panmictic EA has all its individual’s black points in the same population and, thus, (a) each of them can potentially mate with any dtimémgStrec
population usually leads to a distinction between (b) dEAs and (c) cEAs. These latter models are usually implemented on MIMD and SIMD machinB} (see Fig
respectively, although nothing prevents other kinds of implementations.

P CEA that we could find or design an algorithm that can be hardly
g classified as belonging to one of such two classes of structured
Hsub-populations EAs because its depends strongly on the selection of the values
interaction in each axis of the algorithm.
> sub-pop size A. Nonstandard Structured EA Models

So far, we have made the implicit hypothesis that the genetic
material, as well as the evolutionary conditions, such as selec-
tion and recombination methods, were the same for all the in-
dividuals and all the populations of a structured EA. Let us call
these algorithm typeaniform If one gives up some of these

Fig. 4. Structured-population EA cube.

INSTRUCTIONS

< ] constraints and allows different subpopulations to evolve with
Control - - different parameters and/or with different individual represen-
Ynit | nstructions ™| Processor T T Momory tations for the same problem, then new distributed algorithms
may arise. We will name these algorithmanuniformparallel
@) or dEAs. Tanese did some original work in the field and was the
Instructions firstin studying the use of different mutation and crossover rates
MEMORY o )
in different populations [125]. Another more recent example of
Toata Data O this class is thénjection island GA(iiGA) of Lin et al. [78].
- unit In an iiGA, there are multiple populations that encode the same
P problem using a different representation size, and thus different

resolutions in differentislands. The migration rules are also spe-
cial in the sense that migration is only one-way, going from a
) low- to a high-resolution node. According to Lét al, such

a hierarchy has a number of advantages with respect to a stan-
dard island algorithm. A similar hierarchical topology approach

etroctons has been recently used in [112] with some differences such as
@ @ @ ...... m real-coded GAs and two-way migration. The purported advan-
pata pata ot Data tages are: no need for representation conversion, better preci-
m sion, and better exploration of the search space using a nonuni-
(©

{nstructions

MEMORY

form mutation scheme.
A related proposal has been offered by Herreral. [66].

Fig. 5. Flynn's taxonomy for computer architectures. (a) SISD architecturgheir gradual distributed real-coded Givolves a hierarchical
(b) SIMD architecture. (c) MIMD architecture. structure in which a higher level nonuniform distributed GA

joins a number of uniform distributed GAs that are connected

While a dEA has a large subpopulation, usually much largamong themselves. The uniform distributed GAs differ in

than one individual, a cEA has typically one single individual itheir exploration and exploitation properties due to different
every subpopulation. In a dEA, the subpopulations are loos@yossover methods and selection pressures. The proposed
coupled, while for a cEA they are tightly coupled. Additionallytopology is the cube-connected cycle in which the lower level
in a dEA, there exist only a few subpopulations, while in a cEAistributed GAs are rings at the corners of the cube and rings are
there is a large number of them. We use this cube to provide@nnected at the higher level along the edges of the cube. There
generalized way for classifying structured EAs; we include paafe two types of migration: a local one among subpopulations
mictic EAs in it to clarify the figure. However, the points in thein the same lower level distributed GA and global migrations
cube indicating dEA and cEA are only “centroids”; this meanisetween subpopulations belonging to different lower level
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distributed GAs. According to [65], the proposed schendata stream (MIMD). Fig. 5 schematically depicts the three
outperforms other distributed GAs on the set of test functiomsost important model architectures.
that were used in the paper. The SISD architecture corresponds to the classical monopro-
In biological terms, different semi-isolated populationsessor PC or workstation.
in which evolution takes place at different stages and with Inthe SIMD architecture, the same instruction is broadcast to
different, but compatible, genetic material makes sense:ait processors. The processors operate in lockstep, executing the
might also be advantageous for EAs. Genetic programmirgjyen instruction on different data stored in their local memo-
in particular, might benefit from these ideas, since the choices (hence the name single instruction, multiple data). The pro-
of the function and terminal sets is often a fuzzy and ratheessor can also remain idle, if this is appropriate. SIMD ma-
subjective issue. chines exploit spatial parallelism that may be present in a given
Another class of nonstandard PEAs is given dpevolu- problem and are suitable for large, regular data structures. If the
tionary approaches. The most well-known example is Hillisproblem domain is spatially or temporally irregular, many pro-
method for finding minimal sorting networks by simulated evosessors must remain idle at a given time step, with the ensuing
lution [67]. Hillis’ approach consisted in a massively paralldbss in the amount of parallelism that can be exploited.
cellular algorithm in which there are two independent pools In the MIMD class of parallel architectures, multiple proces-
or populations, each evolving according to a standard GA enrs work together through some form of interconnection. Dif-
the same grid. One population, the “hosts,” represents sortiiggent programs and data can be loaded into different processors,
networks, while the other pool, the “parasites,” represents tegtich means that each processor can execute different instruc-
cases. The fitness of the sorting networks is given by measuriigns at any given point in time. Of course, the processors will
how well they sort the test cases provided by the parasitesuatially require some form of synchronization and communica-
the same grid location. Conversely, the parasites are scotieth in order to cooperate on a given application. This class is
according to how well they find flaws in the correspondingisually the most useful one, and most commercial parallel and
sorting networks. An “arms race” thus takes place that distributed architectures belong to it.
beneficial for the evolution of the pseudoecology, resulting There has been little interest in the MISD class since it does
in exceptionally good sorting networks, very close to theot lend itself to readily exploitable programming constructs.

best-known hand-made solution. Systolic arrays belong to this class and are used in specialized
Another interesting coevolutionary variation of the cellulagapplications such as signal processing.
model is Sipper'sellular programming algorithnj114]. Cel- Another important design decision is whether the system

lular programming has been used extensively to evolve cellulaemory spans a single address space or it is distributed into
automata for performing computational tasks and is based on geparated chunks that are addressed independently. The first
topological coevolution of neighboring cellular automata ruletype is calledshared memorywhile the latter is known as
distributed memoryThis is only a logical subdivision that is
independent of how the memory is physically built. In shared
V. PEAs memory multiprocessors, all data are accessible by all the
In this section, our goal is to present a structured vision BfOCE€SSOrs. This poses some design problems for data integrity
the architecture, software tools, and parallel implementations@d efficiency. Fast cache memories next to the processors are
EAs. Therefore, Sections V-A to V-C are devoted to these thrdg€d in order to speed up memory access to often-used items.
issues. Section V-E, discussing speedup and PEASs, is includedfhe coherency protocols are then needed to ensure that all

because of the relevance of this measure in any domain relatigceSsors see the same value for the same piece of data.
to parallel algorithms istributed memory is also a popular architecture for mul-

ticomputers, which is well suited to most parallel workloads.
Since the address spaces of each processor are separate, commu-
nication among processors must be implemented through some
Parallelism can arise at a number of levels in computérm of message passing. Networked computer clusters belong
systems: the task level, instruction level, or at some low#y this class. The drawbacks are that parallel computing perfor-
machine level. The standard model of Flynn is still widelynance is limited by high communication latencies and by the
accepted for classifying computer architectures [69]. But thiact that the machines may have different workloads and are pos-
reader should be aware that it is a coarse-grain classificatisibly heterogeneous. But these problems can be overcome, to a
For instance, even today’s serial processors are, in fact, pardietje extent, by using networked computers in dedicated mode
in the way in which they execute instructions, as well as witlith a high-performance communication network. In addition to
respect to the memory interface and many parallel architectuthe well-known fast-Ethernet networks, many other communi-
are hybrids of the base classes. For a comprehensive treatematibn networks belonging to this class of low-latency high-per-
of the subject, the reader is referred to Hwang's text [6%ormance systems can be created by using ATM or even Myrinet
Flynn's taxonomy is based on the notion of instruction and datetworks, allowing fast bit-transfer rates (150 Mb/s and 2 Gb/s,
streams. There are four possible combinations, conventionakgpectively).
called single instruction, single data stream (SISD), singleFinally, we should not forget that the World Wide Web
instruction, multiple data stream (SIMD), multiple instructionprovides important infrastructures for distributed computation.
single data stream (MISD), and multiple instruction, multiplélarnessing the Web or some other geographically distributed

A. Parallel Computer Architectures: An Overview
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computer resource so that it looks like a single computer tomponentthat are subtasks at a moderately large level of gran-
the user is callethetacomputingThe concept is attractive, butularity. The advantages of PVM are its wide acceptability and
many challenges remain (see Section V-B). its heterogeneous computing facilities, including fault-tolerance
Instead of describing the many special architectures and pissues and interoperability [120]. Managing a dynamic collec-
gramming constructs that have been used for PEAS, in S¢ion of potentially heterogeneous computational resources as a
tion V-B we center the discussion on those parallel and disingle parallel computer is the real appealing treat of PVM. De-
tributed programming models that are independent of the partipite its advantages, PVM has recently begun to be unsupported
ular hardware architecture, essentially those based on mesqagdurther releases), and users are shifting from PVM to more

passing in distributed memory architectures. efficient paradigms, such as MPI.
o 3) MPI: The MPI is a library of message-passing routines
B. Tools for Parallelizing an EA [45] similar to PVM but more complete. The MPI API was

Here, we review some popular communication tools for inflefined in the mid-1990s by a large group of people from
plementing a PEA. Almost all the PEA toolkits are implemente@cademia, government, and industry. The interface reflects
by using the message passing model of communication, sif@0ple’'s experiences with earlier message-passing libraries,
it naturally allows profiting from multicomputers having dis-such as PVM. The goal of the group was to develop a single
tributed memory which are the most usual hardware found liRrary that could be implemented efficiently on the variety of
universities and research institutes. multiple processor machines. MPI has now beconde &acto

In the message passing model, processes in the same oSt@ﬁ]dard, and several implementations exist, such as MPICH
physically different processors communicate by sending meéxd LAM/MPI2
sages to each other through a communication medium, such akhe MPI functions support process-to-process communica-
a standard or specialized network connection. The two badn, group communication, setting up and managing commu-
primitives aresendand receiveroutines. In its simplest form, nication groups, and interacting with the environment. In addi-
sendspecifies a local data buffer that is to be transmitted, andi@n, wide-area-network (WAN) facilities will be provided for
receiving process identifier, usually in a different address spa€! users in the near future.
than that of the sending process.réceiveoperation usually ~ 4) Java-Remote Method Invocation (RM)The imple-
specifies the sending process and a local data buffer into whiggntation of remote procedure calls (RPC) in Java is called
the incoming data is to be stored. Togethesead/receivpair Java-RMI [70]. RPC allows invoking of remote services in
effects a memory-to-memory copy and an implicit process sy- transparent fashion and, therefore, is a natural step for
chronization operation. programmers having “sequential” habits. The RMI in Java

We include in the discussion basic tools such as sockets &@ws an application to use a remote service with the added
more sophisticated environments, such as parallel virtual niglvantages of being platform-independent and able to access
chine (PVM), message passing interface (MPI), Java, commi¢ rest of the useful Java characteristics when dealing with
object request broker architecture (CORBA), and Globus théistributed computing and the Internet in general.
provide a much richer set of functionalities than a simple mes-The client/server model used by Java-RMl is, however, some-
sage passing service. Section V-B9 is devoted to compare th‘@hﬁt slow in the current implementations of Java, atleast for sci-
from the point of view of PEAs. entific calculations, an especially important consideration when

1) Sockets:The BSD socket interface (see e.g., [31]) is 8ealing with optimization algorithms.
widely available message-passing programming interface. A5) CORBA: Although many systems currently deal with
set of data structures ar@functions allow the programmer to Multithreaded, parallel, and/or distributed programs, some
establish full-duplex connections between two computers wiktigher level research is devoted to how to glue together
TCP for implementing general purpose distributed applicatiorfXisting or future applications so they can work seamlessly
Also, an unreliable service over UDP (and directly over IP) i§ @ distributed environment. Software systems that provide
available for applications needing such a facility. Synchronotf¥s glue have come to create the term “middleware,” from
and asynchronous parallel programs can be developed withich CORBA is one of the best known examples [129].
the socket application programmer’s interface (API), with theORBA is based on object-oriented technologies. CORBA is
added benefits of common availability, high standardizatiod, collection of specifications and tools to solve problems of
and complete control over the communication primitivednteroperatibility in distributed systenss.

But programming with sockets is error-prone and requires CORBA is especially important because it is growing on the

understanding low level characteristics of the network. Also, @Pplication side rapidly; it allows clients to invoke operations

does not include any process management, fault tolerance, @8kdistributed objects without concern for object location,

migration, security options, or other features usually requestegpgramming language, operating system, communication
by modern parallel applications. protocol, or hardware.

2) PVM: The PVM [119] is a software system that supports 6) Globus: Globus is a new, extremely ambitious project to
the message-passing paradigm and permits the utilization dir@vide a comprehensive set of tools for building metacom-
heterogeneous network of parallel and serial computers afWing applications [46]. Globus thus builds upon, and vastly
single general and_ flexible ancurrent cqm_p_utational resour(?e'Z[OnIine] Available: http://www.mcs.anl.gov/mpi/mpich and http://www.

PVM offers a suite of user interface primitives for communimpi.nd.edu/lam
cation and other chores. Application programs are composed d{Online] Available: http://www.omg.org
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extends, the services provided by earlier systems such as PVMAIso, much still must be said as to new Internet technologies.
MPI, and Legion [60]. We here spread some seminal ideas about what the new trends
The Globus toolkit consists of several modules that are useil be. First, involving Extensible Markup Language (XML)
to help to implement high-level application services. One suahalgorithm definition (parameters) and information exchanges
service is what is called an Aadaptive wide-area resource engi-a clearly desirable use of new technologies. This will help
ronment (AWARE). It will contain an integrated set of servicesn unifying different implementations and could allow different
including “metacomputing enabled” interfaces to an implemenesearchers to interact through generic XML connectors.
tation of the MPI library, various programming languages, and Next, there is an obvious extension of present PEAs with re-
tools for constructing virtual environments (CAVES). spect to new languages such as C# and J# (the .NET version
7) OpenMP: OpenMP is a set of compiler directives and liof Java). Deploying existing algorithms in these platforms is
brary routines that are used to express shared-memory pasatiear way of achieving larger impact in final users with Mi-
lelism5 The OpenMP API was developed by a group reprerosoft Windows technology. Finally, using some of the multi-
senting the major vendors of high-performance computing hatdnguage support f@imple Object Access Protocol (SOAR)
ware and software. Fortran and C++ interfaces have been Help in developing optimization repositories in Internet for re-
signed, with some efforts to standardize them. The majority ofote access to developed algorithirSome of these ideas are
the OpenMP interface is a set of compiler directives. The prbeing used in our own and other’s projectahile still much
grammer adds these to a sequential program to tell the comust be said about the efficiency and real use of these systems;
piler what parts of the program to execute concurrently, and itoaddition, some running projects such as DREAMe devel-
specify synchronization points. The directives can be added wping high abstract environments for optimization and artificial
crementally, so OpenMP provides a path for parallelizing ekfe in the Internet.
isting software. This contrasts with the Pthreads and MPI ap-9) Comments on These Communication Tools and
proaches, which are library routines that are linked with arREAs: Although a number of PVM and socket imple-
called from a sequential program, and which require the prmentations exist for PEAs, future trends will have to deal
grammer to manually divide the computational work. with the Internet as a pool of computational resources. Many
8) Internet-Based PEAsTo support the idea of the rapidproblems arise when a PEA has to be implemented on a het-
evolution of PEA's technologies, we are including this sectiorogeneous WAN linking computers with different operating
to deal with the new issues relating PEAs and the Internet ssstems. Some of these requirements are:

the new natural platform for computing. Basically, the Internet « transparent exchanges of data types in the Internet;
is a new domain for PEAs characterized by: 1) the large amount « remote execution and tracing;

of available (dedicated or not) machines; 2) large heterogeneity « security issues (firewalls, proxies, etc.) relating access,
of operating systems and configurations; and 3) the set of com-  data communication, and process execution;

munication protocols, access restrictions, and failure conditions « process migration between clusters for PEA applications
that need to be taken into account. which are time-consuming (real-world problems);

Some of the considerations for running a PEA in a general « adaptation to the dynamic behavior of the links and com-
WAN also hold in the Internet domain, but there are other added  puters involved in the execution of the PEA;

difficulties for performing PEAs in Internet. Some of them are .« faylt tolerance.

the access and potential failure of geographically distant ma-a|l these requirements naturally lead to using Java, MPI, and,
chines computing in parallel and the dynamic load balancirgaybe in the future, Globus. Despite the advantages of Java
needed by some solution techniques. Also, there exists congist-multiplatform execution, communication, and related tasks,
erable influence of the Internet features on the numeric behavmé present execution speed of Java for scientific Computationg
of the algorithms and the difficulty of implementing really effi-could be a drawback for some PEA applications. In fact, there
cient algorithms in Internet. The latter is a challenging researghists some PEA systems such as MARS [124] and the the
line: researchers must report not just that an algorithm is viabl@ALLBA library ° that account for some of these requirements.
but also address its competitiveness with other algorithms. A great deal of information on networking and EAs can be found
Despite the numerous problems, some Internet algorithfasthe NEO server

exist that are facing such tasks for the first time. For example,we think that MPI is currently the better choice for imple-

in [27], the author develops and tests a distributed GP (DGfiknting large-scale and general-purpose PEAs because of its
program written in Java with an architecture specially devisgflesent and future advantages. In the case that Globus will domi-
to deal with Internet. DGP has been tested by running, in pafate the metacomputing field, MPI has a bridge to access Globus
allel, clients and servlets on heterogeneous machines ava"%éﬁ/ices_ Other communication models such as the one offered
on tje Internet; also, it has been compared with traditional Gfy CORBA are also important for implementing PEAs, since
and LAN-distributed GP on various problems. A free diStI’ibLbomputationS can be coded in C++ and sophisticated services
tion exists with graphical interface and the preliminary results
show that this alternative is feasible and even performs a bettey

. For more on Internet technologies: [Online] Available: http://www.w3.0rg
search than other teChmqueS on the tested problems. 7[Online] Available: http://neo.lcc.uma.es and http://geneura.ugr.es

4See [47] and the Globus Web site for detailed information and current statu$[Online] Available: http://www.dcs.napier.ac.uk/benp/dream/dream.htm
of the project. [Online] Available: http://www.globus.org 9[Online] Available: http://www.lsi.upc.es/mallba
5[Online] Available: http://www.openmp.org 19/0Online] Available: http://neo.lcc.uma.es
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Fig. 6. Different models of PEA: (a) global parallelization; (b) coarse grain; and (c) fine grain. Many hybrids have been defined by combiningneHasett:t
(d) coarse and fine grain; (e) coarse grain and global parallelization; and (f) coarse grain at the two levels.

can be directly and transparently managed by the object brokiens, where the evaluation cost of a solution is not constant.
system. Although Java-RMI and CORBA provide a very goo@enetic programming can be efficiently parallelized at the fit-
level of flexibility for PEAs, they are still far from allowing sci- ness-evaluation level by using steady-state reproduction instead
entific efficient programs to run in a competitive time with C oof the usual generational algorithm [11], [28]. (See [130] for an
even C++, example of global parallelism in ES.) Another example of the
At present, new domains and potentially new researcise of global parallelism for evolving artificial neural networks
lines are being open because of new protocols such as SOMEh EP is given in [103]. The efficiency of global paralleliza-
for remote method invocation and message passing, or tiwn has been analyzed in [96] for GP and, in a very thorough
Microsoft .NET environment, with new interesting programmanner, by Cantl-Paz for GAs [22], where the model is called
ming languages such as C#. Also, integrating XML in PEAs master—slave.
for exchanging data or configuring the algorithms are new Automaticparallelism is not presented in this paper, since
possibilities which have become available only in the past tvewmpilers introducing parallel search in a sequentially written
or three years. algorithm are rare in the EC field. Nonetheless, some automatic
Nonetheless, regardless of the degree of sophistication of geallel Fortran such as Vienna Fortran [18] could be used to
tool, each user potentially has different necessities, and thprsvide parallel execution of sequential EAs.
many users can still benefit from using PVM or other commu- Also, many researchers use a pool of processors to speed up
nication libraries for locally managed clusters. In fact, we cafe execution of a sequential algorithm, just becandepen-
find PEAs implemented with almost any of the mentioned pagtent runscan be made more rapidly by using several processors
allel programming paradigms, in particular using the more treghan by using a single one. In this case, no interaction at all exists
ditional MPI, sockets, and PVM. between the independent runs. This extremely simple method
of doing simultaneous work can be very useful. For example, it
can be used to run several versions of the same problem with
Whichever computer and software are being used to buildid@ferent initial conditions, thus allowing gathering statistics on
PEA, a researcher usually pursuits several goals. The expedtezlproblem. Since EAs are stochastic in nature, being able to
advantages coming from the parallelization of EAs can be sursllect this kind of statistic is very important.

C. Parallel Implementations of EAs

marized as follows: Neither of the above adds anything new to the nature of the
« finding alternative solutions to the same problem; EAs, but the time savings can be significant. In Fig. 6(b), we can
« parallel search from multiple points in the space; also see the popular multipopulationistand modelin which
« easy parallelization as islands or neighborhoods; several EA subalgorithms run in parallel in a connected mode
« more efficient search, even when no parallel hardware 8y exchanging individuals during their search). This model
used; can have a MIMD implementation in a straightforward way, by

« higher efficiency than sequential EAs, in many cases; mapping every island to one processor. New parameters such
« easy cooperation with other (EA and traditional) seards the number of individuals being exchanged, the frequency
procedures; of migration, the selection/replacement of individuals, and the
« speedup due to the use of multiple CPUs (faster searchippology need to be set. Once again, Tanese performed some of
These advantages contrast with the features of other heurighie first measurements of the influence of migration frequency
algorithms which usually impose artificial constraints, whicRnd number of individuals exchanged [126]. (See [7], and [22]
search from only one point to another new point, or which fintr further indications of the values to be used for several het-
one single solution at a time, and have a higher probability fogeneous problem benchmarks in GAs and [43] for GP.)
getting stuck in local optima than EAs. ThecEA shown in Fig. 6(c), is usually parallelized on SIMD
Now, let us go back to the study of existing implementatiortsachines, since the individual-processor mapping is quite direct
of PEAs. Some of the most well-known parallel implementd128], [94]. However, nothing prevents one from using a single
tions are depicted in Fig. &lobal parallelization shown in processor for executing a cEA [6], [54], nor an MIMD imple-
Fig. 6(a), provides a panmictic-like evolution with evaluationsentation [84], [115].
performed in parallel. This is faster than a sequential panmicticFig. 6(d)—(f) shows threlybrid algorithmsin which a two-
EA and does not require load balancing except in the casel®fel approach of parallelization is undertaken. In the three cases
GP, where individuals to be evaluated can be of very differetite higher level for parallelization is a dEA (coarse-grain imple-
complexity, or in special cases such as some robotics applic@entation). The model shown in Fig. 6(d) was initially used by
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[63] and has received some attention in works like [7], [8], [56], TABLE |
and [79]. In this model, the basic islands perform a cEA, thus TAXONOMY OF SPEEDUPMEASURES
trying to get the combined advantages of the two models. In Fig. I. STRONG SPEEDUP
6(e) (see, e.g., [49]), we have many global parallelization farms I1. WEAK SPEEDUP
connected in a distributed (migration) fashion, thus exploiting A. SPEEDUP WITH SOLUTION-STOP
. . . - 1. VERSUS PANMIXIA
parallelism for making fast evaluations and for obtaining sepa- 5 ORTHODOX
rate population evolution at the same time. Finally, in Fig. 6(f), B. SPEEDUP WITH PREDEFINED EFFORT

we present several farms of distributed algorithms with a still
higher level dEA making migrations among connected farms.
Although these combinations may give rise to interesting awifficult, if not impossible, to decide whether or not a sequential
efficient new algorithms, they have the drawback of having ev&A is the best algorithm, since many times itis the only existing
more new parameters to account for the more complex topol@ggorithm being tried for the problem (e.g., new applications).
ical structure. (See details on this and the rest of models alsdSiacond, in analyzing EAs, it is usual to study a large set of prob-
[21].) lems; the strong definition requires the researcher to be aware of
As we have seen, both panmictic and structured models dhe faster algorithm solving any of the problems being tackled.
be parallelized in many ways, and can be implemented dhis scenario is often not a realistic situation.
monoprocessor machines. The classical relationship betweeifhese reasons had traditionally led researchers to measure the
distributed/cEAs and coarse-/fine-grain parallelization is thspeedup by comparing their own sequential and parallel algo-
an artificial one to a large extent, and need not concern arithms. We will define aveak definitiorof speedup (see Table |,

longer. type Il) as the extent to which it is possible that a different algo-
rithm exists (probably not an EA) that solves the problem faster
D. Measuring the Speedup Is Controversial in sequential mode. This definition will allow us to compare our

Computing the speedup of a parallel algorithm is a well-aBEA against well-known sequential EAs, therefore studying the
cepted way of measuring its efficiency. Although speedup speedup without needing to involve nonEAs in the analysis.
very common in the deterministic parallel algorithms field, it The next important point relating a weak definition is the
has been adopted in the PEA's field in different flavors, not a#topping criterion. Speedup could be studied by imposing a
of them with a clear meaning. In this section, we will presefedefined global number of iteratiortmth to the sequential
speedup, discuss its meaning, and several applications for néid to the PEA. We call this a measure of type I1.B (Table ).
suring the efficiency of a given PEA. In general, we dislike this kind of measure, since it compares

Our goal is to review and discuss the existing works whod&0 algorithms that are working out solutions of different
contents are relevant for studying the speedup in PEAs (déeess (quality), thus breaking the fundamental statement of
Table. I). Let us begin first by revisiting its traditional definition P€ing “solving” the same problem with the “same” precision.
The well-known definition of speedup (see e.g., [3]) relates tHds stopping criterion can be useful in some other situations
(worst) execution time of the best sequential versigrto the where, e.g., the same effort is allocated to different algorithms
(worst) execution time of the parallel version of the algorithriP compare their final error, but not when speedup is to be

being evaluated om processorﬂ”m measured. Important papers in this field such as [64] and [23]
also make the same considerations we have just pointed out.
- I Therefore, we need a meaningful and fair termination crite-
m M . . . . .
T rion. The obvious candidate is to stop the comparison of algo-

rithms when a solution of the same quality had been found, usu-
ally an optimal solution. We call this asrthodox wealdefini-
tion or type 11.A.2 (Table I).

With this definition, we can distinguish amongst
* sublinear speeduf,, < m;

: linear ls_peeduﬁm d: m Let us gain a deeper understanding of the orthodox weak def-
super-linear speeduf, > . inition. One important consideration is the composition of the

The first modification which we need to introduce in the Stargequential EA. By following the old-fashioned concept that a

dard speedup definition is to consider average times in the ra“?equential” EAis a “panmictic” EA, we would compare a pan-

T_he reason is_ th{’.‘t EAS are SFOChaSt.iC gl_gorithms_ in which ORictic (sequential single population) EA with, e.g., a dEAdof
single execution is T’Ot statistically S|gr_1|f|_cant. _Th|s means V\fglands, each one running on a different processor. We call this
need to average a given number of statistically independent "WNSsrsus panmixia weasomparison (Table I, type 11.A.1). But

in order to have representative time values the algorithm running in one processor is panmictic in this case,

T while thed islands that are using processors represent a dis-

Sm = T tributed migration model whose algorithmic behavior is quite

m different from the panmictic one. This could sometimes pro-

Even by using average times, the traditional definition reroke a very different result for the numerical effort needed to
mains unclear in the field of EAs, since it makes the assumilpcate the solution, and thus very different search times can be
tion of being aware of the best algorithm to solve the problerabtained (in general, faster search for the distributed version). In
We will call it the strong definitiorof speedup (see Table I, typefact, it could lead to obtain a super-linear speedup of a consid-
). Some practical problems arise with this definition. First, it isrably high magnitude, since the dEA running parallel islands
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can locate a solution more thditimes faster than the panmictictributed GP concerning the sizing of populations, topologies,
one [8], although this need not always be the case, as has baed migration rates.
shown by Punch for certain problems in parallel genetic pro- A heuristic conclusion (not valid in every case, of course)
gramming [99]. is that migrating the best individual in the island might be
In order to have a fair and meaningful speedup definition favorthwhile for function optimization, although migration of
PEAs, we need to consider exactly the same algorithm (for exrandom individual can be preferable for combinatorial opti-
ample, the distributed one withislands) and then only changemization and highly epistatic problems (parameter correlation),
the number of processors, from 1dpin order to measure the since premature convergence is not enforced in the distributed
speedup grthodox weak definition In any case, the speedupsubalgorithms. This “conquest” effect is a hard problem in
measure should be as fair and as close to the traditional defitdmplex domains.
tion of speedup as possible. With respect to cEAs, it seems appropriate to use a rectan-
In addition, we must mention an obvious result, namely thgular grid instead of a square one as the default disposition of in-
adding more processors is not always more efficient for any palividuals for problems with intrinsic epistasis [6]. Square grids
allel system. Only some models are scalable (more efficiepovide faster evolution for nonepistatic problems [10]. Also,
with an increasing number of processors. introducing some kind of problem-specific local-search into the
We now present a striking point. Many authors have analyzeBA is a good idea in order to quickly tune solutions in function
PEAs attending to different criteria, and many of them came oaoptimization, and in general, in order to speed up the conver-
with super-linear speedup when using a parallel machine [18Ence, since the basic property of cEAs is that of maintaining a
[17], [113], [62]. After having discussed alternative methodsigh level of diversity [91].
to measure the speedup we have still to address one question:
is it really possible, to get super-linear speedup in PEAs? The
answer to this question iges In short, the sources for super-
linear speedup are (see [4] for more details): EC is a relatively novel research field in optimization,

« the higher chances of finding an optimum by using mof&arning, and numerous applicatit_)n areas. Mgny advances have
processors, due to the intrinsically heuristic multipoint ngtPPeared concerning the theoretical foundations of EAs, espe-
ture of PEAs: cially for GAs and ES. However, the results are not conclusive

« splitting the global large population into smaller subpop:et and the area is still open. o _
ulations that fit into the processor caches provides faster!n order to get a structured picture of the existing theoretical
algorithms than using a single main memory: advances apd fut.ure issues, we.proceed. to glassﬁy them into

« the operators work on much smaller data structures, af@veral subfields in which theory is especially important:
they do so in parallel, which is an additional source of ¢ representation theories;
speedup. * operator theories;

« structured algorithms;
 convergence theories;
« fitness landscape theories;
In this section, we summarize some important results for ¢ unification theories;
PEAs from a practitioners’ point of view. Our aim is to offer ¢ working model theories;
some guidelines for researchers dealing with structured EAs, « speciation theories and niches.
either parallelized or not. Among these, structured algorithms, unification theories, and
Let us begin with dEAs. Many approaches have been emerking model theories are directly related to PEAs. The rest
ployed in order to discover the best topology for a multipopula@an be linked to PEAs, as well as to any other EA.
tion algorithm, especially when the island is a GA. The results We definerepresentation theorige include all formal expla-
are often inconclusive, since sometimes a hypercube is morergdtions that lead to an understanding of the behavior of a given
ficient than a ring, and sometimes a mesh is more/less efficig@notype-phenotype mapping. The basic notiosabiemd68]
than the previous ones [17], [24]. The same holds for the mig@Adforma[100] can be included here. These theories help in se-
tion rate (although quite a small number of individuals seentecting more appropriate representations for the symbol strings
the best approach) and the migration frequency (although infiad-a given new application. These theories usually relate the be-
guent migration seems to be the best choice). As noted befdrayior of the operators and fithess landscape to the kind of geno-
leading work on migration rates and frequencies was performeggbe in hands, as just stated in [37] and [44]. Studying the the-
by Tanese [126]. Some additional research has been conduatestical implications of using an assorted set of representations
from a practical point of view for an assorted set of problenis a PEA is an open research line.
and distributed models (e.g., [7]), in which some parameters aréa\Ve calloperator theorieshe formal characterizations of the
set and some others are left free in order to change the behawork of variation operators such as recombination, mutation,
of the algorithm. For example, a ring is a good idea since macal search operators, etc. Interesting results in this sense are
grations can be made in a constant and small time [23]. Algbge definition of uniform crossover [121], the role of mutation
by sending one single individual, we are free of tuning the mi15], and a framework for hybridizing EAs [33]. Operator the-
gration frequency to achieve an efficient algorithm [7]. See alswies to explain the behavior of the migration just as a new op-
[43] and [42] for a consistent set of empirical results on digrator that maps the present set of search-points to next one are

VII. THEORY OFPEAS

VI. EMPIRICAL BEHAVIOR OF PARALLEL EAS
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sought. Also, defining different sets of operators and/or contreéloped to cope with these problems, such as [110] for using
parameters for each of the component subalgorithms is an intelEAs in dynamic environments, some works dealing with mul-
esting open research line. timodality and epistasis in dEAs [7] and cEAs [6], and the close
Works formalizing structured algorithmsare especially relationship between the work of Daidaal.[33] on hybridiza-
important for the focus of this paper since there is an impatien (i.e., adding problem knowledge to the EA) and granular
tant link between using structured populations and runnii€As (i.e., structured EAS).
parallel algorithms. Defining how a panmictic algorithm can We refer tounification theoriesas the set of formal descrip-
be extended to a multipopulation distributed algorithm, daions of separate EA models as if they were instances of a higher
how introducing neighborhood locality into the population calevel metaheuristic. These theories allow, for example, unifi-
enhance the search, are two examples of such results. In méition of PEAs under a common formalization, showing that
population algorithms, some theoretical advances relating t@arse-grain, fine-grain, structured, and panmictic EAs can be
optimum subpopulation sizes and coupling can be found in [24fudied under a common point of view. An example of such
and [50]. The similarities between the punctuated equilibriutheory is the mentioned unified description that Sprave has cre-
evolution and the search in a multipopulation algorithm agted for PEAs based on the concept of hypergraphs [117]. By
stressed in [30], while other (experimental) results concernidigfining the subpopulations (whatever their size is) as vertex in
the degree of interconnection depending on the kind of problehe hypergraphs and their relationships as the edges, structured
can be found in [7]. Also, the use of a cellular (neighborhoodnd panmictic algorithms can be characterized in a natural way.
model has been modeled in [108] to calculate the selecti@ince PEAs are usually parallel implementations of structured
pressure, and in [25] to give some useful statistical measufAs, the behavior of the algorithm can be studied. Furthermore,
for tracking and understanding the search of such an EA.FEAs could be described after the basic notion of the Adaptive
more detailed discussion of these issues is found in SectigBsanulated System, derived from the initial model of Holland
VII-A and VII-B. [68] for an adaptive algorithm. In addition, unification models
Some basi@onvergence theoriesxist for sequential EAs. for the search with heuristic models in general, or for represen-
They are generally useful for calculating convergence ratestion and operators in particular, help in knowledge exchanges
Some especially interesting results can be found in relation[as4].
the response to selectidi(t + 1) in [90], defined by the differ-  We separately listed theorking modelsfrom the rest of
ence between the population mean fitness of two consecutiieories since, although they have much to do with them,
generationsR(t 4- 1) = M(t + 1) — M(t). In their paper, the the working models focus on providing executable versions
authors provided a very useful tool for analyzing EAs in termsf the behavioral run-time properties of EAs. Such a model
of a new concept calledelection intensityAlso, important for a sequential GA can be found in [132], where the bases
milestones relating takeover regimes in traditional domains liker an executable model of a simple GA are discussed. More
GAs [51] can be included in this class. These theories must §isphisticated and even exact models for sequential GAs can be
extended to deal with convergence in PEAs, just like the resufind in [86]. In relation to PEASs, there are similar results that
in [22] in relation to convergence times, deme size, or speedwy will discuss in the following sections.
Also, an exceptionally interesting work unifying the study of Finally, we must point out that the research performed on
panmictic and structured EAs through the use of hyper-grapPEAs and orspeciation methodshare some similarities [35].
can be found in [117], which additionally helps in predictingpeciation EAs aim to locate several optima at the same time.
takeover times and probabilities. To achieve this goal, speciating algorithms explicitly maintain
Some theories relating tipeoperties of the fitness landscapesiifferent solution species during the optimization process by ap-
and the search of the EA have been proposed. For example, plging specific techniques (e.gharing. PEAs lead naturally
chastic reverse hill-climbing allows incorporating into the aland implicitly to creating multiple niches of solution species,
gorithm explicit information about the landscape with the goglist as speciation EAs. However, the latter dynamically allo-
of using this information within some genetic operator [32kate a different number of trials and a different fithess value
Also, fitness landscapes have been classified, attending to sevindividuals in every niche. This concentrates effort on more
eral features in order to help researchers to known how diffic@tomising peaks, while still maintaining individuals in other
aproblem is. In particular, the degree of epistasis in the indivigreas of the search space. dEAs provide only constant-sized
uals has been usually considered a criterion to rank problefishes, and no fitness changes are associated to any standard
[93]. The number of optima (multimodality) and the number gbarallel model. On the other hand, cEAs allow speciation, e.g.,
local optima in the landscape are two important factors detefi-a grid, but one particular species will eventually take over the
mining the difficulty of a problem. Domains which require lowhole population if no specific operators are included. Hence,
cating many optima at the same time [35], managing restrictiopgAs can be used for multimodal optimization, but they usually
[29], dynamic fitness landscapes [52], or having time due datgsed to be combined with specialized operations to deal with
[72] usually impose some requirements to the kind of opergichesin their traditional acceptation in optimization.
tors and fitness measures being used. The information on the
fitness landscape can be used statically by selecting the kindAof dEAs
EA beforehand, or alternatively it can be fed somehow into the
algorithm at run time in order to adapt the PEA for searching Because of established tradition in using distributed models
in the more promising regions. In general, PEAs have been @é-EAs, many works deal with theoretical issues for dEAs.
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We can find these algorithms under different names, such ragrations typically occur every few generations. However, they
multipopulation EAs, coarse-grain EAs, island-model EAshowed that the optimal number of processotksat minimizes
and others. Designing efficient dEAs and understanding théire execution time is directly proportional to the square root of
dynamical behavior are difficult problems due to the number tfie population sizg and the fithess evaluation tin¢, and in-
parameters and their nonlinear interactions which are not wedlrsely proportional to the mean time to communicate with one
understood. Therefore, it would be most useful to have sommcessofl,, as follows:
theory behind the setting of those parameters, a setting which
is most often done by empirical trial and error. n=0 < u_Tf>
Let us begin with early work relating dEAs and the building- T. |
block hypothesis. The work of Pettey and Leuze [97] was one of
the first in stating that a PGA with uniform communications can This formally states that many practical applications can ben-
be expected to allocate trials to schemata in a exponentially &fit from using large numbers of processors, since these two fac-
creasing (decreasing) fashion, i.e., in a manner consistent wighs increase as the domain becomes more difficult. The analysis
Holland’s original schema theorem for sequential GAs. Th@}SO shows that simply distributing the available individuals into
backed up these results by also undertaking practical appliﬁa,l|tip|e islands without communication does not offer a signif-
tion of their theory on De Jong functions [71] and the travellinggant improvement over a panmictic population.
salesman problem (TSP). The experiments were made with &s for the choice of the communication topology, the conclu-
hypercube multiprocessor containing eight nodes. In the safiiens of the model are thatislands with many neighbors are more
vein, Munetomoet al. [92] relate the decreasing values of thé&ffective than sparsely commected demes. This brings forth a
mean fitness of the island model to a decrease in the numbetréfeoff between computation and communication. Following
building blocks being processed in parallel. Therefore, they stdli@ model, optimal choices of the degree of the topology that
the importance of maintaining diversity, and propose a specfinimizes the total cost can be made [22].
asynchronous migration model for enhancing building blocks Cantu-Paz also treats the often neglected effect of the choice
management. of migrants and the individual replacement policy and shows
Although the main focus of the present review is on PEA§at choosing the migrants and replacing according to fitness
for search and optimization in science and engineering, and Hitreases selection pressure and accelerates convergence. All
on biological population modeling, it is worth mentioning anthese results, though pertaining to PGAs, should prove useful
other early work by Cohooet al.[30], in which it is argued o pave the way for a more principled study of other PEAs as
that the success that is often empirically observed in PGAs méa#ll.
be due to a phenomenon similar to punctuated equilibria. PuncA work from Niwa and Tanaka [95] performs a Markov chain
tuated equilibrium theory states that natural evolution is chagnalysis based on the Wright-Fisher model found in population
acterized by long periods of relative stasis, punctuated by pEenetics. The model leads to the computation of the mean con-
riods of geologically rapid change associated with speciati¥grgence time under genetic drift, which is found to be propor-
events. According to Cohoaost al., migration between demestiOﬂﬁ' to the population size, with the coefficient being Iarger
can trigger such rapid evolutionary changes. A recent referef¢éh smaller migration rates. Besides and especially, they de-
to work along these lines by the same group is [83]. rived the most effective migration rate for a simplification of the
The work from Goldberg [50] provided a firmer footing onisland model GA. In fact, they propose to send one single indi-
0pt|ma| popu|ation sizes for both serial and para”e] GASs. Ffédual for each generation. They also show that the distributed
used a figure of merit, the real-time rate of schema processing@A: is not only better in managing larger population sizes than
order to calculate the relationship between population size af@ Panmictic one, but also in keeping the diversity in popula-
the elapsed time until convergence for the population. His réon better than usual GAs.
sults suggested the use of small/large populations in serial/parSPeedup and convergence results are obviously important, but
allel implementations of GAs. Also, some recommendatio0ther fundamental area of research is the characterization of
were made for app|y|ng and extending the provided theory %e class of prOblemS for which the use of multlple pOpUlationS
problems not covered by the assumptions made in his studyWwould be beneficial. Whitlegt al.[134] have presented an ab-
The most relevant work on the dynamics, convergence, af#act model along these lines and made experiments of when
efficiency of parallel and distributed GAs in the last years h&¥!e€ might expect the island model to outperform single popu-
been done by Cantu-Paz and Goldberg. This groundbreaklﬁﬂon GAs on separable problems. Linear separable problems
work is summarized nicely in [22]. In relation to real-time mea@re those problems in which the evaluation function can be ex-
sures for parallel GAs, the contributions in [24] predicting tharessed as a sum of independent nonlinear contributions. The
scalability of parallel GAs are most appealing. First, they confdithors find indications that partitioning the population may be
pute the optimal number of processors that can be used by @i@vaptageous |nth|s_cas¢. Thisis a good starting point, but much
ferent types of GAs in order to determine the optimal numb&mains to be done in this area.
of processors to minimize the execution time. Also, this work
offers some bounds for the topology, rate, and frequency of n: CEAS
grations. They assume a model in which migration occurs aftercEAs are a kind of stochastic cellular automata [131], [128]
convergence of the subpopulations or at every generation, whighere the cardinality of the symbol alphabet is equal to the
is not the case in many applications and parallel models whenegmber of points in the search space. To our knowledge, the
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only theoretical model of cEAs is the one proposed by Rudolgifer superior performance. In terms of the tradeoff between
and Sprave. In [106], they show how cellular GAs can be modfficiency and simplicity, De Jong and Sarma conclude that
eled by a probabilistic automata network and give a proof tdcal binary tournament combined with an elitist policy for the
complete convergence to a global optimum based on Markmplacement of an individual seems to offer the best solution,
chain analysis. This result was obtained under the assumptéomd this is in qualitative agreement with what other researchers
that each individual’s fithess value in the grid has to be betteave been doing empirically in the past.
than a certain threshold which depends on past fithess values anlsh a subsequent study, Sarma and De Jong [109] performed
on the current generation number. Local fithess-proportionatenore detailed empirical analysis of the effects of the neigh-
selection was used for reproduction, which is not the customdrgrhood’s size and shape on the local selection algorithms. Five
choice for cellular GAs, but has some theoretical advantageddifferent neighborhoods with up to 13 neighbors were taken into
was also remarked that rather large neighborhood sizes (tena@fount and two selection methods were used: fithess-propor-
grid points) were needed for good behavior in the 1-D (ringipnate and linear ranking. Again, the growth rate of the best
case, while subsequent work on 2-D grids (torus) [107] showettividual was studied using a 2-D toroidal grid of sizex332.
that the ideal neighborhood size is much smaller, of the orderA$ in the previous case, it was found that the global selection
five, which confirms the empirical findings of other studies. pressure has the same qualitative behavior in the panmictic case
Statistical and empirical analyzes of the dynamical behavias well as in the grid, but it is weaker in the structured popu-
of cGAs have been performed by Sarma and De Jong [108] datlon, with linear ranking being stronger than fitness-propor-
by Capcarreret al. [25]. Sarma and De Jong’s work concentionate in both cases. The difference in intensity was attributed
trated on the effect of the neighborhood’s size and shape on ByeSarma and De Jong to the finite propagation speed of the indi-
selection pressure and on the local selection method. In [10&Huals through the grid in the spatially structured case. In fact,
De Jong and Sarma studied the influence of choosing a particey were able to show that propagation times are closely related
ular selection method for use in cellular GAs. Due to the ladk the neighborhood size, with larger neighborhoods giving rise
of a good model of the dynamics of cellular GAs operating witto stronger selection pressures. However, they also found that
overlapping neighborhoods, this study is necessarily empiricalio neighborhoods having the same linear extension but a dif-
making use of repeated measures of the relevant quantitiesfemrent number of neighbors show nearly identical results.
a number of well-known test functions. Three standard selec-In conclusion, these studies have put the choice of some crit-
tion algorithms were used: fithess-proportionate, linear rankirigal parameters of the cellular model on a firmer and more sys-
and binary tournament. The cellular GA structure was a 24#@matic basis, whereas previous work had been empirical and
toroidal grid of size 3% 32 with three different neighborhoodtentative in character. Along the same lines, the work of Alba
shapes with five, nine, and 13 neighbors respectively, which ared Troya [6] discusses the effect of the ratio depending on
the most common in practice. the kind of problem, as well as they propose a tunable cEA in
In order to study only the induced selection pressure (withowhich the ratio between the radii can change during evolution.
introducing the perturbing effect of recombination and mutdtis worth noting that a similar study has been recently done by
tion operators) a standard technique is to let reproduction be therges—Schleuter [58] for ES.
only active operator and to monitor the growth rate of the bestCapcarréret al.defined a number of statistical measures that
individual in the initial population. A first remark is that whenare useful for understanding the dynamical behavior of cEAs.
we move from a panmictic population to a spatially structurefivo kinds of statistics were usedenotypicand phenotypic
one of the same size, the global selection pressure induced@enotypic measures embody aspects related to the genotypes of
the entire population is qualitatively similar but weaker. In thandividuals in a population. Phenotypic statistics concern prop-
spatially distributed case it was observed that for all three megrties of individual performance, essentially fithess (see [25] for
tioned neighborhoods the performance of fithess-proportiondle exact definitions).
selection was inferior to that of linear ranking and binary tour- Among the genotypic statistics, quantities that measure how
nament, with binary tournament being roughly equivalent iadividuals are spatially distributed were defined. One of these
ranking as the neighborhood size increases. is the frequency of transitions, which is equal to the number of
To understand why this is so, De Jong and Sarma, using th&rders between homogeneous blocks of cells having the same
same initial population for the three selection methods, momjenotype divided by the number of distinct couples of adjacent
tored the actual number of offspring produced by each memiwslls. In practice, this measures the probability that two adjacent
of the population. The experiences were repeated a latgdividuals have different genotypes. To measure the genotypic
number of times with different random number seeds in orddiversit,y the customary population entropy was used, as well as
to estimate the variance due to sampling errors. It was fouadliversity index, defined as the probability that two randomly
that fithess-proportionate selection induces a much uniform kaftosen individuals have different genotypes. It was shown that
weaker global selection pressure than either ranking or bindhere is a relationship between the diversity index and the pre-
tournament selection. It is well-known that ranking and binawjiously defined frequency of transitions indicator: the diversity
tournament produce a constant selection pressure independhex is just the expectation value of the frequency of transi-
of the actual fitness values, while proportionate selection tisns.
obviously quite sensitive to actual fithess values. In the casePhenotypic statistics deal with properties of phenotypes, prin-
of cEAs with small local selection pools, it appears thus thaipally fitness. The performance of a population is defined as
local selection methods based on ranking or binary tournaméstaverage fitness. The diversity at the phenotypic level is cus-
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tomarily defined as the variance of its fitness distribution and
its definition is identical in cellular algorithms and in panmictic

EAs. More interesting are the new measures that apply in the
cellular case and that do not have a counterpart in the global

case. Capcarrem al. defined a new metric called thregged-

nesswhich measures the dependency of an individual’s fitness
on its neighbor’s fitness, giving the fithess correlation between

neighboring sites.

resources in a metacomputing fashion in order to solve
his/her optimization problem. A distinguished example of
such a system is to use the Web as a pool of processors to
run PEAs for solving the same problem.

Benchmarking soft computing techniqués present, it

is clear that a widely available and large set of problems
is needed to assess the quality of existing and new EAs.
Problem instances of different difficulty specially targeted

to test the behavior of EAs and related techniques can
greatly help practitioners in choosing the most suitable EA
or hybrid algorithm for the task at hand. Some important

In this section, we focus on some of the most promising re-  classes of problems show epistasis, multimodality, nonsta-

VIIl. N Ew TRENDS INPEAS

search lines in the field of PEAs. Future achievements should tionarity, constrains, and learning processes, all of which

take note these issues.

are important components of real-life problems.

« Tackling dynamic function optimization problems (DOP)
PEAs will have an important role in optimizing a complex
functionwhose optimavary intime (learning-like process).

Such problems consistin optimizing a successive set of EAs by presenting a structured classification from three points

ness functions, each one usually being a (high/small) P&Fview: b del by t db licati
turbation of the precedent one. Industrial processes, such O\ DY Model, by type, and by application.

as real task-scheduling, and daily life tasks such as contrxl— By Model
lingan elevatororthetrafficlight system, canbe modeled by
dynamic systems. Some PEAs, like cEAs [110] and dEAs, Previous research has been conducted on PEA models
can deal with such DOP environments successfully thankgparately, but much can be gained by studying them under a
to their natural diversity enhancements and speciation-likg@mmon viewpoint.
features. Since structured EAs keep diversity high, they canln Fig. 7, we provide a quick overview of different PEAs to
react quickly to a change in the environment (optimum Id2oint out important milestones in parallel computing with EAs.
cation). Atthe moment of the environmental change, a neliese “‘implementations” have rarely been studied as “parallel
fitness function is now to be optimized, and PEAs will findnodels.” Instead, usually only the implementation itself is eval-
diverse genotypic material to redirect the search toward tHated.
new optimum location. This is a natural advantage of theseSome coarse-grain algorithms like dGA [126], DGENESIS
algorithms with respectto mostsequential and/or panmicid], GALOPPS [53], PARAGENESIS [118], and PGA 2.5
EAs. are relatively close to the general model of migration islands.
. Deve|0ping theoretical issuegmproving the formal They often include many features to improve efficiency. Some
explanations on the influence of parameters on the copther coarse-grain models like CoPDEB [2] and GDGA [65]
vergence and search of PEAs will endow the researBave been designed for specific goals, such as providing explicit
community with tools allowing to analyze, understandexploration/exploitation by applying different operators on each
and customize an EA family for a given problem. Adisland. Another recent example of this class is the (iiGA) [78],
vances relating the number and size of subpopulationich promotes coding and operator heterogeneity (see Sec-
and the degree of Connectivity between the Subaigorithrﬂ@n |V) A further parallel environment that offers adaptation
or neighborhoods will have a special interest. In additiotith respect to the dynamic behavior of the computer pool and
extending traditional deterministic measures and resufg/lt tolerance is MARS, described by Ta#tial.in [124].
to analyze stochastic PEAs will endow this EA branch Some other PGAs execute nonorthodox models of
with a more serious set of tools to characterize them. coarse-grain evolution. This is the case of GAMAS [98],
Relationship between PEAs and other nonERsis is based on using different alphabets in every island, and GEN-
a large area that is important in practice. Comparind OR Il [135], based on a steady-state reproduction.
PEAs with other search heuristics will allow to interface On the other hand, massive PEAs have been strongly asso-
algorithms coming from different users and with differengiated to the machines on which they run: ASPARAGOS [55]

search properties to work together in order to solve @ad ECO-GA [34]. This is also the case of models of diffi-
single complex task in parallel. Of course, there is neult classification (although most of the mentioned ones are of

a priori reason for an EA to be superior to anotheglifficult classification!) like PEGAsuS [102], SP1-GA [75], or
search technique; and this clearly advocates to empl&fpA-Cube [40]. As to the global parallelization model, some
hybrid techniques to obtain a better algorithm. This ignplementations, such as EnGENEer [104] or PGAPack [76],
very important from a theoretical and practical point ofre available.

view, since hybndiZing and para”eiizing are two growing Finally, some efforts to construct general frameworks for
trends in Soiving Comp|ex probiems_ PEAs are GAME [118], PEGAsuS, and RPL2 [101] The
Running PEAs on geographically separated clustéhss

will allow a user to utilize sparsely located computational 14Online] Available: http://www.aic.nrl.navy.mil/galist/src/pga-2.5.tar.Z

IX. CLASSIFICATION OF PEA IMPLEMENTATIONS

In this section, we discuss briefly the main features of some
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ParallelGA  ___ _ _ Kind of Parallelism Topology Some Applications _
ASPARAGOS  Fine grain. Applies hill-climbing if no improvement Ladder TSP
CoPDEB Coarse grain. Every sub-pop. applies different operators  Fully Connected Func. Opt. and ANN’s
dGA Distributed populations. Studies migration rate and freq. Ring Function Optimization
DGENESIS 1.0 Coarse grain with migrations among sub-populations Any Desired Function Optimization
ECO-GA Fine grain. One of the first of its class Grid Function Optimization
EnGENEer  Global parallelization (parallel evaluations) Master / Slave Various
GALOPPS 3.1 Coarse grain. A very portable software Any Desired F. Opt. and Transport
GAMAS Coarse grain. Uses 4 species of strings (nodes) Fixed Hierarchy ANN, Func. Opt,, ...
GAME Object oriented set of general programming tools Any Desired TSP, Func. Opt., ...
GDGA Coarse Grain. Admits explicit exploration/exploitation ~ Hypercube Func. Opt. (floating p.)
GENITORIT  Coarse grain. Interesting crossover operator Ring Func. Opt. and ANN’s
HSDGA Hierarchical coarse and fine grain GA. Uses E.S. Ring, Tree, Star, ... Function Optimization
iiGA Injection island GA, heterogeneous and asynchronous Node Hierarchy Function Optimization
PARAGENESIS  Coarse grain. Made for the CM-200 (1 ind.<>1 CPU) Multiple Function Optimization
PeGAsuS Coarse or fine grain. High-level programming on MIMD Multiple Teaching and Func. Opt.
PGA Sub-populations, migrate the best, local hill-climbing,... ~Circular 2D Ladder Func. Opt. and TSP
PGAPack Global parallelization (paraliel evaluations) Master / Slave Function Optimization
RPL2 Coarse grain. Very flexible to define new GA models Any Desired Research and Business
SGA-Cube Coarse Grain. Implemented on the nCUBE 2 Hypercube Function Optimization
SP1-GA 128 steadv-state islands on an IBM SP1 with 128 nodes 2D Toroidal Mesh  Function Obtimization

Fig. 7. A quick survey of the features of several parallel EAs.

Application Algorithm Oriented Tool Kits
Oriented Algorithm Specific Algorithm Libraries Educational General Purpose
ASPARAGOS EM2.1 EnGENEer
CoPDEB
EVOLVER 2.0 ESC*P,DE 1.2
DGENESIS 1.0 A GAGS
ECO-GA
GAlib
GAGA G
OMEGA GALOPPS 3.1 GENITORI-1I
GAMAS
GAuesd 12/14 LibGA GA Workbench ~ PeCGAsuS
PC/BEAGLE GDGA 00GA
GENESIS 5.0 - GENEsYs RPL2
Lo PGA 2.5
HSDGA Splicer 1.0
plicer 1.
XpertRule GenAsys P GENESIS PGAPack
SGA
TOLKIEN
SGA-Cube SUGAL 2.0

Fig. 8. Classification of EA implementations by type.

mentioned systems are endowed with “general” programming 1) Application Oriented:These are black-box systems de-
structures intended to ease the implementation of any model signed to hide the details of EAs and help the user in
of PEA. The user must particularize these general structures developing applications for specific domains. Some of
to define his own algorithm. The result is sometimes called an  these are useful for different purposes, such as sched-
algorithmic skeletonNowadays, many researchers are using  uling or telecommunications (e.g., PC/BEAGLE). Others
object-oriented programmin{OOP) to create better software are much more application oriented (like OMEGA for fi-
for PEAs, but unfortunately some of the most important issues  nance). Usually, they are menu-driven and easily param-
typical in OOP (such as making meaningful designs) are eterizable.

continuously being ignored in the resulting implementations. 2) Algorithm Oriented:Based on specific algorithms. The
The reader can find some general guidelines for designing source code is available in order to provide an easy incor-

object-oriented PEASs in [9]. poration into new applications. This class may be further
All these models and implementations offer different levels subdivided into the following.

of flexibility, ranging from a single PEA to the specification of a) Algorithm Specific:They contain one single EA

general PEA models. This list is not complete, of course, but it (e.g., GENESIS). Their users are system devel-

helps in describing the current “state of the art.” opers (for making applications) or EA researchers

(interested in extensions).

B. By Type b) Algorithm Libraries:They support a group of algo-
In order to complete our review, we now provide an extensive rithms in a library format (e.g., OOGA). They are

classification of sequential EAs and PEAs into three major cat- highly parameterized and contain many different

egories [102], [5], according to their specific objectives (Fig. 8). operators to help future applications.
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3) Tool Kits: These are flexible environments for program- Telecommunication Network Desigm: mobile telecommu-
ming a range of different EAs and applications. They camication network design, two major problems have to be solved:
be subdivided into the following. the placement of the antennas and the frequency assignment.

a) Educational:Used for introducing EA concepts toBoth are hard'multiopjective optimization problems and both
novice users (e.g., GA Workbench). The basictec}l?{"“’e been satisfactorily solve_d W_lth PE_As._ The frequepcy as-
niques to track executions and results during tRignment prob_ler_n (FAP) consists in attnbl_Jtlng frequencies 'Fo a
evolution are easily managed. number of radio links in suc_h awayasto smultanequsly satisfy

b) General Purpose:Useful for modifying, devel- a large numper of cons’;ralnts and use as few distinct frequen-
oping, and supervising a wide range of operator§i€S as. po_SS|bIe. Meuniet al. have .recently _used a par.aIIe.I
algorithms and applications (e.g., Splicer). muItlobJectlv_e GAforthe FAP [87]. Since the fithess fu_nc_tlon is

, i very expensive to evaluate in this problem and has a distinct spa-

Deeper explanations of these systems, detailed referen¢ggsircture, its calculation was parallelized in a master—slave

and up-to-date Internet pointers can be found in [S]. manner with PVM, with each worker taking care of a portion
of a geographical area. The algorithm has been applied to real

C. By Application cases with good results. Also, we can find in [82] a good work
in solving different instances of several FAP benchmarks by ap-

Parallel EAs and dEAs have been shown to be useful jiying ant colony optimization algorithms (ACO). On the other
practice in a number of industrial and commercial applicationside, see [20] for learning about a PEA used for radio network
Many real-life problems may need days or weeks of computingsign (placement of antennas).
time to solve on serial machines. Although the intrinsic time Financial Applications Financial markets are inherently un-
complexity of a problem cannot be lowered by using a finitgredictable since, according to a widely held view, the price
amount of computing resources in parallel, parallelism oftefine series essentially follows a random walk. However, more
allows reducing these times to reasonable levels. This canfgeent work has convincingly shown that although the broad pic-
very important in an industrial or commercial setting whergyre is correct, there are still some significant deviations from a
the time to solution is instrumental for decision making anﬁrict random process that can be made use of (See’ for examp|e
competitivity. Furthermore, the new models offered by stru¢go]). Some of the technologies aiming at market forecasting
tured populations often allow better exploration of alternativmake use of so-callethdicators which are S|mp|y elaborate
solutions of the design space. statistics computed from observed prices. Once suitable indi-

PEAs have been used successfully in operations reseagakors have been computed, they can be combined according
(OR), engineering, and manufacturing, finance, VLSI, and logical rules to buildtrading models which are combina-
telecommunication problems, among others. It is impossikiiens of indicators and trading rules that can be used to generate
to review such work in a small space, since in fact this woulgading recommendations. However, indicator computation is
need a separate survey to deal with the so wide spectramextremely lengthy process and choosing between alternative
of optimization tasks in which PEAs are being used wittrading models is a hard problem. Chopatdl.[28] used par-
success. However, for the sake of completeness, we do proviglel multipopulation genetic programming technigques to speed
a description of a few successful and real-world importanp the search for good trading models with good results. The
applications in very relevant fields of the optimization withrading models induced with parallel GP are robust, yield good
PEAs. The references therein are intended to help the readet-of-sample performance, and are produced in hours instead
find more information on the subject. of days or weeks.

Combinatorial optimization and OR:Many important Design of Analog Electronic Circuitdlodern circuit design
combinatorial optimization problems, according to preseiga difficult task that poses a number of challenges to engineers.
knowledge, do not admit efficient, polynomial-time determinwhile considerable progress has been made in automating the
istic algorithms. Itis thus worth looking for heuristic algorithmslesign in the case of digital circuits, analog and analog-dig-
that are able to find at least good, if not optimal, solutions, bital circuit design has not enjoyed similar developments and
without any guarantee. EAs are heuristics that have been msdmehow remains a form of art rather than solid engineering.
used in the field of combinatorial optimization, usually wittBy using heavy-duty parallel genetic programming, Koza and
very satisfactory results. Allowing PEAs does not change tlveworkers [73] have been able to synthesize complex analog
intrinsic complexity of the problem, but can be a big help botbircuits automatically from a high-level description of the cir-
for reducing the execution time as well as to better explore thait's desired function. Genetic programming has produced de-
search space. There exist several studies dealing with paradighs that are competitive with human-designed circuits, and
and dEAs in combinatorial optimization. Here, we mentioaven better in some cases. Furthermore, the GP approach is not
the articles of Gorges—Schleuter [57] and Mihlenbein [89], limited to particular cases; it can be generalized directly to other
which large versions of the TSP and other prototypical proproblems. Parallelism has been instrumental in these calcula-
lems in combinatorial optimization were solved satisfactorilyions since they are extremely time-consuming.

Parallel ESs have also been used for combinatorial optimizatiorVLSI Design¥/LSI routing and placement problems are very
(see, for instance, [41] and [111]). It was shown by the autharaportant industrial problems. They are notoriously difficult to
that various forms of PEAs are competitive with other methodelve with standard algorithms due to the exponential time com-
and sometimes even superior. plexity increase with the instance size. Heuristic and approx-
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imate algorithms are thus the only practical way of obtaining [6]
good solutions in reasonable times. An interesting application
of parallel GAs to optimize routing in VLSI circuits subject to
other industrially relevant constraints is presented in [77]. The[7]
author uses a classical island model with grid communication
topology among subpopulations and also examines several poli[B]
cies for the selection of migrants and the migration frequency.
The results are at least as good as those obtained with other po%]
ular methodologies, including sequential EAs, on a number of
standard benchmark problems in the field.

Engineering DesignGood examples of parallel GAs in engi- [10]
neering design can be found, for example, in the work of Doorly
and his group on aeronautical design optimization [36]. For angi1]
other successful application, in [39] the authors combined par-
allel GAs with finite element methods for the optimization of
flywheels. They compare a number of optimization methods in12]
cluding a standard island-parallel GA and the iiGA [78], which
has been described in Section IV. In [39], the authors shovm]
that the iiGA is the most effective for the flywheel optimiza-
tion problem and offers a number of distinct advantages ovef4l
standard PEAs and over other commonly used methods such gg
simulated annealing. Again, the time to solution using PEAs al-
lows one to either afford a better solution quality for a given
problem size in less time, or a solution to a more realistic an&ls]
bigger problem instance in the same time, which are both valu-
able improvements in engineering practice. [17]

[18]
X. SUMMARY

This paper contains a modern survey of parallel models anE:ilg]
implementations of EAs. We have stressed not only the associ-
ated algorithmic issues, but also the parallel tools for building,,
PEAs. By summarizing the parallel algorithms, their applica-
tions, classes, and theoretical foundations, we intend to offer
valuable information not only for beginners, but also for re-12t
searchers working with EAs or heuristics in general.

The list of references has been elaborated to serve as a dirdé?]
tory for granting the reader access to the valuable results th
PEAs are offering to the research community. Most importan
trends have been discussed, yielding what we hope is a unified
overview and a useful text. [24]
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