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Abstract

There is a tension between the objectives of avoiding irrelevant computation and extracting paral-
lelism, in that a computational step used to restrict another must precede the latter. Our thesis,
following [BeR87], is that evaluation methods can be viewed as implementing a choice of sideways
information propagation graphs, or sips, which determines the set of goals and facts that must be
evaluated. Two evaluation methods that implement the same sips can then be compared to see
which obtains a greater degree of parallelism, and we provide a formal measure of parallelism to
make this comparison.

Using this measure, we prove that transforming a program using the Magic Templates algorithm
and then evaluating the fixpoint bottom-up provides a “most parallel” implementation for a given
choice of sips, without taking resource constraints into account. This result, taken in conjunction
with earlier results from [BeR87, Ra88], which show that bottom-up evaluation performs no irrelevant
computation and is sound and complete, suggests that a bottom-up approach to parallel evaluation
of logic programs is very promising. A more careful analysis of the relative overheads in the top-down
and bottom-up evaluation paradigms is needed, however, and we discuss some of the issues.

The abstract model allows us to establish several results comparing other proposed parallel
evaluation methods in the logic programming and deductive database literature, thereby showing
some natural, and sometimes surprising, connections. We consider the limitations of the abstract
model and of the proposed bottom-up evaluation method, including the inability of sips to describe
certain evaluation methods, and the effect of resource constraints. Our results shed light on the

limits of the sip paradigm of computation, which we extend in the process.

* A preliminary version of this paper will appear in the proceedings of POPL 90.
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1 Introduction

We consider the parallel evaluation of logic programs. This has been the subject of much research in
the logic programming and, recently, the deductive database communities. We review this work, and
observe that there is a commonly used measure of parallelism based on a top-down evaluation paradigm
of identifying subgoals and answers. To formalize this intuition, we propose a simple abstract model of
computation that underlies much of the work on parallel evaluation of logic programs. There is a tension
between the objectives of restricting the computation on the one hand and extracting parallelism on the
other. This precedence is reflected in our model of computation by the choice of sideways information
propagation graphs, or sips, which, informally, describe the order in which the literals in the body of a
rule are to be solved.

Our thesis is that parallel evaluation methods can be viewed as implementing a choice of sips, a
choice that determines the set of goals and facts that must be evaluated. Two evaluation methods that
implement the same sips can then be compared to see which obtains a greater degree of parallelism,
and we provide a formal measure of parallelism to do this. It is important to understand what is and
— more importantly, perhaps — what is not implied by the statement that evaluation method M is
“more parallel in our model ” than evaluation method A. First, our model only allows comparison of
methods that fit the sip paradigm of computation, which is that some choice of sips for the rules in
the logic program is implemented by the evaluation method. In Section 3, we show that most proposed
methods for parallel evaluation of logic programs do fit this paradigm; in Section 7 we consider some
methods that do not. Second, we compare the parallelism obtained by methods when they use the same
sips. Thus, informally, M is more parallel than A if for every choice of sips, it succeeds in obtaining as
much or more parallelism. Similarly, when we say that an evaluation method is “most parallel in our
model”, this does not mean that a faster parallel method cannot be found for a given problem. It does
mean that once we choose to represent a problem — any problem — as a particular logic program and
make a choice of sips, then the evaluation method obtains as much or more parallelism than any other
method for evaluating the program according to the sips. Third, our model implicitly assumes that
there are enough resources to work on all identified subcomputations in parallel, and therefore ignores
implementation overheads and resource constraints.

Using this metric, we prove that transforming a program using the Magic Templates algorithm and
then evaluating the fixpoint bottom-up provides a “most paralle]” implementation for a given choice of
sips, provided that there are no resource constraints. We emphasize a fundamental difference between this
approach and top-down, process-oriented evaluation methods: whereas a top-down evaluation method
proceeds by creating processes to solve subgoals, the bottom-up approach proceeds by applying rules t>
facts to produce new facts. Indeed, the bottom-up method has no inherent notion of a “process”, nor of
a “goal”, although we will establish a correspondence between certain facts generated in the bottom-up
evaluation of a rewritten program (as per the Magic Templates algorithm) and goals generated in top-
down evaluation methods, and refer to these facts as goals. This distinction is significant in terms of

implementation overhead, and we discuss this point in Section 8.

This work has many limitations. First, the class of sips described here cannot describe certain parallel
evaluation methods in the literature, and there seem to be some fundamental difficulties in extending
the definition of sips to cover these methods. Second, the measure of parallelism is rather strong — two

evaluation methods that implement the same sips may be incomparable under the definition, because



each does better than the other on some program. Further, it does not allow us to compare two executions
that use different choices of sips, and this could indeed be seen as a limitation of our separation of concerns
in restricting the computation and in parallelizing it. Finally, ignoring implementation overheads and
resource constraints is hardly realistic. Any real evaluation method must contend with the problem of
mapping a computation onto the available resources, and in doing so must often sacrifice either restriction
or parallelism. This aspect of the computation is not captured by our abstract model; however, it clearly
affects results obtained using the model. We discuss this issue further in Section 8.

In spite of the limitations, we believe that the results provide strong evidence in favor of program
transformation and bottom-up fixpoint computation as a parallel evaluation method, especially for non-
deterministic goals to which all solutions are required. We view this work as a first step towards a fuller
understanding of parallel bottom-up evaluation of logic programs. Recent work in deductive databases
has addressed the specific problem of mapping a bottom-up fixpoint computation onto a network of
processors; we discuss this work and place it in the context of our approach.

The paper is organized as follows. Following preliminary definitions in Section 2, we survey some
proposed parallel evaluation methods for logic programs in Section 3. In Section 4, we develop a model
of computation that allows us to view a class of evaluation methods based on sips at an abstract level,
and a measure 5f parallelism that can be used to compare them. The class includes all the methods
surveyed in Section 3, and several others as well. In Section 5, we present a bottom-up evaluation
method based on rewriting a program, according to the Magic Templates algorithm, and evaluating
the fixpoint of the rewritten program bottom-up. In Section 6, we compare the parallelism obtained
using several proposed parallel evaluation methods. We consider the limitations of sips in Section 7,
and discuss possible extensions. In Section 8, we discuss several pragmatic considerations that must be
taken into account in deciding the relative merits of parallel evaluation methods for logic programs, and
then present our conclusions in Section 9.

2 Preliminaries

The language considered in this paper is that of Horn logic. Such a language has a countably infinite
set of variables and countable sets of function and predicate symbols, these sets being mutually disjoint.
It is assumed, without loss of generality, that with each function symbol fand each predicate symbol p.
is associated a unique natural number n, referred to as the arity of the symbol; fand p are then said to
be n-ary symbols A 0-ary function symbol is referred to as a constant. A term in a first order language
is a variable, a constant, or a compound term f(t1,...,t,) where fis an n-ary function symbol and the
t; are terms. A tuple of terms is sometimes denoted simply by the use of an overbar, e.g., L.

A substitution is an idempotent mapping from the set of variables of the language under consideration
to the set of terms, that is, the identity mapping at all but finitely many points. A substitution o is
more general than a substitution 6 if there is a substitution ¢ such that § = ¢ o 0. Substitutions are
denoted by lower case Greek letters 6,0, ¢, etc. Two terms ¢; and ¢ are said to be unifiable if there is
a substitution o such that (1) = o(t2); o is said to be a unifier of t; and t5. Note that if two terms

have a unifier, they have a most general unifier that is unique upto renaming of variables.

A clause is the disjunction of a finite number of literals, and is said to be Horn if it has at most one

positive literal. A Horn clause with exactly one positive literal is referred to as a definite clause. The




positive literal in a definite clause is its head, and the remaining literals, if any, constitute its body. A
predicate definition consists of a set of definite clauses, whose heads all have the same predicate symbol;
a goal is a set of negative literals. We consider a logic program to be a pair (P, Q) where P is a set of
predicate definitions and @Q is the input, which consists of a query, or goal, and possibly a set of facts
for “database predicates” appearing in the program. We follow the convention in deductive database
literature of separating the set of rules with non-empty bodies (the set P) from the set of facts, or unit
clauses, which appear in @ and are called the database. P is referred to as the program, or the set of
rules. The motivation is that the rewriting algorithms to be discussed are applied only to the program,
and not to the database. This is important in the database context since the set of facts can be very
large. However, the distinction is artificial, and we may choose to consider (a subset of) facts to be rules
if we wish. The meaning of a logic program is given by its least Herbrand model [VEK76].

Following the syntax of Edinburgh Prolog, definite clauses (rules) are written as
P41y qn-

read declaratively as q; and g5 and . ..and g, implies p. Names of variables begin with upper case letters,

while names of non-variable (i.e. function and predicate) symbols begin with lower case letters.

We will use derivation irees in several proofs:

Definition 2.1 Given a program P and input @, derivation trees in (P, Q) are defined as follows:

o Every fact h in Q is a derivation tree for itself, consisting of a single node with label h.

e Let r be arule: h i~ by, by, ..., by in P, let di, i = 1...k be atoms with derivation trees ¢;, and let
9 be the mgu of (b1,...,bx) and (di,...,dx). Then, the following is a derivation tree for hf: The
root is a node labeled k6, and each t;, i = 1...n, is a child of the root. Each arc from the root 1o
a child has the label r.

3 A Survey of Proposed Parallel Evaluation Methods

We discuss several proposed parallel evaluation methods, focusing on the parallelism that is realized, that
is, what subgoal computations are allowed to proceed in parallel. The survey in this section motivates
our development of an abstract model of computation to compare the parallelism in different methods.
We develop the model in the next section; it abstracts the behaviour of a class of methods called “sip-

methods”. The methods discussed in this section all fall into this class, unless otherwise noted.

One of the objectives of this paper is to identify the similarities and differences in proposed parallel
evaluation methods, both top-down and bottom-up, and to this end, we provide a uniform and sufficiently
detailed description of the major approaches. While the relationship between bottom-up and top-dowa
evaluation methods has recently been studied widely in the deductive database community, the more
complicated nature of parallel evaluation methods has made the connections harder to see. Indeed, it
has been remarked that the work on parallel evaluation in the logic programming community, typically
top-down methods, are not likely to be useful in the context of bottom-up parallel evaluation [CW89].
We think that on the contrary much can be gained by a careful study of the literature of both top-

down and bottom-up approaches. There is a strong relationship between the structure of top-down and



bottom-up computations, as demonstrated in [Ra88, Se89] and also [BMSU86, BeR87, Br89, Ul89b,
Ul89a, Vi89, KL86, KL88], etc. While the details of an implementation of a top-dowr method would
differ considerably from that of a bottom-up method, we believe that many ideas, such as schemes for
structure-sharing, are likely to work in either approach. (See [NR89] for a closer look at this issue.)

The parallelism in logic programs is often broadly classified into And-, Or- and Stream parallelisni.
And-parallelism refers to the parallel solution of subgoals generated from literals in the same rule body.
Or-parallelism refers to the parallel evaluation of different rules that unify with a given goal. Stream-
parallelism refers to the eager processing by a subgoal (the “consumer”) of an argument value, such as a
list, that is being constructed by another subgoal (the “producer”). We will restrict our attention to the
first two, since the last typically forces us to consider additional properties of the computation such as
determinacy and structure-sharing in some detail. Most of the methods that we discuss in this section
proceed by identifying subgoals and creating processes to solve them. However, there has been some
work on achieving similar results through bottom-up fixpoint evaluation, and we discuss this work as
well.

The discussion in [Ka87b] supplements the survey presented in this section, and we suggest that the
reader consult it for more details.

3.1 The And-Or Tree Model

An And-Or tree for a logic program has the query as the root node, which is an Or-node. An Or-node
is always labeled with a goal, and has one child And-node per rule whose head unifies with this label
The label of a child And-node is the corresponding rule with the unifying substitution applied to it. The
unifying substitution is used to label the arc from the parent Or-node to this And-node. An And-node
has at most one child Or-node per body literal in its label. The label of a child Or-node is a variant of
the corresponding body literal.

The And-Or model presented in [Co83] builds And-Or trees by generating a process for each node in
a top-down order. The query is the root node. The children of an Or-node are generated as described
above. We now describe how the children of an And-node are generated: A child Or-node is created
for the left-most body literal in the label of the And-node. The arc to the Or-node is labeled with
the identity substitution. For each answer, which can be viewed as a substitution o, to the Or-node
corresponding to a body literal, an Or-node is generated for the next body literal. If the path from the
And-node to the first Or-node is labeled with 6, the label of the second Or-node is the corresponding
body literal with the substitution o applied to it. This substitution is used to label the arc to it.

At any time, an And-node has at most one child Or-node per body literal in the label. Solutions to
Or-nodes are saved as they are generated, and And-nodes are solved by generating all combinations of
children through backtracking.

Much work has been done on this model; in particular, the ordering could be a partial order and
sibling Or-nodes corresponding to different body literals could be generated simultaneously. In general,
this creates problems if these children share variables. Therefore sibling Or-nodes are generated simul-
taneously only if they do not share variables. Since a variable that is shared between the corresponding
literals could be bound to a ground term by a preceding Or-node, detecting such opportunities for solving
the children of an And-node in parallel is a difficult problem. Several researchers have addressed this
issue, e.g., [De84, CDD85]. Another area of research has been to identify intelligent ways to backtrack




past predecessor nodes when a node fails (i.e., to recognize that alternative solutions to these predeces-
sors would not enable the given node to succeed, and thus avoid generating further solutions to them.)
Conery also suggested schemes for dynamically re-ordering the nodes in the And-Or tree [Co83]; these
cannot always be described as sip-methods, and this is discussed further in Section 7.

An important restriction of the And-Or model is to simply avoid Or-parallelism by generating the
children And-nodes of an Or-node one at a time. This restriction ensures the property that every
variable instance in the computation has a unique binding at any time. (With Or-parallelism, recall
that an Or-node saves multiple answers; these provide multiple bindings for the variables that appear

in it.) This typically results in the loss of much parallelism, but reduces implementation overhead (see
e.g., [De84, CDD85, HR8Y)).

3.2 Full Or-Parallelism

Full Or-parallelism is best understood in terms of SLD-trees. The SLD-tree for a logic program has the
query as the root node. Every node in the tree is a conjunction of goals. A node has one child for each
resolvent obtained by resolving one of the goals in the node with some rule in the program. The leaves
are empty nodes. The conjunction of substitutions along a path from the root to a leaf, applied to the
query, yields an answer.

Full Or-parallelism consists of exploring each branch of the SLD-tree in parallel, as initially proposed
in [CH83]. Thus, if we have a node “p1(5,X),p2(X,Y)” and two rules “pl(U, V) = ql(U,V).” and
“pl(W, Z) :— q2(W, Z).”, there are two children for this node: “q1(5, V), p2(V, Y)” and “q2(5,2),p2(Z,Y)"
This leads to an unnecessary duplication of effort — with no real gain in parallelism — in the repeated
solution of the goal p2(Z,Y)7.

A solution to this problem is to solve ¢1(5,V)? and ¢2(5, Z)? in parallel, and to then solve the 72
goal for each binding of the first argument in parallel. We describe the solution in the general case in
terms of a modified And-Or tree, with the only difference being that at any time, an And-node could
have more than one child Or-node corresponding to a given body literal. As before, for the left-most
body literal in its label, an And-node has one child Or-node per rule whose head unifies with it, and the
arc to this Or-node is labeled with the unifying substitution. The Or-nodes for every other body literal
are generated as follows: When a child Or-node for the ith body literal returns an answer, which can be
viewed as a substitution o for the variables in it, this is composed with the substitution, say ¢, on the
arc to this Or-node and the resulting substitution 8o is applied to the i+ lst body literal in the label of
the And-node. This results in a goal, generated from the i+ 1st literal, and one child Or-node is created
with this label. The arc from the And-node to this Or-node is labeled with the substitution fo.

This is indeed how the Or-parallel model proposed in [CH83] is implemented, as described in [CH84].
In essence, rules are solved left to right, and for each goal, all rules with which it unifies are solved in
parallel. Notice that, except for the root, each Or-node is created in response to the answer to another
Or-node; the creation of And-nodes can be avoided by directly creating tokens for all the Or-nodes that
are its left-most children. Thus, with each Or-node in the tree, we can associate a set of Or-nodes
that were generated because of answers to it. Let us call this the set of successors. The computation
proceeds by creating “tokens” in a top-down order for each Or-node in the modified And-Or tree. A
token contains enough information to generate tokens for all its successors. (In particular, this includes
information about the label of the parent And-node; this is achieved by means of a “continuation”, and



we refer the reader to [CH84] for details.)
Note that there is no And-parallelism; a rule is always solved from left to right.

The above realization of the fully Or-parallel model qualifies as a “sip-method”, but the proposal in
its original form does not.

3.3 The Reduce-Or Model

Kalé observed that many of the proposed evaluation methods were either incomplete or did not extract all
available parallelism, or both. This was the motivation for the development of the Reduce-Or evaluation
model. It is in effect a combination of the And-Or and the fully Or-parallel models as we have described
them.

The model is essentially the fully Or-parallel model extended to solve And-nodes according to a
partial order, rather than a total left to right order, thereby also exploiting And-parallelism. The only
change concerns the generation of the children Or-nodes of an And-node. A partial order is associated
with each rule (and thus, any And-node that it labels). Consider an And-node, and the associated
partial order over the body literals of the label. A node with no predecessors is treated like a left-most
literal in the fully Or-parallel model — one Or-node is generated for each rule that unifies with it,
and the arc to this Or-node is labeled with the unifying substitution. Consider a body literal p with
predecessors py,...,pk in the partial order. Let 8;,i=1,...,k be an answer substitution for p;, and let
the composition 8 = 6,,...,0; be consistent. Then, an Or-node is generated for the goal pd, and the
arc from the And-node to this Or-node is given the label pd. Kalé does not insist that sibling Or-nodes
that correspond to different body literals and that are generated in parallel should contain no shared
variables. Instead, any conflicts are resolved by explicitly composing answer substitutions for all the
body literals, one per literal. In effect, this corresponds to taking a join on the body of a rule to generate
an answer fact for the head predicate.

We conclude this discussion of top-down methods by formally defining And- and Or- parallel steps
in terms of And-Or trees.

Definition 3.1 An And-parallel step is the concurrent generation of two goals that correspond to dif-
ferent body literals in the label of an And-node.

Definition 3.2 An Or-parallel step is the concurrent generation of goals g1,..., gk from a given goal
g by unifying g with the heads of two different rules and generating g1,...,gk by instantiating body
literals with no predecessors. The generated goals must not all be obtained from just one of the rules

We assume that once a goal is “generated”, it can be processed immediately. (In effect, a goal 15
considered to be generated when its processing begins.)

3.4 Bottom-Up Methods

The literature on bottom-up evaluation is extensive, and we do not propose to cover it in detail here. We
refer the reader to surveys and expositions presented in [BaR86, Br89, NR89, Ul89a]. We note that while
most of this literature deals with the implementation of Datalog, which is a subset of logic programs

without function symbols, and also does not deal with non-ground terms, recent proposals treat full logic




programs [Ra88, Se89]. We will examine one of these proposals ([Ra88]) in detail later. The following
brief discussion should be supplemented by consulting Section 5.

The fundamental operation in bottom-up approaches is the application of a rule to a set of facts to
generate new facts, which is similar to the use of the Tp operator to construct the least fixpoint model
[VEK76]. An obvious drawback is that all consequences of the program are generated, not just the
facts relevant to processing the given query. From our presentation of the top-down methods, it is clear
that these methods restrict the computation by propagating bindings from the query as the construct
the And-Or trees in top-down order. The essential idea in most bottom-up methods is to combine a
top-down generation of goals with a bottom-up generation of facts. In general, this requires that all
generated goals and facts should be retained and the process repeated iteratively until no new goals and
facts are generated.

Most of the proposed methods use a top-down control strategy to generate goals, e.g., [DW8T,
Lo85, Vi89]. Some use a graph structure over the rules of the program for this purpose, e.g., K186,
KL88, vG86]. It has been shown however, that this can be achieved through source-to-source program
transformations, and this is the approach that we will pursue [BMSU86, RLK86, BeR87, Ra88, Se89]. We
believe that this has significant advantages to offer in terms of uniformity, overheads, and implementation
alternatives.

4 An Abstract Model of Computation

We consider how the evaluation of a logic program can be formalized at an abstract level in a way that
allows us to make precise the degree of parallelism. We emphasize that the model we develop in this
section is not an execution model, in that it does not specify how to evaluate a program, and should not
be confused with execution models such as And-Or models or the Reduce-Or Process Model. Rathe .
it is a formal model in which we can abstractly represent computations that correspond to execution of
a logic program using some execution model (i.e., evaluation method). In the next section, we propose
the Magic Templates evaluation method for parallel evaluation, and subsequently analyze it in terms of
our abstract model. This evaluation method and the abstract model are independent; the distinction
should be borne in mind.

We begin by observing that while the semantics of a logic program is purely declarative in that it
does not depend on how the program is evaluated or on any concept of a program state, there is a
natural notion of state associated with any execution of a logic program.

As a first step, we could try to define an abstract model of computation as follows: The state of a
program execution is a pair (F,§), where F and G are sets of facts and goals, respectively. The nifial
state is defined by F = set of given facts in the program (the EDB, in database terminology, or the set
of rules with empty bodies), and G = the initial query. A computation is a progression from the initial
state to a final state, in which F contains all facts in the answer to the query, through a sequence of
transitions from one state to another.

To complete our model of computation, we must define the notion of a state transition. Intuitively,
we seek to describe a single step of computation. The class of evaluation methods that we consider
proceed by identifying subgoals and obtaining solutions to them, and thus, a natural candidate for a
state transition is the addition of a single new goal or fact.



There are two complications, however. First, if possible, a parallel computation seeks to 1dentify new
goals and facts simultaneously. Thus, from a given state, it might be possible to simultaneously infer a
set of new goals and facts. We will therefore allow a state transition to add a set of new goals and facts,

rather than just a single new goal or fact.

A second complication arises from the fact that in several top-down evaluation schemes based on the
AND-OR tree model, the computations of subgoals do not share their results, and indeed, the facts and
goals generated in the computation of a subgoal are discarded when this computation is completed, even
though the main computation is still in progress. In effect, different subcomputations see different sets
of facts and goals, and the sets of facts and goals are not monotonically increasing since facts and goals
are sometimes discarded. In our model, we will always refer to a single set of facts F and a single set
of goals G; these are the (monotonically increasing) sets of all facts and goals generated in any part of
the computation. The subsets of visible facts or goals in a subcomputation influences the set of allowed
transitions. These subsets, however, are not uniquely determined by F and G — that is, there is more
to the state of a computation than just the sets of previously derived facts and goals. We will model this
by augmenting the state vector with a third component, H (for “hidden”). Of the possible transitions
based on F and G, an evaluation method may only allow a subset, based on the third component H.
We will assume that this third component is suitably updated as part of a state transition; this depends
on the specific evaluation method, and we will not go into this in further detail in this paper. (For a
class of methods that always retain all deduced facts and goals, and in which these sets are visible to all

subcomputations, H plays no role, and we will take advantage of this fact.)

We have introduced the notion of a state transition informally as the addition of a set of facts and
goals to the current state, accompanied by an update to the hidden component of the state. We have
not yet specified how transitions depend on the current state. To do this, we must make explicit certain
assumptions about the class of evaluation methods that we consider, and we do this in the following
subsection.

4.1 Sip-Method

The class of evaluation methods that we consider proceed by generating subgoals and facts (that ate
solutions to some of the subgoals), using the logic program (P, Q). Initially, the set of facts F consists
of the EDB facts in Q. The set of goals G contains the given query, also in Q. (The hidden state H is
assumed to be properly initialized.)

At any point in the computation, the state is a triple (F,G,H). A new fact or goal can be generaterd
by the use of a rule in P on FUG.

Consider a rule:

PIDI=q1, -, 4n.
We can generate a new fact pf by applying a substitution 8 such that for i =1,...,n:

1. there is a fact d; in F and a substitution o; such that ¢;0 = d;o;, and

2. there is a goal c¢? in G and a substitution ¢q such that pf = coy.

In most evaluation methods, only the substitution ¢ = mgu({p,q1,..-,qn),{c,d1,...,dn)) is applied,
since applications of other substitutions only generate facts that are subsumed by the fact p¢. We will




assume this in the rest of this paper, and also make a similar assumption in the following description of
how goals can be generated. The effect of the hidden state H and the evaluation method M — which
we do not specify in further detail — is to allow only a subset of the above new facts to be generated.
For example, in methods that do not memo generated facts, the device of a hidden state can be used
to simulate the effect of generated facts (which are therefore in F) that have been discarded at some
point in a computation (and thus cannot be used to make a new inference). Generated facts are added
to F; further, a (newly generated or previously known) fact f € F can be discarded if it is subsumed by
another fact in F. The cost of detecting that a fact is subsumed may sometimes override the gains, and
some methods do not discard such facts; we will not require this as part of our definition of sip methods

However, not discarding subsumed facts may lead to unnecessary derivations of new facts.

To specify how goals can be generated, we must introduce the notion of a sideways information
passing, or sip, graph. We define a sip graph for a rule to be a partial ordering of the body literals. New
goals are generated by invoking a rule, in a top-down sense, with some known goal. Further, they literals
in the body of a rule are solved in some order, more generally a partial order. Each literal is solved by
generating a subgoal from it and then obtaining solutions to this subgoal. In generating a subgoal from
a literal, the goal with which the rule was invoked and the solutions obtained to literals that precede the
given literal in the sip partial order are all used to bind variables and thereby restrict the new subgoal.
Thus, to generate a subgoal from a literal gg, we need the goal with which the rule was invoked, and the
facts (solutions) corresponding to literals that precede it in the sip order.

Formally:

Let the predecessors of i be the literals g;,...,g;, let ¢ € G and {d;,. ..,dj} € F, and
let 8 = mgu((p, qi,---,qj),{c,ds,...,d;)). Then, we can generate the goal ¢07.

Generated goals are added to G, and as for facts, subsumed goals can be discarded. The effect of the
hidden state H and the evaluation method M is again to allow only a subset of the new goals to he
generated. Henceforth, we will refer to the above operations as simply “applying a rule” (in a given
state, according to a given evaluation method) to generate a fact or a goal. In a given state, we will
in general be able to apply several rules simultaneously to produce new goals and facts. Indeed, the
same rule could be applied to produce several new goals and facts from the sets F and G. Thus, a state
transition can add a set of facts or goals, each of which can be generated by a single application of a
rule to FUG.

We remark that the sip can be more sophisticated — for example, the new subgoal may be restricted
using only a subset of the bindings made by its predecessors in the sip. (This may be motivated by the
overhead of propagating the bindings in some evaluation schemes.) We do not consider such refinements
of sips in this paper, and instead we refer the reader to [BeR87, Rag8]. Further, it is possible to choose
a different sip for the same rule when it is invoked using different goals. For example, we may wish to
solve it left-to-right when the first argument of the goal is bound to a ground term, and right-to-left
otherwise. We consider this point in Section 7, but for now we assume that a single sip is chosen for a
rule. That is, a rule is solved in the same way regardless of the goal with which it is invoked. We will
assume that the choice of sips is made for us — making a good choice is a hard problem, and orthogonul
to the results in this paper.

We now summarize our description of sip-methods.



Definition 4.1 Sip-Method

Consider a logic program (P, Q) and a choice of sips for the rules in P. Consider the sets of facts (say
F) and goals (say G) that can be generated from Q by applying the rules in P in some order according
to the chosen sips under the assumption of a hidden state that disallows the generation of no fact or
goal. If subsumed facts and goals are discarded as soon as possible, then let the sets of facts and goals
be denoted F; and G;.

A sip-method is defined to be an evaluation method that generates only facts and goalsin FUG.

A subsumption-checking sip-method is defined to be an evaluation method that generates only facts and
goals in Fy UGy,

A complete (resp. subsumption-checking) sip-method is one that computes maximal sets of facts and
goals, as per the definition of a (resp. subsumption-checking) sip-method.

The maximal sets of goals and facts that may be computed are independent of the details of the
evaluation method (and the associated encoding of the hidden state), and are determined by the program
and the sips. The maximal sets are not unique for subsumption-checking sip-methods, due to effect of
the non-determinism in the order of rule applications on the discarding of subsumed facts and goals. If
the evaluation method is to guarantee all answers that follow from the least Herbrand model semantics,
all these goals and facts must be generated, since it is otherwise possible to construct inputs such that
some answer is not generated. This motivates the definition of complete sip-methods; we note that
not all proposed evaluation methods are complete. On the other hand, techniques such as intelligent
backtracking or the use of abstract interpretation can enable an evaluation method to avoid generating
some of these goals and facts while retaining completeness. Since such methods would not qualify as
complete sip-methods — although they do qualify as sip-methods — our abstract model is unable to
capture their completeness.

While a broad class of evaluation methods can be viewed as sip-methods, it is important to note
that methods that allow “coroutining” — the computation of two goals is interleaved, and typically,
the bindings generated by each are used to restrict the other — cannot be considered sip-methods. We
pursue this point further in Section 7.

The property that we will study in this paper is the effect of the choice of the evaluatic: method
on when goals and facts are identified, and this provides the basis for our measure of parallelism. The
reader who is familiar with [Ra88] will notice a difference in our definition of a sip-method. In [Ra88], a
sip-method was required to generate the facts and goals that it is possible to generate by our definition
of complete sip-methods, but it was possible for the method to generate other facts and goals as well.
Methods that generated precisely the sets of goals and facts that it is possible to generate by our definition
of complete subsumption-checking sip-methods were said to be sip-optimal. We have chosen to study
this class in order to focus on the issue of parallelism; in [Ra88], the primary concern was the restriction
of the computation to relevant facts and goals. We discuss methods that are not “sip-optimal” in Section
6.1.

Several examples of sip-methods were presented in Section 3. There are others that we have not
considered; see e.g., [Po81, EKM82].

4.2 A Summary of Our Model of Computation

We now present the formal definitions of states, transitions and computations.

10




Definition 4.2 Consider a program (P, @).

o The state of a program execution is a triple (F,G, H), where F and § are sets of facts and queries.

respectively, and H denotes a hidden component of the state.

e The initial state is defined by F = set of given facts in the program (the EDB, in database
terminology, or the set of rules with empty bodies), and G = the initial query.

e A state transition according to evaluation method M in state Sy = (F1,G1, H2) changes the state
to Sy = (F2,G2,Ha), and is denoted as S1F-mSa.

Fy = F1U {f|f is a fact that can be generated from F; UG in hidden state H; according to
method M by a single rule application.}

G, = G1U {glg is a goal that can be generated from F; UGy in hidden state M, according to method
M by a single rule application.}

Note that U may result in some facts or goals being discarded because they are now subsumed.
Further, we assume that the hidden state H, is obtained by suitably updating H; to reflect the
behaviour of M.

e A final state is a state such that no new facts or goals can be generated and no rule applications
change the hidden state.

e A computation according to method M is a progression from the initial state to a final state,

through a sequence of state transitions according to M from one state to another.

The length of a computation sequence is the number of state transitions in it.

According to our model, in a given state, there is a unique transition according to a given evaluation
method, and thus a unique computation sequence for a given program and choice of sips. This 1s
essentially reflects the most optimistic situation, where all possible generations of new goals and facts
are carried out simultaneously at each step, and makes the assumption that there are no resource
constraints. It is worth remarking that the sets F and G may not change in a state transition, and only
the hidden state H is updated. This corresponds to the situation that all the facts and goals that can be
generated are previously known, and the only effect of generating them is to possibly make them visible
in some subcomputations where they were not visible earlier. These details are germane to how H is to

be updated; we do not consider this updating process in our abstraction of a computation.

In subsequent sections, we denote the hidden state as T for evaluation methods in which all goals and
facts are visible to all computations. However, in the following example, we simply omit the hidden state,
for simplicity, with the understanding that it is manipulated appropriately by the evaluation method
and influences the generation of the computation sequence.

Example 4.1 We now present an example that illustrates our model of computation by listing the
computation sequences in our model for execution according to several different evaluation methods.
We use the following program; the only rule with a body that contains more than one literal is the first,

and we assume that the chosen sip leaves the first two literals relatively unordered but before the third.

p(X, Z) == b1(X), b2(Y), b3(X,Y, ).
p(X,Y) - b4(X,Y).
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b1(5).

b2(6). b2(7).
b3(5,6,8). b3(5,7,9).
b4(1,2).

p(U, V)?

We mark goals by a terminal “?”, and represent the sets F and G as a single set of goals and facts. For
brevity we use the notation “U{...}” to denote a state in a computation sequence that is obtained by
adding the set between { and } to the set in the previous state in the sequence (and updating the hidden
state, which is not shown).

Prolog Prolog is a left-to-right evaluation method that does not exploit any parallelism. [ts compu-
tation sequence is:

{p(U,V)?} F U{b1(X)?7} - U{b SR U{b2(Y)7} + u{b2(6)} F U{b3(5,6, Z)7}
FU{b3(5,6,8)} F U{p(5,8)} F Uio2(7T)} - U{b3(5,7, Z)7} - U{b3(5,7,9)} - U {p(5,9)}
FU{b4(X,Y)?} F u{b4(1,2)} - U{p(1,2)}
Note that the goal b2(Y)? is generated a second time after backtracking. We do not see this in the

above sequence since its only effect in our model is to affect the hidden state; the set of known facts and
goals is unaffected by the re-derivation of a previously known goal.

Ciepielewski-Haridi This is a fully Or-parallel method proposed in [CH83]. It does not exploit
any And-parallelism.
{p(U,V)?} F U{b1(X)?,b4(X, Y)?} - U{b1(5), b4(1,2)} - U {p(1,2), b2(Y)7} = U{b2(6), b2(7)}
- U{b3(5,6, 2)?,b3(5,7, Z)7} - U{b3(5,6,8), b3(5,7,9)} F U{p(5,8), p(5,9)}

Observe that the parallelism has resulted in a much shorter computation sequence. There is no

And-parallelism since in no one transition do we add goals corresponding to different body literals.

DeGroot This is an And-parallel method that exploits no Or-parallelism, and was proposed in
[De84].
{p(U, V)7} F U{b1(X)?,b2(Y)?} F U{b1(5),b2(6)} - U{b3(5,6, Z)?} - U{b3(5,6,8)}
FU{p(5,8)} F U{b2(T)} F U{b3(5,7,2)?} - U{b3(5,7,9)} - U {p(5,9)} F U{b4(X,Y)7}
Fu{b4(1,2)} - u{p(1,2)}
Conery This is a method that attempts to realize both And- and Or- parallelism, and is one of the
methods proposed in [Co83].
{p(U, V)?} F U{b1(X)?,b2(Y)7} F U{b1(5), b2(6), b2(7) } I U{b3(5,6, Z)7} b+ u{b3(5,6,8)}
FU{p(5,8)} F U{b3(5,7, Z)?} + U{b3(5,7,9)} - U {p(5,9)} U{b4(X,Y)7} F U{b4(1,2)} - U{p(1,2)}
Notice that in this method, the two b3 goals are sequentialized.
Reduce-Or This is also a method that exploits both And- and Or- parallelism, and is proposed
[Ka87a]. It identifies all the available parallelism in this example.
{p(U, V)7} F U{b1(X)?,b2(Y)?,b4(X,Y)?} + U{bL(5), b2(6), b2(7),b4(1,2)}
F Uu{p(1,2),b3(5,6,2)7,b3(5,7,2)?} - U{b3(5,6,8),63(5,7,9)} u{p(5,8),p(5,9)} O
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4.3 A Measure of Parallelism

We now describe how the parallelism allowed by two evaluation methods can be compared.

Definition 4.3 Given two evaluation methods M, and M, we say that M is more parallel than M if
and only if for every choice of a program (P, Q) and a set of sips S, the computation sequernce according
to M is no longer than the computation sequence according to Mo.

By definition, our measure of parallelism will not allow us to compare computations that use different
choices of sips, since the measure is defined in terms of a property that must hold for every choice of
sips (and programs).

We remark that the length of a computation sequence corresponds to the time taken by the algorithm.
For example, if we consider bottom-up fixpoint computation of a (rewritten) program, this length is equal
to the number of stages or iterations.

We now present a result that is useful for proving that one method is more parallel than another.

Theorem 4.1 M, is more parallel than My if the following holds for every program (P, Q) and choice
of sips §:

Let Fi, and Gy, denote the set of facts and goals in the state of the computation sequence
Sy according to My at Step i, and let Fo, and G2, denote the corresponding sets for the
computation sequence Sa according to M. For all i less than or equal to the length of Si,
Fa, CFy, and Ga, C Gy,

Proof Let the length of computation sequence S; be k and that of S be I. It follows that Fy, = F»,
and Gy, = Ga,; also, Fi,_, C Fi, or Gi,_, C Gi1,. From the conditions of the theorem, this implies thet
Fo,_, C Fi, or Go,_, CGy,. Thatis, Fa,_, C Fa, or Ga,_, C Go,. Thus, My cannot terminate at Step
k—1. 0O

The theorem does not hold in the only-if direction because we can choose arbitrary hidden states.
Typically, considering methods in the literature, the only-if direction also holds. However, it is difficult
to identify abstract conditions on hidden states that allow us to prove the claim in the only-if direction.

We identify two extreme classes of methods.

Definition 4.4 An evaluation method is said to be mazimally parallel if no other method that imple-

ments the same choice of sips is more parallel in our abstract model of computation.

Definition 4.5 An evaluation method is said to be sequential if it is not more parallel in our abstract

model of computation than any other method that implements the same choice of sips.

5 Bottom-Up Evaluation

The bottom-up approach that we consider is to take the program (P, @), rewrite P according to the

choice of sips, and to then evaluate the fixpoint by a bottom-up iteration.

To keep this paper self-contained, we present brief descriptions of the rewriting and iteration phases
in this section.
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5.1 The Magic Templates Rewriting Algorithm

We present a simplified version of the algorithm, tailored to the case that sips are just partial orderings
of the body literals in a rule, and that a single sip is associated with a rule, for all goals that invohe
this rule. The reader is referred to [Ra88] for a more general algorithm capable of implementing more
sophisticated sip choices, and also for a detailed discussion of bottom-up fixpoint computation in the

presence of non-ground facts.

The idea is to compute a set of auxiliary predicates that contain the goals. The rules in the program
are then modified by attaching additional literals that act as filters and prevent the rule from generating
irrelevant tuples.

Definition 5.1 The Magic Templates Algorithm
We construct a new program P™Y. Initially, P™¢ is empty.

1. Create a new predicate magic_p for each predicate p in P. The arity is that of p.

2. For each rule in P, add the modified version of the rule to P™9. If rule r has head, say, p(t), the
modified version is obtained by adding the literal magic_p(%) to the body.

3. For each rule r in P with head, say, p(f), and for each literal ¢i(%;) in its body, add a magic rule to
P™9. The head is magicq;(f;). The body contains all literals that precede g; in the sip associated
with this rule, and the literal magic_p(t).

4. Create a seed fact magic_q({¢)) from the query.

Example 5.1 Consider the following program.

sg(X,Y) = flat(X,Y).
59(X,Y) = up(X,U),sg(U, V), down(V,Y).
sg(john, Z2)?

For a choice of sips that orders body literals from left to right, as in Prolog, the Magic Templates

algorithm rewrites it as follows:

s9(X,Y) = magic_sg(X,Y), flat(X,Y).

s9(X,Y) = magic_sg(X,Y),up(X,U), sg(U, V), down(V,Y).
magic-sg(U, V) :- magic.sg(X,Y ), up(X,U).
magic_sg(john, Z).

We have the following results characterizing the transformed program P™¢ with respect to the original
program P, from [Ra88].

Theorem 5.1 [Ra88] (P, Q) is equivalent to (P™, Q) with respect to the set of answers to the query.

Definition 5.2 Let us define the Magic Templates Evaluation Method as follows:

1. Rewrite the program (P, Q) according to the choice of sips using the Magic Templates algorithm.
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9. Evaluate the fixpoint of the rewritten program.

We hope that the slight abuse of notation in having the same name for the evaluation method and
the rewriting algorithm will not lead to confusion; the distinction should be should be clear from the

context. The second step is presented in more detail in the next subsection.
Theorem 5.2 [Ra88] The Magic Templates Evaluation Method is a complete sip-method.

The careful reader will notice that some joins are repeated in the bodies of rules defining magic
predicates and modified rules. The supplementary version of the rewriting algorithm essentially identifies
these common sub-expressions and stores them (with some optimizations that allow us to delete some
columns from these intermediate, or supplementary, relations). We refer the reader to [BeR87] for
details, with the remark that the variant is similar to the basic Magic Templates algorithm with respect

to parallelism.

5.2 Seminaive Iteration

We describe Seminaive iterative fixpoint evaluation, which is a refinement of ordinary bottom-up fixpoint
evaluation. The main difference is that derivations are not repeated in subsequent iterations, through
the use of duplicate elimination. We follow the presentation in [MR89] in the rest of this section, with
some simplification. *

Let us first define a binary operator Wp, whose role is similar to that of the well-known Tp operator
of [VEKT6]:
Wp(X,Y)={h0| h :—=by,... bgisaruleof P,
g is mgu of (by,...,b) and (dy, ..., d),
Y C X, {dy,...,dx} C X, and
if £ # 0 then {d1,...,dk}ﬂy # @}
Intuitively, Wp only allows deductions from the set of facts X that use the “new” facts ¥ We
now define Seminaive iteration. In the following definition, set is an operator that takes a multiset and

returns a set.

Definition 5.3 Seminaive Iteration
Let S_.; = Sp = ¢ = 0.
bne1 = set(Wp(Sn,bn — Sn-1))
Spp1 = set(Sp Ubnyr)
S = dup-elim(limp—.oo Sn)
GC = set(S)

The set GC is the set of generated consequences of the program.

The set of facts produced in iteration n (6,) is compared with the set of known facts (S, ) to identify
the new facts produced (6, — Snp_1). Only derivations that use one of these new facts are carried
out in iteration n + 1. This avoids generating many duplicate facts by avoiding repeated derivations;
remaining duplicates are handled by the set data structure. The algorithm terminates (at step n + 1)

n particular, the operatér Wp is defined in [MR89] as a multiset constructor. For our purposes here, the cardinality
of the elements is not important, and we treat Wp as a set constructor.
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when Spy1 = Sn; we must test whether 6,41 C Sn. Consequently Seminaive Iteration terminates iff S

is finite.

Let ground be an operator that takes a set of possibly non-ground facts and returns the set of ground
facts that are instances of the input set. the following well-known result shows that Seminaive Iteration
is consistent with the usual least Herbrand model semantics of [vEK76].

Proposition 5.3 The set of generated consequences GC' of a program computed using Seminaive [ter-
ation is such that ground(GC) = M.

We note that ordinary fixpoint evaluation corresponds to the case where the second argument of
Wp in the definition of Seminaive Iteration is replaced by S,. In the sequel, when we refer to bottom-
up fixpoint evaluation, it is not essential that the Seminaive variant be used; our results hold with
either Seminaive or ordinary fixpoint evaluation. We have presented Seminaive Iteration, rather than
just ordinary fixpoint evaluation, for two reasons. First, it illustrates an important advantage that
is obtainable with computations that retain generated facts, and also makes explicit the associated
operation of eliminating duplicates, which could be expensive. Second, it allows us to discuss some
difficulties with this refinement in the context of parallel computations (Section 8).

6 Comparing Methods

We now present some results characterizing the parallelism obtained by some proposed evaluation meth-

ods, using the abstract model of computation and measure of parallelism developed in Section 4.

We remark that in this section, positive results, of the form that one method is more parallel than
another, are typically proved by an induction on the height of derivation trees for the program. Negative
results, of the form that some degree of parallelism cannot (always) be achieved by a method, are
typically established by considering an example and proving that the claim holds on this program.

Our first result provides strong evidence in favor of the Magic Templates approach to parallel eval-
uation. We show that rewriting a program using the Magic Templates algorithm and then computing
the fixpoint bottom-up realizes all the parallelism allowed by the choice of sips.

Theorem 6.1 Parallelism of Magic Templates
The Magic Templates evaluation method is mazimally parallel.

Proof Let us denote the bottom-up fixpoint evaluation of the rewritten program as M. Let Fi, and
G1, denote the set of facts and goals in the state of the computation sequence Sy at Step 4, according
to any other sip method that uses the same choice of sips. Let F; and G; denote the corresponding sets
for the computation sequence S according to M. For all 7 less than or equal to the length of 5, we
will prove that F;, C F; and Gi, C Gi. The proof proceeds by induction on i. As a basis, the sets of
known facts and goals in the initial state are identical. The induction step relies on the structure of rules
defining “magic” predicates, and the fact that the hidden state for a bottom-up computation is always
T since all goals and facts are visible (in the form of facts, the distinction no longer being significant) to
all subcomputations.

Let the claim be true for i < n, and consider a computation sequence of length n in which the nth step
is of the form (F1,_,,G1._., H1._,) Fs, (F1.,G1,,H1,). From the induction hypothesis, Fi,_, € Fn-1
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and Gi._, C Gn_1. By the definition of rule application, every fact in F;, — Fy._, can be derived by
a single application of a rule in the original program using the facts and goals in Fn_, and Gn.,. By
construction of the rewritten program, the modified rules are identical to the original rules except that
they contain an additional magic literal. This literal unifies with the goal used in deriving one of these
new facts. A similar argument based on the definition of a rule application for generating goals, and the
structure of magic rules, shows that every goal in Gy, — G1,_, can be derived in a single application of
a magic rule. This completes our induction, and the proof of the theorem. O

Next, we consider similar results for other proposed evaluation methods. Let us define a memoing
method to be one that maintains a copy of all generated goals and facts. The next theorem indicates
that memoing reduces the length of the computation sequence (and hence improves the parallelism, by
our measure) because it avoids recomputation of goals. In essence, the result tells us that the effect of
redundant work done by non-memoing methods on the length of the computation cannot be compensated
for simply through the use of parallelism, even if unlimited resources are available (enabling us to exploit
all available parallelism).

Theorem 6.2 Power of Memoing

No non-memoing method is mazimally parallel.

Proof The bottom-up evaluation of (P™,Q), a memoing method, obtains more parallelism on the
following program (P, Q):

p(X,Y) - ql(X,2),q2(Z)Y).
q1(X,Y) = b(X,Y).

q2(X,Y) - qU(X,2),¢3(Z)Y).
g3(X,Y) = b(X,Y).

b(5, 5).

p(5,U)7

That is, the length of the computation sequence according to a non-memoing method must be greater
than the length of the computation sequence according to Magic Templates. Intuitively, when the
goal q1(5, Z)? is generated a second time, in Rule 3, the solution ¢1(5,5) has already been generate:l
Bottom-up evaluation can use this solution directly at the next step to identify the goal ¢3(5,Y)?. On
the other hand, without memoing, we must re-solve this goal (generating the subgoal b(5, Z)? and the
facts b(5,5), ¢1(5,5) in subsequent steps) before we can identify the goal ¢3(Z,Y)7. O

The difference in the program used in the above proof can be significant if the computation of the
goal q1(5, Z)? is expensive. The following result shows that the length of the computation sequence
according to a non-memoing method may not even be polynomial in the length of the computaticn
sequence according to bottom-up (memoing) evaluation of the rewritten program. This is not surprising
if we require that both methods use the same sip: Consider the well-known Fibonacci program. It is easy
to see that the bottom-up method is polynomial and that the non-memoing method is exponential in
terms of the number of inferences. If we choose a left-to-right sip for the recursive rule, the computation
is made sequential, and the difference in the number of inferences directly translates into a difference in
the length of the computation sequence. The following result is stronger in that it is independent of the
choice of sips. That is, there are programs such that the difference cannot be bridged by any choice of
sips for the non-memoing method.
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Theorem 6.3 Consider a logic program (P, Q). Let the length of the computation sequence (in ows
abstract model, for some choice of sips) of the bottom-up evaluation of (P™9,Q) be m, and letl the
length for computation according to a non-memoing method for some choice of sips be n. In general,
the function g such that n = g(m) is at least ezponential, independent of the choice of sips for the
non-memoing method.

Proof Consider the following refinement of the Fibonacci program:

FOLN, X, W) = N 22 f(1,N -1, X1, V), f(V, N —2,X2,W),X = X1 + X2.
£(0,N, X,0) - g(NV, X).

£(1,1,1,1).

f(1,0,0,1).

g(N+1, X +1):-g(N,X).

9(0,0).

f(l,n,Z,T)7

The second argument of the query, n, denotes a constant. Thus, the first two arguments are bound to
constants, and the last two are free. If we consider the left-to-right sip for the recursive rule, we can
show by induction that the length of the computation sequence for bottom-up evaluation of the rewritten
program using Magic Templates is linear in n. The key observation is that when the first f literal is
solved, V is always bound to 1, and so the first rule for f is never invoked. On the other hand, the
length of the computation according to a non-memoing left-to-right evaluation is exponential, because
the number of calls is exponential, and there is no parallelism since each transition identifies a single
goal or a fact. This is essentially the behaviour of a method like Prolog. The only other possible sips
are right-to-left and parallel evaluation of the two body f-literals. Both of these are exponential in n,
because the first argument of the second call is always free, and the call can be matched with the second

rule. This leads to a sequential computation that has an exponential number of steps. 0O

Since evaluation under the Reduce-Or model does not do memoing, the previous theorems show thet
it is not maximally parallel, and that the length of a computation may be exponentially longer than

that of a computation according to the Magic Templates method.

Kalé discusses the parallelism obtained by several methods in [Ka87b], but without reference to
a precise measure of parallelism, and the following theorems may be viewed as formalizations of the
discussion in that paper. A method is said to do no memoing if no generated goal or fact is ever saved,
except answers to the query. Thus, if we view the And-Or tree of computation, a new goal or fact is
used to further instantiate a rule and then discarded.

Theorem 6.4 Evaluation according to the Reduce-Or Model is mazimally parallel relative to the class

of methods that do not do any memoing.

Proof Let us denote evaluation according to the Reduce-Or model as R. Let Fi, and Gy, denote the
set of facts and goals in the state of the computation sequence Sy at Step i, according to any other
non-memoing sip method that uses the same choice of sips. Let F; and G; denote the corresponding sets
for the computation sequence S according to R. For all 7 less than or equal to the length of S, we will
prove that 1, C F; and G1, C G;. The proof proceeds by induction on . As a basis, the sets of known
facts and goals in the initial state are identical.
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Let the claim be true for i < n, and consider a computation sequence of length n in which the nth step
is of the form (F1._,,G1._, H1._,) Fs, (F1,,G1., H1,). From the induction hypothesis, 71, , C Fn_y
and Gy,_, C Gn-1. By the definition of rule application, every fact in F), — Fi,_, can be derived by a
single application of a rule in the original program using the facts and goals in Fn1 and G,_,. However,
we must consider the effect of the hidden state, which may preclude some of these derivations. Indeed,
some of the facts and goals in F and G cannot be used in rule applications at Step n because they have
been discarded.

However, since S; is a computation sequence for a non-memoing method, the sets of facts and goals
that are available for rule applications at Step n — i.e. rule applications that are permitted by the
hidden state H,,_, — are subsets of F1,_, and G1,_,. In terms of the extended And-Or Tree model of
the computation (Sections 3.1, 3.2, 3.3), the effect of the hidden state is most easily stated in terms of
the And-Or tree underlying the computation:

1. Facts are generated at And-nodes that have at least one child Or-node per body literal.
The subset of F;,_, that is generated at (the children And-nodes of) the children Or-nodes of an
And-node a is available for rule applications at Step n, using the (instantiated) rule that labels

node a. (The instantiation of the rule corresponds to the goal that is used; this goal must be in
gl ol ')

2. Goals are generated at And-nodes, and result in the creation of children Or-nodes.
Consider a goal g that is generated at an And-node a, from a body literal I. The subset of 7y _,
that is generated at (the children And-nodes of) the children Or-nodes of predecessors of [ — in
the partial order associated with the rule by the chosen sip — is used to further instantiate the
rule labelling @ in order to generate g.

The subsets of G;,_, that are available at Step n are identified implicitly in the above conditions
through the rule instantiations that label And-nodes. It is straightforward to show that the Reduce-Or
method allows the above subsets of F;_, and G;,_, to be used in derivations at Step n. (The details
of the proof of this claim follow from the full description of the Reduce-Or method; the reader is asked
to consult [Ka87a].) This completes our induction, and the proof of the theorem. D

Theorem 6.5 Evaluation according to a non-memoing method that ezploits only And- or Or- paral-

lelism, but not both, is strictly less parallel than evaluation according to the Reduce-Or process model.

Proof The proof is similar to that of Theorem 6.2; we present an example on which the computation
sequence of the Reduce-Or method is shorter than that of any non-memoing method that does not
exploit both And- and Or- parallelism, i.e., generate both And- and Or- parallel steps. Consider the
following program, with a sip for the first rule that orders the genl and gen2 literals before the test
literal, and the goal p(X)7:

p(Z) - genl(X), gen2(Y),test(X,Y, Z).
test(X,Y,2) - fUX,Y, Z).
test(X,Y,Z) — f2AX,Y, 2).

genl(5).

gen2(6).

F1(5,6,7).

£2(5,6,8).
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The Reduce-Or method generates the following computation sequence:

{p(X)?} F U{gen1(X)?, gen2(Y)?} I U{genl(5), gen2(6)} U{test(5,6,2)7} - U

{f1(5,6,2)7, f2(5,6, 2)?} + U{f1(5,6,7), f2(5,6,8)} F U{test(5,6,7)7,test(5,6,8)7} = U{p(7),p(8)}
The only parallelism available is in the And-parallel step that concurrently identifies the genl and gen2
goals, and the Or-parallel step that concurrently identifies the f1 and f2 goals. Any method that does
not generate either And- parallel or Or- parallel steps must sequentialize one of these steps into two
transitions, and must therefore have a computation sequence that is longer than the above sequence by
at least one transition. O

From the proof of the above theorem, it is easy to see that there are programs on which the com-
putation sequence for a purely Or-parallel method must be longer than the computation sequence for
a method that utilizes And- parallelism. (For example, the program in the proof with the following
changes: delete the test literal from the first rule, and delete all rules used to define the predicate test.)
Similarly there are programs on which a purely And-parallel method must have a longer computation
sequence than a method that utilizes Or-parallelism. (For example, the subprogram that defines the
predicate test, with the goal test(5,6,Z)?.) This observation leads to the following proposition, which
illustrates a limitation of our measure of parallelism, in that it does not allow us to compare certain
pairs of evaluation methods.

Proposition 6.6 Consider a method whose allowed transitions contain no Or-parallel steps, and one
whose allowed transitions contain no And-parallel steps. Let both methods be more parallel than a s¢-
quential method. Then, neither method is more parallel than the other.

6.1 Methods That Sacrifice Restriction for Parallelism

We present a result that indicates why we chose a definition of a sip-method that differs from the
definition in [Ra88]. It also illustrates the trade-off between restricting search and parallelizing the
computation.

Let us relax our definition of a sip-method in this subsection to also include methods that compute a
set of the facts and goals, say F) and Gy, such that ground(FUG) C ground(F,UG:), where F and ¢ are
the sets that must be computed according to the definition of a sip-method in Section 4. This allows us to
consider methods that are not sip-optimal, in that they do not eliminate all computation that is irrelevant
according to the sips. As an extreme example, the bottom-up evaluation of the original program can be
seen to implement any choice of sips (extremely inefficiently), since we can view it as generating a goal
containing a vector of n distinct variables for each n-ary predicate, and obtaining all solutions. Thus,
every possible goal with predicate name p is an instance of this most general goal for p. Intuitively,
this allows us to work on all relevant goals immediately, but at the cost of additionally working on
irrelevant goals. From the proof of Theorem 6.3, it is easy to see that any irrelevant computation can be
made arbitrarily complex, even non-terminating, and thus the unrestricted vomputation sequence could
be much longer than a restricted computation sequence. Thus, bottom-up evaluation of the original
program is not necessarily more parallel than another evaluation method, by our measure of parallelism.
This is pertinent when we wish to compute all answers and terminate, or if (as is likely) resources are
limited. However, termination is in general undecidable, and even the restricted computation may not
terminate. If resources are (effectively) unlimited, and we are only interested in obtaining answers as

soon as possible, then, it might be worth evaluating the fixpoint of the original program without rewriting
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it to restrict the computation. This is justified by the following simple proposition.

Proposition 6.7 Consider a logic program (P, Q). Let C, be the computation sequence in our abstract
model for bottom-up fizpoint evaluation of this program, and let Co be the compulation sequence for some
other evaluation method, for some choice of sips. If a goal or facl appears at Step n in Cq, then 11 is

subsumed by some fact that appears in Cy at Step m, for some m < n.

6.2 A Remark About Magic Templates

The above results lead us to the following observation.

Remark: A claim such as Theorem 6.1 cannot be made for any other evaluation method that we
are aware of. (It is possible to extend some of the methods so that such a claim holds for them.)

Such a remark is tedious to prove given the number of proposed methods, and so we simply offer an
informal justification. First, from Theorem 6.2 it follows that we need only consider memoing methods
as candidates. Of these, Alexander Templates [Se89] is the only one (other than Magic Templates) that
is capable of dealing with non-ground facts. Examples are readily found where dealing with such facts
is necessary to restrict search as per the sips we consider. Alexander Templates, like Magic Templates,
rewrites the program and then evaluates the fixpoint, but it cannot deal with And-parallelism since :t
only allows left-to-right sips.

We note that this remark should be read with all the limitations of sip-methods and our measure of
parallelism in mind. In particular, some methods, e.g., implementations of committed-choice languages,
cannot be described as sip-methods, and our measure is an abstract metric that does not take several
implementation overheads and resource constraints into account. However, limiting ourselves to the
class of sip-methods (a broad class that includes the methods surveyed in Section 3), we believe that this
observation is significant. First, as Kalé observes [Ka87a), identifying the available parallelism is a useful
first step; it remains to consider efficient realizations. In this, we believe that the Magic Templates
method offers considerable flexibility since it frees us from the constraints imposed by maintaining a

network of processes and associated binding environments. We consider this point further in Section .

7 A Closer Look at Sip-Methods

We have restricted out attention to evaluation methods that are sip-methods. This has allowed a
fundamental separation of concerns: the sips specify the order in which rules are to be evaluated, that
is, how bindings are to be propagated in order to restrict the computation, and the evaluation method
implements this decision (a step that includes some choice of a control strategy). Not all proposc
evaluation methods qualify as sip-methods. We now consider behaviour that cannot be captured by sij-
methods, and attempt to extend our definition of sips, simultaneously indicating the necessary changes
to the Magic Templates method. These extensions preserve the essential separation of concerns in the sip
paradigm of computation. There are certain evaluation methods, however, whose behaviour we cannot
capture even with the extended definitions of sips. We examine this and observe that there are some
fundamental limitations to the sip paradigm; this implies that certain top-down methods cannot be
mimicked by rewriting followed by fixpoint evaluation.
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7.1 Multiple Sips Per Rule

Let us return to the survey in Section 3, and the discussion of And-Or trees. We made the assumption
that for each And-node, there was a unique partial order that determined by the associated label. That
is, each rule in the program has a unique partial ordering according to which the body literals are to be
solved in any invocation of the rule. We could relax this assumption in several ways. Consider the set
of possible goals with predicate name p. We could partition this set into several — preferably, but not
necessarily, non-intersecting — subsets. For each rule defining p, for each such subset, we could choose a
sip that indicates the order in which body literals are to be solved when the this must be done for each

subset of goals.

One way to partition the set of goals is by means of a compile-time analysis that indicates which
argument positions we expect to be bound. This leads to a notion of “bound” and “free” arguments,
similar to “input” and “output” modes, that has been proposed and used by a number of researchers.
(More sophisticated compile-time classification has been explored in [MFPR&9].) We note that [Ra88]
incorporates such an analysis into the Magic Templates algorithm. Recall that the algorithm adds a
modified rule and a set of magic rules for each rule in the original program. If we wish to use a different
ordering of body literals for goals in different subsets, in essence a modified rule and magic rules must
be added for each subset.

All of the methods in Section 3 choose sips at compile time.

7.2 Dynamic Sips

It is possible that the choice of the order in which the body literals are to be solved is made at run-time
when the rule is invoked. We briefly outline one way to incorporate this into the Magic Templates
algorithm. The crux of the problem is that for each rule, we may wish to choose a different partial order
at run-time for each goal. Noting that there are only a finite number of different partial orders over a
finite set, we could simply generate modified and magic rules corresponding to each partial order. Now.
we must determine which group of modified and magic rules is to be used for solving a given goal. To
do this, we observe that the goal is described in these rules by a magic literal in the body, say mp({).
We now add an additional literal classifyr_,(f) to the body. The s subscript denotes the subset of
goals, and the corresponding choice of sips or partial ordering, for which this (modified or magic) rule
was generated. If p(f)7 is a generated goal, classify,_,(f) must be true for some s (since it must be a
member of one of the subsets of goals that we consider).

In effect, we have taken advantage of the finite number of partial orders to rewrite the program
at compile time. However, we have abandoned a static classification of goals based on a compile-tinwe
analysis, such as “bound” and “free” arguments, in favor of a dynamic classification. We remark that this
is not necessarily a win; our objective here is to examine the limits of the sip paradigm of computation,
which we believe is essentially reached with the above formulation of dynamic sips.

7.3 Limitations of the Sip Paradigm

These limitations are seen when we examine evaluation methods that re-order goals in And-Or trees
dynamically, but they can also be observed with a static ordering. Let us return to the discussion
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of And-Or trees, and consider And-nodes again. Let p and ¢ be two body literals in the label of an
And-node. Let pl and p2 be body literals in a descendant And-node of p, and similarly ¢1 and ¢2 for
g. A sip-method, even one that uses the dynamic sip selection of the previous subsection, must eithoer
order both pl and p2 ahead of both g1 and ¢2, order the ¢’s ahead of the p’s, or leave the p’s unordered
relative to the ¢’s. In particular, an evaluation method that requires the following solution order is not
a sip-method: pl,ql,p2,q2.

This limitation arises, of course, because the sip mechanism only allows us to order goals that arise
as body literals in a single rule. All subgoals of these goals must respect the above order. The sip
formalism does not allow us to consider the resolvent that is the set of all subgoals and then pick an
arbitrary order.

This is precisely what committed choice languages such as Parlog [CG86] and Concurrent Prolog
[Sh86], the freeze primitive in Nu-Prolog [Na87], and some other proposed methods, e.g. in [Co83],
achieve by dynamically suspending and starting goals. The ordering is controlled typically by variable
annotations that, for example, suspend a goal until one of its variables is instantiated [CG86, Sh86, Na87};
it can also be controlled by a sophisticated run-time scheduler [Co83].

Methods that use annotations typically sacrifice completeness. Completely unrestricted dynamic re-
ordering carries a high run-time overhead. Nevertheless, there may be situations where such approaches
perform better than any sip-method.

Returning to our example above and the ordering of goals “pl,ql,p2,¢2”, we remark that this
amounts to bi-directional binding propagation between the goals p and ¢. Indeed, the solution of pl
could bind some variables in ¢l and this in turn could generate bindings for variables in p2. It may be
possible to capture some limited amount of bi-directionality through a program rewriting algorithm, at
some cost.

Example 7.1 Consider the following program:

p(X,2) - ql(X,Y, 2),q2(X,Y).
qUX,Y,Z) - b1(X),b2(Y, 2).
q2(X,Y) - b3(X,Y).

p(U,V)?

If we build the And-Or tree for this program, we obtain a frontier with nodes b1(X)? and b2(Y, Z)".
generated from node ¢1(X,Y, Z)?, and node b3(X,Y)?, which is generated from node q2(X,Y)?. An
ordering that cannot be realized by a sip-method is “b1(X)?,b3(X,Y)?,b2(Y, Z)?”. The following trans-
formed program achieves this ordering:

p(X,2) - ¢1(X,Y, Z),q2(X, Y).
(L(X,Y, Z) = rpu(Y), b1(X), b2(Y, Z).
q2(X,Y) = rg2(X), b3(X,Y).

re2(X) = b1(X), b2(-, ).

rai(Y) = q2(X,Y).

p(U,V)?

The above program can be systematically derived from the following program, using optimizations
presented in [RBK88], but we do not pursue this point here.
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p(X,Z) - q1(X,Y, Z),q2X,Y).
qU(X,Y, Z) = rg1(Y), b1(X), b2(Y, Z).
g2(X,Y) = rpa(X), b3(X, Y).

re2(X) = qU(X,Y, Z).

ra(Y) - 2(X,Y).

p(U,V)?

8 Pragmatics

We briefly discuss several practical considerations.

8.1 Overheads

There are a number of important differences in the overheads associated with top-down and bottom-up
evaluation. Top-down evaluation uses a recursive control strategy. A sequential implementation such as
Prolog uses stacks to manage goals. Parallel methods generate a new process each goal, which carries
a significant overhead on most systems. (Token based methods, e.g. [CH84], have their own additional
overheads such as managing shared environments.) Bottom-up methods do not create a process per
goal, but they recover the connections between facts and goals by explicit additional joins. This is
typically also done by top-down methods that do memoing and aim to exploit both And- and Or-
parallelism; however, significant optimization is possible in methods that only exploit a limited form of
And-parallelism that results in a single binding for each variable at any point in the execution. A full

discussion of these issues is beyond the scope of this paper. Some of these issues are considered in more
detail in [NR89].

We note that the results in this paper depend upon the availability of sufficient resources to exploit all
available parallelism. In the case that resources are limited, as is likely, the actual parallelism obtained
will be curtailed by how efficiently the computation can be mapped onto the resources. For example,
in evaluating the fixpoint of a program, a widely used refinement is Seminaive evaluation, which avoids
repeating inferences. The usual formulation of Seminaive evaluation proceeds in phases, in that facts
produced in one iteration are not used until the next iteration. While it is possible to use some facts in the
same iteration that they are produced, it is in general a useful restriction to maintain a clear separation
between phases. If resources are limited, and we cannot assume that an iteration is completed in one
step, then the mapping of the computation onto the available resources affects the parallelism that is
obtained.

8.2 Load Sharing in Bottom-up Evaluation

The problem of mapping a bottom-up fixpoint computation onto a fixed set of processors has received
attention lately. While considering this work is beyond the scope of this paper, we remark that the intei-
actions of the techniques used in this work and the Magic Templates algorithm remain little understood
and suggest an area for further study. We direct the interested reader to [WS88, CW89, Do89, GST8%.
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8.3 Some Added Advantages of Memoing

The remarks in this subsection apply equally to top-down and bottom-up methods that do memoing

As we have already seen, memoing offers gains in terms of avoiding redundant computation and

increased parallelism. It also offers other important advantages:

9

1. Multiple Query Optimization Multiple queries may be seen as providing multiple “seeds” for the

Magic Templates algorithm. Redundancy is avoided as before, whether it arises in the computation
of one of the queries alone, or whether it arises due to common subcomputations in different top-
level queries. In either case, some goal is generated more than once, and can be discarded after
the first time, as before, if we have memoed the goal and solutions to it.

. Incremental Evaluation If we wish to re-evaluate a query after adding some facts or rules to

the program, the memoed results of the previous evaluation naturally enable us to avoid much
recomputation. In the context of the Magic Templates algorithm, all memoed results can be taken
to be assertions. Re-evaluation after deletions is more difficult, but some analysis of the affected
predicates may allow us to retain many of the memoed relations.

. Improved Termination Properties It is possible that memoing makes the difference between term-

nation and non-termination. For example, consider the following program:

HX,Y) = t(X, 2),b(Z,Y).
HX,Y) - b(X,Y).
t(5,Y)?

This is a program on which Prolog will not terminate, repeatedly generating the goal t(5,2)7.
but memoing enables us to recognize that the goal has been generated before, and thereby devise
modifications to Prolog that do terminate (e.g., see [Vi89]). In fact, this causes Prolog to be
incomplete. We note that memoing is not essential for completeness; the Reduce-Or model [Ka874]
is complete, although it does not memoing. This is essentially because all paths are explored in
parallel, and so even if some paths are non-terminating — and will never produce new solutiors
— all paths that do produce solutions are considered. However, the Reduce-Or computation will
not terminate on this program. Memoing methods, including Magic Templates, terminate on it.

Conclusions

The main contributions of this paper are: (1) an abstract model of computation that allows us {o

make precise the degree of parallelism that is obtained by several proposed evaluation methods, (2)

comparisons between methods based on this model, including the result that the Magic Templates

algorithm is maximally parallel in this model, and (3) a discussion of the limitations of the abstract

model, and in particular, the limitations of the sip paradigm on which the model is based.

In summary, we believe that the results provide strong motivation for a careful study of parallel

evaluation of logic programs based on rewriting and subsequent fixpoint evaluation, as well as a sound

basis for comparisons of parallelism in various logic program evaluation methods.
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