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Abstract 

This paper evaluates the performance of the paral- 

lel, main-memory DBMS, PRISMA/DB. First, an 

abstract architecture for parallel query execution is 

presented. A performance model for the execution 
of simple relational operations on this architecture 

is developed. The parameters in the model are set 
using experiments on PRISMA/DB and the perfor- 

mance of PRISMA/DB is analized in the context of 

the model. Several conclusions can be drawn from 
the model combined with the results of the per- 

formance experiments. Firstly, the performance of 

PRISMA/DB appears to be competitive with re- 

spect to other systems. Secondly, the developed 

model can explain the results from the performance 

experiments to a large extent. Also, it is concluded 
that observed linear speedup for small numbers of 

processors cannot always be extrapolated to larger 

numbers of processors. Finally, it is concluded that 
the optimal number of processors for the parallel 

execution of an operation is smaller for a main- 

memory system than for a disk-based system. The 
results of this study can be used to design data frag- 
mentation strategies for large parallel machines. 
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1 Introduction 

In the last decade, research has been done on the 
design, implementation, and performance analysis of 

parallel DBMSs. Teradata [Ter83], Bubba [BAGSO], 

HC186-16 [BrG89], GAMMA [DGSSO] are examples 
of systems that actually were implemented, and many 
papers were written on their performance. The sys- 
tems mentioned above are disk-based DBMSs, and ob- 
viously their performance and parallel behavior is in- 
fluenced by the use of disk as main data storage. 

On the other hand, the last years yield an increasing 

number of papers on main-memory DBMSs [DKO84, 
Eic89,GLH83,LeC86,LeR87]. A main-memory DBMS 
stores the entire database, or a considerable part of 
it in its primary memory. Of course, main-memory 
systems have their own characteristics, for example 
with respect to recovery [Eic87] and query processing 

[DK084] 

PRISMA/DB combines the two features mentioned 
above: it is a parallel, main-memory system. The sys- 
tern offers full relational DBMS facilities, and a fully 

functional prototype running on a loo-node multi- 
processor is currently available. PRISMA/DB is used 

for research in various directions like parallel integrity 

constraint enforcement [GrASO], recursive query pro- 

cessing [AHB88,HAC9O,HoA92], and parallel evalu- 

ation of multi-join queries [WiASO,WiASl ,\IYX92]. 
[ABF92] describes the system in general. This paper 
addresses the specific aspects of the performance of a 

parallel main-memory system in relationship to dat,a 
fragmentation strategies with PRISMA/DB as an es- 

ample. 

Teradata, GAMMA and HCl86-16 use full declus- 
tering as data fragmentation strategy. This means 
that the tuples belonging to one relation of the 
database are distributed over all nodes in the system 

Also, the degree of parallelism for the execution of 011e 
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relational operation (which is the number of proces- 
sors used to evaluate the operation) is taken equal to 

the size of the system. Using these data fragmentation 
and parallel query execution strategies, linear speedup 
is achieved for up to 30 processors. 

Bubba uses a more flexible data fragmentation strat- 

egy [CABSS], h’ h 11 w ic a ows relations to be distributed 
over fewer than the available nodes. In simulation ex- 
periments that optimize the transaction throughput 

for some workload, they find that full declustering, in- 
deed: is not the right default fragmentation strategy. 

However, the optimal degree of declustering they find 
is relatively high: 736 is reported to be the right degree 
of declustering in an experiment described in [CABSS]. 

PRISMA/DB uses a flexible data fragmentation and 
query execution strategy that allows various degrees of 
declustering for base relations and various degrees of 

parallelism for the execution of one operation. Some 
queries of the Wisconsin Benchmark [BDT83] are used 
to evaluate the performance of the system and the goal 
is minimization of the response time of these queries. 

The important questions in this context are: “What 

are the speedup characteristics of the parallel execu- 

tion of simple operations on a main-memory system?” 
and “What is the optimal degree of parallelism to be 
used for the parallel execution of these queries?“. To 
facilitate the analysis, first an abstract architecture 

is introduced with a model for the parallel execution 
of operations on this architecture. The model devel- 

oped in this paper is similar to the models presented 
in [CveS’i]. The performance of PRISMA/DB is eval- 
uated in the context of this model. 

This paper is organized as follows: Section 2 intro- 
duces the abstract architecture with a query execution 

model, Section 3 describes PRISMA/DB, and it high- 
lights some aspects of the system that are important 

in the context of this paper, Section 4 evaluates the 

performance of PRISMA/DB using queries from the 

Wisconsin Benchmark [BDT83], and finally, Section 5 
summarizes and concludes the paper. 

2 An abstract architecture for 

parallel query execution 

To evaluate the behavior of the parallel execution of 

an operation, we present a simple abstract architec- 
ture of the query execution layer of a parallel DBMS, 

that can serve as an abstraction of many known paral- 
lel systems. Subsequently, a model for query execution 
on this architecture is presented. After that, the dif- 
ference between disk-based and main-memory systems 
is described in the context of this model. 

Figure 1: An abstract architecture for par- 
allel query execution 

Abstract architecture 

The proposed abstract architecture is illustrated in 
Figure 1. The hardware support assumed consists of 
a shared-nothing multi-processor, with a high band- 
width communication network and sufficient nodes. 
The software architecture consists of one coordinator 
process, and a number of operation processes. Each 
process is assumed run on a private node. The coordi- 
nator initializes the operation processes in a sequential 

process. As a consequence; the operation processes 
cannot all start at exactly the same time. Rather) ev- 

ery next operation process starts some time after the 

start of its predecessor. 

Query Execution Model 

Consider this architecture executing a relational op- 
eration. The operand data for this operation is dis- 
tributed over (part of) the system into equally sized 

fragments. We assume that the costs of the opera- 
tion are proportional to the number of tuples in its 
operand(s). This assumption holds for an important 
class of relational operations. For example, the costs 
of selections and projections are linear in the number 
of tuples in the operands, and, the costs of other op- 
erations with a hash-based implementation. like joins 

and unique operations, are also almost linear in the 

number of tuples in their operands. Parallel imple- 
mentations of such operations aim at linear speedup. 
This means that the parallel execution on n processors 

is n times faster than the execution on one processor. 
In the remainder of this section, we will show that this 

goal is only achievable for relatively low numbers of 
processors, which number is lower for main-memory 

systems than for disk-based systems. 
Let N be the number of operand tuples, and let c 

be the time needed to process one tuple. Then 

cN 

is the time needed for the entire operation, and, if 71 is 
the number of processors used than ideally, 

cN 
- 
n 
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is the processing time of one operation process. 

Irm 1 
CN 
T 

a: 8 nodes 

an q 

b: 16nodes 

bm.3-r 
an T 

c: 25 nodes 

Figure 2: The behavior of the parallel ex- 
ecution of an operation on 8, 16, and 25 

nodes 

Figure 2 shows the theoretical characteristics of the 
parallel execution of an operation. In the diagrams 
in this figure, the horizontal axis is the time axis, and 

the node numbers are on the vertical axis. Each line in 
the diagrams represents one operation process; a line 
starts at the time at which the corresponding opera- 
tion process starts, and its length is proportional the 

computation time of the process. The operation pro- 
cesses do equal amounts of work, and therefore, the 

lines have the same length, which is equal to cN/n. 
If a is the time the coordinator process needs to start 
one operation process, then the last operation process 
is initialized at time an, so it is obvious that the fol- 

lowing equation holds for the response time ((R)) of 
an operation on N tuples executed on n nodes. 

CN 
R=an + - 

n 

This is the central expression to analize the behavior 
of the parallel execution of an operation. 

The speedup (S) of the parallel execution of an oper- 
ation is defined as the response time of the execution 
on one processor divided by the response time of the 
parallel execution. So, in this model, the speedup is 
equal to 

s= 
a + CN 

un + $ 
= &+1>n 

a7l2 + 1’ 
(2) 

27 

Note that the case when a = 0 corresponds to linear 

speedup. This means that all operation processes start 
at exactly the same time. 

The optimal number of processors for an operation 
(n,) is the number of processors for which the opera- 
tion is executed with the smallest response time. This 

number can be found by setting the derivative of (1) 
to zero: 

(3) 

Substitution of the optimal number of processors into 
Equation (2) yields the speedup of the optimal execu- 

tion of an operation: 

so = ; CN = ino. d- a 

Note, that the optimal execution only yields half of 

the linear speedup aimed at. Also, the optimal num- 
ber of processors depends on the parameters of the 
system, but given the optimal number of processors! 
the speedup is fixed to half that number. 

Substitution of the value of n, found in Equation 
(3) into both terms of the right-hand-side of equation 

(1) yields a relationship between the startup time and 

the computation time per fragment: As 

cm, = d&T 

and, 
cN 
--=xlGz 
no 

it can be concluded that the optimal esecution of an 

operation spends equal amounts of time on initializa- 

tion and on the execution of one subtask. In other 
words, in the optimalexecution, the last subtask starts 
at the time at which the first one is ready. 

The results of this section are illustrated by Figures 

2 and 3. Figure 2 shows the execution characteristics 
of the some abstract operation executed on 8, 16, and 

25 nodes. From the diagrams it is obvious that 16 
nodes is the optimal number for this operation, as the 

diagrams show that the 16th node starts processing at 
the time at which the first processor is ready. Note 
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that the average utilization of the nodes participating 
in the optimal execution is 50 %. The execution on 8 

nodes takes too long because the individual operation 
processes take too long, and 25 nodes is too many, be- 
cause the coordinator takes too much time to initialize 

the operation processes. 

From the calculations above it is clear that 

cN 

a 

is the quantity that determines that behavior of the 
parallel execution of an operation. Equation (3) 
shows that the optimal number of processors is higher 

for higher values of cN/a. Equation 2 shows that 

the speedup deviates less from linear speedup for 
higher values of cN/a, because the contribution of the 

quadratic term in the denominator gets small for high 
values of cN/a. These results are intuitively right. 

Slow local evaluation (reflected in a high value for c) 
and large experiments (high value for N) allow a high 
degree of parallelism and almost linear speedup. Fast 
initialization of subtasks (small value for a) has the 
same effect. 

high 

values 
of $ 

low 
values 

of * a 

Figure 3: Theoretical speedup curves for 

different values of y 

Figure 3 shows the speedup characteristics for dif- 

ferent values of cN/a. In this diagram, the number of 

nodes used for the execution is on the horizontal axis, 
and the speedup is on the vertical axis. The straight 
curve shows linear speedup; for the other curves the 
parameter setting is derived from the experiments de- 

scribed in Section 4. All speedup curves show almost 
linear behavior for a small number of processors. This 
is the linear speedup that has been reported for small 
systems. At a certain stage, however, they deviate 
from the linear speedup curve. This deviation starts 
being significant at a higher number of processors for 
larger values of cN/a. 

Disk-based versus main-memory systems 

An important question at this stage is: “Which are 

realistic values for c and a?“. Obviously, if the value 
of c/a is relatively high, linear speedup is a reasonable 
assumption for the parallel execution of an operation 
on large operands. In that case, all processors of a 
relatively small system can be exploited to execute an 
operation. However, this model also shows that. lin- 

ear speedup for a small number of processors does not 
guarantee scalability of this property to larger systems. 
Therefore, it is not clear to what extent all nodes of 

a system should be used to execute an operation, so 

that full declustering of base relations is the right frag- 

mentation strategy. 

The next sections of this paper describe the perfor- 

mance of a parallel, main-memory DBMS. A main- 
memory DBMS stores the entire database in its pry- 
mary memory, and therefore, no disk-access is needed 
for retrieval queries. Obviously, this fact influences the 
costs of local processing: for a main-memory system, 
the costs of local processing are lower than for a com- 

parable disk-based system, and therefore the value of c 

is also lower. The difference is estimated to be at least 
one order of magnitude [DKO84]. On the other hand, 
the value of a is determined by the costs of initializa- 
tion of operation processes. This initialization mainly 

requires communication, and the main-memory char- 
acter of a system does not affect the communication 
costs. Therefore, the value of a is equal for compara- 
ble main-memory and disk-based systems. As a con- 
sequence, the value of c/a, and so the optimal number 
of processors to be used for the execution of an op- 

eration on a main-memory system is lower than on 
a disk-based system. Based on the assumption that 

the difference in local processing costs is about one or- 

der of magnitude, the difference between the optimal 

number of processors for both systems is about 3 (see 

Equation (3)). 

The remainder of this paper discusses the per- 
formance of the parallel, main-memory DBMS 
PRISMA/DB in the context of the model described 
above. PRISMA/DB is currently implemented on a 
loo-node multi-processor, and we will show that the 

optimal number of processors to be used for realistic 
operations may well be smaller than 100, so that full 
declustering should not be used as fragmentation strat- 
egy. As an introduction, the next section briefly intro- 

duces PRISMA/DB. After that, Section 4 describes 
the performance analysis. 
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3 PRISMA/DB 

PRISMAIDB is a full-fledged parallel, main-memory 

relational DBMS that was designed and implemented 
from 19S6 to 1991 in the Netherlands by several scien- 
tific and commercial research institutions. A full de- 
scription of design, architecture, and implementation 
of PRISMA/DB can be found in [ABF92], here a brief 
introduction into the hardware used and the architec- 
ture of PRISMA/DB is given. After that two aspects 
of the system that are important in the context of this 
paper are described: data-fragmentation and parallel 

query execution, and the built-in benchmarker that 

allows detailed analysis of performance results. 

The POOMA machine 

Figure 4: Hardware configuration of the 
POOMA machine 

PRISMAIDB is implemented on a parallel multi- 

processor, called the POOMA machine. The POOMA 
machine is a shared-nothin g, parallel multi-processor, 

which consists of 100 nodes. Figure 4 shows the hard- 
ware configuration. Each node consists of a 68020 data 
processor with 16 Mbytes of memory, a disk, and a 
communication processor that links it to 4 other nodes 

using bidirectional links. Some nodes have an ethernet 

card that links the system to a Unix host. The entire 

system contains 1.6 Gbytes of memory. 
On this hardware, the implementation language 

POOL [AmeSS,SpeSl] is implemented. POOL stands 
for Parallel Object-Oriented Language. POOL allows 
the definition of objects which are implemented as pro- 
cesses. Parallelism is supplied in a very natural way: 
conceptually, all objects that exist in the system ex- 
ecute concurrently. Allocation of objects to different 

1 i : 

Figure 5: Global architecture of 
PRISMA/DB 

processors makes them really run in parallel. Objects 
can dynamically be allocated to processors and ob- 
jects can be created and deleted dynamically. These 
features turn a POOL program in execution into a flex- 

ible structure which allows run-time experimentation 

with various forms of parallelism. 

It should be noted, that the language POOL and the 
supporting operating system were developed and im- 
plemented parallel to the design and implementation 
of PRISMA/DB. As a consequence, the currently used 
implementation of POOL is still experimental and not 

optimized in detail yet. 

The architecture of PRISMA/DB 

Figure 5 presents an overview of the architecture of 
PRISMA/DB. The architecture consists of a number 
of components that are implemented as POOL objects. 

Some components are instantiated several times in the 
system, others are central: they have one instantia- 

tion that serves the entire DBMS. The architecture 
is dynamic: components can be created and deleted 
dynamically, according to the use of the system. 

The rectangles in Figure 5 represent permanent 
components, i.e. components that live as long as the 
system. The ovals represent transient components be- 
longing to one user session; the life cycle of these com- 

ponents is related to user actions. The dotted ovals 

show transient components belonging to a second, con- 

current user session. 

Two central components of the system are the data 

dictionary (DD) and the concurrency controller (CC). 
The data dictionary is the central storage of all schema 
information of the system. The concurrency controller 
controls concurrent access to the database. It uses a 
standard two-phase locking protocol with shared and 
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exclusive locks. Figure 5 shows that these central com- 
ponents are used by both user sessions. 

The query preprocessing layer of the system is 
formed by the query language compiler (QLC) and 
query optimizer (QO) components. The query lan- 
guage compiler provides an interactive interface to the 
user and translates queries from a user language into 
the internal relational language of the system, called 
XRA. Translated queries are sent to the QO, which 

optimizes them into parallel execution plans. 

The transaction manager (TM) forms the execution 
control layer of the system. The TM coordinates the 
execution of a transaction via an interface to the query 

execution layer of the system. Also, the TM enforces 
all ACID transaction properties. 

The data storage and query execution layer consists 
of the one-fragment managers (OFMs) and the local 

transactions managers (LTMs). OFMs are permanent; 
they store and manage one fragment of a relation in 
the database. As OFMs serve as storage units of the 

database, these components can be accessed by all user 
sessions. LTMs are transient and private to the trans- 

action they belong to; they are the relational engines in 
the system. An LTM can be attached to one OFM. In 

that case, the LTM is allocated to the processor host- 
ing the OFM, and the LTM can directly access the 
fragment stored in the OFM. If different user sessions 
want to access an OFM concurrently, each user session 
attaches a private LTM to the OFM. LTMs that are 

not attached to an OFM process intermediate results. 
LTMs can exchange data by sending tuple streams. 

An extended Relational Algebra (XRA) is used as 
internal representation of queries. This language con- 

sists of the normal relational operations extended with 
some primitives for grouping and for recursive query 

processing. Also, the language allows the expression 
of a wide range of parallel execution plans for a query. 
Each relational operation can be executed by an arbi- 

trary number of processors, and the result of an oper- 

ation can efficiently be redistributed over an arbitrary 

number of destinations using a split operation. Such 

a split operation explicitly lists the addresses of the 

destinations. The language is described in detail in 

[GWFSl]. 

Data fragmentation and Parallel query execu- 

tion 

In PRISMA/DB, performance is gained through par- 
allel execution of queries. Fragmentation of the data 
belonging to one relation over (part of) the available 
nodes is known to be a prerequisite for performance 
gain from parallel query execution. 

PRISMA/DB uses hush-based fragmentation of base 

relations and intermediate results. The number of 
fragments used for a relation, the fragmentation at- 

tribute, and the allocation of fragments to processors 
can be set by the user. Tuples that are inserted into 
a relation are automatically inserted into the right 
fragment of the relation. To decide into which frag- 
ment a tuple is to be inserted, the system applies a 

system-wide used hash-function to the fragmentation 
attribute, and the resulting value modulo the num- 
ber of fragments used for the relation indicates the 

fragment where the tuple belongs. The number of 
fragments that a relation is fragmented over: is called 
the fragmentation degree of the relation. An arbitrary 

number of fragments can be used for a relation. how- 
ever, fragmentation degrees over 100 are probably not 
useful on a loo-node machine. 

PRISMA/DB allows a wide variety of parallel er- 
ecution strategies for simple and complex queries. 

[ABF92] describes the execution model for multi- 
operation queries, and [WiASl] presents the results 

of our research on the parallel execution of multi-join 

queries. In this paper, the performance a.nd speedup 
characteristics of some queries from the Wisconsin 
Benchmark are described. To study the behavior of 

these queries, only the parallel execution of simple op- 
erations has to be described. This description starts 
at the transaction manager level, as we do not want to 
take the query preprocessing phase into account here. 

A query enters the transaction manager as a paral- 
lel execution plan, that specifies the operations that 
have to be executed on the fragment level. For exam- 
ple, a range selection from a relation is expressed as 

a number of range selections from the fragments that 
belong to the relation. The Th4 starts an LTM foi 
each fragment, and initializes it with the fragment se- 
lection operation that it has to execute. As one TM 
serves the entire transaction, this initialization phase is 
a sequential process, and, as a consequence, the frag- 

ment selection operations cannot all start at exactly 

the same time. 

The execution of binary operations is a bit more 

complex. A join operation is described as an exam- 
ple. The parallel execution plan of a join in which 

both operands are fragmented on the join attribute 

consists of a set of fragment joins. The operands of 
one fragment join are stored in two OFMs. Because 
LTMs are private to OFMs, the execution of this join 

requires the initialization of two LTMs: one that sends 
its base-fragment to the other, and the other one that 
joins the incoming stream of tuples to its base frag- 
ment. When the join operation needs redistribution of 
one or both operands, the sending LTh4s redistribute 
their data. Note, that a join operation that requires 
redistribution of both operands needs an additional set 
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of LTMs for the redistribution of the second operand. 
This architecture closely follows the abstract ar- 

chitecture described in Section 2. The next section 
will show that its implementation mainly follows the 
model, however it deviates from it in some cases. 

The benchmarker 

PRISMA/DB has a built-in benchmarker that allows 
detailed analysis of the execution characteristics of a 
query. The benchmarker allows writing cheap log mes- 

sages during the execution of the query. The expensive 
collection of the benchmark data is postponed until 
after the query execution. The benchmarker consists 
of a datastructure, called the benchmark collector, on 
each processor, that is shared by all processes that 
run on that processor. Processes can write simple log 
messages to their local benchmark collector. Writes 

to a benchmark collector are atomic. A log message 

consists of the local time on the processor (the local 
clocks are synchronized), the process identity, and an 

indication of what the process is doing, like “start” or 

“ready”. After the execution of the query the data 
from all benchmark collectors are collected into one 
file, which can be analized. In the current version of 
PRISMAIDB, all LTMs log the time at which they 
initialize, and the time at which they are ready. This 
requires two log messages per LTM, and therefore the 
execution of the query is not influenced much by this 
benchmarking. From the benchmark data, the costs of 
initializing one operation process can retrieved using 

the initialization time of subsequent LTMs, and the 

costs of local processing can be found from the dif- 
ference between the “init” and “ready” mark of one 
LTM. 

4 Performance 

Some queries from the Wisconsin Benchmark [BDT83] 
are used to evaluate the performance of PRISMA/DB. 

Selection queries 

A query that selects 1% of its input is used to evaluate 

the performance of selection queries. The source rela- 
tion is fragmented over a number processors and the 
selection criterion is not on the partitioning attribute, 
so all fragments have equal probability to find qualify- 
ing tuples. The result is stored fragmented without re- 
distribution on the processors generating result tuples, 
but obviously, as PRISMAIDB is a main-memory sys- 
tem, the results are not written on disk. Different sizes 

for the source relation are used, ranging from 5 000 

(510 tuples to 400 000 (4OOK) tuples. For each source 

relation size, a speedup experiment is done. The num- 
bers of processors used are adjusted to the size of the 
source relation, following the theory developed in Sec- 
tion 2 that shows that larger source relations have a 
higher optimal number of processors. 

processors 1 5K 10K 50K lOOK 4OOK 

1 1 480 912 

3 ~ 176 306 

5 ~ 188 248 775 1416 
7 208 252 656 

10 262 292 524 876 2796 

15 384 530 735 
20 596 760 1646 
30 860 1426 

40 1486 
50 1692 

response times in ms 

0 10 20 30 40 50 “O&S 

speedup diagram 

Figure 6: Performance of selection queries 

Figure 6 shows the response times resulting from the 

selection queries, and the speedup diagrams that can 
be calculated from them. All response times are given 

in ms. The best response time for each source relation 
size is printed in bold font. 

The response times are a measure for the abso- 

lute performance of the system. The absolute perfor- 
mance figures are reasonable compared to other sys- 
tems. Comparison of the absolute performance of sys- 
tems is hard, because there are too many differences 
between systems in hardware, functionality etc. How- 
ever, to give an indication, Figure 7 lists the response 
times of some other systems, with the number of pro- 
cessors used for a 1% selection from lOOI< tuples. The 
absolute performance of PRISMA/DB seems reason- 

able from these data. 
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Figure 7: Response times of some parallel 
DBMSs to a 1% selection from 100 tuples 
in ms 

selection operations execute in the shortest time if the 
relation is fragmented over the number of processors 

that is optimal with respect to the cardinality of the 
relation. Therefore, in a system like PRISMA/DB it 
is not a good idea to fragment relations over all avail- 

able nodes. Rather, the degree of fragmentation for 
a relation should be equal to the optimal degree of 
parallelism for a selection on that relation. 

The speedup characteristics illustrate the relative 
performance of the system. This aspect of the system 
can be analized in the context of the model presented 
in Section 2. 

3pccdip 

2c 

5x . 
-- 

Figure 8: Theoretical speedup curves for 

selection queries 

From the benchmark data on the selection queries, 
the value of a (the costs of initializing one selection 

LTM), and c (the costs of evaluating the selection for 
one tuple) can be derived. The results from each query 

yield approximately the same value for both quanti- 

ties: a is equal to 19 ms and c is equal to 0.06 ms. 
Substitution of these values into Equation (2) yields 
expressions for the theoretical speedup curves. Fig- 
ure 8 plots the measured speedups in points and also 

the theoretical speedup curves. The measured points 
nicely coincide with the theoretical curves. From these 
experiments, we can conclude that the optimal num- 
ber of processors to be used for a parallel selection is 

lower than 100 on PRISMA/DB. 

Two additional remarks can be made about these re- 

sults. The first one is about the consequences of these 
results for data fragmentation. Well-known query op- 

timization strategies [CeP84] push selections down to 
the leaves of a query tree. Therefore, many queries 
execute selection operations on the base relations be- 
fore executing other, more complex operations. Such 

-. 
I ’ ’ x-1 

Figure 9: Theoretical speedup curves for 
selection queries using low initialization 
costs 

The second remark is about the costs of initializ- 
ing one operation. The value of a is high compared 
this value to other prototype research DBMSs. The 

fact that a has a high value in PRISMA/DB is caused 
by the fact that the implementation of POOL is ex- 
perimental and by the fact that a new LTM object is 
started for each initialization of an operation. Reusage 
of LTMs and optimization of this aspect of the POOL 
implementation should improve this value by an or- 

der of magnitude [DeWSl]. However, reducing u to 2 
ms only shifts the the execution characteristics some- 

what, but the optimum behavior is not shifted out of 
the relevant range of processors (1 - 100 for PRISM.4). 
Figure 9 shows the theoretical speedup characteristics 

with a set to 2 ms. Although, the optimal numbers of 
processors are larger (by a factor of v’i?$ than the real 
ones for PRISMA/DB in its current implementation, 
it should still be concluded that full declustering is not 

the appropriate default data distribution strategy. 

4.1 Join queries 

The join query used in the performance experiments is 
a query joining a 10K tuple relation to a 1OOK tuple re- 
lation in which every tuple of the 101~ relation matches 
to one tuple in the 1OOK relation, so the result consists 
of 10K tuples. This query is called the joinABprime 
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query in [BDT83]; A is the 1OOK relation and Bprime 
is the 10K relation. Three different execution strate- 

gies were tested, which are called join1 through join3. 
In all cases, both operands were fragmented into equal 
numbers of fragments: and each fragment was stored 
on a private processor. 

join1 Both relations are fragmented on the join at- 

tribute. The Bprime fragments are sent to the A 

fragments for joining. 

join2 Relation A is fragmented on the join attribute 
and relation Bprime is fragmented on another at- 
tribute into equal numbers of fragments. Relation 
Bprime is redistributed and sent to relation A for 
joining. 

join3 Both relation are fragmented on another at- 

tribute than the join attribute into equal numbers 
of processors. Both relations are redistributed 

and sent to the join processors for joining. 

These three strategies were tested using 10, 20, and 

30 processors for the joins combined with a fragmenta- 
tion degree of 10, 20, or 30 for the initial fragmentation 
of the relations. 

# join1 join2 join3 

10 6132 6324 9036 

20 2718 3240 7100 

30 2034 3838 8566 

response times in ms 

0.5 

t 
0 [ I 

0 io 20 30 “odes 

speedup characteristics 

Figure 10: Performance of join queries 

Figure 10 shows the response times measured in this 
esperiment, and the speedup with respect to the re- 
sponse time of the lo-processor queries. Note, that in 

this case linear speedup yields a speedup factor 3 for 
the 30-processor queries. 

PRISMAjDB ’ 30 2034 L ’ 

Figure 11: Response times of some parallel 
DBMSs to a 1OOK x 10K join, fragmented 
on the join attribute 

The achieved absolute performance for “joinl” is 

good compared to other systems. Figure 11 lists the 
response times for the same query reported by other 
projects. Again, it is hard to compare systems, as they 

differ in many ways. Yet, we like to report that the 
response time measured on PRISMA/DB outperforms 
all other reported performance figures on this query. 

Figure 12: Theoretical speedup curves for 

join queries 

From the benchmark data, again the values for a, 

and c can be derived. For “joinl”, the value of a is 
32 ms. This value is larger than for selection, because 
each fragment join requires the initialization of two 

LTMs, one for the join and one to send the data to the 
join-LTM. The value of c (calculated as the costs per 
result tuple) is 4.6 ms. Substitution of these values 
into equation (2) yields the theoretical speedup curve 
for the join query, which is shown in Figure 12. Al- 
though, the measured points for this query show linear 

speedup, the theory shows that the speedup charac- 
teristics do flatten when more processors are added. 
This observation again illustrates that linear speedup 
behavior cannot be extrapolated to larger systems. 
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The measured speedup for “join2” is disappointing, 
and “join3” is even worse. Analysis of the bench- 

mark data yields a good explanation for the bad par- 
allel behavior of these queries. The values for c that 
can be derived from the benchmark data are consis- 
tent and reasonable: 5.8 ms for “join2”, and 8.8 ms 
for “join3”. These values are higher than the value 

for joinl, due to the redistribution overhead, however, 
they are constant for each speedup experiment. The 
value of a, however, increases with the number of pre 

cessors used. This means that the initialization over- 
head per LTM gets higher when more LTMs are used, 
and therefore the theory developed in Section 2 can- 
not be used to model the parallel behavior of these 
queries. For “join2” the value of a increases from 39 ms 

for 10 processors to 85 for 30 processors. For “join3”, 

the value of a increases from 77 for 10 processor to 
172 for 30 processors. This increase in caused by the 

fact that each redistribution LTM is initialized with a 

large XRA-expression that tells the LTM how to dis- 
tribute the data over the join LTlMs. This expression 
gets larger if more join-LTMs are involved. Shipping 
these large XRA-expressions is too expensive in the 
current POOL implementation. Here, we are faced 
with the limitations of our flexible parallel execution 

model. However, we are currently studying how the 

POOL implementation can be improved on this point. 
The model developed in Section 2 assumes a to be 

constant. Therefore, this model cannot be applied to 
“join2”, and “join3”. The curves in Figure 12 use av- 

erage values for c. As expected the measured data 
deviate from the theoretical curve. 

5 Summary and conclusions 

This paper analizes the performance of the parallel, 
main-memory DBMS, PRISMA/DB. This DBMS tries 
to combine the performance advantages from paral- 

lelism and from main-memory implementation of rela- 

tion operations. Here, the results of this experiment 

are reported. 

In this paper, the performance analysis is described 

against the background of a simple analytical model. 

This model can explain the obtained results to a large 
extent. Deviations from the model can easily be ac- 

counted for. 

The absolute performance of the system is measured 
as response time to some queries from the Wisconsin 
Benchmark. The absolute performance appears to be 
competitive with respect to other research prototypes. 

Linear speedup is the ultimate goal of parallel pro- 
cessing. PRISMA/DB does not achieve linear speedup 
to up the size of the system (which consists of 100 pro- 

cessing elements). Rather, speedup experiments for 
selection and join operations show linear speedup for 
small numbers of processors and optimum behavior for 
larger numbers with the optimal number of processors 
to execute an operation on below 100. The nonlin- 
earity of the speedup is caused by the relatively fast 
local processing of a main-memory system. Also. the 
optimal number of processors to execute a (cheap) se- 
lection is lower than the optimal number for the (more 
expensive) join operation. 

Disk-based DBMSs differ in the following way from 
a main-memory DBMS: the local processing is slower 
on a disk-based system than on a main-memory sys- 
tem, but the communication costs are similar on both 
DBMS types. From the developed theory it fol- 

lows that consequently disk-based systems show lineat 
speedup up to higher numbers of processors than main- 
memory systems. However, the theory also shows that 

the speedup of a disk-based system is expected t,o flat- 

ten when a considerable number of processors is used. 

The analysis of the experimental results in this pa- 
per was greatly simplified by the use of a benchmarker 
that records what the system is doing at a certain 
moment in time. The processing costs of this bench- 

marker are very low and therefore, the measured phe- 

nomena are not influenced by the use of the bench- 

marker. The benchmark results allow accurate de- 
termination of the problem parameters, and, in case 
of the redistribution joins, it revealed that the devel- 

oped theory could not account for observed phenom- 
ena. Also, analysis of the benchmark data gives clear 
insight in the nature of the problems for these queries, 
so that it is clear what sort of optimizations will allevi- 

ate the performance problems of redistribution joins. 

The results of this study can be used to design a data 

fragmentation strategy for main-memory DBMSs. Be- 
cause many queries execute selection opera.tions on 
their base data before executing the more complex op- 

erations, it seems a good idea to use a fragmentation 
degree for a relation that is equal to the optimal num- 

ber of processors to execute a selection operation on 

that relation. This issue deserves further research. 

The results of our study also have consequences for 

the hardware architecture of a parallel main-memory 

DBMS. It is obvious that a main-memory DBMS needs 
a large amount of main memory to store the entire 
database. However, our study shows that also the 

amount of memory for one processor should exceed 

a certain threshold: on the one hand, the size of the 
memory limits the size of the subtasks by putting a 

limit to number of operand tuples that can be stored 
on one processors; on the other hand, the subtasks 
need to be relatively large to allow performance gain 
from parallelism. Therefore, the only way achieve sat- 
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isfactory parallel behavior of main-memory query ex- 
ecution is having so much memory per processor that 
subtasks can be large enough to allow considerable 

performance gain form parallel query execution. The 

exact sizes are to be derived from the system param- 
eters and the application domain. Yet, it is perfectly 
feasible that a 50 node system with 32 Mbytes per 
processor has better performance characteristics than 

a 100 node system with 16 Mbytes per node, because 
it allows larger subtasks in parallel query execution. 

In the future, PRIShIA/DB will be used for perfor- 
mance studies in various direction. Firstly, we try to 
resolve some of the performance problems identified in 
this paper, especially those that relate to redistribu- 
tion joins. Also, the performance analysis of multi- 

join queries [WiASl] will be continued, and work on 

the performance analysis of the parallel execution of 
transitive closures [HACSO] was recently started. 

Acknowledgement 

The authors wish to thank all the members of the 
PRISMA group for their cooperation, and especially 
Paul Grefen for the fruitful discussions, and Ben Huls- 

hof from Philips Research Laboratories for his help 
with the execution of experiments on the loo-node 

POOMA. 

References 

[Ame89] P. America, “Issues in the design of a parallel 
object-oriented language,” Formal Aspects of Comput- 

ing 1(1989), 366-411. 

[XBF92] P. M. G. Apers, C. A. vanden Berg, J. Flokstra, 
P. W. P. J. Grefen, M. L. Kersten & A. N. Wilschut, 
“PRISMA/DB: A Parallel Main-Memory Relational 

DBMS,” Memorandum INF92-12, Universiteit Twente, 

Enschede, The Netherlands, 1992, Submitted to the 

special issue on Main-Memory databases of the IEEE 

transacions on Knowledge and Data Engineering. 

[.4HB88] P. M. G. Apers, M. A. W. Houtsma & F. 

Brandse, “Processing Recursive Queries in Relational 
Algebra,” in Data and Knowledge (DS-2), R. A. Meers- 

man & A. C. Sernadas,eds., Elsevier Science Publish- 

ers, IFIP, 1988. 

[BDT83] D. Bitton, D. J. Dewitt & C. Turbyfill, “Bench- 

marking Database Systems - .4 Systematic Approach,” 
in Proceedings of Ninth International Conference on 

Very Large Data Bases, Florence, Italy, October 31- 

November 2, 1983. 

[BACSO] H. Boral, W. Alexander, L. Clay, G. Copeland, 

S. Danforth, M. Franklin, B. Hart. 11. Smith S: P. 

Valduriez, “Prototyping Bubba, A Highly Parallel 
Database System,” IEEE Transactions on I<nowledge 

and Data Engineering 2 (1990), 4-24. 

[BrG89] K. Bratbergsengen & T. Gjelsvik, “The Develop- 
ment of the CROSS8 and HC16-186 (Database) Com- 
puters.,” in Proceedings of the Sixth International 
Workshop on Database Machines, Deauville, France, 
June 1989, 359 -372. 

[CeP84] S. Ceri & G. Pelagatti, Distributed Databases. 
Principles and Systems, McGraw-Hill, New York. NY. 
1984. 

[CAB881 G. Copeland, W. Alexander, E. Boughter Sr T. 

Keller, “Data Placement in Bubba,” in Proceedings 

of ACM-SIGMOD 1988 International Conference on 
Management of Data, Chicago, IL, June 1-3, 1988. 

[Cve87] Z. Cvetanovic, “The Effects of Problem Partition- 

ing, Allocation, and Granularity on the Performance of 

Multi-Processor Systems,” IEEE Transactions on Com- 

puters 36 (1987). 

[DGSSO] D. J. Dewitt, S. Ghandeharizadeh, D. -4. Schnei- 
der, A. Bricker, H. Hsiao & R. Rasmussen, “The 

GAMMA Database Machine Project,” IEEE Trans- 

actions on Knowledge and Data Engineering 2 (March 
1990), 44-62. 

[DeWSI] D. J. Dewitt, “Personal communication. 

[DGS87] D. J. Dewitt, S. Ghandeharizadeh, D. Schneider. 

R. Jauhari, M. Muralikrishna & A. Sharma, “A single 

user evaluation of the GAMMA Database Machine,” 

in Proceedings of the Fifth International Workshop on 
Database Machines, Karuizawa, Japan: October 1987. 

[DK084] D. J. Dewitt, R. Katz, F. Olken, L. Shapiro, 11. 

Stonebreaker & D.Wood, “Implementation techniques 

for main memory database systems.,” in Proceedings 
of ACM-SIGMOD 1984 International Conference on 

Management of Data, Boston, MA, June 18-171. 1984, 

1-8. 

[Eic87] M. Eich, “A classification and comparison of main 

memory database recovery techniques,” in Proc. of the 

1987 Database Enginering Conference, 1967, 332-339. 

[Eic89] M. Eich, “Main Memory Database Research Direc- 

tions,” in Proceedings of the Sixth International Work- 

shop on Database Machines, Deauvil le, France, June 

1989, 251-268. 

[GLH83] H. Garcia-Molina, R. J. Lipton 8i P. Honeyman, 

“A Massive Memory Database System,” Technical Re- 

port 314, Department of Comp Science, Princeton Uni- 

versity, September 1983. 

[GrASO] P. W. P. J. Grefen & P. M. G. Apers, “Par& 

lel Handling of Integrity Constraints on Fragmented 

Relations,” in Proceedings of the Second International 

Symposium on Databases in Parallel and Distributed 

Systems, Dublin, Ireland, July 2-4 1990, 138 - 143. 

531 



[GWFSl] P. W. P. J. Grefen, A. N. Wilschut & J. Flokstra, 

“PRISMA/DBl User Manual,” Memorandum INF91- 

06. Universiteit Twente, Enschede, The Netherlands, 

1991. 

[H.4C90] M. A. W. Houtsma, P. M. G. Apers & S. Ceri, 

“Distributed Transitive Closure Computations: The 

Disconnection Set Approach.,” in Proceedings of Six- 

teenth International Conference on Very Large Data 

Bases, Brisbane, Australia, August 13-16, 1990, 335- 

346. 

[HoA92] M. A. W. Houtsma & P. M. G. Apers, “Algebraic 

optimization of recursive queries,” Data and KnowJ- 

edge Engineering 7 (March 1992). 

[LeC86] T. J. Lehman & M. J. Carey, “Query process- 

ing in main memory database management systems.,” 

in Proceedings of ACM-SIGMOD 1986 International 

Conference on Management of Data, Washington, DC, 

May 28-30, 1986, 239-250. 

[LeRK] M. D. P. Leland & W. D. Roome, “The Silicon 

Database Machine: Rational, Design, and Results,” in 

Proceedings of the Fifth International Workshop on 

Database Machines, Karuizawa, Japan, October 1987. 

[SpeSl] J. vander Spek, “POOL-X and its implementa- 

tion,” in Proceedings of the PRISMA Workshop on 

Parallel Database Systems, Noordwijk, The Nether- 

lands, 1990, P. America,ed., Springer-Verlag, New 

York-Heidelberg-Berlin, 1991, 309-344. 

[Ter83] Teradata Corporation, “Teradata, “DBC/1012 

Database Computer Concepts and Facilities,” CO2- 

0001-00, 1983. 

[WiASl] A. N. Wilschut & P. M. G. Apers, “Dataflow 

Query Execution in a Parallel Main-Memory Environ- 

ment,” in Proceedings of the First International Con- 

ference on Parallel and Distributed Information Sys- 

tems, Miami Beach, Florida, USA, December 1991. 

[WiA92] A. N. Wilschut & P. M. G. Apers, “Dataflow 

Query Execution in a Parallel Main-Memory Environ- 

ment,” in To appear in Journal of Distribu ted and Par- 

aJleJ Databases.. 

[WiASO] A. N. Wilschut & P. M. G. Apers, “Pipelining in 

Query Execution, ” in Proceedings of the International 

Conference on Databases, Parallel Architectures and 

their Applications, Miami, USA, March 1990. 

532 


