
Parallelism in a Main-Memory DBMS:

The performance of PRISMA/DB1

Annita 3. Wilschut Jan Flokstra Peter M. G. Apers

University of Twente

P.O.Box 217, 7500 AE Enschede, the Netherlands

telephone $3153 893705, fax $3153 339605
annita@cs.utwente.nl

Abstract

This paper evaluates the performance of the paral-

lel, main-memory DBMS, PRISMA/DB. First, an

abstract architecture for parallel query execution is

presented. A performance model for the execution
of simple relational operations on this architecture

is developed. The parameters in the model are set
using experiments on PRISMA/DB and the perfor-

mance of PRISMA/DB is analized in the context of

the model. Several conclusions can be drawn from
the model combined with the results of the per-

formance experiments. Firstly, the performance of

PRISMA/DB appears to be competitive with re-

spect to other systems. Secondly, the developed

model can explain the results from the performance

experiments to a large extent. Also, it is concluded
that observed linear speedup for small numbers of

processors cannot always be extrapolated to larger

numbers of processors. Finally, it is concluded that
the optimal number of processors for the parallel

execution of an operation is smaller for a main-

memory system than for a disk-based system. The
results of this study can be used to design data frag-
mentation strategies for large parallel machines.

‘The work reported in this paper was conducted as part of the
PRISM.4 project, a joint effort with Philips Research Labora-

tories Eindhoven, partially supported by the Dutch “Stimuler-

ingsprojectteam Informaticaonderzoek (SPIN)“.

Permission to copy without fee all or part of this material is

grantedprovided that the copies are not made or distributed

for direct commercial advantage, the VLDB copyright no-

tice and the title of the publication and its date appear,

and notice is given that copying is by permission of the

Very Large Data Base Endowment. To copy otherwise, or

to republish, requires a fee and/or special permission from

the Endowment.

Proceedings of the 18th VLDB Conference

Vancouver, British Columbia, Canada 1992

1 Introduction

In the last decade, research has been done on the
design, implementation, and performance analysis of

parallel DBMSs. Teradata [Ter83], Bubba [BAGSO],

HC186-16 [BrG89], GAMMA [DGSSO] are examples
of systems that actually were implemented, and many
papers were written on their performance. The sys-
tems mentioned above are disk-based DBMSs, and ob-
viously their performance and parallel behavior is in-
fluenced by the use of disk as main data storage.

On the other hand, the last years yield an increasing

number of papers on main-memory DBMSs [DKO84,
Eic89,GLH83,LeC86,LeR87]. A main-memory DBMS
stores the entire database, or a considerable part of
it in its primary memory. Of course, main-memory
systems have their own characteristics, for example
with respect to recovery [Eic87] and query processing

[DK084]

PRISMA/DB combines the two features mentioned
above: it is a parallel, main-memory system. The sys-
tern offers full relational DBMS facilities, and a fully

functional prototype running on a loo-node multi-
processor is currently available. PRISMA/DB is used

for research in various directions like parallel integrity

constraint enforcement [GrASO], recursive query pro-

cessing [AHB88,HAC9O,HoA92], and parallel evalu-

ation of multi-join queries [WiASO,WiASl ,\IYX92].
[ABF92] describes the system in general. This paper
addresses the specific aspects of the performance of a

parallel main-memory system in relationship to dat,a
fragmentation strategies with PRISMA/DB as an es-

ample.

Teradata, GAMMA and HCl86-16 use full declus-
tering as data fragmentation strategy. This means
that the tuples belonging to one relation of the
database are distributed over all nodes in the system

Also, the degree of parallelism for the execution of 011e

521

relational operation (which is the number of proces-
sors used to evaluate the operation) is taken equal to

the size of the system. Using these data fragmentation
and parallel query execution strategies, linear speedup
is achieved for up to 30 processors.

Bubba uses a more flexible data fragmentation strat-

egy [CABSS], h’ h 11 w ic a ows relations to be distributed
over fewer than the available nodes. In simulation ex-
periments that optimize the transaction throughput

for some workload, they find that full declustering, in-
deed: is not the right default fragmentation strategy.

However, the optimal degree of declustering they find
is relatively high: 736 is reported to be the right degree
of declustering in an experiment described in [CABSS].

PRISMA/DB uses a flexible data fragmentation and
query execution strategy that allows various degrees of
declustering for base relations and various degrees of

parallelism for the execution of one operation. Some
queries of the Wisconsin Benchmark [BDT83] are used
to evaluate the performance of the system and the goal
is minimization of the response time of these queries.

The important questions in this context are: “What

are the speedup characteristics of the parallel execu-

tion of simple operations on a main-memory system?”
and “What is the optimal degree of parallelism to be
used for the parallel execution of these queries?“. To
facilitate the analysis, first an abstract architecture

is introduced with a model for the parallel execution
of operations on this architecture. The model devel-

oped in this paper is similar to the models presented
in [CveS’i]. The performance of PRISMA/DB is eval-
uated in the context of this model.

This paper is organized as follows: Section 2 intro-
duces the abstract architecture with a query execution

model, Section 3 describes PRISMA/DB, and it high-
lights some aspects of the system that are important

in the context of this paper, Section 4 evaluates the

performance of PRISMA/DB using queries from the

Wisconsin Benchmark [BDT83], and finally, Section 5
summarizes and concludes the paper.

2 An abstract architecture for

parallel query execution

To evaluate the behavior of the parallel execution of

an operation, we present a simple abstract architec-
ture of the query execution layer of a parallel DBMS,

that can serve as an abstraction of many known paral-
lel systems. Subsequently, a model for query execution
on this architecture is presented. After that, the dif-
ference between disk-based and main-memory systems
is described in the context of this model.

Figure 1: An abstract architecture for par-
allel query execution

Abstract architecture

The proposed abstract architecture is illustrated in
Figure 1. The hardware support assumed consists of
a shared-nothing multi-processor, with a high band-
width communication network and sufficient nodes.
The software architecture consists of one coordinator
process, and a number of operation processes. Each
process is assumed run on a private node. The coordi-
nator initializes the operation processes in a sequential

process. As a consequence; the operation processes
cannot all start at exactly the same time. Rather) ev-

ery next operation process starts some time after the

start of its predecessor.

Query Execution Model

Consider this architecture executing a relational op-
eration. The operand data for this operation is dis-
tributed over (part of) the system into equally sized

fragments. We assume that the costs of the opera-
tion are proportional to the number of tuples in its
operand(s). This assumption holds for an important
class of relational operations. For example, the costs
of selections and projections are linear in the number
of tuples in the operands, and, the costs of other op-
erations with a hash-based implementation. like joins

and unique operations, are also almost linear in the

number of tuples in their operands. Parallel imple-
mentations of such operations aim at linear speedup.
This means that the parallel execution on n processors

is n times faster than the execution on one processor.
In the remainder of this section, we will show that this

goal is only achievable for relatively low numbers of
processors, which number is lower for main-memory

systems than for disk-based systems.
Let N be the number of operand tuples, and let c

be the time needed to process one tuple. Then

cN

is the time needed for the entire operation, and, if 71 is
the number of processors used than ideally,

cN
-
n

522

is the processing time of one operation process.

Irm 1
CN
T

a: 8 nodes

an q

b: 16nodes

bm.3-r
an T

c: 25 nodes

Figure 2: The behavior of the parallel ex-
ecution of an operation on 8, 16, and 25

nodes

Figure 2 shows the theoretical characteristics of the
parallel execution of an operation. In the diagrams
in this figure, the horizontal axis is the time axis, and

the node numbers are on the vertical axis. Each line in
the diagrams represents one operation process; a line
starts at the time at which the corresponding opera-
tion process starts, and its length is proportional the

computation time of the process. The operation pro-
cesses do equal amounts of work, and therefore, the

lines have the same length, which is equal to cN/n.
If a is the time the coordinator process needs to start
one operation process, then the last operation process
is initialized at time an, so it is obvious that the fol-

lowing equation holds for the response time ((R)) of
an operation on N tuples executed on n nodes.

CN
R=an + -

n

This is the central expression to analize the behavior
of the parallel execution of an operation.

The speedup (S) of the parallel execution of an oper-
ation is defined as the response time of the execution
on one processor divided by the response time of the
parallel execution. So, in this model, the speedup is
equal to

s=
a + CN

un + $
= &+1>n

a7l2 + 1’
(2)

27

Note that the case when a = 0 corresponds to linear

speedup. This means that all operation processes start
at exactly the same time.

The optimal number of processors for an operation
(n,) is the number of processors for which the opera-
tion is executed with the smallest response time. This

number can be found by setting the derivative of (1)
to zero:

(3)

Substitution of the optimal number of processors into
Equation (2) yields the speedup of the optimal execu-

tion of an operation:

so = ; CN = ino. d- a

Note, that the optimal execution only yields half of

the linear speedup aimed at. Also, the optimal num-
ber of processors depends on the parameters of the
system, but given the optimal number of processors!
the speedup is fixed to half that number.

Substitution of the value of n, found in Equation
(3) into both terms of the right-hand-side of equation

(1) yields a relationship between the startup time and

the computation time per fragment: As

cm, = d&T

and,
cN
--=xlGz
no

it can be concluded that the optimal esecution of an

operation spends equal amounts of time on initializa-

tion and on the execution of one subtask. In other
words, in the optimalexecution, the last subtask starts
at the time at which the first one is ready.

The results of this section are illustrated by Figures

2 and 3. Figure 2 shows the execution characteristics
of the some abstract operation executed on 8, 16, and

25 nodes. From the diagrams it is obvious that 16
nodes is the optimal number for this operation, as the

diagrams show that the 16th node starts processing at
the time at which the first processor is ready. Note

523

that the average utilization of the nodes participating
in the optimal execution is 50 %. The execution on 8

nodes takes too long because the individual operation
processes take too long, and 25 nodes is too many, be-
cause the coordinator takes too much time to initialize

the operation processes.

From the calculations above it is clear that

cN

a

is the quantity that determines that behavior of the
parallel execution of an operation. Equation (3)
shows that the optimal number of processors is higher

for higher values of cN/a. Equation 2 shows that

the speedup deviates less from linear speedup for
higher values of cN/a, because the contribution of the

quadratic term in the denominator gets small for high
values of cN/a. These results are intuitively right.

Slow local evaluation (reflected in a high value for c)
and large experiments (high value for N) allow a high
degree of parallelism and almost linear speedup. Fast
initialization of subtasks (small value for a) has the
same effect.

high

values
of $

low
values

of * a

Figure 3: Theoretical speedup curves for

different values of y

Figure 3 shows the speedup characteristics for dif-

ferent values of cN/a. In this diagram, the number of

nodes used for the execution is on the horizontal axis,
and the speedup is on the vertical axis. The straight
curve shows linear speedup; for the other curves the
parameter setting is derived from the experiments de-

scribed in Section 4. All speedup curves show almost
linear behavior for a small number of processors. This
is the linear speedup that has been reported for small
systems. At a certain stage, however, they deviate
from the linear speedup curve. This deviation starts
being significant at a higher number of processors for
larger values of cN/a.

Disk-based versus main-memory systems

An important question at this stage is: “Which are

realistic values for c and a?“. Obviously, if the value
of c/a is relatively high, linear speedup is a reasonable
assumption for the parallel execution of an operation
on large operands. In that case, all processors of a
relatively small system can be exploited to execute an
operation. However, this model also shows that. lin-

ear speedup for a small number of processors does not
guarantee scalability of this property to larger systems.
Therefore, it is not clear to what extent all nodes of

a system should be used to execute an operation, so

that full declustering of base relations is the right frag-

mentation strategy.

The next sections of this paper describe the perfor-

mance of a parallel, main-memory DBMS. A main-
memory DBMS stores the entire database in its pry-
mary memory, and therefore, no disk-access is needed
for retrieval queries. Obviously, this fact influences the
costs of local processing: for a main-memory system,
the costs of local processing are lower than for a com-

parable disk-based system, and therefore the value of c

is also lower. The difference is estimated to be at least
one order of magnitude [DKO84]. On the other hand,
the value of a is determined by the costs of initializa-
tion of operation processes. This initialization mainly

requires communication, and the main-memory char-
acter of a system does not affect the communication
costs. Therefore, the value of a is equal for compara-
ble main-memory and disk-based systems. As a con-
sequence, the value of c/a, and so the optimal number
of processors to be used for the execution of an op-

eration on a main-memory system is lower than on
a disk-based system. Based on the assumption that

the difference in local processing costs is about one or-

der of magnitude, the difference between the optimal

number of processors for both systems is about 3 (see

Equation (3)).

The remainder of this paper discusses the per-
formance of the parallel, main-memory DBMS
PRISMA/DB in the context of the model described
above. PRISMA/DB is currently implemented on a
loo-node multi-processor, and we will show that the

optimal number of processors to be used for realistic
operations may well be smaller than 100, so that full
declustering should not be used as fragmentation strat-
egy. As an introduction, the next section briefly intro-

duces PRISMA/DB. After that, Section 4 describes
the performance analysis.

524

3 PRISMA/DB

PRISMAIDB is a full-fledged parallel, main-memory

relational DBMS that was designed and implemented
from 19S6 to 1991 in the Netherlands by several scien-
tific and commercial research institutions. A full de-
scription of design, architecture, and implementation
of PRISMA/DB can be found in [ABF92], here a brief
introduction into the hardware used and the architec-
ture of PRISMA/DB is given. After that two aspects
of the system that are important in the context of this
paper are described: data-fragmentation and parallel

query execution, and the built-in benchmarker that

allows detailed analysis of performance results.

The POOMA machine

Figure 4: Hardware configuration of the
POOMA machine

PRISMAIDB is implemented on a parallel multi-

processor, called the POOMA machine. The POOMA
machine is a shared-nothin g, parallel multi-processor,

which consists of 100 nodes. Figure 4 shows the hard-
ware configuration. Each node consists of a 68020 data
processor with 16 Mbytes of memory, a disk, and a
communication processor that links it to 4 other nodes

using bidirectional links. Some nodes have an ethernet

card that links the system to a Unix host. The entire

system contains 1.6 Gbytes of memory.
On this hardware, the implementation language

POOL [AmeSS,SpeSl] is implemented. POOL stands
for Parallel Object-Oriented Language. POOL allows
the definition of objects which are implemented as pro-
cesses. Parallelism is supplied in a very natural way:
conceptually, all objects that exist in the system ex-
ecute concurrently. Allocation of objects to different

1 i :

Figure 5: Global architecture of
PRISMA/DB

processors makes them really run in parallel. Objects
can dynamically be allocated to processors and ob-
jects can be created and deleted dynamically. These
features turn a POOL program in execution into a flex-

ible structure which allows run-time experimentation

with various forms of parallelism.

It should be noted, that the language POOL and the
supporting operating system were developed and im-
plemented parallel to the design and implementation
of PRISMA/DB. As a consequence, the currently used
implementation of POOL is still experimental and not

optimized in detail yet.

The architecture of PRISMA/DB

Figure 5 presents an overview of the architecture of
PRISMA/DB. The architecture consists of a number
of components that are implemented as POOL objects.

Some components are instantiated several times in the
system, others are central: they have one instantia-

tion that serves the entire DBMS. The architecture
is dynamic: components can be created and deleted
dynamically, according to the use of the system.

The rectangles in Figure 5 represent permanent
components, i.e. components that live as long as the
system. The ovals represent transient components be-
longing to one user session; the life cycle of these com-

ponents is related to user actions. The dotted ovals

show transient components belonging to a second, con-

current user session.

Two central components of the system are the data

dictionary (DD) and the concurrency controller (CC).
The data dictionary is the central storage of all schema
information of the system. The concurrency controller
controls concurrent access to the database. It uses a
standard two-phase locking protocol with shared and

525

exclusive locks. Figure 5 shows that these central com-
ponents are used by both user sessions.

The query preprocessing layer of the system is
formed by the query language compiler (QLC) and
query optimizer (QO) components. The query lan-
guage compiler provides an interactive interface to the
user and translates queries from a user language into
the internal relational language of the system, called
XRA. Translated queries are sent to the QO, which

optimizes them into parallel execution plans.

The transaction manager (TM) forms the execution
control layer of the system. The TM coordinates the
execution of a transaction via an interface to the query

execution layer of the system. Also, the TM enforces
all ACID transaction properties.

The data storage and query execution layer consists
of the one-fragment managers (OFMs) and the local

transactions managers (LTMs). OFMs are permanent;
they store and manage one fragment of a relation in
the database. As OFMs serve as storage units of the

database, these components can be accessed by all user
sessions. LTMs are transient and private to the trans-

action they belong to; they are the relational engines in
the system. An LTM can be attached to one OFM. In

that case, the LTM is allocated to the processor host-
ing the OFM, and the LTM can directly access the
fragment stored in the OFM. If different user sessions
want to access an OFM concurrently, each user session
attaches a private LTM to the OFM. LTMs that are

not attached to an OFM process intermediate results.
LTMs can exchange data by sending tuple streams.

An extended Relational Algebra (XRA) is used as
internal representation of queries. This language con-

sists of the normal relational operations extended with
some primitives for grouping and for recursive query

processing. Also, the language allows the expression
of a wide range of parallel execution plans for a query.
Each relational operation can be executed by an arbi-

trary number of processors, and the result of an oper-

ation can efficiently be redistributed over an arbitrary

number of destinations using a split operation. Such

a split operation explicitly lists the addresses of the

destinations. The language is described in detail in

[GWFSl].

Data fragmentation and Parallel query execu-

tion

In PRISMA/DB, performance is gained through par-
allel execution of queries. Fragmentation of the data
belonging to one relation over (part of) the available
nodes is known to be a prerequisite for performance
gain from parallel query execution.

PRISMA/DB uses hush-based fragmentation of base

relations and intermediate results. The number of
fragments used for a relation, the fragmentation at-

tribute, and the allocation of fragments to processors
can be set by the user. Tuples that are inserted into
a relation are automatically inserted into the right
fragment of the relation. To decide into which frag-
ment a tuple is to be inserted, the system applies a

system-wide used hash-function to the fragmentation
attribute, and the resulting value modulo the num-
ber of fragments used for the relation indicates the

fragment where the tuple belongs. The number of
fragments that a relation is fragmented over: is called
the fragmentation degree of the relation. An arbitrary

number of fragments can be used for a relation. how-
ever, fragmentation degrees over 100 are probably not
useful on a loo-node machine.

PRISMA/DB allows a wide variety of parallel er-
ecution strategies for simple and complex queries.

[ABF92] describes the execution model for multi-
operation queries, and [WiASl] presents the results

of our research on the parallel execution of multi-join

queries. In this paper, the performance a.nd speedup
characteristics of some queries from the Wisconsin
Benchmark are described. To study the behavior of

these queries, only the parallel execution of simple op-
erations has to be described. This description starts
at the transaction manager level, as we do not want to
take the query preprocessing phase into account here.

A query enters the transaction manager as a paral-
lel execution plan, that specifies the operations that
have to be executed on the fragment level. For exam-
ple, a range selection from a relation is expressed as

a number of range selections from the fragments that
belong to the relation. The Th4 starts an LTM foi
each fragment, and initializes it with the fragment se-
lection operation that it has to execute. As one TM
serves the entire transaction, this initialization phase is
a sequential process, and, as a consequence, the frag-

ment selection operations cannot all start at exactly

the same time.

The execution of binary operations is a bit more

complex. A join operation is described as an exam-
ple. The parallel execution plan of a join in which

both operands are fragmented on the join attribute

consists of a set of fragment joins. The operands of
one fragment join are stored in two OFMs. Because
LTMs are private to OFMs, the execution of this join

requires the initialization of two LTMs: one that sends
its base-fragment to the other, and the other one that
joins the incoming stream of tuples to its base frag-
ment. When the join operation needs redistribution of
one or both operands, the sending LTh4s redistribute
their data. Note, that a join operation that requires
redistribution of both operands needs an additional set

526

of LTMs for the redistribution of the second operand.
This architecture closely follows the abstract ar-

chitecture described in Section 2. The next section
will show that its implementation mainly follows the
model, however it deviates from it in some cases.

The benchmarker

PRISMA/DB has a built-in benchmarker that allows
detailed analysis of the execution characteristics of a
query. The benchmarker allows writing cheap log mes-

sages during the execution of the query. The expensive
collection of the benchmark data is postponed until
after the query execution. The benchmarker consists
of a datastructure, called the benchmark collector, on
each processor, that is shared by all processes that
run on that processor. Processes can write simple log
messages to their local benchmark collector. Writes

to a benchmark collector are atomic. A log message

consists of the local time on the processor (the local
clocks are synchronized), the process identity, and an

indication of what the process is doing, like “start” or

“ready”. After the execution of the query the data
from all benchmark collectors are collected into one
file, which can be analized. In the current version of
PRISMAIDB, all LTMs log the time at which they
initialize, and the time at which they are ready. This
requires two log messages per LTM, and therefore the
execution of the query is not influenced much by this
benchmarking. From the benchmark data, the costs of
initializing one operation process can retrieved using

the initialization time of subsequent LTMs, and the

costs of local processing can be found from the dif-
ference between the “init” and “ready” mark of one
LTM.

4 Performance

Some queries from the Wisconsin Benchmark [BDT83]
are used to evaluate the performance of PRISMA/DB.

Selection queries

A query that selects 1% of its input is used to evaluate

the performance of selection queries. The source rela-
tion is fragmented over a number processors and the
selection criterion is not on the partitioning attribute,
so all fragments have equal probability to find qualify-
ing tuples. The result is stored fragmented without re-
distribution on the processors generating result tuples,
but obviously, as PRISMAIDB is a main-memory sys-
tem, the results are not written on disk. Different sizes

for the source relation are used, ranging from 5 000

(510 tuples to 400 000 (4OOK) tuples. For each source

relation size, a speedup experiment is done. The num-
bers of processors used are adjusted to the size of the
source relation, following the theory developed in Sec-
tion 2 that shows that larger source relations have a
higher optimal number of processors.

processors 1 5K 10K 50K lOOK 4OOK

1 1 480 912

3 ~ 176 306

5 ~ 188 248 775 1416
7 208 252 656

10 262 292 524 876 2796

15 384 530 735
20 596 760 1646
30 860 1426

40 1486
50 1692

response times in ms

0 10 20 30 40 50 “O&S

speedup diagram

Figure 6: Performance of selection queries

Figure 6 shows the response times resulting from the

selection queries, and the speedup diagrams that can
be calculated from them. All response times are given

in ms. The best response time for each source relation
size is printed in bold font.

The response times are a measure for the abso-

lute performance of the system. The absolute perfor-
mance figures are reasonable compared to other sys-
tems. Comparison of the absolute performance of sys-
tems is hard, because there are too many differences
between systems in hardware, functionality etc. How-
ever, to give an indication, Figure 7 lists the response
times of some other systems, with the number of pro-
cessors used for a 1% selection from lOOI< tuples. The
absolute performance of PRISMA/DB seems reason-

able from these data.

527

Figure 7: Response times of some parallel
DBMSs to a 1% selection from 100 tuples
in ms

selection operations execute in the shortest time if the
relation is fragmented over the number of processors

that is optimal with respect to the cardinality of the
relation. Therefore, in a system like PRISMA/DB it
is not a good idea to fragment relations over all avail-

able nodes. Rather, the degree of fragmentation for
a relation should be equal to the optimal degree of
parallelism for a selection on that relation.

The speedup characteristics illustrate the relative
performance of the system. This aspect of the system
can be analized in the context of the model presented
in Section 2.

3pccdip

2c

5x .
--

Figure 8: Theoretical speedup curves for

selection queries

From the benchmark data on the selection queries,
the value of a (the costs of initializing one selection

LTM), and c (the costs of evaluating the selection for
one tuple) can be derived. The results from each query

yield approximately the same value for both quanti-

ties: a is equal to 19 ms and c is equal to 0.06 ms.
Substitution of these values into Equation (2) yields
expressions for the theoretical speedup curves. Fig-
ure 8 plots the measured speedups in points and also

the theoretical speedup curves. The measured points
nicely coincide with the theoretical curves. From these
experiments, we can conclude that the optimal num-
ber of processors to be used for a parallel selection is

lower than 100 on PRISMA/DB.

Two additional remarks can be made about these re-

sults. The first one is about the consequences of these
results for data fragmentation. Well-known query op-

timization strategies [CeP84] push selections down to
the leaves of a query tree. Therefore, many queries
execute selection operations on the base relations be-
fore executing other, more complex operations. Such

-.
I ’ ’ x-1

Figure 9: Theoretical speedup curves for
selection queries using low initialization
costs

The second remark is about the costs of initializ-
ing one operation. The value of a is high compared
this value to other prototype research DBMSs. The

fact that a has a high value in PRISMA/DB is caused
by the fact that the implementation of POOL is ex-
perimental and by the fact that a new LTM object is
started for each initialization of an operation. Reusage
of LTMs and optimization of this aspect of the POOL
implementation should improve this value by an or-

der of magnitude [DeWSl]. However, reducing u to 2
ms only shifts the the execution characteristics some-

what, but the optimum behavior is not shifted out of
the relevant range of processors (1 - 100 for PRISM.4).
Figure 9 shows the theoretical speedup characteristics

with a set to 2 ms. Although, the optimal numbers of
processors are larger (by a factor of v’i?$ than the real
ones for PRISMA/DB in its current implementation,
it should still be concluded that full declustering is not

the appropriate default data distribution strategy.

4.1 Join queries

The join query used in the performance experiments is
a query joining a 10K tuple relation to a 1OOK tuple re-
lation in which every tuple of the 101~ relation matches
to one tuple in the 1OOK relation, so the result consists
of 10K tuples. This query is called the joinABprime

528

query in [BDT83]; A is the 1OOK relation and Bprime
is the 10K relation. Three different execution strate-

gies were tested, which are called join1 through join3.
In all cases, both operands were fragmented into equal
numbers of fragments: and each fragment was stored
on a private processor.

join1 Both relations are fragmented on the join at-

tribute. The Bprime fragments are sent to the A

fragments for joining.

join2 Relation A is fragmented on the join attribute
and relation Bprime is fragmented on another at-
tribute into equal numbers of fragments. Relation
Bprime is redistributed and sent to relation A for
joining.

join3 Both relation are fragmented on another at-

tribute than the join attribute into equal numbers
of processors. Both relations are redistributed

and sent to the join processors for joining.

These three strategies were tested using 10, 20, and

30 processors for the joins combined with a fragmenta-
tion degree of 10, 20, or 30 for the initial fragmentation
of the relations.

join1 join2 join3

10 6132 6324 9036

20 2718 3240 7100

30 2034 3838 8566

response times in ms

0.5

t
0 [I

0 io 20 30 “odes

speedup characteristics

Figure 10: Performance of join queries

Figure 10 shows the response times measured in this
esperiment, and the speedup with respect to the re-
sponse time of the lo-processor queries. Note, that in

this case linear speedup yields a speedup factor 3 for
the 30-processor queries.

PRISMAjDB ’ 30 2034 L ’

Figure 11: Response times of some parallel
DBMSs to a 1OOK x 10K join, fragmented
on the join attribute

The achieved absolute performance for “joinl” is

good compared to other systems. Figure 11 lists the
response times for the same query reported by other
projects. Again, it is hard to compare systems, as they

differ in many ways. Yet, we like to report that the
response time measured on PRISMA/DB outperforms
all other reported performance figures on this query.

Figure 12: Theoretical speedup curves for

join queries

From the benchmark data, again the values for a,

and c can be derived. For “joinl”, the value of a is
32 ms. This value is larger than for selection, because
each fragment join requires the initialization of two

LTMs, one for the join and one to send the data to the
join-LTM. The value of c (calculated as the costs per
result tuple) is 4.6 ms. Substitution of these values
into equation (2) yields the theoretical speedup curve
for the join query, which is shown in Figure 12. Al-
though, the measured points for this query show linear

speedup, the theory shows that the speedup charac-
teristics do flatten when more processors are added.
This observation again illustrates that linear speedup
behavior cannot be extrapolated to larger systems.

529

The measured speedup for “join2” is disappointing,
and “join3” is even worse. Analysis of the bench-

mark data yields a good explanation for the bad par-
allel behavior of these queries. The values for c that
can be derived from the benchmark data are consis-
tent and reasonable: 5.8 ms for “join2”, and 8.8 ms
for “join3”. These values are higher than the value

for joinl, due to the redistribution overhead, however,
they are constant for each speedup experiment. The
value of a, however, increases with the number of pre

cessors used. This means that the initialization over-
head per LTM gets higher when more LTMs are used,
and therefore the theory developed in Section 2 can-
not be used to model the parallel behavior of these
queries. For “join2” the value of a increases from 39 ms

for 10 processors to 85 for 30 processors. For “join3”,

the value of a increases from 77 for 10 processor to
172 for 30 processors. This increase in caused by the

fact that each redistribution LTM is initialized with a

large XRA-expression that tells the LTM how to dis-
tribute the data over the join LTlMs. This expression
gets larger if more join-LTMs are involved. Shipping
these large XRA-expressions is too expensive in the
current POOL implementation. Here, we are faced
with the limitations of our flexible parallel execution

model. However, we are currently studying how the

POOL implementation can be improved on this point.
The model developed in Section 2 assumes a to be

constant. Therefore, this model cannot be applied to
“join2”, and “join3”. The curves in Figure 12 use av-

erage values for c. As expected the measured data
deviate from the theoretical curve.

5 Summary and conclusions

This paper analizes the performance of the parallel,
main-memory DBMS, PRISMA/DB. This DBMS tries
to combine the performance advantages from paral-

lelism and from main-memory implementation of rela-

tion operations. Here, the results of this experiment

are reported.

In this paper, the performance analysis is described

against the background of a simple analytical model.

This model can explain the obtained results to a large
extent. Deviations from the model can easily be ac-

counted for.

The absolute performance of the system is measured
as response time to some queries from the Wisconsin
Benchmark. The absolute performance appears to be
competitive with respect to other research prototypes.

Linear speedup is the ultimate goal of parallel pro-
cessing. PRISMA/DB does not achieve linear speedup
to up the size of the system (which consists of 100 pro-

cessing elements). Rather, speedup experiments for
selection and join operations show linear speedup for
small numbers of processors and optimum behavior for
larger numbers with the optimal number of processors
to execute an operation on below 100. The nonlin-
earity of the speedup is caused by the relatively fast
local processing of a main-memory system. Also. the
optimal number of processors to execute a (cheap) se-
lection is lower than the optimal number for the (more
expensive) join operation.

Disk-based DBMSs differ in the following way from
a main-memory DBMS: the local processing is slower
on a disk-based system than on a main-memory sys-
tem, but the communication costs are similar on both
DBMS types. From the developed theory it fol-

lows that consequently disk-based systems show lineat
speedup up to higher numbers of processors than main-
memory systems. However, the theory also shows that

the speedup of a disk-based system is expected t,o flat-

ten when a considerable number of processors is used.

The analysis of the experimental results in this pa-
per was greatly simplified by the use of a benchmarker
that records what the system is doing at a certain
moment in time. The processing costs of this bench-

marker are very low and therefore, the measured phe-

nomena are not influenced by the use of the bench-

marker. The benchmark results allow accurate de-
termination of the problem parameters, and, in case
of the redistribution joins, it revealed that the devel-

oped theory could not account for observed phenom-
ena. Also, analysis of the benchmark data gives clear
insight in the nature of the problems for these queries,
so that it is clear what sort of optimizations will allevi-

ate the performance problems of redistribution joins.

The results of this study can be used to design a data

fragmentation strategy for main-memory DBMSs. Be-
cause many queries execute selection opera.tions on
their base data before executing the more complex op-

erations, it seems a good idea to use a fragmentation
degree for a relation that is equal to the optimal num-

ber of processors to execute a selection operation on

that relation. This issue deserves further research.

The results of our study also have consequences for

the hardware architecture of a parallel main-memory

DBMS. It is obvious that a main-memory DBMS needs
a large amount of main memory to store the entire
database. However, our study shows that also the

amount of memory for one processor should exceed

a certain threshold: on the one hand, the size of the
memory limits the size of the subtasks by putting a

limit to number of operand tuples that can be stored
on one processors; on the other hand, the subtasks
need to be relatively large to allow performance gain
from parallelism. Therefore, the only way achieve sat-

530

isfactory parallel behavior of main-memory query ex-
ecution is having so much memory per processor that
subtasks can be large enough to allow considerable

performance gain form parallel query execution. The

exact sizes are to be derived from the system param-
eters and the application domain. Yet, it is perfectly
feasible that a 50 node system with 32 Mbytes per
processor has better performance characteristics than

a 100 node system with 16 Mbytes per node, because
it allows larger subtasks in parallel query execution.

In the future, PRIShIA/DB will be used for perfor-
mance studies in various direction. Firstly, we try to
resolve some of the performance problems identified in
this paper, especially those that relate to redistribu-
tion joins. Also, the performance analysis of multi-

join queries [WiASl] will be continued, and work on

the performance analysis of the parallel execution of
transitive closures [HACSO] was recently started.

Acknowledgement

The authors wish to thank all the members of the
PRISMA group for their cooperation, and especially
Paul Grefen for the fruitful discussions, and Ben Huls-

hof from Philips Research Laboratories for his help
with the execution of experiments on the loo-node

POOMA.

References

[Ame89] P. America, “Issues in the design of a parallel
object-oriented language,” Formal Aspects of Comput-

ing 1(1989), 366-411.

[XBF92] P. M. G. Apers, C. A. vanden Berg, J. Flokstra,
P. W. P. J. Grefen, M. L. Kersten & A. N. Wilschut,
“PRISMA/DB: A Parallel Main-Memory Relational

DBMS,” Memorandum INF92-12, Universiteit Twente,

Enschede, The Netherlands, 1992, Submitted to the

special issue on Main-Memory databases of the IEEE

transacions on Knowledge and Data Engineering.

[.4HB88] P. M. G. Apers, M. A. W. Houtsma & F.

Brandse, “Processing Recursive Queries in Relational
Algebra,” in Data and Knowledge (DS-2), R. A. Meers-

man & A. C. Sernadas,eds., Elsevier Science Publish-

ers, IFIP, 1988.

[BDT83] D. Bitton, D. J. Dewitt & C. Turbyfill, “Bench-

marking Database Systems - .4 Systematic Approach,”
in Proceedings of Ninth International Conference on

Very Large Data Bases, Florence, Italy, October 31-

November 2, 1983.

[BACSO] H. Boral, W. Alexander, L. Clay, G. Copeland,

S. Danforth, M. Franklin, B. Hart. 11. Smith S: P.

Valduriez, “Prototyping Bubba, A Highly Parallel
Database System,” IEEE Transactions on I<nowledge

and Data Engineering 2 (1990), 4-24.

[BrG89] K. Bratbergsengen & T. Gjelsvik, “The Develop-
ment of the CROSS8 and HC16-186 (Database) Com-
puters.,” in Proceedings of the Sixth International
Workshop on Database Machines, Deauville, France,
June 1989, 359 -372.

[CeP84] S. Ceri & G. Pelagatti, Distributed Databases.
Principles and Systems, McGraw-Hill, New York. NY.
1984.

[CAB881 G. Copeland, W. Alexander, E. Boughter Sr T.

Keller, “Data Placement in Bubba,” in Proceedings

of ACM-SIGMOD 1988 International Conference on
Management of Data, Chicago, IL, June 1-3, 1988.

[Cve87] Z. Cvetanovic, “The Effects of Problem Partition-

ing, Allocation, and Granularity on the Performance of

Multi-Processor Systems,” IEEE Transactions on Com-

puters 36 (1987).

[DGSSO] D. J. Dewitt, S. Ghandeharizadeh, D. -4. Schnei-
der, A. Bricker, H. Hsiao & R. Rasmussen, “The

GAMMA Database Machine Project,” IEEE Trans-

actions on Knowledge and Data Engineering 2 (March
1990), 44-62.

[DeWSI] D. J. Dewitt, “Personal communication.

[DGS87] D. J. Dewitt, S. Ghandeharizadeh, D. Schneider.

R. Jauhari, M. Muralikrishna & A. Sharma, “A single

user evaluation of the GAMMA Database Machine,”

in Proceedings of the Fifth International Workshop on
Database Machines, Karuizawa, Japan: October 1987.

[DK084] D. J. Dewitt, R. Katz, F. Olken, L. Shapiro, 11.

Stonebreaker & D.Wood, “Implementation techniques

for main memory database systems.,” in Proceedings
of ACM-SIGMOD 1984 International Conference on

Management of Data, Boston, MA, June 18-171. 1984,

1-8.

[Eic87] M. Eich, “A classification and comparison of main

memory database recovery techniques,” in Proc. of the

1987 Database Enginering Conference, 1967, 332-339.

[Eic89] M. Eich, “Main Memory Database Research Direc-

tions,” in Proceedings of the Sixth International Work-

shop on Database Machines, Deauvil le, France, June

1989, 251-268.

[GLH83] H. Garcia-Molina, R. J. Lipton 8i P. Honeyman,

“A Massive Memory Database System,” Technical Re-

port 314, Department of Comp Science, Princeton Uni-

versity, September 1983.

[GrASO] P. W. P. J. Grefen & P. M. G. Apers, “Par&

lel Handling of Integrity Constraints on Fragmented

Relations,” in Proceedings of the Second International

Symposium on Databases in Parallel and Distributed

Systems, Dublin, Ireland, July 2-4 1990, 138 - 143.

531

[GWFSl] P. W. P. J. Grefen, A. N. Wilschut & J. Flokstra,

“PRISMA/DBl User Manual,” Memorandum INF91-

06. Universiteit Twente, Enschede, The Netherlands,

1991.

[H.4C90] M. A. W. Houtsma, P. M. G. Apers & S. Ceri,

“Distributed Transitive Closure Computations: The

Disconnection Set Approach.,” in Proceedings of Six-

teenth International Conference on Very Large Data

Bases, Brisbane, Australia, August 13-16, 1990, 335-

346.

[HoA92] M. A. W. Houtsma & P. M. G. Apers, “Algebraic

optimization of recursive queries,” Data and KnowJ-

edge Engineering 7 (March 1992).

[LeC86] T. J. Lehman & M. J. Carey, “Query process-

ing in main memory database management systems.,”

in Proceedings of ACM-SIGMOD 1986 International

Conference on Management of Data, Washington, DC,

May 28-30, 1986, 239-250.

[LeRK] M. D. P. Leland & W. D. Roome, “The Silicon

Database Machine: Rational, Design, and Results,” in

Proceedings of the Fifth International Workshop on

Database Machines, Karuizawa, Japan, October 1987.

[SpeSl] J. vander Spek, “POOL-X and its implementa-

tion,” in Proceedings of the PRISMA Workshop on

Parallel Database Systems, Noordwijk, The Nether-

lands, 1990, P. America,ed., Springer-Verlag, New

York-Heidelberg-Berlin, 1991, 309-344.

[Ter83] Teradata Corporation, “Teradata, “DBC/1012

Database Computer Concepts and Facilities,” CO2-

0001-00, 1983.

[WiASl] A. N. Wilschut & P. M. G. Apers, “Dataflow

Query Execution in a Parallel Main-Memory Environ-

ment,” in Proceedings of the First International Con-

ference on Parallel and Distributed Information Sys-

tems, Miami Beach, Florida, USA, December 1991.

[WiA92] A. N. Wilschut & P. M. G. Apers, “Dataflow

Query Execution in a Parallel Main-Memory Environ-

ment,” in To appear in Journal of Distribu ted and Par-

aJleJ Databases..

[WiASO] A. N. Wilschut & P. M. G. Apers, “Pipelining in

Query Execution, ” in Proceedings of the International

Conference on Databases, Parallel Architectures and

their Applications, Miami, USA, March 1990.

532

