
Parallelism Level Impact on Energy Consumption in
Reconfigurable Devices

Robin BONAMY, Daniel CHILLET, Olivier SENTIEYS
IRISA - CNRS UMR 6074

INRIA Rennes Bretagne Atlantique
{robin.bonamy, daniel.chillet, olivier.sentieys}@irisa.fr

Sebastien BILAVARN
LEAT - CNRS UMR 6071

University of Nice Sophia Antipolis
sebastien.bilavarn@unice.fr

ABSTRACT
Nowadays, System-on-Chip architectures are composed
of several execution resources which support complex
applications. As it shares silicon area and limits the
cost of the global circuit, the embedding of a reconfig-
urable resource in these SoC provides flexibility to the
hardware. In this case, several implementations of the
same algorithm, offering different characteristics, can be
considered in order to optimize performances. In gen-
eral, the tasks mapped on reconfigurable resources are
algorithms that can be defined through several levels of
parallelism. Clearly, parallelism directly affects the area
and the execution time, this paper shows that the en-
ergy consumption is not constant, and decreases when
the parallelism grows up.

1. INTRODUCTION
With the emergence of FPGAs, it is now easy and

relatively cheap to implement a configurable device in
a System-on-Chip. Critical tasks can be efficiently im-
plemented to offload the processor within this type of
resource [1].
If several hardware tasks can be executed sequentially

in order to reduce the necessary silicon area, this type of
execution needs specific management to ensure a correct
function [2]. This management is generally done by an
operating system [3], which has to decide, on-the-fly, the
spatio-temporal scheduling of tasks.
A possible way of optimizing the global execution of

an application would be to define several implementa-
tions for each hardware task. To offer a good trade-off
between performances and silicon cost, several parallel
hardware implementations can be developed for each
task. From these different implementations, the operat-
ing system can select the best configuration of each task
in order to ensure performances and to limit energy con-
sumption. Several works have been done on code trans-
formations for the reduction of power, energy, area or
execution time [4].
This work focuses on energy consumption with vari-

ous parallelism level implementations of tasks. Using a
parallel description of tasks generally does not change
the number of computations. Thus, with this transfor-
mation, the energy consumption of a specific task execu-
tion should stay constant. A hardware task is complex
and is not only composed of algorithm computations
but also of control instructions which contribute to area
and power consumption [5]. Therefore, we assume that
the parallelism level modifies energy consumption. This

paper presents several results showing that using paral-
lelism is a good way to reduce energy consumption for
hardware accelerated tasks.
The results are obtained by measurement on a real

FPGA circuit and for three different algorithms and
present the trend between the power consumption and
the acceleration.
This paper is organized as follows. Section 2 presents

the methodology used to perform the measurements while
section 3 presents the measures and models. Then we
conclude this paper on how our measurements can help
the designer during the first design steps.

2. MEASUREMENT PROCEDURE
Since the energy reduction is obtained by reducing

the execution time, we assume that the energy versus
execution time trend is linear and it may follow

E = α+ βt (1)

with α representing the energy needed to perform the
computation part of the algorithm and β the energy per
time unit varying with the parallelism level.
To confirm this assumption, a measurement campaign

of the power consumption of the core of an FPGA device
is realized. The Xilinx ML550 board is used for the ex-
periments. This board includes a Virtex-5 XC5VLX50T
FPGA and provides power supplies which can be used
to monitor the current consumed by the FPGA core.
The easiest way to exploit the parallelism in an al-

gorithm is to perform loop unrolling through high level
synthesis [6][7]. C code is used for the description of the
applications and Mentor CatapultC high-level synthesis
tool is chosen to generate the blocks with different loop
unrolling.
As first benchmark, we use the matrix multiplication,

which is a highly parallelizable function. Because of the
three nested loops, this application is representative in
terms of loop level parallelism.

3. POWER AND TIMING MODEL
Most of the combinations of the loop unrolling (LU)

capacities are generated and tested. The best energy
versus execution time values are reported in Table 1. An
unrolling index of eight does not correspond to a block
eight times faster than a sequential version, essentially
because of data fetching.
Fig. 1 presents the energy consumed by the hard-

ware block versus the execution time. This figure shows
that applying parallelization using loop unrolling trans-

ACM SIGARCH Computer Architecture News 104 Vol. 39, No. 4, September 2011

Table 1: Execution time for different loop unrolling

indexes
Loop unrolling versions 1,1,1 1,1,8 1,1,16 1,8,32 4,4,32

Execution Time (ms) 1.04 0.51 0.47 0.49 0.39

Area (slices) 112 136 153 555 661

Energy (mJ) 61.99 27.34 27.55 27.48 31.58

��� ��� ��� ��� ��� ��	 ��
 � ��� ��� ���

��

��

��

��

��

��

��

��������������

����	

	����

��	���

�������

�����	

	�����

	�	��

�����	
������

	�	�	

�������������������

���������

���!����������"��#

�

�
��
�"
�
$
#

Figure 1: Energy of the matrix multiplication hardware

accelerated block versus the execution time. Matrix size

is M = N = 32. LUIs are separated by a comma to identify

the index for each loop: LUI1, LUI2, LUI3. The equation

of the model is Eq. (2).

formations does not imply a constant energy but varies
linearly with the execution time.
The scatter plot of energy versus execution time shown

on Fig. 1 clearly shows a linear trend. This trend is ex-
plained as follows: two different sources of power con-
sumption can be isolated, the first one is due to the op-
erators performing the computation and a second part
is due to the control of loops and data fetching. The
total energy consumed by the computation of the algo-
rithm is roughly the same independently of the paral-
lelism level. Conversely, the required power consump-
tion for the control part is almost constant, so its energy
is time dependent. Thus, we propose a model to follow
the trend of energy versus execution time using a linear
fit. With the sequential version (version (1,1,1) of the
table 1) for reference, we can establish a trend of energy
versus execution time achieved through loop unrolling
for other algorithms. Normalizing time and energy, the
equation is the following

E = α× E0 + β × E0

t0
× t (2)

where E is the total energy in mJ and t the execu-
tion time in ms, t0 is the execution time of the algo-
rithm measured without loop unrolling, E0 the energy
consumed by this sequential implementation, α = 2.64

62

and β = 59
62 .

The trend of energy consumption versus execution
time is an affine function where the coefficients α and
β are dependent of the application performance. These
coefficients are evaluated using measurement of the se-
quential version of an algorithm.
This trend is validated on two other algorithms, mo-

tion estimation and Deblocking Filter for video coding
applications, measurement are reported in Table 2. We
notice that hardware implementation is 28 times faster
and is 8.91 times more energy efficient than software ex-
ecution and that parallelized versions show energy gain
of 2.26 versus sequential one for matrix multiplication.

4. CONCLUSION
Basing ourselves on high level synthesis with loop un-

Table 2: Comparison of execution time and energy be-

tween three different implementations of each algorithm.
Matrix mult. Full Search Deblock. filter
Time Energy Time Energy Time Energy

Soft (ms, mJ) 10.75 244.79 0.4786 18.2 0.5742 26.09
HardS (ms, mJ) 1.04 61.99 0.0369 2.01 0.0529 3.68
HardP (ms, mJ) 0.38 27.48 0.0246 1.05 0.0417 2.74
Soft/HardP Ratio 28.29 8.91 19.37 17.33 13.77 9.52
HardS/HardP Ratio 2.74 2.26 1.50 1.91 1.26 1.34
Soft represents an execution on the microblaze core,
HardS represents a sequential implementation of the hardware task,
HardP represents the best paralleled solution in terms of time.

rolling, this paper shows that the energy is not constant
when executing different parallelized solutions and that
the trend is linear, depending of execution time. The
results show that the energy decreases when the paral-
lelism level increases. To improve energy efficiency, the
designer should expand loops and use available space of
the system.
Model accuracy can be improved by decomposing tasks

in different parts involving control, data processing, mem-
ory accesses and parallelization capabilities. This future
work will be based on our high-level compiler infrastruc-
ture, GeCoS [10], which offers a complete compilation
framework for source-to-source transformations.
The main goal of this work is to procure a set of area,

time and energy performance values of given tasks to
find a good implementation in a reconfigurable device.
This work will be extended to include the partial dy-
namic reconfiguration to reach defined goals: energy
savings and increasing performance in system-on-chip.
This work is funded by the French National Research

Agency in the scope of the Open PEOPLE project [11].

5. REFERENCES
[1] Altera Corporation, AN 531: Reducing Power with

Hardware Accelerators, 2008
[2] Pao-Ann Hsiung, Exploiting Hardware and Software Low

power Techniques for Energy Efficient Co-Scheduling in
Dynamically Reconfigurable Systems, Field Programmable
Logic and Applications, FPL, Amsterdam, August 2007

[3] Kwok T.T.-O. et al., Practical design of a computation and
energy efficient hardware task scheduler in embedded
reconfigurable computing systems, Parallel and Distributed
Processing Symposium. IPDPS, Rhodes Island, April 2006

[4] Q. Liu et al., Combining Optimizations in Automated Low
Power Design in Proceedings of the Conference on Design,
Automation and Test in Europe, DATE ’10, Dresden,
Germany, March 2010

[5] K. Srikanth et al., The Impact of Loop Unrolling on
Controller Delay in High Level Synthesis, Design,
Automation & Test in Europe Conference & Exhibition,
DATE ’07, Nice, France, April 2007

[6] K.K. Parhi, VLSI Digital Signal Processing Systems: Design
and Implementation, John Wiley, pp. 119–147, 1999

[7] B. Buyukkurt et al., Impact of Loop Unrolling on Area,
Throughput and Clock Frequency in ROCCC: C to VHDL
Compiler for FPGAs, In International Workshop on Applied
Reconfigurable Computing, Delft, The Netherlands, March
2006

[8] Optimizing Impulse C Code for Performance, Application
Note IATAPP-102,
http://www.impulseaccelerated.com/AppNotes/

[9] Mentor, Catapult C Synthesis, http://www.mentor.com/
products/esl/high_level_synthesis/catapult_synthesis/

[10] GeCoS - Generic Compiler Suite,
http://gecos.gforge.inria.fr/

[11] Open-PEOPLE - Open-Power and Energy Optimization
PLatform and Estimator, http://www.open-people.fr/

ACM SIGARCH Computer Architecture News 105 Vol. 39, No. 4, September 2011

