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1 I n t r o d u c t i o n  

Most processes in the real world are local and contain a high degree of parallelism. 
A simple example is weather prediction. The weather at any location depends on 
the weather at earlier times in the neighborhood. Causality is, however, another 
important physical principle preventing parallelism. The weather at one instance 
must be known before the weather at later times can be computed. For problems 
of the size of weather prediction the required recursiveness in the algorithm does 
not, in practice, prohibit a high degree of parallelism. The parallel computation 
at each time instance saturates the computer. 

The computational algorithms should capture the parallelism in these pro- 
cesses and map them efficiently onto the current architecture. Quite often the 
original physical process is approximated in such a way that the local dependence 
is lost. This happens, for example, when steady state is assumed. Furthermore, 
many modern computational methods are hierarchical and contain some global 
interconnection even if the underlying process is local. The overall efficiency de- 
pends on how well this connectivity is supported by the architecture. Different 
classes of modern methods in scientific computing and their parallel implemen- 
tation will be discussed. 

2 E x p l i c i t  T i m e  D e p e n d e n t  A l g o r i t h m s  

In this type of algorithm the unknown quantities are first given as initial values 
in a real array. Time is discretized and all these unknowns are updated at each 
discrete time level. In the update the new values in the array are computed 
as functions of a finite, and usually small, number of real values from the old 
array. This is the typical form of a finite difference or lumped finite element 
method approximating a partial differential equation, [4]. The partial differential 
equation is, by far, the most common mathematical model describing physical 
processes in many areas as, for example, weather prediction, electro-magnetic 
and elastic wave propagation, combustion and other chemical processes. 

The update mentioned above is given by a fixed function of the old values in 
the array. These values are all physically close in the one, two or three dimen- 
sional space for the independent spatial variables of the simulation. This results 
directly from differentiation being a local operator. 

A natural technique in modern coarse grain MIMD computers, as the IBM 
SP-1 and Cray T3D, is to decompose the the array following a decomposition 
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of physical space. In this domain decomposition, [3], where each domain corre- 
sponds to one processor and its local memory, most operations are internal to 
the nodes. The amount of data in the communication between the domains is 
much smaller than the number of floating point operations. This corresponds 
to the boundary of the domains being of one dimension lower than the interior. 
The parallelization is thus quite trivial in theory and the optimization amounts 
to load balancing between the sizes of the domains and the grouping of data in 
space and time for the message passing depending on bandwidth and latency. 

For earlier massively parallel computers with smaller local memory and slower 
communication it was much more important  for the interconnection architecture 
to mimic the connectivity in the approximation of the partial differential algo- 
r i thm and thus in physical space. Examples are the nearest neighbor mesh in 
the early ILLIAC IV and the ICL DAP. The hypercubes and the CM200 are 
also closely related to the nearest neighbor mesh architecture. See [1] for an 
informative discussion along these lines. 

3 N o n l o c a l  A l g o r i t h m s  

The nonlocal algorithms are a challenge also for the modern coarse grain parallel 
architectures with fast communication. Each value in the update of the array of 
unknowns is now a function of a potentially larger number of values scattered 
over the physical space and thus over the array. This situation occurs for implicit 
computational methods approximating time dependent problems. In each time 
step a system of algebraic equations, linking all unknown values must be solved. 
It also occurs for processes which are approximated to be steady or instantaneous 
in time. The elliptic equations in structural mechanics and the divergence free 
condition in incompressible flow are examples of these approximations. 

The algebraic equations mentioned above are either directly linear or are 
reduced to linear systems by some nonlinear equation solver. If standard direct 
solvers are used the parallelization becomes a problem in the linear algebra 
of sparse systems. For large problems iter,ative techniques are becoming more 
important.  Modern hierarchical iterative methods, as for example multigrid and 
domain decomposition, can be seen as compromises between the explicit local 
algorithms and the direct more interconnected techniques. 

The efficiency of these hierarchical iterative methods are based on the fact 
that  there are some local nature even in the operators describing steady state or 
instantaneous processes. In domain decomposition a sequence of localized prob- 
lems will give an approximation to the global problem. In multigrid a sequence 
of explicit methods with grids of differnt coarseness are utilized, [1], [3]. The 
overall efficiency is now a more delicate balance between the algorithmic effi- 
ciency on a scalar basis and the scalability of the parallel distribution of da ta  
and computations. In [2] a multigrid method to be used on coarse grain MIMD 
computers is described. The paper also contains convergence analysis. 
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