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Abstract—Bayesian tomographic reconstruction algorithms
generally require the efficient optimization of a functional of many
variables. In this setting, as well as in many other optimization
tasks, functional substitution (FS) has been widely applied to
simplify each step of the iterative process. The function to be mini-
mized is replaced locally by an approximation having a more easily
manipulated form, e.g., quadratic, but which maintains sufficient
similarity to descend the true functional while computing only the
substitute. In this paper, we provide two new applications of FS
methods in iterative coordinate descent for Bayesian tomography.
The first is a modification of our coordinate descent algorithm
with one-dimensional (1-D) Newton–Raphson approximations to
an alternative quadratic which allows convergence to be proven
easily. In simulations, we find essentially no difference in conver-
gence speed between the two techniques. We also present a new
algorithm which exploits the FS method to allow parallel updates
of arbitrary sets of pixels using computations similar to iterative
coordinate descent. The theoretical potential speed up of parallel
implementations is nearly linear with the number of processors if
communication costs are neglected.

Index Terms—Bayesian estimation, computed tomography,
convergence of numerical methods, emission tomography, image
reconstruction, iterative algorithms, optimization, parallel algo-
rithms, transmission tomography.

I. INTRODUCTION

W ITH the choice of convex potential functions for
Markov random field (MRF) stylea priori image

models, both maximum likelihood (ML) and maximuma
posteriori probability (MAP) tomographic image reconstruc-
tions may be formulated as large scale convex optimization
problems. Many approaches to this optimization have been
proposed, among which popular alternatives have been variants
of expectation-maximization (EM) [1], an approach derived
from indirect optimization through the introduction of the
notion of an unobservablecompletedata set whose expectation
forms the algorithmic basis for ML. Unfortunately, for most
common image models, EM has no simple, closed form for
the MAP problem, though several modifications have been
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proposed which allow inclusion of thea priori density term
[2]–[4]. Probably a more serious limitation of EM is its slow
convergence for typical tomographic problems.

It is perhaps more natural to look at the numerical side of sta-
tistical tomographic estimation as a problem of direct optimiza-
tion in the pixel domain, which brings to mind gradient-based
techniques. The similarity of EM to gradient descent has often
been noted [5], [6] and helps explain their common poor per-
formance for tomographic reconstruction. Improvements such
as preconditioned gradient or preconditioned conjugate gradient
may have significantly more promise in terms of speed. But re-
alistic positivity constraints remain more difficult to incorporate
effectively than in, for example, EM.

This high-dimensional optimization can be greatly simplified
by viewing the problem as a sequence of low-dimensional
problems. Many previous techniques such as the algebraic
reconstruction technique (ART) are known as “row-action,”
since they attempt to solve a sequence of problems, each
corresponding to a subset of the data and therefore rows of the
projection matrix. Much has been published of late concerning
the ordered-subsets version of EM (OS-EM) [7], which rotates
among subsets of projection data, resolving the EM-type
problem for each subset in a fashion reminiscent of ART. But
while OS-EM improves the speed of initial descent toward the
functional minimum, it does not, in general, converge without
the addition of temporally varying auxiliary parameters whose
schedule apparently cancels gains in convergence speed [8].
The difference between the true MAP estimate and the results
achieved with common implementations of OS-EM may be
substantial [9].

ML or MAP optimization may also be solved sequentially
among pixels, via methods known as “column-action,” due
to the correspondence between a pixel and a single column
of the transform matrix. Among the conceptually simplest is
a technique we call iterative coordinate descent (ICD) [10],
[11], which views the ML or MAP estimation problem, be
it transmission or emission tomography or any other convex
formulation, as a direct optimization task. ICD solves these
problems by sequentially minimizing the objective functions
posed by ML or MAP estimation, using greedy pixel-wise up-
dates in the style of iterated conditional modes (ICM) [12] and
Gauss–Seidel iterations [13]. Because ICD has fast convergence
at high spatial frequencies, it performs very well in standard
tomographic problems where the filtered backprojection (FBP)
image serves as a good initial condition [14]. A variant using
local Newton–Raphson style approximations of the likelihood
function, called ICD/Newton–Raphson (ICD/NR), simplifies
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update computation with convergence speed in iteration counts
which is very similar to direct ICD [10]. One may also solve
the EM formulation pixel-sequentially, preserving the provable
convergence of EM while substantially improving its speed,
as in the space-alternating EM algorithm (SAGE) of Fessler
and Hero [15]. Column-action methods can easily be made to
converge reliably to the unique global minimum of the ML or
MAP functional.

Here we present two improvements to current forms of ICD:
1) global convergence of the approximate greedy descent al-
gorithm follows from the introduction of a new local quadratic
approximation of the log-likelihood and 2) we derive a scheme
for parallel updates of arbitrary sets of pixels while maintaining
convergence properties. We approach these developments by
discussing a technique exploited by many proposed algorithms
in this field, which we call functional substitution (FS). The
term FS is here understood to include the many choices for
simplifying potentially expensive minimization by temporarily
replacing the true convex function to be optimized by a sim-
pler one which maintains its most important local properties,
such as low-order derivatives. ICD/NR is a simple example
of these for tomographic estimation, using a local one-dimen-
sional (1-D) quadratic [11]. EM also can be viewed as an
FS method which solves the ML estimation by replacing the
likelihood function with its expectation over the realizations
of the “complete” data set. De Pierro [4] used the functional
substitution idea in his extension of the EM framework directly
to the MAP emission problem. For transmission tomography,
EM has no simple closed form even for ML, leading Lange
to apply a substitution similar in form to that of De Pierro to
solve the transmission problem, again with decoupled parallel
updates [16].

The ICD/NR algorithm has been experimentally demon-
strated to converge very rapidly compared to EM algorithms,
but is thus far not guaranteed theoretically to converge to the
unique global MAP solution. We therefore first present a mod-
ified ICD algorithm which we call ICD functional substitution
(ICD/FS). The new algorithm locally approximates the exact
log-likelihood function with an alternative quadratic function
to the Newton–Raphson choice. Like ICD/NR, ICD/FS easily
incorporates nonnegativity constraints and non-Gaussian prior
distributions for the MAP reconstruction problem. However,
ICD/FS is guaranteed theoretically globally convergent for both
the emission and transmission reconstruction problem when
the log-prior distribution is strictly convex. The experimental
convergence speeds of the two are identical.

Many low-cost high-speed computational engines are parallel
configurations of medium speed processors. In clinical appli-
cation of statistical reconstruction, it may be of benefit to im-
plement algorithms specifically tailored for such parallel archi-
tectures. As a second example of the utility of the FS idea in
optimization for tomographic reconstruction, we present a FS
method which allows us to update arbitrary subsets of pixels in
parallel, while maintaining any provable convergence possessed
by the form of ICD algorithm chosen. We apply the parallel up-
dates here using ICD/FS at each pixel. For practical numbers
of parallel processors, the algorithm maintains the convergence

advantages of ICD and yields linear speed-up with the number
of processors in terms of iteration counts.

II. FUNCTIONAL SUBSTITUTION IN TOMOGRAPHIC

RECONSTRUCTION

For the emission problem, the log-likelihood may be com-
puted as

(1)

where
unknown image;
projection data;
number of projections;
th row of the projection matrix ;

observed photon counts for projection;
additive terms usually due to background noise or
random coincidences in the case of positron emission
tomography (PET).

In the transmission case, we have

(2)

where is the photon dosage per ray [11].
Both log-likelihood functions have the form

(3)

in which the and therefore their sum are convex. The
common form leads to similar methods of solving these two
problems. In Bayesian formulations, we denote thea priori den-
sity function for as , with MAP tomographic reconstruc-
tion resulting in the numerical optimization problem of

In this paper, we deal only with those models for which
is a concave function of , making the entire opti-

mization problem convex.
Several researchers have resorted to the direct optimization

of the Poisson-modeled problem. Gradient ascent methods may
be applied directly to the log-likelihood function, with several of
these techniques having been derived from the similarity of EM
to gradient ascent [6], [17], [18]. The improved preconditioned
conjugated gradient approach of Mumcuoǧlu et al. has been
explicitly formulated for the MAP problem [19] as well. The
ICD method [11] is a direct pixel-wise optimization of the MAP
functional, typically allowing more rapid convergence than at
least the unaccelerated gradient-type algorithms.

Though direct optimization is tractable for this problem, the
celebrated EM algorithm [20] has become very widely known
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and applied to its solution. Based on the notion of indirect opti-
mization through a set of unobservable “complete” data, it relies
on a concept which is generally important to this problem, that
of a tractable substitute function in place of the true log-like-
lihood. The EM algorithm replaces the log-likelihood function

with the substitute function in [1]

where are the emission counts for each pixel/detector combi-
nation. As is the case with all FS methods, the substitute func-
tional form is determined by the most recent estimate. In
EM, indexes iterations, each of which updates all pixels in
parallel. The substitute function matches the actual concave ob-
jective in its first derivatives at , but has second derivatives
of larger magnitude. Solving the optimization with
at iteration in place of guarantees
that at each step, the log-likelihood increases, since any increase
in the former must result in an equal or greater increase in the
latter. Most importantly operationally, it allows all pixel updates
to be computed independently. The EM strategy does not result
in a simple maximization step in transmission tomography, but
Lange derived an alternative substitute functional resulting in
an approach called the Convex algorithm which similarly de-
couples parallel pixel updates [16].

The linkage of pixels through the prior generally makes
the maximization step for Bayesian EM algorithms nontrivial,
though several modifications have adapted EM to the MAP
estimator [2], [3]. De Pierro proposed a modified EM algorithm
for the MAP problem [4], observing that a substitution could
be made for just as EM does for the log-likelihood,
with the substitute functional having decoupled dependencies
on pixel update values. The algorithm consists of replacing
the log-prior function by an alternative cost function

at the th update, having the properties

and independent optimization at each pixel. This allows a more
direct extension of EM to MAP estimation than previously
known methods. This FS-method based EM algorithm has the
advantage of guaranteed monotonic descent of the objective
with simple computation, but retains the limited convergence
speed of EM.

III. PROVABLY CONVERGENTCOORDINATE DESCENT BYFS

A. ICD/FS Algorithm Description

The ICD method directly, sequentially optimizes the MAP
cost function with respect to each pixel (i.e. coordinate of)
of the image with the remainder of fixed. Previous results
have shown that its convergence in tomographic problems is
significantly faster than EM and gradient descent [14], [11]. Let

be the image at theth update. The ICD update of the pixel
is computed by solving the MAP equation

(4)

where and represent the contribution of the like-
lihood and prior terms, respectively, to the objective function
expressed in terms of only . and are functions also of
all other pixels in , but since we deal primarily with optimiza-
tion in one variable with all others fixed, we have suppressed

as an argument in the interest of economy of notation. For
the present discussion, we let the indexincrease with each
pixel visit, making , the index of the updated pixel, implicitly a
function of . The particular form of varies for the emis-
sion and transmission tomography cases of (1) and (2). But in
both cases is a convex function on and its derivative

is strictly concave on .
Since (4) updates with respect to a singleat each step,

the -dimensional optimization problem changes to 1-D. This
simplifies the MAP problem, making enforcement of positivity
constraints trivial, but requires fast implementations of the se-
quential 1-D problems. Unfortunately, exact optimization of (4),
requiring repeated evaluation of the derivatives of , may
be computationally expensive.

An FS method can solve this problem simply by replacing
the true log-likelihood function in 1-D at each iteration with a
quadratic functional form. This kind of quadratic approximation
is easy to optimize with any of several numerical methods. The
most common quadratic form is Newton–Raphson type, which
was proposed as the ICD/NR algorithm in [10]. It locally ap-
proximates the function with its second order Taylor series, re-
placing with

where

(5)

(6)

remains unchanged, which may create a nonlinear
problem. Still, since the log-likelihood term typically dom-
inates the computation, the quadratic approximation greatly
simplifies the update. This NR-type approximation in the
ICD algorithm has demonstrated quite good experimental
convergence and easily incorporates nonnegativity constraints.
However, since in general Newton–Raphson steps are not
guaranteed to monotonically approach a fixed point, a theoret-
ical proof of convergence for the resulting iterations may be
difficult.

Quadratic approximation algorithms may be made monoton-
ically convergent in convex problems by locally replacing the
Hessian matrix, or from the 1-D version in (6), by certain
estimates more liberal in their magnitude, causing a more con-
servative update. The quadratic lower bound algorithm in one
dimension, for example, uses the lower bound on the second
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(a)

(b)

Fig. 1. Comparison of ICD/NR and ICD/FS in two possible relations
betweenx and the currently optimalx , marked asx . (a) Derivative of
the log-likelihood (f (x )) and the two linear approximations to it for the
two techniques whenx > x and (b)x < x . The function ~f is the
approximation of ICD/NR and�f that of ICD/FS. The areas of the regions
betweenf (x ) and �f (x ) from x to the zero crossing of�f (x ) are equal
to (F (x ) � F (x )) �( �F (x )� �F (x )).

derivative of a concave function over an interval of interest [21].
The algorithm we shall call ICD/FS consists of replacingwith
its average on the interval between 0 and. The update equa-
tions for ICD/FS are given as follows:

if

if

(7)

(8)

(9)

Fig. 1 illustrates the difference between ICD/NR and ICD/FS.
The plots are the first derivatives of NR-type and FS-type ap-
proximations of the original log-likelihood. As mentioned ear-
lier, both use the same first derivative for the substitute func-
tional at but ICD/FS takes as its second derivative the av-
erage rate of change in the first derivative over the interval from

0 to . Since the second derivative is monotonic decreasing,
is greater than or equal to , making the ICD/FS update more
conservative. The updated optimal pixels are the zeros through
root-finding operations, given the current state of all other pixels
in .

The ICD/FS algorithm can be applied in both emission
and transmission tomography problems. The only difference
between these two cases is the specific computation of the
values for , , and in (5) and (7). For the
emission case, these values are given by

(10)

(11)

(12)

where is the contribution of theth pixel to the th projec-
tion, and is the th projection of the recon-
struction at iteration . Note that may be efficiently updated
by , with computation reduced
by the sparse structure of.

For the transmission case, the update values are given by

(13)

(14)

(15)

where , i.e., is assumed zero.
ICD/FS has nearly the same computational requirements as

ICD/NR since it generally requires the computation of two first
derivatives in place of the first and second derivatives required
for ICD/NR. This computational cost includes approximately
twice the number of multiplies and adds per iteration as gradient
descent [11], but approximately equal numbers of additions and
accesses to entries of the transform matrix. The exponenti-
ations required for the transmission problem can be efficiently
implemented via table look-ups.

B. Global Convergence of ICD/FS

In order to prove the global convergence of this new ICD/FS
algorithm, we simply verify that it meets the assumptions and
necessary conditions of the global convergence proof presented
by Fessler and Hero in [15] for convergence of SAGE under
positivity constraints. Since this proof requires continuity of the
log-likelihood on , we must assume that the background
noise is greater than zero, i.e., in emission case (1).
We discuss alternative methods for the case later in this
section.
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(a) (b)

(c) (d)

Fig. 2. Emission tomographic simulation with synthetic head phantom in200� 200 mm field and display range is (0.0, 4.0). Total photon counts� 3� 10 .
(a) Original head phantom; (b) FBP reconstruction at128 � 128 pixels from128� 128 projections; (c) MAP estimate, GGMRF withp = 2:0; and (d) MAP
estimate, GGMRF withp = 1:1. ML parameter estimates werê� = 0:584 in (c) and�̂ = 0:307 in (d).

Most of these conditions are either the same as for [15],
or may be simply verified.1 We will demonstrate the critical
Condition 1, which states that the change in the substitute
function is an upper bound on the change in the true func-
tional to be minimized. By the construction of the function

, we know that , and
. Since for both the emission and transmission

case, is a concave function and is a linear
function, it follows that

1Using�� (t; x ) to make explicit the dependence of�� in (16) on the current
state,x , continuous differentiability of�� (t; x) as a function of(t; x) on

is also necessary in Condition 2 of [15].

Integration of and results in the inequality

Defining the functions and
, both implicitly functions of ,

then results in the following lemma.
Lemma: Let be convex, and be

continuously differentiable on . Furthermore, let
be concave and continuous on . Then, for all

(16)

This guarantees that the decrease in the substitute function will
result in an equal or greater decrease in the exact function. Based
on this lemma and the conditions proved in [15], the global con-
vergence of the ICD/FS algorithm follows.
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(a) (b) (c)

Fig. 3. Reconstructions of human thorax from T99 sestamibi heart perfusion SPECT data. Reconstruction covers approximately320� 256 mm, with range of
display of (0.0, 0.4) for gamma-corrected (
 = 0:6) emission intensities. Total photon counts� 1:5� 10 . (a) Filtered back projection; (b) MAP estimate with
GGMRF prior andp = 2:0; and (c) MAP estimate with GGMRF andp = 1:1: ML parameter estimates werê� = 0:0283 in (b) and�̂ = 0:0175 in (c). (Data
is courtesy of T.-S. Pan and M. King, University of Massachusetts.)

C. ICD/FS with Zero Background Emission Noise

As mentioned previously, the emission case when
is special, since in this case the log-likelihood term may tend
to on . This occurs in the unusual case in which
is the only nonzero pixel on a projection which has a nonzero
photon count. In this case, and the log-likelihood
functions have terms of the form which tend to as

. There are a number of possible strategies for handling
this case numerically.

Strategy 1: A very simple method is to set to a small
number such as . This guarantees that the
expected number of additional photons due to this adjustment
summed over all projections is much less than 1. In practice,
such a small perturbation to the model should not have a
significant effect on the resulting reconstruction. This strategy
also has the added benefit of making the algorithm more robust
to floating point round-off error.

Strategy 2: Modify the algorithm so that in the case when
, the function is computed at where

is chosen to assure that . One such choice
is , where

. In this case, is given by

and the update equation is still given by

D. ICD/FS Numerical Results

Numerical results include three data sets, two from emis-
sion and one from industrial transmission tomography. The syn-
thetic phantom emission data used for Fig. 2 are pro-
jections with approximately 3 million total counts, while the
single photon emission computed tomography (SPECT) ses-
tamibi heart perfusion data of Fig. 3 form a single slice of di-
mension from a three-dimensional (3-D) set. Both re-
constructions are computed at a resolution of pixels.

The transmission data used in Fig. 4 are a subset
of a high-resolution industrial CT scan, with reconstruction at

. We solve MAP reconstructions using for comparison
several other methods relying on functional substitution for the
design of updates, all with guaranteed convergence. We include
iterations of the Lange’s convex method [16] for the transmis-
sion reconstruction, and both Fessler and Hero’s SAGE-3 [15]
and De Pierro’s method [4] in the emission problems. In trials
with Gaussian priors, plots show also results from the precon-
ditioned conjugate gradient (PCG) approach [19] with a line
search for optimal step size at each iteration.As discussed in
[11], all the algorithms compared require the equivalent of a
forward and backprojection at each iteration and thus have the
same order of computational cost. The ICD techniques require
approximately the same number of additions and twice as many
multiplies and divides per iteration as EM. All the sequential
algorithms typically include a root-finding step at each pixel,
which may raise cost somewhat for non-Gaussian prior models.

The a priori image model here consists of two choices
of for the generalized Gaussian Markov random field
(GGMRF) [22] prior model with the prior log density function
of , where is the
coefficient linking pixels and , is a scale (temperature)
parameter, and is a parameter which controls the
smoothness of the reconstruction. The parameterfor all
six cases and the dosage parameterfor the transmission
data were estimated directly from the noisy projection data
via the maximum-likelihood methods described in [23]. For

, has unbounded positive second derivatives
at points where neighboring pixels are equal, violating the
twice-differentiability called for in Condition 2 in the conver-
gence proof of [15], but as shown in the Appendix, this case still
carries through the convergence proof without modification.

Except for one case noted below, all iterative reconstructions
begin with a filtered backprojection image with negative-valued
pixels set to zero or, for the generalized EM algorithm, a small
positive value to avoid potential problems with multiplicative
corrections. Since our goal is minimization of the MAP objec-
tive for a convex problem, the final image is independent of this
initial condition and no “stopping rule” for early termination is
considered. The ICD algorithms are normally run until the ob-
jective function’s value is converged in, e.g., the first 8–10 dec-
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(a) (b) (c)

Fig. 4. Reconstructions of flashlight cross section from transmission data. Region of reconstruction shown measures120� 260 mm, with range of display (0.0,
0.1) for gamma-corrected (
 = 0:6) attenuation values. (a) Filtered backprojection; (b) MAP estimate with GGMRF prior andp = 2:0; and (c) MAP estimate
with GGMRF andp = 1:1: ML dosage estimate (y ) is 2350,�̂ = 0:00866 in (b) and�̂ = 0:00410 in (c). (Data is courtesy of T. Neel, Wright-Patterson Air
Force Base, and N. Dussausoy, Aracor.)

imal places and beyond visible changes in the image, though our
plots do not necessarily show values all the way to the termina-
tion point.

Plots in Figs. 5 and 6 show the convergence of the ICD/NR
and ICD/FS in the emission cases described above. These trials
employ sequential pixel updates in raster ordering for the ICD
methods and SAGE-3, not necessarily the fastest converging
scan pattern. The plots show that the convergence properties of
ICD/NR and ICD/FS are virtually identical, in spite of the po-
tentially more conservative updates of ICD/FS. But this is not
surprising, since the log-likelihood function is generally close to
quadratic and the values of and are therefore generally very
close. In fact, we have previously found there to be little differ-
ence in pixel values between ICD/NR updates and exact greedy
pixel-wise minimization of [10]. Although a
proof for the global convergence of ICD/NR has not yet been
found, its convergence appears consistently rapid. In practical
applications, the greater conceptual simplicity of ICD/NR may
in fact still make it the more desirable of the two. The perfor-
mance of SAGE-3 is close to that of ICD in all cases, though
in the head phantom plots we see somewhat slower asymptotic
convergence, presumably due to the fact that the substitute func-
tion of SAGE, based on the expectation derived from EM, is
more conservative than those of the ICD quadratic approxima-
tions. DePierro’s method, using the EM substitute functional for
all pixels simultaneously, is significantly slower to converge.

The PCG results for , which are intermediate in conver-
gence speed, require additional comment. The algorithm in [19]
uses a one-sided quadratic penalty for pixels violating the posi-
tivity constraint, with parameters governing behavior near zero
to be set heuristically. We found the convergence behavior of
PCG to be potentially sensitive to both these parameters’ values
and the initial condition chosen for optimization. In each fea-
tured result, we experimented with a wide range of values for
each of the parameters, including those suggested in [19], and
both the FBP and uniform images as initial conditions. In each
case we present the best results achieved with 1) violation of
the positivity constraint limited to a magnitude of 0.01 of the
maximum in the reconstruction, and 2) PCG objective function
value close to that of the other, strictly constrained methods. For
the SPECT phantom, PCG converged fastest with the uniform
initial image and the heuristic parameters set to values similar
to those in [19]. The plot reaches a value higher than the other
methods due only to the better fit in likelihood achievable with
the slightly negative-valued pixels. (The added penalty is not in-
cluded in the computation of the objective function in the plot.)
The nonnegativity penalty proved more problematic with the
head phantom, where it is active for nearly all the area outside
the phantom. The penalty is encountered in the first iterations re-
gardless of which initial condition is chosen, and a weighting of
the penalty adequate to satisfy our two requirements above leads
to very slow convergence. To achieve a reasonable result here,
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(a)

(b)

Fig. 5. Convergence of objective function versus iterations for the synthetic
head phantom emission case with (a)p = 2:0 and (b)p = 1:1 GGMRF
prior models, employing ICD/FS, ICD/NR, SAGE-3, PCG (forp = 2:0) and
DePierro algorithms. All are initialized with FBP image. Larger values ofa
posteriori probability density for PCG are due to violation of nonnegativity
constraint.

we initialized with the FBP image and used a weighting of the
penalty which increased by a factor of 2.5 to its final value over
the first 20 iterations. The asymptotic value in the plot again ex-
ceeds that of the other methods due to the permitted negativity.

In Fig. 7, we decompose the information for ICD/FS in Fig. 6
concerning the gain in the loga posterioridensity into the gain
in the log-likelihood and the log prior terms. With the standard
FBP as the initial condition, we see contribution of both terms
in the same range, though far larger change in log-likelihood
than in log prior. This difference is exaggerated when we use a
second, much poorer initial condition, in this example a uniform
image equal to the average of the FBP. This initiation leaves the
likelihood much farther from its (MAP) optimal value; on the
other hand, the zero-penalty uniform image represents themost
likely (a priori) choice under the MRF model, and has penalty
significantly closer to that of the MAP image than does the FBP.

(a)

(b)

Fig. 6. Convergence of objective function versus iterations for the SPECT
cardiac perfusion data with (a)p = 2:0 and (b)p = 1:1 GGMRF prior
models, and ICD/FS, ICD/NR, SAGE-3, PCG (forp = 2:0) and DePierro
algorithms. All were initialized with FBP image except PCG, for which a
uniform initialization yielded faster convergence. Higher asymptotic value of
objective for PCG is due to violation of nonnegativity constraint.

Its log prior term, of course, decreases toward the MAP esti-
mate’s value.

Similar overall convergence comparisons for transmission
data are visible in Fig. 8, where ICD/FS and ICD/NR are
indistinguishable. The plots for the twoa priori models are
very similar, due to the dominance of the log-likelihood term in
the functional of this high signal-to-noise ratio reconstruction.
The pattern in which pixels should be scanned in the sequential
methods is not always clear. The analysis in [14] showed
potential advantage in alternating raster scans between two
orthogonal spatial directions, but we have not found experi-
mentally that this holds consistently. A random ordering of the
scan was recently reported in [24] to improve speed. We have
applied a pseudo-random scan which visits each pixel once
in each sweep, similarly to the choice of Bowsheret al. and
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(a)

(b)

Fig. 7. Gain in loga posterioriprobability for SPECT case, separated into
log-likelihood and log-prior terms of objective function, negatives of which are
denotedF andP in text. A single iteration includes a sweep across the entire
image. (a) Filtered backprojection image as initial condition and (b) uniform
image, with total mass equal to that of FBP, as initial condition.

found that in the transmission reconstruction its convergence
is significantly faster than the regular scan, as shown in Fig. 8.
Later in the paper we find that a regular, decimated pattern
for parallel updates may achieve similar speed-up. As in the
emission head phantom data, we found that PCG performed
best with a gradually increasing weighting for the nonnegativity
enforcing function for the transmission reconstruction, The
weighting was increased five-fold over the first 20 iterations to
the value recommended in [19], with the image after 40 itera-
tions again having negative pixels which raised its asymptotic
objective value slightly above that of the others. In this case its
performance was competitive with that of ICD with a regular
scan but still significantly slower than the random scan ICD.
Lange’s convex algorithm is slower to converge to the MAP
reconstructions, similarly to De Pierro’s generalized EM for

(a)

(b)

Fig. 8. Convergence of objective function versus iterations for the
transmission case withp = 2:0 and p = 1:1 GGMRF prior model, and
ICD/FS, ICD/NR, Convex, and (forp = 2:0) preconditioned conjugate
gradient (PCG) algorithms. ICD/FS is included with both regular and random
scan patterns.

emission. Here again, the use of a substitute functional for all
pixels simultaneously appears to limit the rate of convergence.

These results represent solution of the exact Poisson-modeled
transmission likelihood. In practice, with photon counts in the
range present in this data, it is unlikely we would see appreciable
benefit from solving the exact problem, and would more likely
use a single global quadratic approximation, to be optimized
sequentially as in [14].

IV. PARALLEL COMPUTATION OFPIXEL UPDATES VIA FS

In spite of the rapid convergence of sequential optimization
techniques in statistical tomography, the computation of the
same sort of greedy updates in parallel is an important gener-
alization, due to the greater economy of parallel computation
using multiple processors of modest cost. Parallel implemen-
tation of these algorithms in future systems seems likely, and
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one would hope for the flexibility to assign a segment of the
image to each processor [25]. Alternatively, whether or not
computation is in parallel, updates of groups of pixels may be
advantageous in terms of certain numerical operation counts,
as Fessler argued in a derivation of a transmission algorithm
similar to the one below which was done concurrently with ours
[26]. Parallelism is automatic with gradient-type algorithms.
However, accelerated techniques such as conjugate gradient
make incorporation of nonnegativity constraints more compli-
cated. We will see that the FS approach can also be applied
to allow computation similar to that of the ICD sequential
framework for parallel updates of arbitrary sets of pixels in
either emission or transmission reconstructions.

In real applications, parallel computation based on shared
memory involves issues of communications and timing which
may have appreciable effects on the overall speed of the parallel
iterations. The results below yield the algorithm to be applied at
each pixel involved in the parallel updates, but do not address
such architecture-dependent implementation factors, which we
leave for future research.

A. FS Method Applied in Parallel MAP

De Pierro’s substitute function , discussed in Sec-
tion II, allows complete parallel updates for Bayesian tomo-
graphic emission reconstructions by replacing thelog-prior in
the cost function with a sum of terms each involving only one
pixel update value. The following result amounts to applying the
same idea to the more complexlog-likelihoodfunction.

In the MAP reconstruction problem, with degrees of par-
allelism which are likely to be practical in our applications,
and Markov random field (MRF)a priori image models, it is
easy to choose parallel updates which are not coupled through

. We seek a substitute to only the log-likelihood func-
tion, , since through this function large
numbers of pixel pairs are coupled.

Suppose that we consider the parallel update of a collection
of pixels whose indices form the set during update ,
with the remainder of the image fixed at. This is conceptually
similar to the potential EM update of collections of pixels under
SAGE [27]. The set may be chosen arbitrarily, but here it is
intended to be any collection of pixels to be updated in parallel,
possibly by separate computing elements. As the analysis below
indicates, they would likely be chosen to maximize the feasible
distances among pixels in. A complete iteration consists of a
sequence of such sets covering the entire image. We may view
the log-likelihood form shown in (3) at one step as a function of
only . If we define

then we may express the dependence on by using
the convex function , showing dependence on changes in
the values of pixels in . Let

otherwise.

Then

(17)

From the definition of above, it is apparent that
also in the limit as .

Applying Jensen’s inequality results in the expression

(18)

This applies to common likelihood functions for tomographic
problems. As in the previous section, we will suppress the argu-
ment showing the dependence of functions such ason .
Note that (18) is a summation over, each term involving only
one , which allows for simple optimization.

We define

letting for the transmission case. Substituting into (18)
for the standard Poisson models for transmission and emission
tomography, the right-hand side of the inequality, which we
refer to as the substitute function , takes the form

(19)

for the emission case and

(20)

for the transmission case.
The substitute log-likelihood function satisfies

and

similarly to De Pierro’s , and the MAP reconstruc-
tion problem with parallel computation is converted into the fol-
lowing optimization problem with respect to the single pixel

Any numerical method may then be applied to minimization of
the substitute functional. Provided it preserves the monotonicity
discussed above and satisfies the Kuhn–Tucker conditions for
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constrained optimization, guaranteed global convergence is pre-
served by virtue of the inequality of (18).

Since all pixel updates are decoupled by the substitute
functional, ICD methods already developed are natural for this
parallel MAP reconstruction problem, locally approximating
the terms in the fashion of ICD/NR or ICD/FS. Given
the similarity in performance of the two, and the results for
ICD/NR published in [25], we limit our numerical results here
to the provably convergent optimization by parallel ICD/FS.
This maintains guaranteed global convergence in the results
which follow. The parallel algorithm can still be expressed as
in (8)–(9), but the algorithm is applied to the substitute function
for parallel optimization. This leaves unchanged from (5)
and calculated as in (7), except that derivatives calculated
at are those of the substitute functional with scaling of
the second derivative. With “” once again corresponding to
first derivatives of the substitute log-likelihood functions, the
resulting forms are

(21)

(22)

(23)

for the emission case and

(24)

(25)

(26)

for transmission.
The approximate degree of local conservatism resulting

from parallel update computation may be seen through a global
quadratic approximation of the log-likelihood. The log-likeli-
hood functions in both emission and transmission cases can be
approximated by a second-order Taylor series expansion in

(27)

with (emission) or (transmis-
sion), a constant relative to, and a diagonal matrix with
entries being the photon counts (transmission) or
(emission)[10]. This approximation is quite accurate for most
common transmission problems, and in both cases allows better
understanding of optimization techniques and their convergence
behavior.

Fig. 9. Value of the under-relaxation factor for the quadratic approximation
of the log-likelihood. Pixels updated in parallel in all cases form a regular,
rectangular sampling of the entire reconstruction. The number of processors
ranges from one for the entire image on the left, to one for each2� 2 block of
pixels on the right.

Under this approximation, we may apply the result of (18) to
obtain the following:

(28)

where

Here is the error state vector in the projection data after up-
date , and is the current change in pixel. Minimization
as a function of yields

(29)

This is the same form as the updates derived for ML estimation
by ICD under a global quadratic approximation in [14], except
that this formulation calls for under-relaxation of the greedy up-
dates by the factor

which reduces to the local update of [14] whencontains only
one pixel. A plot of this factor as a function of the number of
pixels updated in parallel from uniformly spaced
projections is shown in Fig. 9 for the center pixel of a
reconstruction. Computations for this plot assume the setis
a uniform rectangular sampling of the entire image. The ratio

is a measure of the linkage of pixelto others in
through common intersection with projection. The degree of
under-relaxation therefore increases as pixelmoves closer to
other members of , so the set would normally be chosen in a
uniform pattern spaced as widely as possible.
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Fig. 10. Illustration of an occurrence of� > 0 under parallel updates. The
transformation due toW =A is similar to a scaling of the log-likelihood’s
derivativef (x ) about the pointx = x .

The prescribed computation of and can always be made
in the transmission problem, but a condition, discussed in Sec-
tion III, must be considered for the emission case. For any mea-
surements having , the log-likelihood is not defined for
projection values less than . With scaling of the change in

for each by as required by the parallel update
algorithm, we are not guaranteed that the derivative of the sub-
stitute function can be evaluated at as directed in the
default version of ICD/FS, even if the are all positive. This
case is illustrated in Fig. 10. If this occurs, we follow a proce-
dure similar to Strategy 2 in Section III-C. If the derivative is
not evaluable at zero, we need only find a value forbetween
0 and at which the derivative of is defined and neg-
ative. Reference to Figs. 10 and 1 verify graphically that use of
the derivative at this point will maintain monotonicity in descent
of the substitute functional for the two possible cases illustrated.
Therefore we define

(30)

the point at which the substitute log-likelihood “blows up” as
we approach from the right. (Provided the algorithm has been
properly initialized and monotonic descent has been followed,
this must always be a value less than.) The second value
of the first derivative can then be computed at , with

and . One may compute
off-line as in Section III-C for the substitute functional, and use
it or , whichever is smaller. For high degrees of
parallelism and consequent large values of , we find the
pre-computed to be excessively conservative and simply use

. Should the derivative be positive at the chosen
point, we repeat by recursively halving the distance to, which
has substantial worst-case computational cost due to re-evalua-
tion of the derivative, but does not arise often enough in prac-
tice to substantially affect cost. This procedure preserves guar-
anteed monotonicity of descent and therefore provable conver-
gence. The projections may be scanned in advance of the com-
putation of the derivatives, or the condition may be checked pro-

(a)

(b)

Fig. 11. Convergence of objective function versus iterations for the emission
head phantom with (a)p = 2:0 and (b)p = 1:1 GGMRF prior model,
employing ICD/FS algorithm in sequential form and varying degrees of
parallelism. In this and subsequent plots,N is the number of pixels updated in
parallel.

jection-by-projection. The relative efficiency of the two will de-
pend on the degree of parallelism. In our simulations, this case
rarely arose with fewer than 256 parallel updates.

B. Parallel Computation Numerical Results

In this section, we solve the same MAP tomography recon-
struction problems presented in Section III but by parallel com-
putation with the ICD/FS method. The GGMRF prior model
again features two choices of the parameter.

The parallel computation assumes that after each processor
has updated its respective pixel, the state of the projection error
vector can be updated and shared among all processors.
Our results do not include consideration of the costs of inter-
processor communication and management of joint access to
common memory. We show results for a number of processors

ranging from 1 to 2 for the emission trials and up to 2
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(a)

(b)

Fig. 12. Convergence of objective function versus iterations for the SPECT
heart perfusion data with (a)p = 2:0 and (b)p = 1:1 GGMRF prior model,
employing ICD/FS algorithm in sequential form and varying degrees of
parallelism.

for transmission. The members of each setform a uniform
rectangular sub-sampling of the image, with successive choices
of shifted in a raster scan to cover the entire image without
repetition. This pattern allocates a square block of pixels to each
processor. The largest number of parallel updates corresponds
in each case to pixel blocks. The plots of Figs. 11–13
show that in terms of iteration counts, there is little change in
convergence rates as the degree of parallelism increases. Thus
for at least up to 256 pixel updates in parallel in most cases, we
achieve essentially linear speed-up in terms of iteration count.
The fraction of this gain which is realizable under constraints
of hardware implementation remains to be investigated.

The purely sequential updates follow a raster scan of the
image in the simulations of Figs. 11–13, while the parallel
updates are spatially distributed in a uniform pattern, corre-
sponding to a square block of pixels for each processor. Among

(a)

(b)

Fig. 13. Convergence of objective function versus iterations for the
transmission reconstruction withp = 2:0 and p = 1:1 in GGMRF prior
model, employing ICD/FS algorithm in sequential form and varying degrees of
parallelism.

these decimated patterns, the scan is again regular. The plots
suggest a dependence on the order in which pixels are visited as
well as the degree of parallelism in computation, just as random-
ization of the scan pattern showed improved performance in the
results of Section III-D. For modest degrees of parallelism, there
is supra-linear speed-up due to the decimated pattern, which
shows a potentially useful distribution of updates for sequen-
tial optimization as well. The factors are minimized by
maximizing distances among members of, suggesting that the
best pattern of parallel updates would be the one maximizing the
mean distance among, similarly to the decoupling of pixels
through spatial pattern selection in [28]. Thus, alternatives such
as approximately hexagonal patterns may improve on our rect-
angular placement when the number of processors is large. But
the optimal pattern remains an open issue, just as in the purely
sequential case.
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V. CONCLUSION

Bayesian tomography can be viewed as optimization of a
functional, whether by sequential or parallel update methods.
It is natural to use functional substitution with an approxima-
tion allowing simpler optimization of each pixel value individu-
ally. This paper shows that a newly modified ICD algorithm and
its parallel implementation, derived by FS methods using local
quadratic approximations, yield provable global convergence
and attractive experimental convergence results. The simple co-
ordinate descent methods using quadratic approximations have
convergence at least as fast as any other known method, with
comparable per-iteration computational cost. It also appears that
there is no fundamental barrier to applying ICD techniques to to-
mographic reconstruction with parallel updates in which blocks
of pixels are assigned to each processor, and that high degrees
of parallelism are possible with no loss of convergence speed
per iteration. Though ICD/FS allows us to guarantee conver-
gence, its performance in iteration counts is nearly identical to
that of ICD/NR. This observation, plus the fact that neither an
experimental nor a theoretic counter-example to the global con-
vergence of ICD/NR for convex tomographic problems has ap-
peared, make the greater conceptual simplicity of ICD/NR and
its slight computational advantage still quite attractive.

APPENDIX

CONVERGENCE UNDERNON-GAUSSIAN GGMRF MODEL

Among the conditions assumed for the functionals to be op-
timized in [15] is that each be twice differentiable on

. When neighboring pixels have the same value under the
GGMRF model with , this condition is violated in our
example, since the second derivative of the negative log-prior,
while always positive, is not bounded. However, the key prop-
erty of the Hessian subsequently used in the convergence proof
is a lowerbound on its eigenvalues. The positivity of this lower
bound, required by Condition 5 of the proof, is guaranteed in
our case as in that of [15] by the strict convexity of the func-
tions and of the log prior term in addition to the
closedness of the set composed of all possible interim states oc-
cupied by between the initial and final estimates.

These properties are applied in Lemma 2 of [15], where one
needs to show, in our problem’s notation, that there exists a con-
stant such that for every ,

This guarantees that as , we also have
. The proof relies on there being a lower

bound on the remainder term from a Taylor series expansion of
the functional at , with the expansion evaluated at. Let

. We need only that

The log-likelihood portion of this integral is nonnegative. Sub-
stituting the actual form of the log prior for pixel, this part of
the integral becomes

The integrand has a strictly positive lower bound on any
bounded set in with and for the GGMRF,
satisfying the inequality, and the integral is well-behaved
with the exception of the case , when it
goes to . But even in this case, the product of the integral
and goes to zero. Thus, the proof of [15] may
be applied here with no modification save relaxation of the
stated requirement from twice-differentiability to continuous
differentiability.

REFERENCES

[1] L. Shepp and Y. Vardi, “Maximum likelihood reconstruction for emis-
sion tomography,”IEEE Trans. Med. Imag., vol. MI-1, pp. 113–122,
Oct. 1982.

[2] P. J. Green, “Bayesian reconstruction from emission tomography data
using a modified EM algorithm,”IEEE Trans. Med. Imag., vol. 9, pp.
84–93, Mar. 1990.

[3] T. Hebert and R. Leahy, “A generalized EM algorithm for 3-d Bayesian
reconstruction from Poisson data using Gibbs priors,”IEEE Trans. Med.
Imag., vol. 8, pp. 194–202, June 1989.

[4] A. R. De Pierro, “A modified expectation maximization algorithm for
penalized likelihood estimation in emission tomography,”IEEE Trans.
Med. Imag., vol. 14, no. 1, pp. 132–137, 1995.

[5] R. M. Lewitt and G. Muehllehner, “Accelerated iterative reconstruction
for positron emission tomography based on the EM algorithm for max-
imum likelihood estimation,”IEEE Trans. Med. Imag., vol. MI-5, pp.
16–22, Mar. 1986.

[6] L. Kaufman, “Implementing and accelerating the EM algorithm for
positron emission tomography,”IEEE Trans. Med. Imag., vol. MI-6,
no. 1, pp. 37–51, 1987.

[7] H. M. Hudson and R. S. Larkin, “Accelerated image reconstruction
using ordered subsets of projection data,”IEEE Trans. Med. Imag., vol.
13, pp. 601–609, Dec. 1994.

[8] J. Browne and A. R. De Pierro, “A row-action alternative to the EM
algorithm for maximizing likelihoods in emission tomography,”IEEE
Trans. Med. Imag., vol. 15, pp. 687–699, Oct. 1996.

[9] J. M. Ollinger, “Maximum likelihood reconstruction in fully 3D PET via
the SAGE algorithm,” inProc. IEEE Nucl. Sci. Symp. Medical Imaging
Conf., Anaheim, CA, Nov. 1996.

[10] C. A. Bouman and K. Sauer, “Fast numerical methods for emission
and transmission tomographic reconstruction,” inProceedings of
the Twenty-Seventh Annual Conference on Information Sciences and
Systems. Baltimore, MD: Johns Hopkins Univ. Press, Mar. 1993, pp.
611–616.

[11] , “A unified approach to statistical tomography using coordinate de-
scent optimization,”IEEE Trans. Image Processing, vol. 5, pp. 480–492,
Mar. 1996.

[12] J. Besag, “On the statistical analysis of dirty pictures,”J. R. Statist. Soc.
B, vol. 48, no. 3, pp. 259–302, 1986.

[13] D. M. Young, Iterative Solution of Large Linear Systems. New York:
Academic, 1971.

[14] K. Sauer and C. A. Bouman, “A local update strategy for iterative re-
construction from projections,”IEEE Trans. Signal Processing, vol. 41,
Feb. 1993.

[15] J. Fessler and A. Hero, “Penalized maximum-likelihood image recon-
struction using space-alternating generalized EM algorithms,”IEEE
Trans. Image Processing, vol. 4, pp. 1417–1429, Oct. 1995.

[16] K. Lange, “An overview of Bayesian methods in image reconstruction,”
in Proc. SPIE Conf. Digital Image Synthesis Inverse Optics, vol. SPIE-
1351, San Diego, CA, 1990, pp. 270–287.



ZHENG et al.: PARALLELIZABLE BAYESIAN TOMOGRAPHY ALGORITHMS 1759

[17] Y. Vardi, L. A. Shepp, and L. Kaufman, “A statistical model for poisson
emission tomography,”J. Amer. Statist. Assoc., vol. 80, pp. 8–20, Mar.
1985.

[18] M. Bahn, K. Lange, and R. Little, “A theoretical study of some
maximum likelihood algorithms for emission and transmission tomog-
raphy,” IEEE Trans. Med. Imag., vol. MI-6, pp. 106–114, June 1987.
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