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Abstract—Bayesian tomographic reconstruction algorithms proposed which allow inclusion of the priori density term
generally require the efficient optimization of a functional of many  [2]—[4]. Probably a more serious limitation of EM is its slow
variables. In this setting, as well as in many other optimization convergence for typical tomographic problems

tasks, functional substitution (FS) has been widely applied to . h 1o look at th ical side of
simplify each step of the iterative process. The function to be mini- |t iS perhaps more natural to look at the numerical side of sta-

mized is replaced locally by an approximation having a more easily tistical tomographic estimation as a problem of direct optimiza-
manipulated form, e.g., quadratic, but which maintains sufficient tion in the pixel domain, which brings to mind gradient-based
Sirgi'?:it¥ toldet?]c_:end the true fU”C_t(ijO”f" while compl_utirtl_g °”'yf”|‘:es techniques. The similarity of EM to gradient descent has often
substitute. In this paper, we provide two new applications o ; -

methods in iterativg c%ordinat% descent for Bayepsri)an tomography. been noted [5], [6] and helps explain t.helr common poor per-
The first is a modification of our coordinate descent algorithm formance for tomographic reconstruction. Improvements such

with one-dimensional (1-D) Newton—Raphson approximations to as preconditioned gradient or preconditioned conjugate gradient
an alternative quadratic which allows convergence to be proven may have significantly more promise in terms of speed. But re-

easily. In simulations, we find essentially no difference in conver- gjisic positivity constraints remain more difficult to incorporate
gence speed between the two techniques. We also present a new

algorithm which exploits the FS method to allow parallel updates effecf[ive!y tha_n in, f9f examP'eg EM' o
of arbitrary sets of pixels using computations similar to iterative This high-dimensional optimization can be greatly simplified
coordinate descent. The theoretical potential speed up of parallel by viewing the problem as a sequence of low-dimensional
|mp|ementat|0ns |S nearly |ineal’ Wlth the number Of prOCESSOI’S if problems Many preV|Ous technlques Such as the algebralc
communication costs are neglected. reconstruction technique (ART) are known as “row-action,”
Index Terms—Bayesian estimation, computed tomography, since they attempt to solve a sequence of problems, each
convergence of numerical methods, emission tomography, image corresponding to a subset of the data and therefore rows of the
reconstruction, iterative algorithms, optimization, parallel algo- iecti trix. Much has b blished of lat .
rithms, transmission tomography. projection matrix. Much has been published of late concerning
the ordered-subsets version of EM (OS-EM) [7], which rotates
among subsets of projection data, resolving the EM-type
. INTRODUCTION problem for each subset in a fashion reminiscent of ART. But
ITH the Choice of convex potentia' functions forWhiIe. OS'EM i.mpI‘OV(.aS the Speeq of initial descent tOWa.rd the
Markov random field (MRF) stylea priori image functional minimum, it does not, in general, converge without

models, both maximum likelihood (ML) and maximum the addition of temporally varying auxiliary parameters whose
posteriori probability (MAP) tomographic image reconstrucSchedule apparently cancels gains in convergence speed [8].
tions may be formulated as large scale convex optimizatidiie difference between the true MAP estimate and the results
problems. Many approaches to this optimization have be@ghieved with.common implementations of OS-EM may be
proposed, among which popular alternatives have been variat{§stantial [9].
of expectation-maximization (EM) [1], an approach derived ML or MAP optimization may also be solved sequentially
from indirect optimization through the introduction of thedmong pixels, via methods known as “column-action,” due
notion of an unobservabpmpletedata set whose expectatiorf® the correspondence between a pixel and a single column
forms the algorithmic basis for ML. Unfortunately, for mos®f the transform matrix. Among the conceptually simplest is
common image models, EM has no simple, closed form f@rtechnique we call iterative coordinate descent (ICD) [10],
the MAP problem, though several modifications have bedhll, which views the ML or MAP estimation problem, be

it transmission or emission tomography or any other convex

formulation, as a direct optimization task. ICD solves these

Manuscript received April 2, 1997; revised April 14, 2000. This work Wavgrﬁoblems by sequentially minimizing the objective functions

supported by the National Science Foundation under Grant MIP93-00560. p . . el ]
associate editor coordinating the review of this manuscript and approving it sed by ML or MAP estimation, using greedy pixel-wise up

publication was Prof. William Clem Karl. dates in the style of iterated conditional modes (ICM) [12] and

é- Zheng is with Delphi Delco Electronics Systems, Kokomo, IN 46904-90a8 guss—Seidel iterations [13]. Because ICD has fast convergence
USA. . : o i
S. S. Saquib is with Polaroid Corporation, Cambridge, MA 02139 USA. at hlgh spat|al frequenmes, it performs very well in standard

K. Sauer is with the Department of Electrical Engineering, University diomographic problems where the filtered backprojection (FBP)

Notre Dame, Notre Dame, IN 46556 USA (e-mail: sauer@nd.edu).  jmage serves as a good initial condition [14]. A variant using
C. A. Bouman is with the School of Electrical Engineering, Purdue Unlvei— | Newt Raph tv imati f the likelihood

sity, West Lafayette, IN 47907-0501 USA. ocal Newton—-Raphson style approximations of the likelihoo
Publisher Item Identifier S 1057-7149(00)08052-0. function, called ICD/Newton—Raphson (ICD/NR), simplifies

1057-7149/00$10.00 © 2000 IEEE



1746 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 10, OCTOBER 2000

update computation with convergence speed in iteration couatbvantages of ICD and yields linear speed-up with the number
which is very similar to direct ICD [10]. One may also solveof processors in terms of iteration counts.

the EM formulation pixel-sequentially, preserving the provable

convergence of EM while substantially improving its speed, Il. FUNCTIONAL SUBSTITUTION IN TOMOGRAPHIC

as in the space-alternating EM algorithm (SAGE) of Fessler RECONSTRUCTION

and Hero [15]' Column-act_ion methods can easily be made For the emission problem, the log-likelihood may be com-
converge reliably to the unigue global minimum of the ML O[Juted as

MAP functional.

Here we present two improvements to current forms of ICD: log P(Y = y|X = z)

1) global convergence of the approximate greedy descent al- M
gorithm follows from the introduction of a new local quadratic =~ = Z(—Ai*x — i+ log{ Az + 1 —log(w!) (D)
approximation of the log-likelihood and 2) we derive a scheme i=1

for parallel updates of arbitrary sets of pixels while maimainin\%here
convergence properties. We approach these developments b
discussing a technique exploited by many proposed algorithms projection data;
in this fie!d, which we call funct?onal substitution (FS)'. The number of projéctions;

te_rm _FS_ is here ynderstood _to mt_:lqde_ th_e many ch0|ces_ forAi* ith row of the projection matrixi;

simplifying potentially expensive minimization by temporarily i observed photon counts for projectiin

replacing the true convex function to be optimized by a sim- “ additive terms usually due to background noise or
pler one which maintains its most important local properties, random coincidences in the case of positron emission
such as low-order derivatives. ICD/NR is a simple example tomography (PET).

of these for tomographic estimation, using a local one-dimef ihe transmission case, we have

sional (1-D) quadratic [11]. EM also can be viewed as an

FS method which solves the ML estimation by replacing thelog PY =y|X ==z)

unknown image;

likelihood function with its expectation over the realizations M

of the “complete” data set. De Pierro [4] used the functional = Z (—yT exp 7 +yi(log yr — Ajw) — 10g(yi!))
substitution idea in his extension of the EM framework directly i=1

to the MAP emission problem. For transmission tomography, (2)

EM has no simple closed form even for ML, leading Lange )
to apply a substitution similar in form to that of De Pierro tdvheréyr is the photon dosage per ray [11].
solve the transmission problem, again with decoupled paralle/BOth log-likelihood functions have the form

updates [16]. M
The ICD/NR algorithm has been experimentally demon- —log P(Y =y|X =x) = Z Gi( A1) 3)
strated to converge very rapidly compared to EM algorithms, i=1

but is thus far not guaranteed theoretically to converge to the . .
unique global MAP solution. We therefore first present a mod? which the {¢:;} and th.ergfore their sum are convex. The
- : . . .. —common form leads to similar methods of solving these two
ified ICD algorithm which we call ICD functional substitution . . 2
roblems. In Bayesian formulations, we denoteglpeiori den-

(ICD/FS). The new algorithm locally approximates the ex‘fjlgtnyfunctionforX asP(x), with MAP tomographic reconstruc-

log-likelihood function with an alternative quadratic functior}ion resulting in the numerical optimization problem of
to the Newton—Raphson choice. Like ICD/NR, ICD/FS easily 9 P P

incorporates nonnegativity constraints and non-Gaussian priog, .. — arg min{—log P(Y = y|X = z) — log P(z)}.

distributions for the MAP reconstruction problem. However, @

ICD/FS is guaranteed theoretically globally convergent for boif this paper, we deal only with those models for which

the emission and transmission reconstruction problem whep p(») is a concave function of, making the entire opti-

the log-prior distribution is strictly convex. The experimentahization problem convex.

convergence speeds of the two are identical. Several researchers have resorted to the direct optimization
Many low-cost high-speed computational engines are paraliglhe Poisson-modeled problem. Gradient ascent methods may

configurations of medium speed processors. In clinical apphie applied directly to the log-likelihood function, with several of

cation of statistical reconstruction, it may be of benefit to imthese techniques having been derived from the similarity of EM

plement algorithms specifically tailored for such parallel archio gradient ascent [6], [17], [18]. The improved preconditioned

tectures. As a second example of the utility of the FS idea donjugated gradient approach of Mumg@loet al. has been

optimization for tomographic reconstruction, we present a Feéxplicitly formulated for the MAP problem [19] as well. The

method which allows us to update arbitrary subsets of pixelsi@D method [11] is a direct pixel-wise optimization of the MAP

parallel, while maintaining any provable convergence possessedctional, typically allowing more rapid convergence than at

by the form of ICD algorithm chosen. We apply the parallel udeast the unaccelerated gradient-type algorithms.

dates here using ICD/FS at each pixel. For practical numbersThough direct optimization is tractable for this problem, the

of parallel processors, the algorithm maintains the convergeramdebrated EM algorithm [20] has become very widely known
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and applied to its solution. Based on the notion of indirect opti¥* be the image at theth update. The ICD update of the pixel
mization through a set of unobservable “complete” data, it relieg is computed by solving the MAP equation

on a concept which is generally important to this problem, that

of a tractable substitute function in place of the true log-like- x?*l = arg min{F;(x;) + P;(x;)} 4)
lihood. The EM algorithm replaces the log-likelihood function %520

log P(Y" = y|X = ) with the substitute functio in [1] whereF;(z;) andP;(z,) represent the contribution of the like-

lihood and prior terms, respectively, to the objective function
> Ul expressed in terms of only;. £; and P; are functions also of

all other pixels ine™, but since we deal primarily with optimiza-
wherez are the emission counts for each pixel/detector combiion in one variable with all others fixed, we have suppressed
nation. As is the case with all FS methods, the substitute fung? as an argument in the interest of economy of notation. For
tional form is determined by the most recent estimete In the present discussion, we let the indesxncrease with each
EM, m indexes iterations, each of which updates all pixels ipixel visit, makingj, the index of the updated pixel, implicitly a
parallel. The substitute function matches the actual concave @iction ofn. The particular form of; (« ;) varies for the emis-
jective in its first derivatives at™, but has second derivativession and transmission tomography cases of (1) and (2). But in
of larger magnitude. Solving the optimization with(z; z™) both cased’;(x;) is a convex function oft* and its derivative
at iterationm in place oflog P(Y = y|X = z) guarantees f;(x;) = (dF;(x;)/dz;) is strictly concave o™
that at each step, the log-likelihood increases, since any increas8ince (4) updates with respect to a singleat each step,
in the former must result in an equal or greater increase in tte /NV-dimensional optimization problem changes to 1-D. This
latter. Most importantly operationally, it allows all pixel updatesimplifies the MAP problem, making enforcement of positivity
to be computed independently. The EM strategy does not reswitistraints trivial, but requires fast implementations of the se-
in a simple maximization step in transmission tomography, bguential 1-D problems. Unfortunately, exact optimization of (4),
Lange derived an alternative substitute functional resulting iequiring repeated evaluation of the derivatived'pfz;), may
an approach called the Convex algorithm which similarly ddée computationally expensive.
couples parallel pixel updates [16]. An FS method can solve this problem simply by replacing

The linkage of pixels through the prior generally makethe true log-likelihood function in 1-D at each iteration with a

the maximization step for Bayesian EM algorithms nontriviajuadratic functional form. This kind of quadratic approximation
though several modifications have adapted EM to the MAB easy to optimize with any of several numerical methods. The
estimator [2], [3]. De Pierro proposed a modified EM algorithrmost common quadratic form is Newton—Raphson type, which
for the MAP problem [4], observing that a substitution coulsvas proposed as the ICD/NR algorithm in [10]. It locally ap-
be made foillog P(x) just as EM does for the log-likelihood, proximates the function with its second order Taylor series, re-
with the substitute functional having decoupled dependenciglacing F};(x;) with
on pixel update values. The algorithm consists of replacing
the log-prior functiorlog P(x) by an alternative cost function Fi(x;) = 61(z; — )+ 5 Oa(x; — 2f)?
C(z; ™) at the(m + 1)th update, having the properties

m

Q(z; 2™) = Eflog p(=

where
C(z; z) = log P(x)
O(a; 2™) < log P(x) 01 = £i(=7), S (5)
b2 = fi(a}) = =1 (6)
and independent optimization at each pixel. This allows a more Tilaj=ay

direct extension of EM to MAP estimation than previously

known methods. This FS-method based EM algorithm has the(z;) remains unchanged, which may create a nonlinear

advantage of guaranteed monotonic descent of the objectfeblem. Still, since the log-likelihood term typically dom-

with simple computation, but retains the limited convergendeates the computation, the quadratic approximation greatly

speed of EM. simplifies the update. This NR-type approximation in the
ICD algorithm has demonstrated quite good experimental
convergence and easily incorporates nonnegativity constraints.
However, since in general Newton—Raphson steps are not

Il. PROVABLY CONVERGENT COORDINATE DESCENT BYFS ~ guaranteed to monotonically approach a fixed point, a theoret-
ical proof of convergence for the resulting iterations may be

A. ICD/FS Algorithm Description difficult. o .
Quadratic approximation algorithms may be made monoton-
The ICD method directly, sequentially optimizes the MARcally convergent in convex problems by locally replacing the
cost function with respect to each pixel (i.e. coordinate:gf Hessian matrix, of» from the 1-D version in (6), by certain
of the image with the remainder af fixed. Previous results estimates more liberal in their magnitude, causing a more con-
have shown that its convergence in tomographic problemssisrvative update. The quadratic lower bound algorithm in one
significantly faster than EM and gradient descent [14], [11]. Lelimension, for example, uses the lower bound on the second
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Otox}. Since the second derivative is monotonic decreaﬁ'mg,

is greater than or equal 3, making the ICD/FS update more
conservative. The updated optimal pixels are the zeros through
root-finding operations, given the current state of all other pixels
inz™.

The ICD/FS algorithm can be applied in both emission
and transmission tomography problems. The only difference
between these two cases is the specific computation of the
values for f;(=7), f;(0), and f;(0) in (5) and (7). For the
emission case, these values are given by

M
n Y;
Fiap) =D Ay <1 - 7) (10)
i=1 pi
M yi
;(0) = Ajll- —F— 11
b0=3 s (1) a
4 N M 2
3 o FOlpo =Y i (54) 12
fj(’ij) ) i=1 '
) ) - o whereA,; is the contribution of thgth pixel to the:th projec-
Xj 7 X; tion, andp? = A;.z" + 7; is theith projection of the recon-
/xjf struction at iteratiom. Note thatp? may be efficiently updated

by pitt = pi + Ayj(a T — 27), with computation reduced

by the sparse structure df.
For the transmission case, the update values are given by

M

7 Fila) =" Ay (Uz —yre ¥ ) 13)
/ =1
(b) M I
. — PR P A
Fig. 1. Comparison of ICD/NR and ICD/FS in two possible relations £i(0) z; Aij (yz yre ©re j) (14)
=

betweenz? and the currently optimat;, marked ase’;. (a) Derivative of

the log-likelihood f;(«;)) and the two linear approximations to it for the

two techniques when” > =% and (b)z? < 2. The functionf; is the fj’(())
approximation of ICD/NR an(fj that of ICD/FS. The areas of the regions

betweenf; (x;) and f;(x;) from z’ to the zero crossing of;(x;) are equal

to (Fy(a}) — Fy(af™h)) —(Fj(ay) — Fy(a ™). wherep? = A;.z", i.e.,r; is assumed zero.

ICD/FS has nearly the same computational requirements as
derivative of a concave function over an interval of interest [21[cD/NR since it generally requires the computation of two first
The algorithm we shall call ICD/FS consists of replaciagvith ~ derivatives in place of the first and second derivatives required
its average on the interval between 0 arjd The update equa- for ICD/NR. This computational cost includes approximately

M
Z 2 —p?

ac;?=0 = A“yTG P (15)
i=1

tions for ICD/FS are given as follows: twice the number of multiplies and adds per iteration as gradient
descent [11], but approximately equal numbers of additions and
£ = £5(0) accesses to entries of the transform mattixThe exponenti-
. AN — if >0 ations required for the transmission problem can be efficiently
Oy = T (7)  implemented via table look-ups.
f3(0) if 2 =0
pj(xj) =0 (z; —al) + 1 52(%. — x?)Q (8) B. Global Convergence of ICD/FS
x?“ = arg mi%{ﬁ}(a;j) + Pj(z;)}. 9) In order to prove the global convergence of this new ICD/FS

algorithm, we simply verify that it meets the assumptions and
necessary conditions of the global convergence proof presented
Fig. 1 illustrates the difference between ICD/NR and ICD/F®y Fessler and Hero in [15] for convergence of SAGE under

The plots are the first derivatives of NR-type and FS-type apesitivity constraints. Since this proof requires continuity of the
proximations of the original log-likelihood. As mentioned eartog-likelihood onR™*, we must assume that the background
lier, both use the same first derivative for the substitute funneise is greater than zero, i.e;, > 0 in emission case (1).
tional atz? but ICD/FS takes as its second derivative the aWe discuss alternative methods for the case: 0 later in this
erage rate of change in the first derivative over the interval frogection.
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(© (d)

Fig. 2. Emission tomographic simulation with synthetic head phantazfinx 200 mm field and display range is (0.0, 4.0). Total photon couat$ x 10°.
(a) Original head phantom; (b) FBP reconstruction 28 x 128 pixels from128 x 128 projections; (c) MAP estimate, GGMRF with= 2.0; and (d) MAP
estimate, GGMRF witlp = 1.1. ML parameter estimates wefe= 0.584 in (c) andé = 0.307 in (d).

Most of these conditions are either the same as for [13htegration off;(x;) andfj(xj) results in the inequality
or may be simply verified. We will demonstrate the critical
Condition 1, which states that the change in the substitute Filaf) = Fylzg) = ( i) Fj(wi)'
function is an upper bound on the change in the true funpefining the functions®;(z;) = F;(z;) + P;j(x;) and
tional to be minimized. By the construction of the functiorp . (zg) = E ix)) + By (arj) both implicitly functions ofz™,
fi(@;) = (dFj(x;)/dx;), we know thatf;(0) = f;(0), and then Tesults in the foIIowmg lemma.
fi(x}) = f;(«7}). Since for both the emission and transmission Lemma: Let F(z;) + P;(x;) be convex, and(x;) be
case, f;(x;) |s a concave function angfj(xj) is a linear continuously d|fferent|able 0R+ Furthermore, Iegfj(azj) =
function, it follows that (dF;(z;)/dz;) be concave and continuous Bri. Then, for all
. x5 € Rt
(o d 2 it 0z <af () — Do) > b (a7 — B
f](xj) { < fj(xj) > le ' (I)J(xg) (I)J(xj) 2 (DJ(%) q)J(xJ): (16) |
This guarantees that the decrease in the substitute function will
lysing®;(¢; «™) to make explicitthe dependencedin (16) on the current resu'f[m an equal or greater Fj.ecrease N the exact function. Based
state,z, continuous differentiability oft ;(; «) as a function of#; =) on 0N thislemmaand the conditions proved in [15], the global con-
R+ is also necessary in Condition 2 of [15]. vergence of the ICD/FS algorithm follows.
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@ (b) (©

Fig. 3. Reconstructions of human thorax from T99 sestamibi heart perfusion SPECT data. Reconstruction covers appaimatig mm, with range of
display of (0.0, 0.4) for gamma-corrected £ 0.6) emission intensities. Total photon countsl.5 x 102. (a) Filtered back projection; (b) MAP estimate with
GGMREF prior andp = 2.0; and (c) MAP estimate with GGMRF and= 1.1. ML parameter estimates wefe= 0.0283 in (b) andé = 0.0175 in (c). (Data
is courtesy of T.-S. Pan and M. King, University of Massachusetts.)

C. ICD/FS with Zero Background Emission Noise The transmission data used in Fig. 4 ar@92 x 256 subset

As mentioned previously, the emission case when= 0 of a high-resolution industrial CT scan, with reconstruction at
is special, since in this case the log-likelihood term may terd6 * 256. We solve MAP reconstructions using for comparison
to —oo on R+. This occurs in the unusual case in which several other methods relying on functional substitution for the
is the only nonzero pixel on a projection which has a nonzefigsign of updates, all with guaranteed convergence. We include
photon count. In this casé,;. = = A;;x; and the log-likelihood iterations of the Lange’s convex method [16] for the transmis-
functions have terms of the formgjx{ which tend to—oc as  Sion reconstruction, and both Fessler and Hero's SAGE-3 [15]

g

x; — 0. There are a number of possible strategies for handligd De Pierro’s method [4] in the emission problems. In trials
this case numerically. with Gaussian priors, plots show also results from the precon-

Strategy 1: A very simple method is to set; to a small ditioned conjugate gradient (PCG) approach [19] with a line
number such as; = (1/100M). This guarantees that thesearch for optimal step size at each iteration.As discussed in
expected number of additional photons due to this adjustméht]: @l the algorithms compared require the equivalent of a
summed over all projections is much less than 1. In practid@ward and backprojection at each iteration and thus have the
such a small perturbation to the model should not haveS3Me qrder of computational cost. The. I.CD technlq.ues require
significant effect on the resulting reconstruction. This strate@PProximately the same number of additions and twice as many
also has the added benefit of making the algorithm more robiat!tiplies and divides per iteration as EM. All the sequential
to floating point round-off error. algorithms typically include a root-finding step at each pixel,

Strategy 2: Modify the algorithm so that in the case whenvhich may raise cost somewhat for non-Gaussian prior models.

£,(0) = —oo, the function is computed af;(e) where The a priori image.model herg consists of two choipes
¢ is chosen to assure that(c) < 0. One such choice of p for the generalized Gaussian Markov random field
is ¢ = min(y, («7/2)), wherey = min{(p~lo P + ((?(;)I\(/IR;F) [22]Z§Jr|0r(l:no/deI;/;/||th the pr||2r Io%denl?ty _fur}[;:]tlon
M 1 . g . (o) xr) = s (O /pof)|er — x4|Y, where b, IS the
2=y Aij) "} Inthis cased is given by coefficient Iinkinjéjkpi;elsj andk, o isja scale (te:'nperature)
P fi@}) = fi(e) parameter, and < p < 2 is a parameter which controls the
27 a—e smoothness of the reconstruction. The parametdor all
M A2 six cases and the dosage paramegterfor the transmission
= Z 1Y data were estimated directly from the noisy projection data
— (07 — PP Aiy(a — o) via the maximum-likelihood methods described in [23]. For

1 < p < 2, P(z) has unbounded positive second derivatives
at points where neighboring pixels are equal, violating the
a:?"'l = arg Ini%{ﬁj(a:j) + P(xz;)}. twice-differentiability called for in Condition 2 in the conver-
Fi= gence proof of [15], but as shown in the Appendix, this case still
) carries through the convergence proof without modification.
D. ICD/FS Numerical Results Except for one case noted below, all iterative reconstructions
Numerical results include three data sets, two from emikegin with a filtered backprojection image with negative-valued
sion and one from industrial transmission tomography. The sypixels set to zero or, for the generalized EM algorithm, a small
thetic phantom emission data used for Fig. 21&&x 128 pro- positive value to avoid potential problems with multiplicative
jections with approximately 3 million total counts, while thecorrections. Since our goal is minimization of the MAP objec-
single photon emission computed tomography (SPECT) séige for a convex problem, the final image is independent of this
tamibi heart perfusion data of Fig. 3 form a single slice of dinitial condition and no “stopping rule” for early termination is
mensionl 20 x 128 from a three-dimensional (3-D) set. Both reconsidered. The ICD algorithms are normally run until the ob-
constructions are computed at a resolution 2 x 128 pixels. jective function’s value is converged in, e.g., the first 8—10 dec-

and the update equation is still given by
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@) (b) ©

Fig. 4. Reconstructions of flashlight cross section from transmission data. Region of reconstruction shown m2@sudg® mm, with range of display (0.0,
0.1) for gamma-corrected (= 0.6) attenuation values. (a) Filtered backprojection; (b) MAP estimate with GGMRF priop aad.0; and (c) MAP estimate
with GGMRF andp = 1.1. ML dosage estimatey(-) is 2350,6 = 0.008 66 in (b) andé = 0.004 10 in (c). (Data is courtesy of T. Neel, Wright-Patterson Air
Force Base, and N. Dussausoy, Aracor.)

imal places and beyond visible changes in the image, though ouThe PCG results fgy = 2, which are intermediate in conver-
plots do not necessarily show values all the way to the termirgence speed, require additional comment. The algorithm in [19]
tion point. uses a one-sided quadratic penalty for pixels violating the posi-
Plots in Figs. 5 and 6 show the convergence of the ICD/Nfivity constraint, with parameters governing behavior near zero
and ICD/FS in the emission cases described above. These trialbe set heuristically. We found the convergence behavior of
employ sequential pixel updates in raster ordering for the ICBCG to be potentially sensitive to both these parameters’ values
methods and SAGE-3, not necessarily the fastest convergary the initial condition chosen for optimization. In each fea-
scan pattern. The plots show that the convergence propertiesuoéd result, we experimented with a wide range of values for
ICD/NR and ICD/FS are virtually identical, in spite of the poeach of the parameters, including those suggested in [19], and
tentially more conservative updates of ICD/FS. But this is nbioth the FBP and uniform images as initial conditions. In each
surprising, since the log-likelihood function is generally close ttase we present the best results achieved with 1) violation of
quadratic and the values&f andf, are therefore generally verythe positivity constraint limited to a magnitude of 0.01 of the
close. In fact, we have previously found there to be little differnaximum in the reconstruction, and 2) PCG objective function
ence in pixel values between ICD/NR updates and exact greedjue close to that of the other, strictly constrained methods. For
pixel-wise minimization off; (x;) + P;(x;) [10]. Although a the SPECT phantom, PCG converged fastest with the uniform
proof for the global convergence of ICD/NR has not yet beenitial image and the heuristic parameters set to values similar
found, its convergence appears consistently rapid. In practitalthose in [19]. The plot reaches a value higher than the other
applications, the greater conceptual simplicity of ICD/NR mayethods due only to the better fit in likelihood achievable with
in fact still make it the more desirable of the two. The perfothe slightly negative-valued pixels. (The added penalty is not in-
mance of SAGE-3 is close to that of ICD in all cases, thougtiuded in the computation of the objective function in the plot.)
in the head phantom plots we see somewhat slower asymptdtie nonnegativity penalty proved more problematic with the
convergence, presumably due to the fact that the substitute funead phantom, where it is active for nearly all the area outside
tion of SAGE, based on the expectation derived from EM, the phantom. The penalty is encountered in the first iterations re-
more conservative than those of the ICD quadratic approxingardless of which initial condition is chosen, and a weighting of
tions. DePierro’s method, using the EM substitute functional féne penalty adequate to satisfy our two requirements above leads
all pixels simultaneously, is significantly slower to converge. to very slow convergence. To achieve a reasonable result here,
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Fig. 5. Convergence of objective function versus iterations for the synthetic
head phantom emission case with fa)= 2.0 and (b)p = 1.1 GGMRF  Fig 6. Convergence of objective function versus iterations for the SPECT
prior models, employing ICD/FS, ICD/NR, SAGE-3, PCG (for= 2.0) and  cardiac perfusion data with (@) = 2.0 and (b)p = 1.1 GGMRF prior
DePierro algorithms. All are initialized with FBP image. Larger values of models, and ICD/FS, ICD/NR, SAGE-3, PCG (for = 2.0) and DePierro
posteriori probability density for PCG are due to violation of nonnegativityyigorithms. All were initialized with FBP image except PCG, for which a
constraint. uniform initialization yielded faster convergence. Higher asymptotic value of
objective for PCG is due to violation of nonnegativity constraint.

we initialized with the FBP image and used a weighting of the
penalty which increased by a factor of 2.5 to its final value ovédts log prior term, of course, decreases toward the MAP esti-

the first 20 iterations. The asymptotic value in the plot again eriate’s value.
ceeds that of the other methods due to the permitted negativitySimilar overall convergence comparisons for transmission
In Fig. 7, we decompose the information for ICD/FS in Fig. @ata are visible in Fig. 8, where ICD/FS and ICD/NR are
concerning the gain in the laayposterioridensity into the gain indistinguishable. The plots for the twa priori models are
in the log-likelihood and the log prior terms. With the standardery similar, due to the dominance of the log-likelihood term in
FBP as the initial condition, we see contribution of both termthe functional of this high signal-to-noise ratio reconstruction.
in the same range, though far larger change in log-likelihodthe pattern in which pixels should be scanned in the sequential
than in log prior. This difference is exaggerated when we userethods is not always clear. The analysis in [14] showed
second, much poorer initial condition, in this example a uniforotential advantage in alternating raster scans between two
image equal to the average of the FBP. This initiation leaves tbghogonal spatial directions, but we have not found experi-
likelihood much farther from its (MAP) optimal value; on thementally that this holds consistently. A random ordering of the
other hand, the zero-penalty uniform image representsitig scan was recently reported in [24] to improve speed. We have
likely (a priori) choice under the MRF model, and has penaltgpplied a pseudo-random scan which visits each pixel once
significantly closer to that of the MAP image than does the FBIA each sweep, similarly to the choice of Bowslatral. and
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Fig. 7. Gain in loga posterioriprobability for SPECT case, separated intgfansmission case with = 2.0 andp = 1.1 GGMRF prior model, and

Seali ; P : : ; D/FS, ICD/NR, Convex, and (fop = 2.0) preconditioned conjugate
log-likelihood and log-prior terms of objective function, negatives of which arle . . v ;
denotedF andP in text. A single iteration includes a sweep across the entifd@dient (PCG) algorithms. ICD/FS is included with both regular and random

image. (a) Filtered backprojection image as initial condition and (b) uniforFfan Patterns.
image, with total mass equal to that of FBP, as initial condition.

emission. Here again, the use of a substitute functional for all
els simultaneously appears to limit the rate of convergence.

found that in the transmission reconstruction its convergenlgI h it t solut fth tPoi deled
is significantly faster than the regular scan, as shown in Fig. 8. eseresulisrepresent solution otthe exact Foisson-modele

Later in the paper we find that a regular, decimated patteVr?nsmiSSion likelihood. In practice, with photon counts in the
' ange present in this data, itis unlikely we would see appreciable

for parallel updates may achieve similar speed-up. As in t i . .
emission head phantom data, we found that PCG perfor efit from solving the exact problem, and would more likely
' e a single global quadratic approximation, to be optimized

best with a gradually increasing weighting for the nonnegativigS X ;
enforcing function for the transmission reconstruction, Th equentially as in [14].
weighting was increased five-fold over the first 20 iterations to
the value recommended in [19], with the image after 40 itera-
tions again having negative pixels which raised its asymptoticln spite of the rapid convergence of sequential optimization
objective value slightly above that of the others. In this case ischniques in statistical tomography, the computation of the
performance was competitive with that of ICD with a regulasame sort of greedy updates in parallel is an important gener-
scan but still significantly slower than the random scan IClization, due to the greater economy of parallel computation
Lange’s convex algorithm is slower to converge to the MABsing multiple processors of modest cost. Parallel implemen-
reconstructions, similarly to De Pierro’s generalized EM foration of these algorithms in future systems seems likely, and

IV. PARALLEL COMPUTATION OF PIXEL UPDATES VIA FS
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one would hope for the flexibility to assign a segment of th€hen
image to each processor [25]. Alternatively, whether or not n s
computation is in parallel, updates of groups of pixels may be 108 PEY =ylX =a"+ A7)
advantageous in terms of certain numerical operation counts, = Z Gi(Aix (2™ + A®))
as Fessler argued in a derivation of a transmission algorithm i

similar to the one below which was done concurrently with ours A We .
[26]. Parallelism is automatic with gradient-type algorithms. =" G; | Aua™+ ) ;/7?’2(@ — )
However, accelerated techniques such as conjugate gradient jes Sii

make incorporation of nonnegativity constraints more compli-
cated. We will see that the FS approach can also be applied — Z G; Z

S,

to allow computation similar to that of the ICD sequential jes W, !

framework for parallel updates of arbitrary sets of pixels in o o

either emission or transmission reconstructions. From the definition of Ws ; above, it is apparent that
In real applications, parallel computation based on shared;jcs (4ij/Ws,i) = 1 also in the limit asWs; — 0.

memory involves issues of communications and timing whichPPlying Jensen’s inequality results in the expression

may have appreciable effects on the overal! speed of the parallel “log P(Y = y|X = 2" + A5)

iterations. The results below yield the algorithm to be applied at A

each pixel involved in the parallel updates, but do not address < Z Z W# Gi(Aia"™ + Ws i(z; — 7). (18)

such architecture-dependent implementation factors, which we jes i 5,

leave for future research. Fjs‘('xj)

This applies to common likelihood functions for tomographic

problems. As in the previous section, we will suppress the argu-
De Pierro’s substitute functiofi(z; z™), discussed in Sec- ment showing the dependence of functions such’asn +".

tion II, allows complete parallel updates for Bayesian tomdNote that (18) is a summation ov&r each term involving only

graphic emission reconstructions by replacing ltsgeprior in  onez;, which allows for simple optimization.

the cost function with a sum of terms each involving only one We define

pixel update value. The following result amounts to applying the

same idea to the more complieg-likelihoodfunction.

In the MAP reconstruction problem, with degrees of paletting»; = 0 for the transmission case. Substituting into (18)
allelism which are likely to be practical in our applicationsfor the standard Poisson models for transmission and emission
and Markov random field (MRF priori image models, it is tomography, the right-hand side of the inequality, which we
easy to choose parallel updates which are not coupled throygter to as the substitute functid‘ff(xj), takes the form
log P(x). We seek a substitute to only the log-likelihood func-
tion, log P(Y_: y|X = x), since through this function large Fi(z)) = Z Az‘j‘ [ps,i(z;) — ui log(ps.i(z;))]  (19)
numbers of pixel pairs are coupled. 7 Ws.i

Suppose that we consider the parallel update of a coIIectiPOr} the emission case and
of pixels whose indices form the sStduring updaten + 1,
with the remainder of the image fixedzt. This is conceptually FP(x;) = Z
similar to the potential EM update of collections of pixels under 2
SAGE [27]. The sefS may be chosen arbitrarily, but here it is]c r the transmission case
intended to be any collection of pixels to be updated in paralle?, The substitute Iog-IikeIiHood function satisfies
possibly by separate computing elements. As the analysis below
indicates, they would likely be chosen to maximize the feasible ~log P(Y =y|X =2") = Z F]S(a;;})
distances among pixels $. A complete iteration consists of a ics
sequence of such sets covering the entire image. We may view

A. FS Method Applied in Parallel MAP

ps,i(r;) = Apa™ + Ws i(z; — o) + 7

V;/Llij “lyr exp{—ps,i(z;)}+yips,i(z;)] (20)
S,

the log-likelihood form shown in (3) at one step as a function d
only {z;; j € S}. If we define —log P(Y =y|X = 2"+ A%) < Z F]S(xj)
Jjcs
Ws,i = Z Aij similarly to De Pierro’sC(x; «™), and the MAP reconstruc-
Jcs tion problem with parallel computation is converted into the fol-

lowing optimization problem with respect to the single pixel
then we may express the dependencg.on j € S} by using gop P P gie pixg

the convex functior@,(-), showing dependence on changes in x?*l = arg min {Ff(a:j) + Pj(z,)}.
the values of pixels irf. Let ;20

Any numerical method may then be applied to minimization of

AS — {a:j -z, JES the substitute functional. Provided it preserves the monotonicity

J 0, otherwise. discussed above and satisfies the Kuhn—Tucker conditions for
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constrained optimization, guaranteed global convergenceis pre- 1.0
served by virtue of the inequality of (18).

Since all pixel updates are decoupled by the substitute
functional, ICD methods already developed are natural for this
parallel MAP reconstruction problem, locally approximating
the Ff terms in the fashion of ICD/NR or ICD/FS. Given
the similarity in performance of the two, and the results for
ICD/NR published in [25], we limit our numerical results here
to the provably convergent optimization by parallel ICD/FS.
This maintains guaranteed global convergence in the results
which follow. The parallel algorithm can still be expressed as
in (8)—(9), but the algorithm is applied to the substitute function
for parallel optimization. This leave unchanged from (5) 00, 5 A p s T "
andd, calculated as in (7), except that derivatives calculated Log Base 2(No. Processors)
atz; = 0 are those of the substitute functional with scaling of
the second derivative. Withf* once again corresponding toFig. 9. Value of the under-relaxation factor for the quadratic approximation

. R . g . f the log-likelihood. Pixels updated in parallel in all cases form a regular,
first derivatives of the substitute log-likelihood functions, th ctangular sampling of the entire reconstruction. The number of processors

resulting forms are ranges from one for the entire image on the left, to one for @axl? block of
pixels on the right.

05

Relaxation Factor

Yi
F@) =file) = Ay <1 - 17) (21)  Under this approximation, we may apply the result of (18) to
i ! obtain the following:

, P 4
< ! ! Jjcs @ Ws,i
dfj (-TJ) _ Z AijWSJ‘ (23) where
doj | A\ , \
x C, =DPi — Z Aijxj
J
for the emission case and AL — g — a7

S _ _ n Heree? is the error state vector in the projection data after up-
) = T.(x;) = Az i — exp|—p; g . . . e .
I (i) = Ii(s) 27: (s =y expl=pi]) daten,andA}“rl is the current change in pixg¢l Minimization
(24) as a function ofA}‘Jr:L yields

£70) = Z Aij(yi — yr exp[—p;' + Ws,:z]]) ZD”AUG?

25 ATt = (29)

S () (25) ’ ZDv‘,iAijWS,v‘,
— = >  AyWs iyr exp[—p;] (26) ’

dx; Z ’ This is the same form as the updates derived for ML estimation

by ICD under a global quadratic approximation in [14], except

for transmission. that this formulation calls for under-relaxation of the greedy up-

The approximate degree of local conservatism resultif§tes by the factor
from pa.rallel updgte cpmputation may b(_a seen through a glqbal Z D;; A2,
quadratic approximation of the log-likelihood. The log-likeli- p
hood functions in both emission and transmission cases can be
approximated by a second-order Taylor series expansion in

T;’ ,x;=0 2

Z D Aj;Ws

i which reduces to the local update of [14] whgrontains only
log P(Y = y|.X = 2) one pixel. A plot of this factor as a function of the number of
~ —1/2(p — Az)'D(p — Ax) + c(y) (27) pixels updated in parallel from28 x 128 uniformly spaced
projections is shown in Fig. 9 for the center pixel af28 x 128
with p;, = y; — »; (emission) orp, = log(yr/v;) (transmis- reconstruction. Computations for this plot assume theSsist
sion),c(y) a constant relative to, andD a diagonal matrix with a uniform rectangular sampling of the entire image. The ratio
entries being the photon counfg;} (transmission) ofy; '}  A,;/Ws ; is a measure of the linkage of pixgto others inS
(emission)[10]. This approximation is quite accurate for mo#itrough common intersection with projectionThe degree of
common transmission problems, and in both cases allows betiader-relaxation therefore increases as pjxeloves closer to
understanding of optimization techniques and their convergeratber members of, so the set would normally be chosen in a
behavior. uniform pattern spaced as widely as possible.
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Fig. 10. lllustration of an occurrence &f; > 0 under parallel updates. The ’
transformation due t®Vs, ; /A;; is similar to a scaling of the log-likelihood's Iterations
derivativef; (x;) about the point:; = =7. @)

The prescribed computation éf andd, can always be made Synthetic Head Phantom, p=1.1
in the transmission problem, but a condition, discussed in Se
tion Il must be considered for the emission case. For any me
surements having; > 0, the log-likelihood is not defined for
projection values less thanr;. With scaling of the change in
x; for eachi by Ws ;/A;; as required by the parallel update
algorithm, we are not guaranteed that the derivative of the su
stitute function can be evaluated@at = 0 as directed in the
default version of ICD/FS, even if the-; } are all positive. This

9450 |

Log a posteriori probability

—— Sequential
case is illustrated in Fig. 10. If this occurs, we follow a proce - N=16
dure similar to Strategy 2 in Section IlI-C. If the derivative is - N=256
not evaluable at zero, we need only find a valuesfpbetween —= N=4096
0 andz7 at which the derivative of?(z) is defined and neg-
ative. Reference to Figs. 10 and 1 verify graphically that use «
the derivative at this point will maintain monotonicity in descen:  944.0 0 10 15 20
of the substitute functional for the two possible cases illustrate lierations
Therefore we define ®)
g = lniax{[xj: ps,i(z;) = =]} Fig. 11. Convergence of objective function versus iterations for the emission
n head phantom with (a = 2.0 and (b)p = 1.1 GGMRF prior model,
— max [w@ _ p_7} (30) employ!ng ICD/I_:S algorithm in sequgr_]tial form and va_rying degreeg of
i J Ws,i parallelism. In this and subsequent plai§s the number of pixels updated in

parallel.
the point at which the substitute log-likelihood “blows up” as

we approach from the right. (Provided the algorithm has been

properly initialized and monotonic descent has been followd&Ction-by-projection. The relative efficiency of the two will de-
this must always be a value less thaj) The second value pend on the degree of parallelism. In our simulations, this case
of the first derivative can then be computedZt + ¢, with rarely arose with fewer than 256 parallel updates.

0 < e < o} —E} and f(e) < 0. One may compute

’ . .
off-line as in Section I1I-C for the substitute functional, and usg: Parallel Computation Numerical Results

it or (27 + z7)/2, whichever is smaller. For high degrees of In this section, we solve the same MAP tomography recon-
parallelism and consequent large valuediof ;, we find the struction problems presented in Section IlI but by parallel com-
pre-computed to be excessively conservative and simply uggutation with the ICD/FS method. The GGMRF prior model
(E} + «})/2. Should the derivative be positive at the choseagain features two choices of the parameter

point, we repeat by recursively halving the distancg’towhich The parallel computation assumes that after each processor
has substantial worst-case computational cost due to re-evalas updated its respective pixel, the state of the projection error
tion of the derivative, but does not arise often enough in pragector ¢ can be updated and shared among all processors.
tice to substantially affect cost. This procedure preserves gu@ur results do not include consideration of the costs of inter-
anteed monotonicity of descent and therefore provable convprecessor communication and management of joint access to
gence. The projections may be scanned in advance of the cammmon memory. We show results for a number of processors
putation of the derivatives, or the condition may be checked pr@V) ranging from 1 to 22 for the emission trials and up td2
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Fig. 12. Convergence of objective function versus iterations for the SPECRNSMISSion reconstruction with = 2.0 andp = 1.1 in GGMRF prior
heart perfusion data with (@) = 2.0 and (b)p = 1.1 GGMRF prior model, model, employing ICD/FS algorithm in sequential form and varying degrees of

employing ICD/FS algorithm in sequential form and varying degrees G@rallelism.
parallelism.

for transmission. The members of each Seform a uniform these decimated patterns, the scan is again regular. The plots
rectangular sub-sampling of the image, with successive choiseggest a dependence on the order in which pixels are visited as
of S shifted in a raster scan to cover the entire image withowtll as the degree of parallelism in computation, just as random-
repetition. This pattern allocates a square block of pixels to eaghtion of the scan pattern showed improved performance in the
processor. The largest number of parallel updates corresporemults of Section I11-D. For modest degrees of parallelism, there
in each case t@ x 2 pixel blocks. The plots of Figs. 11-13is supra-linear speed-up due to the decimated pattern, which
show that in terms of iteration counts, there is little change shows a potentially useful distribution of updates for sequen-
convergence rates as the degree of parallelism increases. Tifalptimization as well. The factorB’s ; are minimized by
for at least up to 256 pixel updates in parallel in most cases, weximizing distances among members$osuggesting that the
achieve essentially linear speed-up in terms of iteration couhest pattern of parallel updates would be the one maximizing the
The fraction of this gain which is realizable under constraintaean distance among, similarly to the decoupling of pixels
of hardware implementation remains to be investigated. through spatial pattern selection in [28]. Thus, alternatives such
The purely sequential updates follow a raster scan of ths approximately hexagonal patterns may improve on our rect-
image in the simulations of Figs. 11-13, while the paralleingular placement when the number of processors is large. But
updates are spatially distributed in a uniform pattern, corréie optimal pattern remains an open issue, just as in the purely
sponding to a square block of pixels for each processor. Amosgguential case.
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V. CONCLUSION The log-likelihood portion of this integral is nonnegative. Sub-
stituting the actual form of the log prior for pixg] this part of
Bayesian tomography can be viewed as optimization oftle integral becomes
functional, whether by sequential or parallel update methods.
It is natural to use functional substitution with an approxima- (p—1) [*
o = ple - -t

n+l n|p—2
7] e

tion allowing simpler optimization of each pixel value individu-
ally. This paper shows that a newly modified ICD algorithm and *
its parallel implementation, derived by FS methods using loc

guadratic approximations, yield provable global convergen

and attractive experimental convergence results. The simple h lit d th ; | I-behaved
ordinate descent methods using quadratic approximations h3¢ isfying the inequality, an € mn?gra is well-behave
the exception of the case, = ] = a7, when it

convergence at least as fast as any other known method, ¢ But thi th duct of the int |
comparable per-iteration computational cost. It also appears {fges toroo. But even in this case, the product of the integra

n+1\2
there is no fundamental barrier to applying ICD techniques to tgnd (le_dxf\ )? gf[)hes to ze:jof TT"S the pro?f oft[15] T?%
mographic reconstruction with parallel updates in which bloc app 1ed here with no modilication save refaxation of the
of pixels are assigned to each processor, and that high deg

gg ed requirement from twice-differentiability to continuous
of parallelism are possible with no loss of convergence spe

erentiability.
per iteration. Though ICD/FS allows us to guarantee conver-
gence, its performance in iteration counts is nearly identical to
that of ICD/NR. This observation, plus the fact that neither an
experimental nor a theoretic counter-example to the global con-
vergence of ICD/NR for convex tomographic problems has ap-[1j L. shepp and Y. Vardi, “Maximum likelihood reconstruction for emis-
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