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Abstract

Background: Gastrointestinal stromal tumors (GISTs) are characterized by mutations of KIT (v-kit Hardy-Zuckerman 4

feline sarcoma viral oncogene homolog) or PDGFRA (platelet-derived growth factor receptor α) that may be

efficiently targeted by tyrosine kinase inhibitors (TKI). Notwithstanding the early responsiveness to TKI, the majority

of GISTs progress, imposing the need for alternative therapeutic strategies. DOG1 (discovered on GIST-1) shows a

higher sensitivity as a diagnostic marker than KIT, however its prognostic role has been little investigated.

Methods: We evaluated DOG1 expression by immunohistochemistry (IHC) in 59 patients with GISTs, and correlated

its levels with clinical and pathological features as well as mutational status. Kaplan-Meier analysis was also applied

to assess correlations of the staining score with patient recurrence-free survival (RFS).

Results: DOG1 was expressed in 66 % of CD117+ GISTs and highly associated with tumor size and the rate of wild-

type tumors. Kaplan-Meier survival analysis showed that a strong DOG1 expression demonstrated by IHC correlated

with a worse 2-year RFS rate, suggesting its potential ability to predict GISTs with poor prognosis.

Conclusions: These findings suggest a prognostic role for DOG1, as well as its potential for inclusion in the criteria

for risk stratification.

Keywords: Gastrointestinal stromal tumors, DOG1, Size, Mutation, Prognostic value, Risk

Background

Gastrointestinal stromal tumors (GISTs) develop within

the digestive tract and harbor functional mutations of

KIT (v-kit Hardy-Zuckerman 4 feline sarcoma viral

oncogene homolog) and PDGFRA (platelet-derived

growth factor receptor-α) that primarily drive the tumor

growth and progression [1, 2]. KIT and PDGFRA genes

are located on the chromosome 4q12 and encode trans-

membrane glycoproteins belonging to the type III recep-

tor tyrosine kinase family. They are normally activated

by their ligands, namely stem cell factor and PDGF re-

spectively, which bind the receptor extracellular domain

leading to the dimerization of receptors and phos-

phorylation of tyrosines in their cytoplasmic tyrosine

kinase (TK) domains in a process called signal trans-

duction. This triggers a phosphorylation cascade of

the tyrosine residues in multiple downstream molecules

and leads to the activation of signal transduction pathways

involved in many important cell functions such as prolifer-

ation, apoptosis, chemotaxis and adhesion [3]. The pres-

ence of KIT and PDGFRA activating mutations provides

the rationale for employing targeted therapies using spe-

cific inhibitors (TKI), that can improve recurrence-free

survival (RFS) and overall survival (OS) in the majority of

patients. The currently used systems for risk stratification

are based on tumor size and site, mitotic count and tumor

rupture, whereas the prognostic relevance of mutational

status is still under debate [4]. CD117 expression occurs

in more than 95 % of GISTs bearing KIT or PDGFRA mu-

tations [5], the remaining 5 % are either CD117 negative

or wild-type (WT) for both genes. Thus, to obtain a defin-

ite diagnosis additional morphological and/or molecular

* Correspondence: frarizzo3@libero.it
1Department of Biomedical Sciences and Human Oncology, University of Bari

“A. Moro”, Piazza Giulio Cesare, 11-70124 Bari, Italy

Full list of author information is available at the end of the article

© 2016 Rizzo et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Rizzo et al. BMC Cancer  (2016) 16:87 

DOI 10.1186/s12885-016-2111-x

http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-016-2111-x&domain=pdf
mailto:frarizzo3@libero.it
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


characterization may be required, such as searching for

germline or de novo mutations of SDH (succinate de-

hydrogenase) subunits located on the inner membrane of

the mitochondria, or even mutations of the RAS-pathway

[6]. Among the latter, the frequency of BRAF mutations

varies from 2 to 13 %, whereas KRAS mutations are ex-

tremely rare (<0.2 %). Interestingly, concomitant KRAS

mutations in KIT- or PDGFRA-mutated GISTs were re-

ported and, based on in vitro experiments, it has been de-

fined that the presence of RAS mutations predicts

resistance of KIT-mutated GISTs to TKI [7]. However,

two subsequent analysis in large cohort of GIST patients

have not found mutations in KRAS codons 12 and 13 or

61 [8, 9]. More recently, one single KIT/PDGFRA WT

GIST was identified to carry a KRAS mutation in codon

12 among 267 patients and associated with an aggressive

behavior and resistance to multiple TKI inhibitors [10].

DOG1 (Discovered on GIST-1) is a calcium-dependent

chloride channel protein regulating the cholinergic activ-

ity of gastrointestinal smooth muscle [11] that is

encoded by ANO1/TMEM16A on chromosome 11q13;

in these tumors its expression shows high sensitivity and

specificity [12, 13]. Other functions exerted by ANO1 in-

clude the regulation of both the viability and prolifera-

tion of cells overcoming their checkpoints within the

cell-cycle [14]. In addition, in DOG1+ cells ANO1 acti-

vates alternative signals downstream of the RAS/RAF/

MEK/ERK and the insulin-like growth factor (IGF)-

dependent pathways [15, 16]. These findings support the

hypothesis that DOG1 exerts a definite role in GIST de-

velopment, regardless of KIT and PDGFRA activation,

whereas its prognostic role is still debated.

Particularly in GISTs lacking CD117 expression and

bearing PDGFRA mutations [17, 18], DOG1 appears to

be a promising tool for diagnosis also of rare variants in-

cluding gastric spindle and epithelioid-cell PDGFRA-

mutated GISTs [19]. However, its expression has been

little correlated with other risk factors [20–22].

Here we explored the prognostic role of DOG1 in a

cohort of patients with GISTs, and evaluated the poten-

tial correlation between variable grades of expression

and known risk factors for recurrence.

Methods

Patients and specimens

Demographic data, histological and immunohistochemi-

cal features, as well as mutational status, of 59 patients

with GISTs, enrolled at the Medical Oncology Unit of

the University of Bari and the IRCCS San Raffaele Pisana

in Rome from 2007 to 2014, were collected after obtain-

ing patients’ written informed consent and approval by

the Ethics Committee of the University of Bari and the

Ethics Committee of IRCCS San Raffaele Pisana in

Rome, in accordance with the principles embodied in

the Declaration of Helsinki. Selected hematoxylin/eosin

stained slides were reviewed to confirm the diagnosis, as

well as tumor features including size and histology;

CD117 expression was evaluated by immunohistochem-

istry (IHC). In each sample the number of mitoses was

evaluated in 50 consecutive high-power fields (HPFs),

while demographic data including tumor staging at diag-

nosis and follow-up were retrieved from medical records.

Mutational analysis of PDGFRA or KIT genes

Tumor specimens were screened for hot-spot mutation

sites of PDGFRA (exons 12 and 18) and KIT (exons 9,

11, 13 and 17) genes. To this end, genomic DNA was

isolated from formalin-fixed, paraffin-embedded (FFPE)

tissues containing at least 70 % of neoplastic cells.

Tumor sections of 8–10 μm were incubated in xylene

and then washed with absolute ethanol. DNA was iso-

lated from the air-dried tissues using the QIAamp® DNA

FFPE Tissue Kit (QIAGEN, Hilden, Germany) according

to the manufacturer’s instructions. Screening of muta-

tions was performed by direct sequencing of the PCR

products obtained using primer pairs designed to select-

ively amplify PDGFRA exons 12 and 18 and KIT exons

9, 11, 13 and 17. PCR reactions were performed using

100 ng of DNA with the primers listed in Additional

file 1: Table S1. Mutation analysis was assessed by se-

quencing of PCR products with the same primers

used for PCR reactions and the BigDye® Terminator

v1.1 cycle sequencing kit (Applied Biosystems). Sam-

ple analysis was performed on an ABI PRISM 310

Genetic Analyzer (Applied Biosystems).

Immunohistochemistry

The expression of DOG1 was investigated by IHC with

the anti-DOG1 monoclonal antibody (MoAb; clone K9,

Abcam Cambridge, MA). Five μm FFPE sections of each

primary tumor were treated according to the staining

Dako Autostainer protocol (Burlington, Ontario,

Canada). Briefly, sections were incubated with the anti-

DOG1 MoAb at 1:100 dilution for 30 min at room

temperature. Stained specimens were analyzed by two

pathologists and results were scored according to the

Allred scoring system, including a semi-quantitative

method to reveal the staining intensity (0 = negative;

1 = weak/trace; 2 = moderate; 3 = strong) and the per-

centage of positive cells (0 = normal cells; 1 = ≤ 1 %;

2 = 1–10 %; 3 = 11–33 %; 4 = 34–66 %; 5 = 67–100 %).

This grading produced a final score [23] that was re-

ported as negative (score 0), weak (score 1–3), mod-

erate (score 4–6) or strong (score 7–8).

Statistical analysis

Fisher’s exact test was used to evaluate differences be-

tween independent groups. The p-values for differences

Rizzo et al. BMC Cancer  (2016) 16:87 Page 2 of 7



between subgroups were adjusted by a permutational

test performed in the multitest SAS STAT procedure.

Comparison between independent groups was per-

formed by t-test, given the Gaussian distribution of data.

Statistical analysis was performed using SAS 9.4 soft-

ware. Recurrence-free survival (RFS) was defined as the

time from the date of operation to the date of recur-

rence and/or distant metastasis. Patients who survived

without recurrence and/or metastasis were censored on

the date of the last follow-up. RFS was calculated accord-

ing to the Kaplan-Meier method and the survival distribu-

tions were compared by log-rank test. A p-value <0.05

was considered statistically significant.

Results

Demographics

As shown in Table 1, 59 patients with GISTs were en-

rolled in the study (57 locally-advanced and 2 metastatic;

31 males (52.5 %) and 28 females (47.5 %), median age

63.3 ± 14.6 years). Primary sites included the stomach

(n = 39; 66.1 %), small (n = 12; 20.3 %) and large

bowel (n = 4; 6.8 %), as well as extra-gastrointestinal

sites (n = 4; 6.8 %) including the pancreas and retro-

peritoneum. The histological subtypes included spindle-

cell (n = 45; 76.3 %), epithelial (n = 6; 10.2 %) and mixed

(n = 8; 13.5 %) variants. Mean tumor size was 8.3 ± 5.5 cm,

while the number of mitoses (HPFx50) was ≤5 in 25

(42.4 %), 6–10 in 17 (28.8 %) and ≥10 in 17 (28.8 %)

patients. Despite slight variations in CD117 staining

intensity, it was considered positive in all patients.

Mutational status was available in 53 patients harbor-

ing mutations of KIT (n = 35; 66.1 %) and PDGFRA

(n = 4; 7.5 %) (Fig. 1), whereas in 14 patients (26.4 %)

both genes were WT. The identified hot-spot muta-

tions are listed in Additional file 2: Table S2. The

average follow-up was 36 + 21 months; 22 % of pa-

tients (n = 13) had evidence of disease recurrence.

DOG1 expression in GISTs correlates with clinical and

pathological features

Based on the IHC DOG1 expression, 39 patients

(66.1 %) were included in Group A (DOG1+) and 20

(33.9 %) in B (DOG1−). Representative panels from both

groups are included in Fig. 2, showing strong (a), moder-

ate (b) and weak (c) as well as negative (d) cytoplasmic

or membranous DOG1 expression. Based on the Allred

scoring system, a strong DOG1 expression was demon-

strated in 24 Group A patients (Group A1), moderate

levels in 12 (Group A2) and a weak expression in 3 pa-

tients (Group A3). Levels of DOG1 expression did not

correlate with gender, age, primary site, histology, mi-

toses or mutational status (Table 1). By contrast, tumor

size in Group A patients was greater (10.1 ± 5.8 cm)

than in Group B (4.7 ± 1.9 cm; p = 0.0002), whereas

the frequency of the WT status for both KIT and

PDGFRA was lower in Group A than B (14.3 % vs.

50 %; p = 0.009).

DOG1 expression levels and GIST outcome

DOG1 expression was investigated in relation to a po-

tential predictive role with respect to the onset of recur-

rence. Nine Group A patients (23 %) and four Group B

Table 1 Clinical pathological features of the 59 GIST cases

according to DOG1 expression

Patient
characteristics

Cumulative
population

DOG1

Positive Negative

Sex

Male, n (%) 31 (52.5 %) 19 (48.7 %) 12 (60 %) p = 0.413

Female, n (%) 28 (47.5 %) 20 (51.3 %) 8 (40 %)

Age (years)

Mean (±SD) 63.3 (±14.6) 63.1 (±16.9) 63.6 (±12.8) p = 0.8973

Median 67 65 66.5

Range 28–88 28–88 34–82

Primary site p = 0.0652

Stomach 39 (66.1 %) 29 (74.3 %) 10 (50 %)

Small intestine 12 (20.3 %) 8 (20.5 %) 4 (20 %)

Large bowel 4 (6.8 %) 1 (2.6 %) 3 (15 %)

Others 4 (6.8 %) 1 (2.6 %) 3 (15 %)

Tumor size (cm) p = 0.0002

Mean (±SD) 8.3 (±5.5) 10.1 (±5.8) 4.7 (±1.9)

Median 6 8 4.7

Range 2–20 3–20 2–10

Histological subtype p = 0.2

Spindle type 45 (76.3 %) 27 (69.2 %) 18 (90 %)

Epithelial type 6 (10.2 %) 5 (12.8 %) 1 (5 %)

Mixed type 8 (13.5 %) 7 (18 %) 1 (5 %)

Mitoses per 50 HPFs

≤ 5 25 (42.4 %) 15 (38.5 %) 10 (50 %) p = 0.54

6–10 17 (28.8 %) 13 (33.3 %) 4 (20 %)

≥ 10 17 (28.8 %) 11 (28.2 %) 6 (30 %)

Mutated exon

KIT exon 11 30 (56.6 %) 24 (68.6 %) 6 (33.5 %) p = 1

KIT exon 9 2 (3.8 %) 2 (5.7 %) 0

KIT exon 13 2 (3.8 %) 2 (5.7 %) 0

KIT exon 17 1 (1.9 %) 0 1 (5.5 %)

PDGFRA exon 12 1 (1.9 %) 0 1 (5.5 %) p = 0.889

PDGFRA exon 18 3 (5.6 %) 2 (5.7 %) 1 (5.5 %)

Wild type 14 (26.4 %) 5 (14.3 %) 9 (50 %) p = 0.009

Not available 6 4 2

HPF high power field of the microscope; p-values computed using Fisher exact

test or χ2 test
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(20 %) recurred during follow-up, yielding 2-year RFS

rates of 84 and 95 % respectively. The cumulative RFS

curve in Group A patients was worse, although not sig-

nificantly so, compared to Group B (Fig. 3a). We also in-

vestigated the relationship between DOG1 levels and

RFS, and found that Group A1 patients had the worst

2-year (panel b) RFS rate (80 %; 6/24) as compared

to the other groups (93 %; 7/35). Further analyses

were performed to investigate whether the previously

described correlation of DOG1 expression with both

tumor size and mutational status was associated with

the RFS. Therefore, Group A1 patients were subdivided

KIT c.1676T>A (p.V559D) PDGFRA c.2525A>T (p.D842V)

∆

WT

∆

WT

a b

Fig. 1 Sequencing analysis. Direct sequencing analysis of the PCR products showing a substitutions of GTT (Val) to GAT (Asp) at codon 559 of KIT

gene (panel a) and GAC (Asp) to GTC (Val) at codon 842 of PDGFAR gene (panel b)

a b

c d

Fig. 2 DOG1 measurement according to the Allred scoring system. Representative panels showing the variable DOG1 expression by IHC in

patients with GISTs: strong (score: 7–8, panel a), moderate (score: 4–6, b) and weak (score: 1–3, c), while panel d shows a DOG1 negative

specimen. Magnification is 200x in a, b and c, 100x in d
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by tumor size greater (n = 14) or smaller (n = 10) than

5 cm. As shown in panel c, the Kaplan-Meier survival

curve revealed 2-year RFS rates of 66 % (6/14 events) and

100 % respectively (p = 0.01). Moreover, among A1 pa-

tients with a tumor size >5 cm (panel d), those carrying a

KIT or PDGFRA mutation (n = 11) had a worse prognosis

than the WT (n = 3), the 2-year RFS rates being 58 and

100 % respectively. The trend to statistical significance

(p = 0.16) was, however, influenced by the sample size.

Discussion

GISTs are rare tumors with morphological, histological

and molecular features that strongly influence both the

outcome and risk of recurrence. Since the discovery of

the role of oncogenic mutations of KIT and PDGFRA,

targeted therapy with TKI has significantly increased the

OS in the majority of patients. However, WT GISTs or

those harboring rare mutations often experience pro-

gression or recurrence and so a better risk stratifica-

tion is needed in order to plan adequate therapeutic

strategies.

Measurement of DOG1 expression by IHC has been

associated with a higher diagnostic sensitivity and speci-

ficity than CD117, allowing the diagnosis of GISTs in

about 30 % of CD117-negative patients [18]. Its expres-

sion has been described in both normal and malignant

tissues, although its prognostic role is still being debated.

The DOG1 protein mediates the receptor-activated

chloride current whose levels modulate the cell prolif-

eration by affecting the retinoblastoma (Rb) tumor

a

c

b

d

Fig. 3 Kaplan-Meier cumulative RFS. a The 2-year RFS rate of DOG1-positive patients (Group A) was 84 % (dashed line; p = 0.2) as compared to

DOG1-negative patients (95 %; solid line; Group B). Disease recurrence occurred in 9/39 and 4/20 patients, respectively. b Group A patients were

divided by the Allred scoring system into 3 sub-groups (A1, A2 and A3) based on the DOG1 expression levels, indicated as strong, moderate

and weak, respectively. The 2-year RFS rate for A1 patients was 80 % (dashed line) compared to 93 % for A2 + A3 + B patients (solid line; p = 0.2).

Disease recurrence occurred in 6/24 and 7/35 patients, respectively. c Group A1 patients were divided by tumor size greater or smaller than 5 cm.

The 2-year RFS rate for patients bearing tumors >5 cm was 66 % (dashed line) with 6/14 events compared to 100 % for those with tumors >5 cm

(ten patients) (solid line; p = 0.01). d The 14 Group A1 patients with tumor size > 5 cm were subdivided by mutational status, and the 2-year RFS

rate for those (n = 11) harboring mutations was 58 % (solid line) compared to 100 % for the 3 WT patients (dashed line, p = 0.16). Recurrence

occurred in 6/11 Group A1 patients
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suppressor protein phosphorylation [14, 24, 25], or by

activating the MEK/ERK pathway [15]. In addition,

xenograft DOG1−/− models of GISTs show an im-

paired cell proliferation as a consequence of the de-

creased IGF binding protein-5 levels [16], that inhibit

IGF-mediated downstream signals by trapping both

IGF1 and IGF2 [26]. These findings suggest that

DOG1 over-expression provides a proliferative advan-

tage to malignant stromal cells, and increased levels

could negatively influence prognosis.

Here, we describe results from an observational study

based on evaluation of the clinical, pathological and mo-

lecular features of 59 GIST patients and any correlations

with DOG1 expression. Approximately 66 % of CD117+

samples showed a strong DOG1 expression, in agree-

ment with previous studies describing its variable accu-

mulation in 60–99 % malignant cells. The reported

variability in DOG1 expression was mostly attributed to

different monoclonal antibodies used for IHC analyses,

as well as to the intrinsic characteristics of the speci-

mens [10, 21, 27]. In accordance with previous studies

[19–21, 28], our data showed that DOG1 expression is

unrelated to gender, age, primary site, histological sub-

types and mitoses, although a significant correlation was

demonstrated with large tumors harboring an unfavor-

able mutational status. Tumor size is already considered

a prognostic factor for the definition of high-risk disease

[29–31]. However, the prognostic role of the mutational

status is still under debate and not included in the

current risk stratification systems. It is noteworthy that

the presence of the homozygous KIT exon-11 mutation

predicts an aggressive disease course, in particular when

deletions affect both codons 557–558 [32]. By contrast,

the majority of PDGFRA mutated GISTs show a benign

course [33]. Our data support those recently published

in a meta-analysis on 1487 patients [34], proving that

GISTs bearing KIT mutations have a significantly poorer

prognosis than either PDGFRA mutated or WT GISTs.

Moreover, Rìos-Moreno et al. reported that the WT

genotype was prevalent in DOG1−/CD117− patients [35].

We demonstrated a more favorable post-operative 2-year

RFS rate in DOG1-negative patients than DOG1-positive

patients (p = 0.02). These findings were in line with previ-

ous results [36] that reported a significant association

between DOG1 expression and high-risk tumors. We

stratified DOG1 positive patients in relation to the Allred

scoring system to identify those with a higher risk of re-

currence; in our study patients with a strong DOG1 ex-

pression, tumor size ≥ 5 cm and mutations of KIT or

PDGFRA had a worse prognosis.

The genetic landscape of GIST patients should be fur-

ther investigated. In particular, given the correlation

between DOG1 expression and the activation of the

downstream RAS/RAF/MEK/ERK signaling pathway, the

clinical significance of activating RAS mutations remains

to be better elucidated for its therapeutic relevance, as

already widely investigated in other tumors [37].

Conclusions
In conclusion, in our patients a high DOG1 expression

correlated with an aggressive malignant phenotype of

GISTs. Thus, measurement of DOG1 expression would

be helpful in clinical practice to predict the recurrence

risk in GIST patients. We believe that the Allred scoring

system could be integrated in current risk stratification

systems to achieve a better identification of patients at

increased risk of recurrence.
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