
Parallelism in Computational Algorithms and
the Physical World

BjSrn Engquist

Department of Mathematics, UCLA Los Angeles and NADA, KTH Stockholm

1 I n t r o d u c t i o n

Most processes in the real world are local and contain a high degree of parallelism.
A simple example is weather prediction. The weather at any location depends on
the weather at earlier times in the neighborhood. Causality is, however, another
important physical principle preventing parallelism. The weather at one instance
must be known before the weather at later times can be computed. For problems
of the size of weather prediction the required recursiveness in the algorithm does
not, in practice, prohibit a high degree of parallelism. The parallel computation
at each time instance saturates the computer.

The computational algorithms should capture the parallelism in these pro-
cesses and map them efficiently onto the current architecture. Quite often the
original physical process is approximated in such a way that the local dependence
is lost. This happens, for example, when steady state is assumed. Furthermore,
many modern computational methods are hierarchical and contain some global
interconnection even if the underlying process is local. The overall efficiency de-
pends on how well this connectivity is supported by the architecture. Different
classes of modern methods in scientific computing and their parallel implemen-
tation will be discussed.

2 E x p l i c i t T i m e D e p e n d e n t A l g o r i t h m s

In this type of algorithm the unknown quantities are first given as initial values
in a real array. Time is discretized and all these unknowns are updated at each
discrete time level. In the update the new values in the array are computed
as functions of a finite, and usually small, number of real values from the old
array. This is the typical form of a finite difference or lumped finite element
method approximating a partial differential equation, [4]. The partial differential
equation is, by far, the most common mathematical model describing physical
processes in many areas as, for example, weather prediction, electro-magnetic
and elastic wave propagation, combustion and other chemical processes.

The update mentioned above is given by a fixed function of the old values in
the array. These values are all physically close in the one, two or three dimen-
sional space for the independent spatial variables of the simulation. This results
directly from differentiation being a local operator.

A natural technique in modern coarse grain MIMD computers, as the IBM
SP-1 and Cray T3D, is to decompose the the array following a decomposition

10

of physical space. In this domain decomposition, [3], where each domain corre-
sponds to one processor and its local memory, most operations are internal to
the nodes. The amount of data in the communication between the domains is
much smaller than the number of floating point operations. This corresponds
to the boundary of the domains being of one dimension lower than the interior.
The parallelization is thus quite trivial in theory and the optimization amounts
to load balancing between the sizes of the domains and the grouping of data in
space and time for the message passing depending on bandwidth and latency.

For earlier massively parallel computers with smaller local memory and slower
communication it was much more important for the interconnection architecture
to mimic the connectivity in the approximation of the partial differential algo-
r i thm and thus in physical space. Examples are the nearest neighbor mesh in
the early ILLIAC IV and the ICL DAP. The hypercubes and the CM200 are
also closely related to the nearest neighbor mesh architecture. See [1] for an
informative discussion along these lines.

3 N o n l o c a l A l g o r i t h m s

The nonlocal algorithms are a challenge also for the modern coarse grain parallel
architectures with fast communication. Each value in the update of the array of
unknowns is now a function of a potentially larger number of values scattered
over the physical space and thus over the array. This situation occurs for implicit
computational methods approximating time dependent problems. In each time
step a system of algebraic equations, linking all unknown values must be solved.
It also occurs for processes which are approximated to be steady or instantaneous
in time. The elliptic equations in structural mechanics and the divergence free
condition in incompressible flow are examples of these approximations.

The algebraic equations mentioned above are either directly linear or are
reduced to linear systems by some nonlinear equation solver. If standard direct
solvers are used the parallelization becomes a problem in the linear algebra
of sparse systems. For large problems iter,ative techniques are becoming more
important. Modern hierarchical iterative methods, as for example multigrid and
domain decomposition, can be seen as compromises between the explicit local
algorithms and the direct more interconnected techniques.

The efficiency of these hierarchical iterative methods are based on the fact
that there are some local nature even in the operators describing steady state or
instantaneous processes. In domain decomposition a sequence of localized prob-
lems will give an approximation to the global problem. In multigrid a sequence
of explicit methods with grids of differnt coarseness are utilized, [1], [3]. The
overall efficiency is now a more delicate balance between the algorithmic effi-
ciency on a scalar basis and the scalability of the parallel distribution of da ta
and computations. In [2] a multigrid method to be used on coarse grain MIMD
computers is described. The paper also contains convergence analysis.

11

References

1. Chan, T.: The Physics of Parallel Machines, Opportunities and Constraints of Par-
allel Computing. Sanz, J. L. C. ed., Springer Verlag, pp. 15-20, 1989.

2. Eliasson, P., Engquist, B.: Multigrid Methods for Hyperbolic Differential Equations,
to appear.

3. Gropp, W. D.: PaxMlel Computing and Domain Decomposition, Domain Decompo-
sition Methods, Cha~, T., Keyes, D. E., Meurant, G., Scroggs, J. S., Voigt, R. G.
eds, SIAM, 1992.

4. Rizzi, A., Engquist B.: Selected Topics in the Theory and Practice of Computational
Fluid Dynamics. J. Comp. Phys. 72 (1987) 1-69

