
Parallelizable and Authenticated Online Ciphers

Elena Andreeva1,2, Andrey Bogdanov3, Atul Luykx1,2, Bart Mennink1,2,
Elmar Tischhauser1,2, and Kan Yasuda1,4

1 Department of Electrical Engineering, ESAT/COSIC, KU Leuven, Belgium.
2 iMinds, Belgium.

3 Department of Mathematics, Technical University of Denmark, Denmark.
4 NTT Secure Platform Laboratories, Japan.

Abstract. Online ciphers encrypt an arbitrary number of plaintext
blocks and output ciphertext blocks which only depend on the preceding
plaintext blocks. All online ciphers proposed so far are essentially serial,
which significantly limits their performance on parallel architectures such
as modern general-purpose CPUs or dedicated hardware. We propose the
first parallelizable online cipher, COPE. It performs two calls to the un-
derlying block cipher per plaintext block and is fully parallelizable in
both encryption and decryption. COPE is proven secure against chosen-
plaintext attacks assuming the underlying block cipher is a strong PRP.
We then extend COPE to create COPA, the first parallelizable, online
authenticated cipher with nonce-misuse resistance. COPA only requires
two extra block cipher calls to provide integrity. The privacy and integrity
of the scheme is proven secure assuming the underlying block cipher is a
strong PRP. Our implementation with Intel AES-NI on a Sandy Bridge
CPU architecture shows that both COPE and COPA are about 5 times

faster than their closest competition: TC1, TC3, and McOE-G. This high
factor of advantage emphasizes the paramount role of parallelizability on
up-to-date computing platforms.

Keywords: Block cipher, tweakable cipher, online cipher, authenticated
encryption, nonce-misuse resistance, parallelizability, AES

1 Introduction

Online ciphers. A cipher which takes input of arbitrary length is said to be
an online cipher if it can output ciphertext blocks as it is receiving the plaintext
blocks. Specifically, the ith ciphertext block should only depend on the key and
the first i plaintext blocks. This desirable functionality known more generally as
online data processing is characteristic for other cryptographic primitives such
as standard encryption schemes like CTR, CBC, OFB, and CFB.

The first theoretical treatment of online ciphers was put forward by Bellare,
Boldyreva, Knudsen, and Namprempre [4]. They introduce the online ciphers
HCBC1 and HCBC2, both of which require the use of two keys, one for the un-
derlying block cipher and the other for the almost-xor-universal hash family [24].
Subsequently, Nandi [21] proposed two more efficient online ciphers MHCBC and

MCBC. MHCBC improves upon HCBC2 by using a smaller hashing key with
a finite field multiplication as universal hash function, whereas MCBC does not
even require a universal hash function, thus needing only one block cipher key
and calling the block cipher twice per plaintext block. Rogaway and Zhang in [27]
recast the formalism of Bellare et al. [4] in terms of tweakable block ciphers [17]
and provide three generalizations of the previous online ciphers: TC1, TC2, and
TC3.

Authenticated encryption from online ciphers. While online authenti-
cated encryption (AE) schemes are not a novelty5, presently we are aware of
only one family of online and misuse-resistant AE schemes, McOE [11]. McOE
makes use of the online cipher TC3 [27] to build its general structure and adds
two calls to the tweakable cipher to achieve authenticity. To process messages of
arbitrary lengths, McOE applies a tag splitting method, similar to the ciphertext
stealing method [9].

Bellare et al. [4] give a few generic transformations to turn an online cipher
into a secure authenticated encryption scheme.

Problem statement. All existing online ciphers are highly sequential and none
of them offer any possibility for parallelizing the computation between distinct
block cipher calls. The only exception can be seen in TC1, which allows paral-
lelization only in decryption but not in encryption. As a consequence, the McOE
AE schemes are not parallelizable either, due to the fact that they are based on
existing online ciphers.

At the same time, in the overwhelming majority of cases in practice, the
underlying cipher is AES which is very well parallelizable on many platforms.
Parallelization is a rather inherent feature of hardware implementations, both
in ASIC and FPGA. Also in general-purpose software, parallelizable encryption
algorithms have profited in terms of performance due to the bitslice approach for
a long time already [18, 6, 14]. However, with the introduction of the hardware
supported AES by Intel in general-purpose x86 CPUs as an instruction set AES-
NI in Intel Westmere, Sandy Bridge, and Ivy Bridge — followed by the AMD
adoption of AES-NI in AMD Bulldozer and Piledriver — the parallelizability
of the AES modes of operation has become of truly paramount importance.
With AES-NI, using a parallelizable mode of operation enables performance
advantages of a factor 3 and higher — see, for instance, the case of the (serial)
CBC encryption vs (parallel) CBC decryption [1].

Our contributions. We present the first parallelizable online cipher, COPE,
and the first parallelizable online authenticated encryption scheme with nonce-
misuse resistance, COPA.

COPE: Our novel design is illustrated in Fig. 1. To process a single plaintext
block two block cipher calls are required. A secret mask (tweak) is applied

5 Examples of online AE schemes include EAX [5], GCM [19], and OCB1-3 [26,25,16].

2

to the plaintext block and used as input to the first block cipher call. Then
the output of the second block cipher call is masked again to produce the
ciphertext block.

By introducing dummy masks, each block cipher call can be viewed as an
instance of the XEX construction [25], which uses the so-called “doubling”
mask generation. Our basic design only deals with message lengths that are a
multiple of the block length. In order to handle messages of arbitrary lengths
we use the technique prescribed in the XLS domain extender by Ristenpart
et al. in [23]. In contrast with previous designs, our scheme only uses a single

key and a single cryptographic primitive, namely a block cipher.

COPE is proven IND-CPA up to the birthday bound of n/2-bit security,
where n denotes the block size of the underlying block cipher.

COPA: We transform COPE to support authentication, while maintaining
parallelizability. The modifications are limited to computing an XOR sum of
the plaintext data and using two extra block cipher calls; these can be seen
in Fig. 2. The scheme also supports associated data in a way similar to how
PMAC1 [25] operates. The privacy and integrity of COPA are proven up to
the birthday bound.

To illustrate the impact of the parallelizability of our online schemes, we imple-
ment them with AES-NI on an Intel Sandy Brigde processor. We systematically
compare the performance we attain with the online ciphers TC1, TC3, and
MCBC as well as the online AE scheme McOE-G when instantiated with the
AES. When compared to these closest online competitors, which are all explic-
itly not parallelizable, our modes provide performance improvements between a
factor of 4.5 and 5, being below 2 cycles per byte on a single core. We expect
almost a linear speed-up when several cores are available.

Organization of the paper. The remainder of the paper is organized as fol-
lows. We recall the necessary background on block ciphers in Section 2. Section
3 provides the specification of our new parallel modes. Sections 4 and 5 deal with
the security proofs. Section 6 gives AES-NI implementations of our modes along
with a systematic comparison to the state-of-the-art schemes. We conclude in
Section 7.

2 Preliminaries

2.1 Block Ciphers

A block cipher E : K × {0, 1}n → {0, 1}n is a function that takes as input
a key k ∈ K and a plaintext M ∈ {0, 1}n, and produces a ciphertext C =
E(k,M). We sometimes write Ek(·) = E(k, ·). For a fixed key k, a block cipher
is a permutation on n bits, and we denote the inverse permutation (decryption
function) by E−1

k .

3

Let Perm(n) be the set of all permutations on n bits. When writing x
$

← X
for some finite set X we mean that x is sampled uniformly from X. We write
Pr

[
A

∣∣ B
]

to denote the probability of event A given B.

Definition 1. Let E be a block cipher. The prp±1 advantage of a distinguisher

D is defined as

Advprp±1
E (D) =

∣∣∣∣Pr
k

[
DEk,E−1

k = 1
]
− Pr

π

[
Dπ,π−1

= 1
]∣∣∣∣ .

Here, D is a distinguisher with oracle access to either (Ek, E−1
k) or (π, π−1).

The probabilities are taken over k
$

← K, π
$

← Perm(n) and random coins of D,

if any. By Advprp±1
E (t, q) we denote the maximum advantage taken over all

distinguishers that run in time t and make q queries.

We shall also write E±1
k for (Ek, E−1

k). Similarly, π±1 means (π, π−1), and so
on.

2.2 Binary Fields

The set {0, 1}n of bit strings can be considered as the finite field GF(2n) consist-
ing of 2n elements. To do this, we represent an element of GF(2n) as a polynomial
over the field GF(2) of degree less than n. A string an−1an−2 · · · a1a0 ∈ {0, 1}n

corresponds to the polynomial an−1x
n−1 + an−2x

n−2 + · · ·+ a1x+ a0 ∈ GF(2n).
The addition in the field is just the addition of polynomials over GF(2) (that
is, bitwise XOR, denoted by ⊕). To define multiplication in the field, we fix
an irreducible polynomial f(x) of degree n over the field GF(2). Given two
elements a(x), b(x) ∈ GF(2n), their product is defined as a(x)b(x) mod f(x)—
polynomial multiplication over the field GF(2) reduced modulo f(x). We simply
write a(x)b(x) and a(x) · b(x) to mean the product in the field GF(2n).

The set {0, 1}n can be also regarded as a set of integers ranging from 0
through 2n − 1. A string an−1an−2 · · · a1a0 ∈ {0, 1}n corresponds to the integer
an−12

n−1 + an−22
n−2 + · · · + a12 + a0 ∈ [0, 2n − 1]. We often write elements of

GF(2n) as integers, based on these conversions. So, for example, “2” means x,
“3” means x+ 1, and “7” means x2 + x+ 1. When we write multiplications such
as 2 · 3 and 72, we mean those in the field GF(2n).

2.3 XE and XEX Constructions of Tweakable Ciphers

Given a block cipher E : K × {0, 1}n → {0, 1}n and a secret mask ∆ ∈ {0, 1}n,
the ciphers

E′
k,∆(x)

def
= Ek(x ⊕ ∆) or E

′
k,∆(x)

def
= Ek(x ⊕ ∆) ⊕ ∆

behave like another block cipher independent of Ek (up to some bound). In
the case of E′

k,∆, adversaries are allowed to make only forward queries, whereas

4

E
′
k,∆ accepts both encryption and decryption queries. Now consider a set of

secret masks {∆i}i∈T , where ∆i and ∆j may not be necessarily independent.
An index i ∈ T is called a tweak, which is not secret. We obtain a tweakable

cipher Ẽ : K × T × {0, 1}n → {0, 1}n by defining Ẽk,i
def
= E′

k,∆i
, and similarly

Ẽk,i. We consider Ẽk,i and Ẽk,j together, where i ∈ T0, j ∈ T1 and T0 ∩T1 = ∅.

Definition 2. Let Ẽ, Ẽ be tweakable ciphers. The twk advantage of a distin-

guisher D is defined as

Advtwk
eE, eE

(D) =
∣∣∣Pr

k

[
D

eEk,i, eE
±1

k,j = 1
]
− Pr

πi,πj

[
Dπi,π

±1

j = 1
]∣∣∣ .

Here, D is a distinguisher with oracle access to a series of permutations. The

tweaks run over i ∈ T0 and j ∈ T1 where T0 ∩ T1 = ∅. By Advtwk
eE, eE

(t, q) we

denote the maximum advantage taken over all distinguishers that run in time t
and make q queries in total.

The doubling method [25] enables us to produce many different values of the

mask ∆ from just one secret value L
def
= Ek(0). Namely, the masks are pro-

duced as ∆ = 2α3β7γL for varying indices of α, β and γ. To do this, we need to
choose our irreducible polynomial f(x) carefully. First, f(x) needs to be primi-
tive, meaning that 2 generates the whole multiplicative group. Second, we make
sure that log2 3 and log2 7 are both “huge.” Third, we check if log2 3 and log2 7
are “apart enough” (modulo 2n − 1). We impose these conditions to ensure that
values 2α3β7γ do not collide or become equal to 1. For example, when n = 128,
the irreducible polynomial f(x) = x128 + x7 + x2 + x + 1 satisfies these require-
ments, making values 2α3β7γ all distinct and not equal to 1 for α ∈ [−2108, 2108]
and β, γ ∈ [−27, 27] [25], except for (α, β, γ) = (0, 0, 0). So we obtain tweakable

ciphers Ẽk,αβγ and Ẽk,αβγ .

Lemma 1 (XE and XEX [25]). Let T0, T1 = {(α, β, γ)} be two sets of integer

triples such that 2α3β7γ are all distinct and not equal to 1, in particular T0∩T1 =

∅. Then the permutations {Ẽk,αβγ

}
T0

∪
{
Ẽ

±1

k,αβγ

}
T1

are indistinguishable from

independently random permutations
{
παβγ

}
T0
∪

{
π

±1
αβγ

}
T1

. Specifically, for given

t, q, there exists a t′ ≈ t such that

Advtwk
eE, eE

(t, q) ≤
9.5q2

2n
+ Advprp±1

E (t′, 2q).

3 COPE and COPA: Design and Specification

We define COPE and COPA. COPE is an online cipher secure against chosen
plaintext attacks. COPE makes two calls to the underlying block cipher per
message block. COPA is an authenticated online cipher that builds on COPE.
The additional cost of producing a tag is kept minimal—a message checksum
and two extra block cipher calls. COPA accepts associated data input.

5

Fig. 1: Online cipher COPE. Set V
def
= 0 for COPE. Variable S will be used later

by COPA.

In this section we assume that the message length is a positive multiple of n.
The length of associated data can be fractional. In App. A we show how to handle
fractional messages with COPE and COPA. At the end of this section we give
the design rationale for our constructions, explaining our choice of operations.

3.1 COPE Definition

Let E : K × {0, 1}n → {0, 1}n be an n-bit block cipher, and denote L
def
= Ek(0).

The encryption and decryption procedures of the COPE online cipher on a
message M [1]M [2] · · ·M [d] of d n-bit blocks and on a ciphertext C[1]C[2] · · ·C[d]
are then defined as:

COPE-Encrypt E [E]:
V [0] ← L,∆0 ← 3L,∆1 ← 2L
for i = 1, . . . , d do

V [i] ← Ek

(
M [i] ⊕ ∆0

)
⊕ V [i − 1]

C[i] ← Ek

(
V [i]

)
⊕ ∆1

∆0 ← 2∆0,∆1 ← 2∆1

end for

COPE-Decrypt E−1[E]:
V [0] ← L,∆0 ← 3L,∆1 ← 2L
for i = 1, . . . , d do

V [i] ← E−1
k

(
C[i] ⊕ ∆1

)

M [i] ← E−1
k

(
V [i] ⊕ V [i − 1]

)
⊕ ∆0

∆0 ← 2∆0,∆1 ← 2∆1

end for

The encryption operation is illustrated in Fig. 1.

3.2 COPA Definition

The core of the authenticated online cipher COPA is identical to COPE. The
only differences are that first, an authentication tag T is generated after the
COPE cipher invocation, and second, that associated data (if any) is processed
before the cipher iteration to produce a value V that is XOR-ed into the first

6

(a) Tag generation (b) Processing of associated data

Fig. 2: Authenticated online cipher COPA: tag generation and processing of as-
sociated data.

intermediate block chaining (see Fig. 1): V [0] ← V ⊕L. If there is no associated

data, then we set V
def
= 0.

The tag T is computed by keeping a XOR checksum of the message blocks

Σ
def
= M [1] ⊕ · · · ⊕ M [d] and computing

T ← Ek

(
Ek(Σ ⊕ 2d−132L) ⊕ S

)
⊕ 2d−17L,

with S
def
= V [d] denoting the last intermediate value in COPE’s block chaining, as

in Fig. 1. The tag computation is illustrated in Fig. 2a. The value V is generated
as follows: any associated data A[1], . . . , A[a] is padded (if not a multiple of n
bits) by a one and as many zeroes as necessary to obtain a multiple of the
block size n. These blocks are then processed by a PMAC1-like [25] iteration as
illustrated in Fig. 2b. Here, the block “A[a]10∗” replaces the block “A[a]” if A[a]
itself is not n bits. Tag verification occurs by checking if

S ⊕ Ek(Σ ⊕ 2d−132L) = E−1
k (T ⊕ 2d−17L),

where the tag is rejected if the equality is not true.

3.3 COPE and COPA for Arbitrary-Length Messages

We explain how to extend our schemes to accept “fractional” messages M in
App. A. Here the length |M | is not necessarily a positive multiple of the block
size n. Note that simply using 10∗ padding to M would result in ciphertext
expansion. The methods described in App. A avoid such expansion with minimal
loss of efficiency.

3.4 Design Rationale

One could combine universal hashing with a block cipher to design an AE scheme.
Indeed, McOE-G [11] follows this approach. However, we decided to avoid the use

7

of universal hashing, for three reasons. First, the use of universal hashing would
result in additional implementation cost, in particular with hardware. Second,
recent study shows that there is an issue of weak keys with polynomial-based
hashing [22]. Third, on the latest Intel CPUs, one call of AES is faster than
one multiplication over the finite field GF(2128), which is an operation used for
polynomial-based hashing.

There has been discussion of whether one should use the doubling method
or Gray code to produce tweak masks. We decided to use doubling, for three
reasons. First, doubling provides us with the framework of XE and XEX con-
structions, which makes our constructions and proofs simple and easy to ana-
lyze. Neither our constructions nor our proofs can be directly translated into a
Gray code version, as it is not immediately clear which masks we should use for
the construction to make the proof work. Second, although it was reported that
Gray code performs better than doubling on Intel CPUs [16], recent study shows
that the doubling method can be implemented equally efficiently [3]. Third, the
speedup of Gray code mask generation requires precomputation and memory,
whereas doubling does not.

4 Privacy of COPE

4.1 Security Definition of Online Ciphers

We use the security definition of online ciphers from Rogaway and Zhang [27].
Let ({0, 1}n)+ denote the set of strings whose length is a positive multiple of n
bits and is at most 2n · n bits. An online cipher E : K× ({0, 1}n)+ → ({0, 1}n)+

is a function such that it is a permutation on every block of n bits, having
the additional feature that the outputs are the same for a common prefix. In
other words, the first |M | bits of Ek

(
M‖N

)
and Ek

(
M‖N ′

)
are the same for any

M,N,N ′ ∈ ({0, 1}n)+. So an online cipher Ek yields a permutation of i-th blocks,
where the permutation is determined by the prefix (i.e. the first i − 1 blocks).
Let OPerm(n) be the set of all such permutations π : ({0, 1}n)+ → ({0, 1}n)+.

Definition 3. Let E be an online cipher. The IND-CPA advantage of a distin-

guisher D is defined as

Advcpa
E

(D) =

∣∣∣∣Pr
k

[
DEk = 1

]
− Pr

π

[
Dπ = 1

]∣∣∣∣ .

Here, D is a distinguisher with oracle access to either Ek or π. The probabilities

are taken over k
$

← K, π
$

← OPerm(n) and random coins of D, if any. By

Advcpa
E

(t, q, σ, ℓ) we denote the maximum advantage taken over all distinguishers

that run in time t and make q queries, each of length at most ℓ blocks, and of

total length at most σ blocks.

8

Fig. 3: IND-CPA proofs of COPE: introducing dummy masks rewriting the
scheme in terms of XEX.

4.2 IND-CPA Proof Sketch

This section gives a sketch of the proof showing that COPE is secure against
chosen-plaintext attacks with respect to privacy (IND-CPA). The details of the
proof can be found in the full paper [2].

Theorem 1. Let E [E] denote COPE, where E is the underlying block cipher.

We have

Advcpa
E[E](t, q, σ, ℓ) ≤

38σ2

2n
+ Advprp±1

E (t′, 4σ) +
(ℓ + 1)(q − 1)2

2n
,

where t′ ≈ t.

The proof consists of two steps. First, we rewrite COPE in terms of XEX con-
structions.6 We introduce dummy masks to the state values, as shown in Fig. 3.
The block cipher calls in the upper layer are now Ẽk,α−1,1,0 and those in the

lower layer Ẽk,α,0,0. Note that the “L” initially XORed to the state now dis-
appears. We use Lem. 1 to replace the block cipher calls in the upper layer
with random permutations πα−1,1,0 and those in the lower layer with πα,0,0 (for
α = 1, 2, . . .). Such a replacement costs us

9.5 · (2σ)2

2n
+ Advprp±1

E (t′, 2 · 2σ) =
38σ2

2n
+ Advprp±1

E (t′, 4σ).

We write E [π] to denote the COPE scheme making calls to independent random
permutations παβγ rather than to a block cipher.

Second, we show that E [π] behaves exactly the same as the ideal functionality,
as long as collisions of state values do not occur. Define variables V [α] of state

values as V [α]
def
=

⊕α
i=1 πi−1,1,0

(
M [i]

)
which is also equal to π

−1
α,0,0

(
C[α]

)
.

6 The reason why our IND-CPA COPE is based on XEX constructions, and not
on XEs, is because our COPA, which gives decryption oracle access to adversaries,
builds upon COPE.

9

We look for collisions of these variables. Here by a “collision” roughly we
mean the same value of V [α] coming from different prefixes M [1]M [2] · · ·M [α]
and M ′[1]M ′[2] · · ·M ′[α], for some α. More precisely, we have a collision of
V [α] = V ′[α] if we have V [α − 1] 6= V ′[α − 1] and V [α] = V ′[α], which im-
plies we must have M [α] 6= M ′[α] and also M [i] 6= M ′[i] for some i < α. Let C

denote the event that a collision of V [α] occurs for some α.

Claim. Unless C occurs, E [π] is indistinguishable from the ideal functionality.
Furthermore, we have Pr

[
DE[π] sets C

]
≤ (ℓ + 1)/2n.

5 Privacy and Integrity of COPA

5.1 Security Definition of Authenticated Online Ciphers

Also for authenticated online ciphers, we use the IND-CPA security advantage
of Def. 3, except that the ideal encryption oracle now has an additional random
function that maps {0, 1}∗×({0, 1}n)+ to {0, 1}n, corresponding to (A,M) 7→ T .

We use the notion of integrity of authenticated encryption schemes from
Fleischmann et al. [11]. By ⊥, we denote a function that returns ⊥ on every
input.

Definition 4. Let E be an online cipher. The integrity advantage of a distin-

guisher D is defined as

Advint
E (D) =

∣∣∣∣Pr
k

[
DE

±1

k = 1
]
− Pr

k

[
DEk,⊥ = 1

]∣∣∣∣ .

Here, D is a distinguisher with oracle access to either (Ek, E−1
k) or (Ek,⊥). To

avoid a trivial win, we assume that the distinguisher does not make a query

(A,C, T) if it has made a query (A,M) to the encryption oracle and obtained

(C, T) from the oracle. By Advint
E (t, q, σ, ℓ) we denote the maximum advantage

taken over all distinguishers that run in time t and make q queries, each of length

at most ℓ blocks, and of total length at most σ blocks.

5.2 Privacy of COPA

We now give a proof sketch of the IND-CPA security of COPA. The details can
be found in the full paper [2].

Theorem 2. Let E [E] denote COPA, where E is the underlying block cipher.

We have

Advcpa
E[E](t, q, σ, ℓ) ≤

39(σ + q)2

2n
+ Advprp±1

E (t′, 4(σ + q)) +
(ℓ + 2)(q − 1)2

2n
,

where t′ ≈ t.

10

The IND-CPA security analysis of COPE carries over, with only minor modifi-
cations. First, we introduce dummy masks in a similar way (to the encryption
part), and replace all XE (in the associated-data part) and XEX constructions
by random permutations. This replacement costs us

9.5 · (2σ + 2q)2

2n
+Advprp±1

E (t′, 2·2(σ+q)) =
38(σ + q)2

2n
+Advprp±1

E (t′, 4(σ+q)).

Write E [π,π] to denote the COPA scheme calling random permutations instead
of a block cipher.

Next, we again use the collision event C, but introduce two more events. One
is A, which is the event that we have a collision of V for two different associated
data. Recall that for A = ∅, we have V = 0. The other is T, which is the event
that we have a collision of tag values for messages of the same length (or more
precisely, a collision of input values to a random permutation that produces
tags).

Claim. Unless A∨C∨T occurs, E [π,π] is indistinguishable from the ideal func-
tionality.

Lemma 2 (PMAC1, [25]). The function H[π] : {0, 1}∗ → {0, 1}n (A 7→ V) is

indistinguishable from a random function Φ : {0, 1}∗ → {0, 1}n. Specifically, the

distinguishing advantage (defined accordingly, only forward queries) is at most

σ2/2n. Here, {0, 1}∗ denotes the set of strings whose length is at most 2n ·n bits.

So now we replace XE and XEX constructions with random permutations and
H[π] with a random function Φ. Denote the scheme by E [Φ,π]. Then we have
the following.

Claim. We have Pr
[
DE[Φ,π] sets A

]
≤ q2/2n and Pr

[
DE[Φ,π] sets C∨T

∣∣ ¬A
]
≤

(ℓ + 2)(q − 1)2/2n.

5.3 Integrity of COPA

The integrity proof of COPA is more involved than the privacy proofs and we
include the full proof in this paper. We prove the following theorem:

Theorem 3. Let E [E] denote COPA, where E is the underlying block cipher.

We have

Advint
E[E](t, q, σ, ℓ) ≤

39(σ + q)2

2n
+Advprp±1

E (t′, 4(σ+q))+
(ℓ + 2)(q − 1)2

2n
+

2q

2n
,

where t′ ≈ t.

Let F denote the event that the decryption oracle E−1
k returns something other

than ⊥. Clearly the two games are the same as long as the event F does not
occur, so we have

Pr
[
DE

±1

k = 1
]
− Pr

[
DEk,⊥ = 1

]
≤ Pr

[
DE

±1

k sets F
]
.

11

In the rest of this section we shall bound this probability. First, as usual, we
replace block cipher calls with random permutations π,π. Then we replace the
PMAC1 part of processing associated data with a random function Φ. These all
together cost us (cf. the proof of Thm. 2)

38(σ + q)2

2n
+

σ2

2n
+ Advprp±1

E (t′, 4(σ + q)).

Removing “Privacy Part.” Define events A, C and T as we have done in
the privacy proof of Thm. 2. Note that these events are defined in terms of

variables V [α], where we also define V [0]
def
= V and V ′[α + 1] the input value to

the block cipher that produces a tag. We define these values as being set only by
the queries to the encryption oracle E . We do not let queries to the decryption
oracle E−1 affect variables V [·], V ′[·], whether or not it returns a message or ⊥.

Set E
def
= A ∨ C ∨ T.

Next we define similar events A
′, C

′ and T
′. These are exactly the same as

the previous ones, except that now we consider only those events (i.e. collisions
of V [·] or V ′[·]) that occur prior to a forgery (that is, under the condition ¬F).

Again, set E
′ def

= A
′ ∨ C

′ ∨ T
′.

When we consider event F, we would like to assume that we are under the
condition ¬E

′, meaning that the encryption oracle E has behaved ideally so far
(till forgery). To do this, we use the inequality

Pr
[
DE

±1[Φ,π] sets F
]
≤ Pr

[
DE

±1[Φ,π] sets F
∣∣ ¬E

′
]
+ Pr

[
DE

±1[Φ,π] sets E
′
]
.

We shall construct a distinguisher D′ that breaks the privacy of the encryption
oracle E . The distinguisher D′ uses D, and the query complexity of D′ is at
most that of D. Specifically, D′ starts running D, answering E-queries using its
E oracle, and whenever D makes a query to the decryption oracle E−1, D′ replies
with a ⊥.

Claim. We have Pr
[
DE

±1[Φ,π] sets E
′
]
≤ q2/2n + (ℓ + 2)(q − 1)2/2n.

Proof. Note that if DE
±1

sets E
′, then till this event D′ simulates the environment

of D correctly. Hence we get Pr
[
DE

±1

sets E
′
]
≤ Pr

[
D′E sets E

]
, which is less

than q2/2n + (ℓ + 2)(q − 1)2/2n as shown in the privacy proof. ⊓⊔

Passing to a Single-Query Adversary. So it remains to evaluate the prob-
ability that D sets F under the condition ¬E

′. We shall construct a forger D1

from D. The forger D1 makes multiple queries to the encryption oracle E but
makes only one query to the decryption oracle E−1 at the end of its run. We
define D1 as follows: it chooses a random index i ∈ [1, q]. It then runs D, an-
swering its E-queries using the E oracle of D1 and answering the queries to the
decryption oracle E−1 with ⊥. When D makes the i-th query (A⋆, C⋆, T ⋆) to
the decryption oracle, D1 outputs the query (A⋆, C⋆, T ⋆) and stops (or more
precisely, makes that query to the decryption oracle E−1 and stops.)

12

Claim. We have Pr
[
DE

±1[Φ,π] sets F
∣∣ ¬E

′
]
≤ q Pr

[
D

E
±1[Φ,π]

1 sets F
∣∣ ¬E

′
]
.

Proof. Let Fh denote the event that at the h-th query the decryption oracle E−1

returns something other than ⊥ for the first time; that is, the oracle has returned
only ⊥ so far. Clearly these are disjoint events, and we have F =

∨q
h=1 Fh. Then,

under the events ¬E
′ and i = h, the forger D1 correctly simulates the game of D.

Therefore, we get Pr
[
DE

±1

1 sets F
∣∣ ¬E

′
]
≥ Pr

[
(i = h) ∧ DE

±1

sets F
∣∣ ¬E

′
]
≥

(1/q) Pr
[
DE

±1

sets F
∣∣ ¬E

′
]
. ⊓⊔

Evaluating Forgery Probabilities. Let (A⋆, C⋆, T ⋆) denote the (non-trivial)
query made by D1 to the decryption oracle E−1[Φ,π]. We shall evaluate the
probability that this would make E−1 return something other than ⊥. To evaluate
the probability, we shall consider the following cases.

Lemma 3 (Case 1). If A⋆ or T ⋆ is new, or C⋆ contains a new block, then the

probability of a forgery is at most 2/2n.

Proof. If A⋆ is new, then it means that it triggers the random function Φ and
yields a fresh random value V ← Φ(A⋆). This value is XORed to the value that
is input to the block cipher to produce the tag, which must be equal to T ⋆. All
other values XORed to the value are independent of V . Hence, regardless of the
values C⋆, T ⋆, the probability of such an event is at most 1/2n.

Say that A⋆ is not new, but that C⋆ contains a new block. Let C⋆[α] be one
of the new blocks. The decryption invokes π

−1
α,0,0

(
C⋆[α]

)
, which is sampled from

the set of at least 2n−q points. Therefore, the probability of a forgery is at most
1/(2n − q) ≤ 2/2n, assuming q ≤ 2n−1.

Say that A⋆ is not new, C⋆ does not contains a new block, but T ⋆ is new. This
is similar to the previous case. This would trigger a fresh point of π

−1
d⋆−1,0,1(T

⋆),
where d⋆ denotes the number of blocks in the message M⋆. The point is sampled
from the set of at least 2n − q points. Therefore, the probability of a forgery is
at most 1/(2n − q) ≤ 2/2n. ⊓⊔

Lemma 4 (Case 2). If A⋆ and T ⋆ are old, and C⋆ consists of old blocks, then

the probability of a forgery is at most 2/2n.

Proof. To handle this case, we introduce some notation. For the query (A⋆, C⋆, T ⋆)
in question, divide C⋆ into blocks as C⋆[1]C⋆[2] · · ·C⋆[d⋆] ← C⋆ and define

C⋆[0]
def
= A⋆ and C⋆[d⋆ + 1]

def
= T . We then focus on a pair of adjacent “blocks”(

C⋆[α − 1], C⋆[α]
)

for α = 1, 2, . . . , d⋆ + 1. We call a pair old if it (as a pair)
has already appeared in some previous query made to the encryption oracle E
and in the corresponding value returned by the oracle. That is, if D has made
a query (A′,M ′) to the oracle and got (C ′, T ′) back, then we check if the pair
in question

(
C⋆[α − 1], C⋆[α]

)
is contained in (A′, C ′, T ′)—that is, we check

if
(
C⋆[α − 1], C⋆[α]

)
=

(
C ′[α − 1], C ′[α]

)
holds, where C ′[0] and C ′[d′ + 1]

are defined similarly. We do this for all previous queries. We call the pair(
C⋆[α − 1], C⋆[α]

)
new otherwise.

13

Note that the query (A⋆, C⋆, T ⋆) always contains a new pair. If (A⋆, C⋆, T ⋆)
contains no new pairs, then, given the non-triviality of the query, we must have
observed a collision, contradicting the assumption ¬E

′.

We now make a distinction among new pairs
(
C⋆[α−1], C⋆[α]

)
based on the

decrypted message block M⋆[α] from the two adjacent ciphertext blocks. We say
that a pair is collapsing if there exists a previous query (A′,M ′) made by D to
the encryption oracle E such that M ′[α] = M⋆[α].

There exists a new pair
(
C⋆[α − 1], C⋆[α]

)
that is not collapsing. This case

means that we trigger a random sampling of π
−1
α,1,0 to compute M⋆[α]. Then,

note that the value Σ⋆ = M⋆[1] ⊕ M⋆[2] ⊕ · · · ⊕ M⋆[d⋆] is already uniquely
determined by the values C⋆[d⋆] and T ⋆ (via Fig. 2a). There are at least 2n − q
possible values for M⋆[α], and the message blocks must sum up to this particular
value Σ⋆, which happens with a probability at most 1/(2n − q) ≤ 2/2n.

All new pairs in (A⋆, C⋆, T ⋆) are collapsing. This final case is quite different
from the previous ones above, as we do not have any fresh sampling of permu-
tations π

±1
α,β,γ or the random function Φ in evaluating E−1[Φ,π](A⋆, C⋆, T ⋆). To

tackle this case, we shall convert this forgery game into one where the adver-
sary D◦ tries to find multiple collisions by outputting the following set of values,
without making any query to the oracles:

1. r ∈ [1, ℓ],

2. 1 ≤ α1 < α2 < · · · < αr ≤ ℓ + 1,

3. (A1,M1), (A2,M2), . . ., (Ar,Mr), and

4. (A′
1,M

′
1), (A′

2,M
′
2), . . ., (A′

r,M
′
r).

The adversary D◦ “wins” if the submitted values form a multi-collision in the
following sense: (Ai,Mi) and (A′

i,M
′
i) collides at the αi-th block, for all i ∈ [1, r].

The adversary D◦ runs D1, simulating the E oracle with an ideal functionality.
Note that this simulation is correct under the condition ¬E

′. When D1 outputs
(A⋆, C⋆, T ⋆), D◦ first checks for new pairs contained in it. Let 1 ≤ α1 < α2 <
· · · < αr ≤ ℓ + 1 be the positions of new pairs. Then D◦ checks the history of
values (C, T) that it returned. Note that under ¬E

′, a block C⋆[α] determines a
unique prefix AM . We choose (Ai,Mi) to be the prefix determined by C⋆[αi].
To choose (A′

i,M
′
i), let A′

iM
′′ be the prefix determined by C⋆[αi − 1]. Then D◦

chooses randomly, from the previously queried values, a message block M [α] 6=

Mi[α]. Set M ′
i

def
= M ′′M [α]. The adversary D◦ does this for i = 1, 2, . . . except

for the last block.

– If αr < d⋆ + 1, then we know the message checksum Σ⋆ = M⋆[1] ⊕ · · · ⊕
M⋆[d⋆], so D◦ does not have to guess the value of M ′

αr
[αr].

– If αr = d⋆ + 1, then we simply set the last input value to be the checksum
of all previous (guessed) message blocks.

Now we observe that as long as all the guesses of the message blocks are correct,
D◦ wins if D1 succeeds in forgery of this type. It should be noted that the values
returned by E are independent of the success probabilities in question, under the

14

event ¬E
′. Therefore, for a fixed r,

Pr
[
D◦ wins

∣∣ r
]
≥

1

q − 1
·· · ··

1

q − 1
Pr

[
D1 forges

∣∣ r
]

=
1

(q − 1)r−1
Pr

[
D1 forges

∣∣ r
]
.

We then calculate Pr
[
D◦ wins

∣∣ r
]
. We do this by lazy sampling of the permu-

tations, and we see that, for a fixed r,

Pr
[
D◦ wins

∣∣ r
]
≤

1

2n − 1
·

1

2n − 1
· · · · ·

1

2n − 1
=

1

(2n − 1)r
.

Hence by varying r we get in total

Pr
[
D1 forges

]
≤

ℓ∑

i=1

(q − 1)i−1

(2n − 1)i
Pr[i = r] ≤

1

(2n − 1)

ℓ∑

i=1

Pr[i = r] =
1

(2n − 1)
.

6 Efficient Parallel Implementation

6.1 The Setting

We compare our schemes to some prominent existing online ciphers: TC1 and
TC3 [27] being the most efficient previous schemes; and MCBC [21] as a repre-
sentative for a scheme relying only on block cipher invocations (as opposed to
tweakable block ciphers or universal hashing). The modes HCBC1 and MHCBC
are implicitly covered by TC1 and TC3, and HCBC2 has a performance inferior
to TC3.

For the case of authenticated online ciphers, we exclude modes of operation
and dedicated designs that are based on a nonce and rely on its non-reuse (e.g.,
GCM [19], OCB [16], ALE [7], and AEGIS [28]). Therefore, we compare our
COPA design to the McOE family of authenticated encryption algorithms [11],
which, to the best of our knowledge, is the only other online scheme not relying
on the non-reuse of a nonce. We focus on the McOE-G instance, since McOE-X
itself is not secure [20], featuring a key recovery with birthday complexity.

For the concrete instantiation of all schemes, we use the AES-128 [10] as
the underlying block cipher, and multiplication in GF(2128) as an almost XOR-
universal hash function [15]. As target platform for the implementations, we
chose the recent generation of Intel microprocessors (Westmere or later) which
support the AES-NI instruction set [12] and carryless multiplication [13].

6.2 Implementation characteristics of COPE and COPA

The online modes proposed in this paper can utilize parallelized execution of
block cipher calls in two ways: for messages longer than one block, the encryp-
tions of subsequent message blocks can be carried out independently of each
other once the respective masks have been XORed. The same holds for the sec-
ond series of block cipher calls, once the chaining XORs have been executed.

15

Table 1: Software performance of (authenticated) online ciphers based on the
AES on the Intel Sandy Bridge platform (AES-NI). All numbers are given in
cycles per byte (cpb).

message length (bytes)

Algorithm 128 256 512 1024 2048 4096 8192

CTR 1.74 1.27 1.05 0.93 0.86 0.83 0.82
TC1 9.00 8.75 8.65 8.60 8.56 8.56 8.56
TC3 9.08 8.82 8.72 8.67 8.63 8.63 8.62
MCBC 11.66 11.00 10.68 10.52 10.44 10.40 10.38
COPE 2.56 2.08 1.89 1.78 1.72 1.70 1.69

McOE-G 10.85 9.73 9.14 8.90 8.74 8.69 8.66
COPA 3.78 2.85 2.31 2.06 1.94 1.88 1.85

This parallelism can be exploited in a single-core scenario by pipelining the
block cipher rounds for several consecutive block cipher invocations. Similarly,
these invocations can be processed independently by multiple threads, with the
recombination being the computation of the chaining. Note that both scenar-
ios can be combined when multiple cores with pipelined block cipher calls are
available, which is typically the case for Intel’s AES-NI architecture.

On the recent Sandy and Ivy Bridge platforms, the AES round function can
be computed at a latency of 8 cycles with a throughput of 1 cycle. Consequently,
to fully utilize the pipeline, our implementation issues 8 AES round function eval-
uations on the next 8 consecutive blocks (independent data and same key). The
tweak masks are computed using dedicated multiplication routines for 2α, 3β and
7γ ∈ GF(2128). By contrast, the general GF(2128) multiplication needed for TC1,
TC3, and McOE-G is implemented using the PCLMULQDQ carryless multiplication
instruction followed by modular reduction.

6.3 Performance measurements

We provide performance data for the (authenticated) encryption of messages of
length 16 · 2b bytes, with 3 ≤ b ≤ 10. The performance of AES-CTR is provided
as a reference point. All measurements were taken on a single core of an Intel
Core i5-2520M CPU at 2500 MHz, averaged over 5 · 105 repetitions, processing
one message at a time. Our findings are summarized in Table 1. All numbers are
given in cycles per byte (cpb).

One can observe that for all message lengths, the parallelizability of the
proposed schemes results in speed-ups of factor 4.5 − 5 in comparison to the
existing modes, at least for somewhat longer messages. By fully utilizing the
pipeline, our schemes are only marginally slower than two times AES-CTR,
which implies that the overhead imposed by the computation of the masks and
the chaining is kept at a minimum. The authenticated mode COPA carries the
additional overhead of two more AES calls plus field arithmetic for finalization,
but this quickly becomes insignificant as the message length increases. Note,

16

however, that some constant overhead in comparison to the unauthenticated
mode remains even for very long messages: this can be attributed to the fact that
the computation of the checksum does not allow overwriting the message blocks,
leading to increased register pressure. We also note that with the availability
of carryless multiplication, TC1 and TC3 can be implemented more efficiently
than the purely block cipher-based MCBC which was created with the goal to
improve performance by avoiding field arithmetic.

The performance of our parallelizable schemes COPE and COPA can be fur-
ther improved by utilizing multiple cores. Our implementation of multithreaded
encryption confirms the intuition that one can expect a nearly linear speedup
when using multiple cores for computing our schemes (i.e., the cost is < 1 cpb
for two cores and so on).

7 Conclusion

By presenting COPE, our work provides the first solution for a parallelizable
online cipher. Building on COPE, we go on to construct COPA, the first paral-
lelizable and nonce-misuse resistant online authenticated encryption scheme. Our
implementations of COPE and COPA with Intel AES-NI on a Sandy Bridge pro-
cessor architecture benefit strongly from the parallelism, which gives us speed-
ups of about factor 5 in comparison to existing (serial) online ciphers TC1, TC3,
MCBC and the online AE scheme McOE-G.

Our designs additionally employ only a single key and use only a block ci-
pher as a building block—as opposed to tweakable block ciphers or universal
hash functions. We prove that our cipher COPE is an IND-CPA secure online
permutation. The privacy result is also carried over to COPA. The integrity
proof of COPA uses a technique of converting a forgery to a set of multiple col-
lisions. It seems that the technique has not been used before by security proofs
of parallelizable authenticated encryption mode or message authentication code.
The technique may be applicable to other new types of parallelizable modes of
operation. We leave it as an interesting open problem to construct a scheme with
less primitive calls but with comparable security guarantees.

Acknowledgments. This work has been funded in part by the IAP Program
P6/26 BCRYPT of the Belgian State (Belgian Science Policy), in part by the Eu-
ropean Commission through the ICT program under contract ICT-2007-216676
ECRYPT II, in part by the Research Council KU Leuven: GOA TENSE, and in
part by the Research Fund KU Leuven, OT/08/027. Elena Andreeva is sup-
ported by a Postdoctoral Fellowship from the Flemish Research Foundation
(FWO-Vlaanderen). Bart Mennink is supported by a Ph.D. Fellowship from
the Institute for the Promotion of Innovation through Science and Technology
in Flanders (IWT-Vlaanderen).

17

References

1. Akdemir, K., Dixon, M., Feghali, W., Fay, P., Gopal, V., Guilford, J., Erdinc Oz-
turk, G.W., Zohar, R.: Breakthrough AES Performance with Intel AES New In-
structions. Intel white paper (January 2010)

2. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda, K.:
Parallelizable and authenticated online ciphers. Cryptology ePrint Archive (2013),
full version of this paper

3. Aoki, K., Iwata, T., Yasuda, K.: How Fast Can a Two-Pass Mode Go? A Parallel
Deterministic Authenticated Encryption Mode for AES-NI (Extended Abstract of
Work in Progress). Directions in Authenticated Ciphers (DIAC) (July 2012)

4. Bellare, M., Boldyreva, A., Knudsen, L.R., Namprempre, C.: Online Ciphers and
the Hash-CBC Construction. In: Kilian, J. (ed.) CRYPTO. Lecture Notes in Com-
puter Science, vol. 2139, pp. 292–309. Springer (2001)

5. Bellare, M., Rogaway, P., Wagner, D.: The EAX Mode of Operation. In: Roy, B.K.,
Meier, W. (eds.) FSE. Lecture Notes in Computer Science, vol. 3017, pp. 389–407.
Springer (2004)

6. Bernstein, D.J., Schwabe, P.: New AES Software Speed Records. In: Chowdhury
et al. [8], pp. 322–336

7. Bogdanov, A., Mendel, F., Regazzoni, F., Rijmen, V., Tischhauser, E.: ALE: AES-
Based Lightweight Authenticated Encryption. In: FSE’13. Lecture Notes in Com-
puter Science, Springer (2013), to appear

8. Chowdhury, D.R., Rijmen, V., Das, A. (eds.): Progress in Cryptology - IN-
DOCRYPT 2008, 9th International Conference on Cryptology in India, Kharagpur,
India, December 14-17, 2008. Proceedings, Lecture Notes in Computer Science, vol.
5365. Springer (2008)

9. Daemen, J.: Hash Function and Cipher Design: Strategies Based on Linear and
Differential Cryptanalysis. Ph.D. thesis, Katholieke Universiteit Leuven, Leuven,
Belgium (1995)

10. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Springer (2002)

11. Fleischmann, E., Forler, C., Lucks, S.: McOE: A Family of Almost Foolproof On-
Line Authenticated Encryption Schemes. In: Canteaut, A. (ed.) FSE. Lecture Notes
in Computer Science, vol. 7549, pp. 196–215. Springer (2012)

12. Gueron, S.: Intel Advanced Encryption Standard (AES) Instructions Set. Intel
white paper (September 2012)

13. Gueron, S., Kounavis, M.: Intel Carry-Less Multiplication Instruction and its Usage
for Computing the GCM mode. Intel white paper (September 2012)

14. Käsper, E., Schwabe, P.: Faster and Timing-Attack Resistant AES-GCM. In:
Clavier, C., Gaj, K. (eds.) CHES. Lecture Notes in Computer Science, vol. 5747,
pp. 1–17. Springer (2009)

15. Krawczyk, H.: LFSR-based Hashing and Authentication. In: Desmedt, Y. (ed.)
CRYPTO. Lecture Notes in Computer Science, vol. 839, pp. 129–139. Springer
(1994)

16. Krovetz, T., Rogaway, P.: The Software Performance of Authenticated-Encryption
Modes. In: Joux, A. (ed.) FSE. Lecture Notes in Computer Science, vol. 6733, pp.
306–327. Springer (2011)

17. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable Block Ciphers. In: Yung, M.
(ed.) CRYPTO. Lecture Notes in Computer Science, vol. 2442, pp. 31–46. Springer
(2002)

18

18. Matsui, M., Nakajima, J.: On the Power of Bitslice Implementation on Intel Core2
Processor. In: Paillier, P., Verbauwhede, I. (eds.) CHES. Lecture Notes in Com-
puter Science, vol. 4727, pp. 121–134. Springer (2007)

19. McGrew, D.A., Viega, J.: The Security and Performance of the Galois/Counter
Mode (GCM) of Operation. In: Canteaut, A., Viswanathan, K. (eds.) IN-
DOCRYPT. Lecture Notes in Computer Science, vol. 3348, pp. 343–355. Springer
(2004)

20. Mendel, F., Mennink, B., Rijmen, V., Tischhauser, E.: A Simple Key-Recovery
Attack on McOE-X. In: Pieprzyk, J., Sadeghi, A.R., Manulis, M. (eds.) Cryptology
and Network Security. LNCS, vol. 7712, pp. 23 – 31. Springer (2012)

21. Nandi, M.: Two New Efficient CCA-Secure Online Ciphers: MHCBC and MCBC.
In: Chowdhury et al. [8], pp. 350–362

22. Procter, G., Cid, C.: On Weak Keys and Forgery Attacks against Polynomial-based
MAC Schemes. In: FSE 2013 (2013)

23. Ristenpart, T., Rogaway, P.: How to Enrich the Message Space of a Cipher. In:
Biryukov, A. (ed.) FSE. Lecture Notes in Computer Science, vol. 4593, pp. 101–118.
Springer (2007)

24. Rogaway, P.: Bucket Hashing and its Application to Fast Message Authentication.
In: Coppersmith, D. (ed.) CRYPTO. Lecture Notes in Computer Science, vol. 963,
pp. 29–42. Springer (1995)

25. Rogaway, P.: Efficient Instantiations of Tweakable Blockciphers and Refinements
to Modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT. Lecture Notes in
Computer Science, vol. 3329, pp. 16–31. Springer (2004)

26. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of
operation for efficient authenticated encryption. In: Reiter, M.K., Samarati, P.
(eds.) ACM Conference on Computer and Communications Security. pp. 196–205.
ACM (2001)

27. Rogaway, P., Zhang, H.: Online Ciphers from Tweakable Blockciphers. In: CT-
RSA 2011. Lecture Notes in Computer Science, vol. 6558, pp. 237–249. Springer,
Heidelberg (2011)

28. Wu, H., Preneel, B.: AEGIS: A Fast Authenticated Encryption Algorithm. Direc-
tions in Authenticated Ciphers (July 2012)

A Handling Arbitrary-Length Messages

A.1 COPE for Arbitrary-Length Messages

Our solution relies on the XLS construction [23] of VIL tweakable ciphers. XLS
makes only three block-cipher calls and requires only simple bit operations out-
side block-cipher calls.

Let Ẽ : K×T ×{0, 1}n → {0, 1}n be a tweakable cipher and E : K′×{0, 1}n →

{0, 1}n a block cipher. Then XLS[Ẽ, E] yields a VIL permutation on {0, 1}n+∗,
the set of string whose length is between n bits and 2n− 1 bits. Specifically, we
get XLS[Ẽ, E] : K×K′×T ×{0, 1}n+∗ → {0, 1}n+∗. Using appropriate choice of
(α, β, γ), we can realize the ciphers used in XLS by the underlying block cipher
in COPE encryption scheme E , dependent on the message length d. So we write
XLSk,d to denote the XLS invocation in COPE.

19

Let M be a message of at least n bits. Divide it into blocks as M [1]M [2] · · ·M [d−
1]M [d] ← M , and assume that we have 1 ≤

∣∣M [d]
∣∣ ≤ n− 1. Then we can define

C ← Ek(M) as

C[1]C[2] · · ·C[d − 2], S ← Ek

(
M [1]M [2] · · ·M [d − 2]

)
(let Ek output S for now)

C[d − 1]C[d] ← XLSk,d

(
(M [d − 1] ⊕ S)‖M [d]

)

C ← C[1]C[2] · · ·C[d].

The IND-CPA proof of COPE carries over with minor modifications. Note that
we have to “wait” the processing of M [d− 1] till receiving M [d] (or “redo” after
receiving), making the scheme less online. Yet, we make only three calls to the
block cipher to process these two blocks.

We require |M | ≥ n. As pointed out by [27], it seems a challenging problem to
handle the case |M | < n with encryption-only online ciphers in a secure manner.

A.2 COPA for Arbitrary-Length Messages

There are solutions of arbitrary-length messages for COPA also. This time we
can take the advantage of the tag to handle even the case |M | < n. The solution
for the case |M | > n also becomes more efficient owing to the presence of tags.

Tag Splitting for |M | < n. We can do a trick similar to tag splitting [11] if
|M | < n. We first choose appropriate parameters (α, β, γ) to make it independent
of the ordinary COPA encryption algorithm E . Write it E∗

k (which will be used
only for fractional one-block messages). Given M such that |M | = s < n, we can
define (C, T) ← Ek(M) as

(C ′, T ′) ← E∗
k

(
M10∗

)

C ← ⌈C ′⌉s (leftmost s bits)

T ← ⌊C ′⌋n−s⌈T
′⌉s.

One can directly verify the security of this extension. Note that the integrity
relies on the 10∗ padding as well as on the “partial” tag ⌈T ′⌉s.

XLS for |M | > n. Our solution for this case is similar to that of COPE but is
more efficient, in that COPA still remains fully online. Again, let M be a message
whose length is more than n bits. Divide it into blocks as M [1]M [2] · · ·M [d −
1]M [d] ← M , and assume that we have 1 ≤

∣∣M [d]
∣∣ ≤ n− 1. Then we can define

(C, T) ← Ek(M) as

(C ′, T ′) ← Ek

(
M [1]M [2] · · ·M [d − 1]

)

C[d]T ← XLSk,d

(
M [d]T ′

)

C ← C ′C[d],

where XLSk,d is defined similarly to the case of COPE. Given the security of
COPA and XLS, it is straightforward to verify that this extension is also secure.

20

