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ABSTRACT 

Flows in estuarial and coastal regions may be described by the shallow-water equa

tions. The processes of pollution transport, sediment transport, and plume dispersion 

are driven by the underlying hydrodynamics. Accurate resolution of these processes 

requires a three-dimensional formulation with turbulence modeling, which is very de

manding computationally. A numerical scheme has been developed which is both stable 

and accurate-we show that this scheme is also well suited to parallel processing, 

making the solution of massive complex problems a practical computing possibility. We 

describe the implementation of the numerical scheme on a Kendall Square Research 

KSR-1 multiprocessor, and present experimental results. which demonstrate that a prob

lem requiring 600,000 mesh points and 6,000 time steps can be solved in under 8 hours 

using 32 processors. © 1995 by John Wiley & Sons, Inc. 

1 INTRODUCTION 

Environmental impact studie,; relating tu estuarial 

or coastal region,; invariably involve computa

tiona! flow simulation with additional simulation 

for the transport of pollution, sediment. or ther

mal plumes. The equations to be solved are 

known as the shallow-water equations which are 

based on the 1\'avier-Stokes and continuity equa

ti~ns. with the assumption that the pressure 

everywhere in the flow is simply hydrostatic. The 

fo~mulation may be simplified further by making 

the "depth-averaged" assumption where velocity 
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is assumed uniform across the water depth. Com

putational schemes for such two-dimensional 

(depth-averaged) flows have been in existence 

since the pioneering work of Leendertse [ 6] and 

have proved useful in predicting flows in "well

mixed'' conditions. 

However. the turbulent boundan· laver velocitv . . . 
profile will not be typical of a steady unidirectional 

current when flow curvature effects and eddv 

shedding are significant. This has obvious impli

cations for predicting the transport of pollution

usually released near the sea bed-where the ver

tical distribution of velocity and turbulence 

(mixing) processes has an important influence. 

For sediment transport the near bed velocity and 

turbulence characteristics are also of vital impor

tance. When buoyant plumes are released from 

power station outfalls, vertical motion is clearly 

significant to plume dispersion. Overall it can be 

seen that computation of the shallow-water equa-
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tions m three-dimensional form is highly desir

able. 

Casulli and Cheng [ 1 J developed a semi-Im

plicit, Lagrangian finite-difference scheme as an 

alternative to a Eulerian, alternating direction-im

plicit scheme [ 10 J avoiding the need for upwind 

differencing to give stability and the time step limi

tation of the Courant condition due to convective 

terms. Casulli and Cheng applied their scheme to 

tidal flows in the San Francisco Bay and the Yen

ice Lagoon reporting good results. 

Stansby and Lloyd [8] refined this scheme and 

applied it to the less spectacular, but probably 

more hydrodynamically demanding, case of flow 

around a circular island with sloping sides gener

ating vortex shedding (see Fig. 1 ). The choice of 

this simple geometry was motivated by the desire 

to validate the model before applying it to real

world estuaries (see Section 8). Hence, the output 

of the program was compared to detailed mea

surements obtained from a laboratory tank, re

sulting in good agreement [7]. 

Typical simulations require the order of 1 Qh 

mesh points and several thousand time steps. On 

scalar computers this would be compumtionally 

prohibitive. Even on a modest vector processor. 

the Cray EL-98, the code required excessive com

puter time (days) for large problems. In this article 

we investigate the use of parallel processing for 

producing such simulations within practical time 

scales. 

Section 2 introduces briefly the underlying 

physical model and the numerical scheme. The 

resulting algorithm and its memory requirements 

are explained in detail in Section 3. Section -+ 
gives an overview of the target parallel platform. 

the Kendall Square Research KSR-1, focusing on 

those aspects of the architecture and pro;,rram

ming model relevant to this study. Before embark

ing on the parallelization process, sneral optimi

zations were performed on the original, sequential 

code; these are described in Section 5. Section 6 

details the parallelization stratel-'}' and the prob

lems encountered in its stepwise application to the 

optimized code. Section 7 presents run-time 

results obtained on the KSR-1. which confirm 'the 

suitability of the numerical scheme to parallt>l pro

cessing. Furthermore. the sources of overhead in 

the parallel version are identified and analyzed. 

\Ve conclude with Section 8 in which we outline 

future enhancements in the physical and numeri

cal model and their consequenct>s for paralleliza

tion. 

2 THE THREE-DIMENSIONAL 
SHALLOW-WATER METHOD 

The three-dimensional shallow-water equations 

are as follows 

au au au au 
- + U - + L'- + W- = 
at ax a.Y az 

_ aT} + f-LH (a
2
u + a

2
u) 

g ax p ax2 ay2 
+ i_ (f-L' au ) 

az p az 
av au au av 
-+ u-+ v-+ w-= 
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aT} f-LH ( a2v a2v) a (/-LI au ) 
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0 = aT} + _!!_ f~ l1 dz + _!!_ f~ v dz 
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where zo is the bed elevation above a reference 

level and 7J is the water surface elevation; x. y. z 
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FIGURE 1 Surface flow after 2.000 time steps in the simulation. 
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are Cartesian coordinates: u. v. u· are the corre

sponding velocity components: g is acceleration 

due to gravity; p is water density (assumed con

stant): and JLr and Jl-11 are vertical and horizontal 

mixing coefficients. The boundary condition,; at 

the bed are 

where 7~ and r.;' are the x andy components of the 

shear stress. respectively. At the surface no wind is 

assumed. so that 

au al' 
P.t - = P.t - = (). a:: a:: 

In the laboratory experiment de,.;cribed in the 

previous section. thf' water is initiall~· ,.;tatiouary 

and the water level horizontal. The inlet flow ratf' 

is then increased with time a,; a quarter sinusoid 

and maintained after a specific time step at a con

stant value to represent a steady current. At the 

outlet boundary. the velocities u and L' are given 

zero normal gradient,; and the water depth is 

fixed. At the two side walls. v and the normal !!ra

dients of u and 1J are set to zero. 

The original formulation of the numerical 

scheme proposed by Casulli and Chen!! [ 1 J us<>cl a 

uniform mesh in the venical direction. con,.;tant 

venical and horizontal mixing coefficienti'. and 

the Chezy coefficients to give bed boundary con

ditions. In order to give an accurate representation 

of bed and water-surface conditions. Stansb\· and 

Lloyd [8] introduced the a--coordinate ,;y,.;tem a- = 

(z - 1J )I (17 - zo) for the vertical direction. defining 

the bed surface by its roughnes:-; height. This en

ables a turbulence model for the vertical direction 

to be incorporated: Stansby and Lloyd proposed a 

simple two-layer mixing length model for rou!!h

turbulent flow. FurthermorP. the,· introduced for 

horizontal mixing a mixing coefficient propor

tional to depth and friction velocity. 

.The finite-difference mesh used in the numeri

cal computation is a staggered rectangular system 

"\\ri~h a "wet/dry"' boundary crossing the horizon

tal mesh obliquely (giving wet and dry cells). This 

is not a severe limitation since velocitie» close to 

the shoreline with gently sloping beds tend to be 

quite small. The a--coordinate s\·stem entails a 

fixed number of vertical cells at ~ach horizontal 

mesh point. \re will refer to the number of mesh 

points in each spatial direction by n.ro n, .. and n~, 

and to the corresponding coordinates by xi(i = 

L ... , nr).)j (j = 1. ... , n,.). and ::k (k = 
1 ..... n~). 

An important feature of the numerical scheme 

is the Lagrangian treatment of the convective 

terms. This avoids the need in conventional 

Eulerian schemes (e.g., TRISCLA [10]) to gener

ate stability through upwind differencing with 

some inevitable numerical viscosity. The terms in

volving surface elevation gradient and vertical 

nuxmg are handled implicitly for stability, 

whereas the terms involving horizontal mixing are 

handled explicitly. The equations are solved as 

fully coupled in both horizontal directions pro

ducing at each time step a pentadigonal system of 

equations for the new values of 1J at each grid 

point in the horizontal plane. Schemes which in

min· uncoupling (alternating direction schemes) 

require smaller time steps to be used for equiva

lent accuracv. 

3 THE APPLICATION PROGRAM: SW3D 

In this section we describe the structure of a For

tran 77 program. S\\'3D, which implements the 

three-dimensional shallow-water method de

scribed in Section 2. The version of S"'3D which 

forms the starting point for the parallelization pro

cess had previously been run on a Cray EL-98 

svstem.-

The main computational effort of s"-3D is con

tained within a subroutine called LXY, which is 

sketched in the pseudo code shown in Figure 2. 

\\'e distinguish between actual array elements 

(written in truetype font) and mathematical ob

jects and operations (using standard notation). 

For instance, A '-i denotes a n. X n. tridiagonal 

matrix which depends on the index pair ( i, j ) , 

while u ( i, j , k) represents the ( i, j , k) -th 

element of the array storing the values of u. The 

vectors b1 and b2 in BC_CC and BY_CY are fixed, 

and ny in SETuP implies a numbering scheme of 

the nx X n_,. pentadiagonal matrix P. 

Most of the work in LXY is devoted to setting up 

the matrix P and right-hand side r of the linear 

system Pe = r which is solved for the new surface 

elevation. For each time step the sequence of op

erations is as follows: first, code segments FU and 

FY evaluate. for every grid point, the finite-differ

ence operator arising from the explicit terms for 

convection and horizontal mixing, and store the 

values into arrays fu and fv, respectively. 1\iext, 

segments BU_CC and BY_CV each solve (for every 

( i, j) ) two tridiagonal linear systems of dimen-
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dot= 1, maxt 

FU 

do i = 1, n., 

do j = 1, ny 

do k = 1, n, 

compute Lagrangian convection and horizontal diffusion terms in 1l 

store result in fu(i,j ,k) 

FV 

do i = 1, n., 

do j = 1, ny 

do k = 1, n, 

compute Lagrangian convection and horizontal diffusion terms in v 

store result in fv ( i, j, k) 

BU_CU 

do i = 1, n., 

do j = 1, ny 

setup n. x n, tridiagonal matrix A (>,J) using values stored in u 

bu(i,j) = b[ (A(i.j)rl b1 

setup n.-dimensional vector b(i,j) using values stored in fu 

cu(i,j) = b[ (A(i,j)r
1 

b(i,i) 

BV_CV 

do i = 1, n., 

do j = 1, ny 

setup n. x n. tridiagonal matrix A (i,j) using values stored in v 

bv(i,j) = bf (A(i,j)rl b2 

setup n.-dimensional vector b(i,j) using values stored in fv 

cv(i,j) = bf (A(i,j)r
1 

b(i,il 

SETUP 

do i = 1, n., 

do j = 1, ny 

compute 5 non-zero entries of row n;1 of P using bu(i,j), bu(i+l,j), bv(i,j), bv(i,j+l) 

compute element n;i of r using cu(i,j), cu(i+l,j), cv(i,j), cv(i,j+l) 

PENTA 

solve pentadiagonal system Pe = r; store results in array e 

COPY 
copy u into uold, v into vold 

UPDATE-D 

do i = 1, n., 

do j = 1, ny 

setup n. x n. tridiagonal matrix A(i,j) using values stored in uold 

setup n,-dimensional vector b(i,j) using values stored in fu and e 

u(i,j ,k) = k-th element of (A(i,j)r
1 

b(i,j) 

UPDATE-V 

do i = 1, n., 

do j = 1, ny 

setup n, x n, tridiagonal matrix A (i,j) using values stored in vold 

setup n.-dimensional vector b(i,j) using values stored in fv and e 

u(i,j,k) = k-th element of (A(i,j))-
1 

b(i,j) 

------------------------------UPDATE-W------------------------------

do i = 1, n., 

do j = 1, ny 

do k = 1, n, 

compute v(i, j ,k) using values stored in u and v 

FIGURE 2 S\l/3D' s main computational ~:yde--suLroutine L.\ Y. 
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sion n=. which n·,.;tdt from the implicit n'rtical 

mixinf! tern1. The dot product of dw ,.;olution of 

the,.;e sy,.;tt>m,.; with a gin•n vector i,.; stort>d in ar

rays bu. cu and bv. cv. re,.;Jwctively. Segment 

SETCP u,.;p,.; this information to compute the Pn

tries of P and r. PEi\TA ,.;oln',.; the pentadiagonal 

system. leavinf! the solution in array e. 

Having copit·d the current nthw,.; of u and v 

into uold and vold !COPY). tlw new u and r 

velocities are computed in Sef!mt·nts l"PD:\TE-C 

and CPDATE-\". n•,.;pectively. HPrt' a further tri

diagonal systPm is soh-Pd for t>ach index pair 

( i, j) , giving the nt'w velocitie,.; for all values of 

k. The final segment of LX Y. CPO.\ TE- \\-. com

pute,; the new ll' velocitie,.;. 

It is important to clarify the treatment of d1·y 

point,;. For those indices ( i, j). where (.r,. _lj. =1 i 

is a/Jove the water. t!w loops Fl. F\". Bl-_CL 

BC_C\". LPD.-\TE-L l"PD.-\TE-Y. and LP

DATE- \\-do nothing except set the corresponding 

arrav f'lentents to zero. 

Figure 2 contains only thP most computa

tionally significant ,;ef!nH'nh of LXY. F urtlwr code 

such a,; the calculation of the new water depth 

using tlw nf'w surfact' f'lP\·atinn or the flooding of 

dry points are not included. Thi,;; code will. how

ever. not be neglPcted when analyzing the run

time. 

To determine the memory requirements Wt' in

troduce the notation ;_rz 1 . . . .. f/ 111 \ to den ott' Ill

dimensional array,; with n 1 X ... X n 111 lloatin;!

point elements. Hence. the array,; bu and bv are 

of type (rz.r. n, ). while P i,; stored in an array of 

type (."}n .... n,. ). Since the tridiagonal mat rice,; are 

set up on demand. nne arra~- of type (n=. ::3 ,' suf

fices, otherwi,;e it would be nece,;,.;ary to store 

2n_,.n, of these. Clearly the memory needed i:; 

dominated hv tlH· :'if'ven three-dimensional arrays . . 
fu. fv. u. v. w. uold. and vold of type (n_, .. n, .. 

nJ. The original code use,;; six further arrays of the 

same type (,;;ep Section?); leading. for 6-t-bit float

ing-point numbers. to a nwmory requirement of at 

least 13 X nx X n,. X 8 bytes. For n,. = :329. n,. = 
10;"), and n= = 22. the values used in thi,;; study. 

this represents a memory requirement of nearly 80 

Mbvte. 

4 THE KENDALL SQUARE 
RESEARCH KSR-1 

The KSR-1 is a virtual shared memory multipro

cessor. The machine consists of processor-mem

ory pairs (cells) arranged in a hierarchy of search 

groups. each group containinf! 32 cells. The vir

tual memory is implemented on the physically dis

tributed memorie,;; by a combination of operating 

system software and hardware support through 

the KSR ALLCACHE ,;earch enbrine. The OS 

manages page migration and fault handling in 

units of 16 Khyte. The ALLCACHE engine man

ages movement of 128 byte subpages within the 

system . .\lovement of sub pages is therefore cheap 

compared to the movement of pages. The imple

mentation described in thi,; work is for the 64 cell. 

doublP ,;earch group. KSR-1 installed at .\Ian

chester Cniversitv. * 
Each cell i,; a 20 .\1Hz. super-scalar. RISC chip 

with a peak 6-t-bit floatinf!-point performance of 

40 .\Hlop/ s (achieved with a multiply-add in

stmction) and 32 .\Ihyte of memory. Two instmc

tions may he issued per cycle: the in,;truction pair 

consists of one load/ store or i/o instruction and 

one llnatin_g:-point or integer instmction. The cdls 

in a single group are connected by a unidirectional 

slotted ring network with a bandwidth of 1 

Gbyte/ s. The two search _groups of the .\lanches

ter machine are connected b,- a further unidirec

tional slotted ring network with a bandwidth nf -t 

Gbyte/ s, where up to :3-t groups can he attached. 

The ALLCACHE memorv svstem is a direc

tory-based system which support,; full cache co

herency in hardware. Data movement is n~qm~st 

driven:_a memory read operation which cannot be 

sati,;fied by a cell" s own memory _generates a re

quest which traverses the hierarchy of rings and 

returns a copy of the data item to the requesting 

celL A memory write request which cannot be sat

isfied bv a celrs own memory results in that cell . . 
obtaining exclusive ownership of the data item

the data item moves to the requesting celL In the 

process. a!-i the request traverses the memory sys

tem. all other copie,; of the data item are invali

dated. thu,; maintaining cache coherence through 

an invalidate-on -write policy. 

The machine has a Cnix-compatible dis

tributed operating system-the Mach-based 

OSF I 1-allowing multiuser operation. The pro

gramming model supported is primarily that of 

program directives placed in the user code (For

tran 77 and to some extent, C. [.5 J ). The directives 

may be placed manually or automatically (by a 

pre-processor, KAP). A run-time support system, 

PRESTO, and underlying Posix-hased threads 

model support the user directives. The run-time 

*Running KSR OS version R 1.1.-i.L Octo~wr 20. 199.3 

and compiler ven;ion 1.0. May 11. 199.3. 
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system and threads are also directly accessible 

through a standard library interface. 

4.1 KSR-1 Memory Latencies 

The KSR-1 processor has a JeyeJ 1 cache. known 

as the subcache. The subcache is 0.5 .\lbne in 

size, split equally bPtween instructions and .data. 

The data subcache is rwo-wa\· st'l associati\e with 

a random rt>placement policy. The cache line of 

the data subcache is 6-t bytt>s iJwlf a sul,pa;.!e). 

There is a two-cycle pipelirw from the suhcacht> 

to registers. A request sutisfit>d within the main 

cache of a cell results in the tran,..ft·r of half a ,..uJ,_ 

page to tht> subcache with a latt>tll'y of 1~ c~cJp,.; 

(0. 9 p.:,;. .\ requPst ,.;ati,.;fied n·mott·ly from the 

main cache of another cPll ou the same rillf! rP,u!t,.. 

in tlw transf(·r nf a "·hole stdJJ!Hf!t' "·ith n latPilt·~·of 

around 1.')() clock cycles , """"! .• ) W' .. This \ ahw has 

to be multiplied !Jy a factor of :3 if tlw rP<JLW."t i, 

satisfied by a cell of the ,.;ecoud rillf!. A requP,t for 

data not eurreutly eacht>d iu any cPIJ" s memory 

results in a traditional. hif!h laww·y. paf!t:' fault to 

disk. 

4.2 Memory System 
Behavior-Alignment and Padding 

In order for a thread to <HTe,s data on a ,.;ul,paf!t". 

the paf!t:' in "·hich the !'lubpa!!e re,.;ides mu"t lw 

present iu the cache of the proce,,or otJ which tlw 

thread executes. If the pa/!P is not pre>'Pllt. a paf!P 

nubs occurs ancl thP opPratitl!! ,.;~·,tem and 

ALLCACHE systt-'111 <·ombiue to make the !"'!!" 

preseut. Jf a new page caLbe" au old paf!P in the 

cache to be displaced. tlw old JWf!e is mon·d to the 

cache of another cell if po,sildt>. H uo room t·an lw 

found for tlw JH\~!e in any cadw. tlw pa,~P is dis

placed to disk . .\Io,·iuf! a paf!e to the caclw of an

other cPI! is much clwapt>r than JlHf!inf! to di,.,k. 

Performance of applicatimh is virtual JJJPlllOry 

system:; can suffer from the plwnometJ<Jil of false 

sharing: if two threads. ruunin!! ou different n·lls. 

request separate data items which reside ou the 

same . ..;ubpaf!e. t!wt subpa!!e nwy continually 

thrash back and forth between cdb . .\lo,t vir·llwl 

memon, svstems han· to contPnd with fabe ,.;!wr

ing at the OS Jla!!e It>\ el. whieh is typically "t'\ era! 

kilobnes in size. On the K.SR-1 the unit of mme

ment around the svstem i,; the n·lativeh· ,.;mall . . 
128-byte subpaf!e. At this size. ensurinf! that data 

structures accessed Lv sevt·ral threads do unt 

cause thrashing can be achieved simply by en,.;ur

ing that the structures are paclded out to a sub-

page boundary and that they are alif!ned so as to 

begin on a ,.;ubpaf!e boundary. This is most ,;imply 

achievecl throuf!h suitable dP('laration of data 

structures: e.p: .. paddiuf! the inner dinwnsion of 

multidimPnsional aJTa\·,.;. 

4.3 KSR Fortran Directives 

The direct in·s providt>d ,.; up port t!w followi 111! 

thrPe forms of parallel ('on,.;truct: 

1. Parallel sections "upport tlw eXP('lltion of 

multiple code "''f!mPnb in parnllt·l. 

:2. Parallel regions ,.;uppon tlw e.\t'<"lltiotl of 

multi pit· co pit·,.; of tlw >'<IIIII' codt• "''f!nWnt in 

para lit·!. 

:3. Tile families "'lJ'i"'rt tlw t'Xt·cution of loop 

flt',.;t,.; in p<1l'HIIt·l. ,\loop ne..;t j,.. t·on:-idPn·d to 

delinP au itPration ,..pat'P which may lw par

titiotwd iuto tilt·s . .\Iultiplt· ti!p, may lw PXP

CLlled in parallt·l. Tlw tile family i, a "Jwt·ial

ized ver,ion of a parallt•l ref!ion. wilorPd to 

tlw rP/!lllar itf'!'ation ,pace,.; ftJIIlld in Fortwu 

Do loop,.,. Thi,., form of pawlleli,.;m is tlw 

mo!'lt <·ommon in Fortmn pro;.rram,.,. Tlw 

syntax wa" de,.,erilwd prt'\ iou,Jy [ {. IJLtl \\T 

,.;hall outlint· t!w mo,..t important fPatun·, 

hen~. The tile dinTtin· takp,.; the followiu!! 

form: 

c*ksr* tile (index__list. [options] J 

[loop nest] 

c*ksr* end tile 

Thi,.; divide,.; the itewtion "J!<IIT of tlw l""fl nP."t 

into a lll!llllwr of rPcWll!!lllar piP<T>' tilt>>''· Tlw,.;,· 

tilPs are dwn ,..dwdult-·d to lw t'.\I'CIItt·d in paralkl. 

Tlw index__list al!tJ\\·,., tht· JH'tJf!l'illllllH'r to "JW<"

ify whi<"h iteraton.; are tu lw tiled. The option:- al

low spel'ilication "f the numlwr of thn·acb to lw 

u~ed. aucl a choice of ,dwdulin!! ,.,tratt'!!ie,.;. Tlwn· 

are two stratP~IiPs which are of intere,;.t in thi,.; 

study: slice and mod. Tlw slice :-;tralef!y di

,·ides the iteration ,.;pa<"P into jJ rou!!!Jiy t•qually 

sized tilt>,.;. The mod stratef!y divides the iteratiou 

space into more tlum p tiles :where po,.;,.;il de). and 

schedules dwm ou p thread,., in a modulo fa,.;hion. 

For either ,.;trategy the size of tlw tilt's <"illl he fi.wd 

by the prof!rammer. or determiued at run-time. In 

the latter ca,.;e the tile ,.;ize willuonnall\' be chosen 
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as a multiple of 16 to help avoid false sharing of 

subpages. The options also allow scalar variables 

to be declared as private or reduction variables. 

In the case of a reduction variable results are ac

cumulated in local copies of the variable. and 

code is generated which reduces these to a single 

variable at the end of the tiled loop. 

5 SEQUENTIAL OPTIMIZATIONS 

The original code consisted of nearly 1.000 lines 

of Fortran code. handling PEl\TA through IT

PACK [3], a 9,000 line Fortran package which 

offers seven iterative methods to solve sparse lin

ear systems with symmetric positive definite or 

mildly nonsymmetric coefficient matrices. The Ja

cobi conjugate gradient (JCG) mdhod was chosen 

because of its convergence properties. As pro

posed by Casulli and Cheng [ 1 J. the code was de

veloped for vector processors, running initially on 

a Cray EL-98 with an optimized version of IT

PACK. The code was transferred to the KSR -1 

and compiled without any change. \~·e always 

used the highest optimization level of the compiler 

(-02 option). Furthermore. ITPACK was com

piled on the KSR-1 with the -r8 option. Other

wise all floating-point variables. which are de

clared as DOlJBLE PRECISIO~. would be 

handled as 128-bit values. 

It is important to note that one cell does not 

have enough memory to cope with the required 80 

Mbyte. causing a considerable amount of data to 

be placed on the memory of other cells. Hence. 

the sequential program suffers communication 

overhead since it has to perform some remote data 

acces,.;e,.;. Analy,.;i,.; of the code led to following op

timizations. 

1. Reducing memory requirements: From 

Figure 2 WP can see that the most natural 

loop orders are ijk (i.e., i outermost. kin

nermost) or j ik, where i runs over the x 

dimension. j over the y dimension. and k 

over the z dimension. Because the algorithm 

is applied to shallow-water problems. the 

index space of k is much smaller than that 

of i or j . Casulli and Cheng [ 1] suggest that 

the proposed algorithm is suited for vector

ization: efficient vectorization would re

quired flipping the loop order to make the 

innermostloops the longest. i.e., kij orkj i 

order. This "unnatural" loop ordering was 

implemented in the original code provided 

here only in FU and FV: the remaining 

computations used loop order ij k. As the 

Cray vectorizing compiler reported that loop 

bodies in FU and FY were too long to vec

torize, the loop bodies were split in two. 

This involved the storage of intermediate 

data into six arrays of type (n.r, n,., n=). By 

reversing this splitting we avoided the tem

porary arrays, reducing the number of 

three-dimensional arrays to seven, and the 

total memory required to around 4.3 ..\lbyte. 

This in tum reduced the number of remote 

accesses. 

2. Avoiding bad stride: All loops over i, j. 

and k were converted to ij k order. Since 

Fortran arravs are stored column wise. the 

seven three-dimensional arravs were de

clared of type (n=. n,., n.r) thus achieving a 

correlation between loop nest order and the 

layout of arrays in memory. This is vital for 

achieving a high rate of data reuse in a hier

archical memorv svstem. A minor side effect 

of k being the innermost array index is the 

fact that the solution of the tridiagonal sys

tems in UPDATE-C and L'PDATE-Y can 

be stored directly into u and v. respectively. 

rather than having to use an intermediate 

vector. 

3. Stripping ITPACK: As a first step. the path 

followed by the JCG call through the library 

routines was identified and isolated: almost 

7,500 lines of unnecessary code were de

leted. Furthermore, the routines SCAL and 

Cl\SCAL were modified. ITPACK calls the 

former before the first iteration to scale the 

matrix, the right-hand side and the initial 

solution. After convergence, the scaling is 

reversed. In LXY the unsealing of the ma

trix and right-hand ,.;ide i,.; not necessary 

since thev are not used after PEl\TA. Hence 

Cl\SCAL was reduced to a single loop. 

which was inlined. to unscale the solution. 

The modification of SCAL was motivated 

retroactively by the necessity to parallelize 

ITPACK. The matrix is scaled bv ITPACK 

such that all diagonal elements have the 

value 1. To perform the unsealing. the origi

nal diagonal elements are stored at the be

ginning of the one-dimensional array con

taining all nonzero elements of the sparse 

matrix. This implies shifting the off-diago

nal elements. an operation that is inherently 

sequential. Therefore, the sparse matrix 

structure is constructed accordingly in 
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SETLP, i.e., the diagonal elements were 

stored at the beginning. and the rest after

wards. The consequences for SCAL an~ the 

avoidance of the shifting, and the simplifi

cation of the search for the diai!onal ele

ments. 

The correctness of these code transformations 

was confirmed in separate runs by dumpinf! te:o;t 

data to a file after each time step and comparin::r 

them with the values from the original ,·ersion of 

the code. A new version was only acceptt'd if the 

files were identical. 

The effort invested in these sequemial chan::res 

has a significant payoff-the elapsed time for fin· 
time steps was reduced from nearly :2.730 second,.; 

in the original code to about 600 :-ecouds. :'\early 

86% of this enhancement is as a result of the 

avoidance of Lad striJe by dedariug the three

dimensional arrays as (n=. n, .. n.r ). On a n•ctor 

processor (on which the code was dnelopedi 

stride has little impact. since the nwmory on ~uch 

an architecture is basicallv '"flat.·· In a hierarchi

cally structured memory. however. ensuring maxi

mum reu:;e of data is vital to obtain efliciel11 emit>. 

The reduction of data and stripping c1f ITPACK 

resulted in 13% and 1% improwment in execu

tion time, respectively. The total amount of work 

invested in these optimisations. including the time 

required to become acquainted with the altroridun 

and the code. was about 7 person-day~ (we con

sider 1 person-day to be 8 hours of dedieated 

work). 

6 PARALLELIZATION 

The version containin!! all seqtwntial optimiza

tions proposed in Section ;) was the starting point 

for parallelization. Table 1 shows in detail the 

contribution of the different parts to the total run

time of LXY: computations of similar structure 

have been grouped to!!ether since they can be par

allelized in a similar wav. REST accounts for all 

minor computations scattered throughout LXY. 

including COPY. 

LXY was paralldized stepwise. the ~~"qurnct> 

order-reflected in the following subsections

bein::r determined by the magnitude of the execu

tion time given in Table 1. The only exception wa~ 

PEl\TA which was left to the end, because the 

loops in ITP.\CK have a different structure to all 

the others in LXY. The puralldization stmtet-'Y for 

loops not in PE:\TA is already implied in Fi~ur~· 2. 
The obYious and successful approach is to ,.;plit 

the x. y plane evenly among all threads a1:1d let 

each one work independently on its portion of the 

plane. This is achieved by tilin[! tlw loops o\·er i 

and j. thus: 

c*ksr* tile (i, j, strateg)=slice, 
private=(k)) 

do i 1, nx 

do j = 1, ny 
do k = 1, nz 

c*ksr* end tile 

Here the index ;;pace of i and j is partitioned 

by PRESTO (the KSR run-time ~y::<tem) into con

tiguous tiles which are distributed between all 

threads such that each gets exactly onf' (,-lief" 

strate!!yj. All variables are shared (i.e .. ju,.;t oue 

copy exists which can be accessed Ly all thread~; 

except the tiled index variable,; and tho~e explic

itly listed as prh·ate. 

A detailed anal~ sis showed that the propo:-ed 

approach is indeed mlid. The shared data eon:-i;;t 

basically of all arrays of size at lea,.;t n,. x n, ,e.::r .. 

fu, v. and e). Tiling of the loops re~ult~ in correct 

execution since only the thrt:>ad "owning" an in

dex pair ( i, j ) updates the corre,.;pondin_!! t>le

ment of an\· shared arn.n·. awl the tile ,;tatement~ . . 
impose the neces,;ary ,.;ynchronizatiou poim,.; 

which pre,·ent thrt>ad,; from ,.,tanill{! the execution 

of a sub:;equent loop nest until all other threads 

have completed the current loop llt>:'l. 

:\ote that the island is mapped onto tht:> thread,.; 

dependinf! on the cho,;en partitiouin~ of the .r. ·'· 

plane. This could lead in some partitioniu~,; to 

load imbalance. fiince no computation i,; per

formed on dry wid points !see ~eetion :3). Benm,;;e 

Table 1. Elapsed Times in Seconds for Five Time Slt•ps for the Optimized Sequential Version of LX\' 

Bl'_(:L. l'PD.\-

TE_C. 

FLFV BLC\'. LPJHTE-\' SETlV PEYL\ LPIHTL\\ H. EST Total 

375 158 -t1 15 ()08 



THHEE-Dl\IE:\SIO:\:\L SIL\LLO\\--\C\TER ESTL\RY \IODEL 163 

the size of the island is small compared to the 

estuary, the load imbalance i:-; negligible. For a 

complex estuary with irregular wet/ dry bound

aries a more sophisticated load-balancing strate{:.ry 

is required (see Section 3). 

Figure ~ shows that some communication of 

data between thread,; is necessary in SETCP, 

caused when a thread owning index pair ( i, j ) 

but not ( i + 1, j ) accesses. for instance. 

bu ( i + 1, j). The set up of the tridia!-!onal matri

ces (and to a lesser extent some of the right-ham.! 

sidt>s) as well as tht> computation in UPDATE-"

cause similar. regular communication patterns. In 

FC and FV. however, the communication pattern 

depends on the data and is therefore unpredicta

ble and irregular (see Section 6.1). The situation 

in PEl\TA will be described in Section 6.6. 

The performance re,;ults pre,;ented in Section 7 

confirm the validity of this approach. The follow

ing subsections report insight,; and experiences 

gained during the procp,;,; of parallelizing tht> vari

ous segments of LX Y. This parallelization process 

required approximately 10 person-day,;. 

6.1 FU and FV 

The main difficulty encountered in addinl-! the tile 

directives (to these and all other loop,;) was tht> 

identification of the private variables. Havinl-! 

done this for FL and FV. we discovered. usinl-! 

PRESTO information. an important amount of 

load imbalance cause by an uneven assignment of 

indices to threads. ~-e therefore decided to take 

manual control of the size and distribution of tiles 

in order to improve load balance. In Section 7 we 

will give more details and rqJOrt on the re:-;ult,; 

obtained. 

\'\'e would like to stress the ea,;e of parallelizinl-! 

FL and F\" on a virtual shan·d mPnWIY architec

ture like the K.SR-1. A,; we have alread\ nwn

tioned. the conununication pattern in t!JPSP ,;tpp,; 

is unpredictable: for each (i, j, k) we nPed the 

velocity at that grid point (.r,. y1. Zk) and at the 

point (.r; - a. :Vi - b. Zk = r). where a. b, and r 

depend on the actual valuPs of u ( i, j, k). 

v ( i, j , k) . and w ( i, j , k) . Since (.r; - a. YJ -

b: Zk - c) is usually not a !!rid point. its velocity is 

obtained by interpolating the velocities of the eil-!ht 

cell corner:; containin~ it (the two-dinwnsional an

alog is shown in Fil! .. 3). 

On a message-passing architecture each pro

cess would have to find out where the information 

concerninl-! (.r;- a .. l~i- b, Zk- r) is stored. ~wnd a 

message to the corresponding process. and wait 

(xi.yj) 

I~ ..______ 

------------
---{x;.a. yj-b) 

FIGURE 3 Two-dimensional Lat-rranl!ian interpola

tion. 

for the data to arrive. !\"ote that this protocol is 

complicated by the fact that the ··owner·· of (.r;

a, .l'} - b. Zk - c) does not know who is l!oing to 

contact him. or wherL Alternatively. the processes 

could exchange "halo'· data. but significant 

amounts of the communicated data would be un

used. On the KSR -1. the remote accesses to array 

elements at (.r;- a .. l}- b. Zk - c) are automati

callv handled bv the ALLCACHE memorv . . 
svstem. 

6.2 BU_CU, BV_CV, UPDATE-U, 
UPDATE-V 

Since the tridiagonal systems in these four seg

ments are solved in paralleL each thread needs its 

own copy of the coefficient and right-hand side 

arrays. Because KSR Fortran does not support 

private arrays. a technique called array expansion 

had to be applied. Hereby. an array is expanded 

from (n 1 •••.• n,) to (n 1 ••••• n,. p) where p 

is the number of threads. so that thread i(i = 

1. . . .. p) uses the memory locations starting at 

index (1. .... nt. i 1. 

Havinl-! done this. the measured run -time of the 

parallel version was disappointin~. Lsing GIST. a 

tool for lo~§!in~ and visualizinl-! Pvents. serious 

load imbalance was detPcted. 

Information from PRESTO revealed that some 

loops over i run from 1 to n.r and others from 2 to 

nx. Tilinl-! the former causes the tir,;t thread to stan 

with index 1 and finish with some m 1 • while in the 

latter case the same thread handles the range 

2 .... , m 1 + 1. Hence. data locality is not pre

served. a situation which can lead to a significant 

number of renwte data accesses. This was 

avoided by embracing all loops in LXY by a KSR 

Fortran aflinity rPgion [ -i]. which ensures that for 

different tiled loop,;. the same val uPs of indices are 

scheduled to the sanw threads. even thoul-!h the 

loop bounds may bP different. Although this mea-
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sure did not solve the load imbalance problem 

and showed almost no performance benefit, we 

maintained it to ease experimentinl! with different 

tile sizes and strategies. 

Finally we turned to P:\10N, a tool that gathers 

hardware monitoring statistics. This information 

showed that some threads had an extremely hi;.rh 

rate of cache subpage misses, that is they were 

accessing a large number of data items located on 

other cells. Since this did not occur in BC or BY. 

we searched for some different:es in the code 

which might account for this, and identified the 

"privatized" arrays as the source of the problem. 

The scalar expansion of arrays is an example 

where the effect of false sharinl! (see Section 4.2) 

can be severe. For instance, the element;; A (nz, 

3, i) andA(1, 1, i +1) lieinconsecutivemem

ory locations, the first being written to by thread i, 

the second by thread i + 1. If these two 8-byte 

data items happen to be on the same 128-Lyte 

subpage, this subpage is moved back and forth, 

causing unnecessary communication. The smaller 

the original array is (in our case it has only 3n= 

elements), the higher the degree of false sharing in 

the extended array. By padding all extended ar

rays to subpage boundaries. we eliminated this 

effect and achieved much better load balancing. 

6.3 UPDATE-W 

After the experience gained in the previous steps. 

tiling this loop, including identifying the private 

variables and expanding some arrays, was tri,·ial. 

6.4 REST 

The REST segments consist mainly of smaller 

loops scattered throughout LXY. Although they 

account for very little of the sequential execution 

time, it was important to parallelize them .. as oth

erwise significant data mm·ement will occur. :\lost 

of these loops are similar to COPY and were tiled 

trivially. Some other loops cover only the bound

aries of the domain. The bodies of these loops 

should ideally be performed by the threads that 

own the corresponding x, y index pairs. However 

this is not easy to perform on the KSR-1 and since 

the performance gain would not justify the eff011. 

we did not parallelize them. At the end of LX Y. 

the flooding and drying of cells in the horizonal 

plane is handled. Introducing parallelism in these 

final loops would result in several threads writing 

to the same memory location, making the use of 

locks or critical regions necessary, and again any 

performance gain would not justify the effort in

volved. 

6.5 SETUP 

Due to the steps undertaken when optimizing the 

sequential code, it was straightforward to set up 

the pentadiagonal matrix in parallel maintaining 

the correct (sequential) order of the rows. 

6.6 PENTA 

In the optimized sequential version the call of the 

JCG routine in ITPACK took only 6. 7% of the to

tal time, but this increased as the parallelization 

steps progressed. Eventually. havillf( carried out 

parallelization of all other segments. about half of 

the elapsed time (using 16 cells) was ;-;pent in 

PEI\"TA. 

ITPACK handles vector operations through 

level 1 BLAS-like routines while matrix-n·ctor 

multiplications are adapted to the structure of the 

data type containing the sparse matrix. These 

subroutines contain a single loop of length .V 

(where ,Vis the dimension of the linear system-in 

our case ,V = n,.n,.) as opposed to two outermost 

loops of length nx and n,. encountered in the pre

vious sections. Therefore we tiled ITPACK loops 

specifying that they should not be part of the en

dosing affinity region. 

As a consequence. some data mo,·ement will 

occur at the beginning and the end of the iteratiw 

procedure. After the first iteration. mo~t data are 

local and do not move to other threads. Commun

ication takes place in each iteration due to the 

scatter and gather of wctors in GAXPY -like oper

ations !Ax + b) with a ~parse matrix A. and the 

reduction phase in the parallel execution of dot 

products. 

1\"ote that the influence of rounding errors can 

change the result of parallelized floatinf(-point 

vector sums. Therefore we maintai1wd one se

quential and one parallel version of the dot prod

uct. The former was used to check the correctness 

of all changes (as mentioned in Section 5 ). the 

latter for run-time mea~urements. 

Finally. it is important to note that we are cop

ing with some load imbalance in the parallelized 

version of JCG. Tile sizes produced by PRESTO 

are by default a multiple of 16 (see Section ·t.:3). 

Changing PRESTOs default (for in;;tance to a 

multiple of one) leads to better load balance. but 

results in false sharinf(. Our experiment~ ;;bowed 

that in this trade-off between load imbalance and 
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false sharint!. tlw former cau~ed the smaller per

formance penalty. Thi,.; can lw explain<>d by not

ing that mo,.;t operation~ in JCG are level 1 BLA.S

like routitws. wlwre tlw ratio of acce,.;:;ed data to 

computation i:'i hit!h. \'..t:> then .. fore maintaint>d the 

original PRESTO default vahw. 

7 RESULTS 

To obtain consistt:>nt run-tinw measurPmPnts we 

rPmovPd from our t>xperiment,.; tlw output of data. 

Durint! a typical production run output is only 

prodtH"t:>d infrPqtwntly. FurtlwrmorP. ,n .. (Wr

formt>d ,;ix tinw stt>ps but nwa:-;ured only dw 

elap,.;nl tinw for tlw SPt"orHl to tlw sixth. HPrPby 

WP rnaskPd nut the infliiPIH'P of tlw first tinw ,.;tep 

which 011 tlw ~SH-1 is lllOrt"' expt->r!:-iin .. that! Sti!J

SPCfliPllt onP,-. due to pai-!P mis,..es cau,;ed b~- ac

ce,-sin:r uninitializt>d data for tlw fir:-;t tiuw. In a 

normal run con,-istin:r of thousand,- of tiuw step,; 

the effect of thi,; is rw;.di,l!ildt>. 

\'..hen eomparint! tlw s~·quential and parallel 

run-timt>s. we had to con,.;idPr that the parallel 

ext:>cution of floatin!!-point sum,; in PE:\"TA will 

pt>rturh tlw data. and con,;.Pqtwtlfl~ tlw ruuulwr of 

iteration" performed hy .ICC may differ in the SP

qtwntial and parallt>l n .. r,..ion. In ottr f'Xlwri

ments-tinw Stf·'P" two to six-tlri" did not nr·cur. 

resultint! in a ··fair·· compari,..on. Loll!!l'r run,; t!='

in!! the parallel ver·,..ion han· ,..lwwn that tlw num

ber of iteration ,.;tep,; performed by JCC ha,.; a 

small varialll't"'. It is tlwreforP rea,.;onal dt• to ex

trapolate tlw pf·rforrnarwt· rP,.;trlt,.; of short r11n,.; to 

loll!! one,;. 

A prolilt· of tlw code showed that ,..ul>n>tlline 

THL which lllt'n·ly inrt·q•oiHt•·,., tlw \t·lo,·it~ of an 

intt·rior n·ll point from dw \·elm·itiP,; at the t'i!!ht 

corn..-r point,;. i,.; •·allt-d rwarly I million tinw,.; in 

eyery time ,.;tt•p. :\ll otlwr ,..,tf,routirw,.; an· called 

considt·rahh- f<·w..-r tinw" and n•ruain <"orhidPra

Lly more computation. \\-e decided then·fore to 

inline TRI at compile time. IHrt no other routirw,.;. 

Bd'ore pre,.;c>ntin!! the ol>tained re,.;u[t,.._ we de

~cribe the cho,.;r·n tile sizP and tilin!! strale!!y for all 

loops ouhidP PE\TA. Load lwlance i,., usuallY . . 

achieved by lun·ing more tiles than cells and dis

tributing the tiles in a modulo fashion. \\.hen we 

did this however. we discovered that the memorv 

requirements per thread were not decreasing with 

the number of cells. Remember that our problem 

requires around 4;3 :\lbyte of memory and that 

each thread should access roughly ont' pth part of 

it. where p is the number of cells. This effect can 

be explained by considering the layout ofF ortran 

arravs within the KSR-1 memorv architecture. . . 
l\'ote that n= X n,. X 8 bytes = 16 Kbyte. which is 

the size of a page. Thus. the access for instance of 

u (kO, j 0, iO) will caust:> the page containin:r the 

elements u (k, j, iO) (k = L .... n=. j = 

1. . . .. n,. J to become resident on the requestin:r 

ct>ll. \'.'ith the modulo tiling strate~-- we can ex

pect that each thread will use almost t:>vt>ry value 

of i. HencP. almost every paw· is requested by 

every thread. even thou:rh only a few of irs sub

pages are actually u,.;t>d by an~- one thread. i\'ote 

that this false sharint! of pa!!e" is different from the 

false sharing of suhpat!e,; encountered in Section 

6.2. To avoid thi,; problt:>m wt' let each thread 

work on exactly one tile of size r rz.r/ p 1 X n,. (equiv

alent to tilin!! mer i in a slice fa,.;hion; so that 

each of the p threads requires only a pth of all 

pages and acee,.;se,.; all ""bpat!es within them. Thi,

doe,.; however n·,.;11lt in some load imhalanct>-see 

hdow. 

Table :2 comains tlw run-times obtained fol

lowint! the above exrwrimental description. Each 

run was repeated three time,.;: Tablt> 2 prt:>senb 

the ht:>st value of thrt:>e. Furthermore. all rurh were 

executed with tlw al!ocute_rel!s command. which 

en,-ures exclusi,-e tbt~ of a l!ivPn numht>r of ct>lls. 

By ,.;pecifyin:r in the tile statt:>ments the same num

lwr of thread,.. a:- allocated cell:-.. 'n· achieYt"d a 

one-to-one mappin!! hetwPen cell,- and thrPads. 

Finally. for the experiment,; usillt! up to :32 cells. 

we ensured that all the cell,; were on tlw samt:> rini!. 

:\'ote the di,..crepancy lwtwet·n the ,.;equemial 

and the one-cell parallel time. This can be ex

plained by the increa,.;e in memory rt:>quiremenr,.; 

caused by array expan,.;ion. :\'ote al:-;o that dte four 

cdl time is less than half that on two cell,;. \'.'hen 

usinl! one or two cells. there is not enoui!h memory 

Tablt" 2. Elapsed Timt• Pt"r Time Step in Seeonds for the St>qut'ntial and Parallel Version of SW:~D 

.\"umlll'r of c,•lb 

1 (,;pq I 1 (pari 1() :2-t :3:2 -tO 

1:2:2 1:26 6:2. <) 1.">.1'1 ;).6 -t.: 3.6 3.31 
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to hold all of S\C3D"s data. and it is necessarv for 

the operatin~ system to place some data in other 

cells' memories. ""ith four or more cells. however 

there is enough memory. and the number of re

mote accesses are considerabh- reduced. ,,.e also 

see that the use of more than -±8 cells gives almost 

no further reduction of the run-time. 

Figure 4 shows the simulation performance in 

time steps per second. The naive ideal perfor

mance is the reciprocal of the naive ideal time. 

which is computed by simply dividin!! the execu

tion time of the optimized sequential code by the 

number of cells. To check that extrapolation of 

our results to long runs is indeed valid. we ran 

6.000 time steps on :32 cells (using both rin!!s.l. 

This simulation took 7 hours -±7 minutes. whieh 

corresponds to 0.21 timesteps per second. the 

same n1lue as we obtained from mea,.;urin!! five 

time steps. 

""e have performed an analysis of the parallel 

overheads in order to identify the major factors 

causing the discrepancy between the naive ideal 

and the actual performance. ,,.e define the total 

overhead as the difference between the actual 

measured time and the nain· ideal time. "·e then 

apportion the total overhead into four categories 

as follows: 
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1. Cnparallelised code. This is the uverlu·ad 

incurred due to the parallt'l Yersion contain

ing sections of sequential code. 

2. Load imbalance. This is the merlwad that 

results from processors havinf! to wait at a 

synchronization point for other proces~or,.; 

to finish their parallel tasks. 

3. .\lemory acces~es. This the m·erhead d,ue to 

the parallel and sequential Yersions spend

in~ different amounts of time acce;-;sin~ 

data. 1\"ote that data acct"sses include !Joth 

local (,.;ame cell) and remote accesses. 

-i. Synchronization and schedulill!!· Thi,.; is the 

m·erhead cau,.;ed by the implementatiou of 

synchronisation points (in s"·:3D these arl' 

all barrier s\·nchronisations '· and the 

scheduling of tiles to threads IJ\· the 

PRESTO run-time ~\~tcm. Thc~e are 

!!rouped to~ether because they are IH1th a~

sociated with the addition of tile directiws 

to the code. 

1\"ote that this analysis 1s ,.;omewhat t·ompli

cated by the fact that the sequential Yersion makes 

a substantial number of remote memory acn~,.;,.;es. 

because there is too much data to fit in the mem

ory of a sin~le cell. This makes the naiYe ideal time 

24 32 40 48 56 
Number of cells 

FIGL'RE 4 Simulation performanl'e of S\'\:3D. 
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somewhat pessimistic. and re,;ulh in nef!atiYe val

ues of memory acces,.; overhead. In such a situa

tion the time spent by dw parallel \ersion in mak

ing remote data accesses is a useful additional 

statistic. as it givt•,; a better impres,.;ion of the per

fornlance loss resultinf! from communication of 

data between processor,.;. 

The result,.; of this anah-sis for 16. :3:2. and -tB 

cells are di,;played in Tah!P :~. Tlw analy,.;is shows 

that tlw total overheacb are increasinf! a,; the 

number of cells increases. such dmt on -tB pn>ees

sors the o\erhead accounts for rwarh :3()'1o of the 

measured execution time. This sugge,.;ts that with 

the present parallPiization strate1-':·· it is unlikPiy 

that the execution time could lw reduced lwlow :3 

seconds per time step for a problem of this size. no 

rnatter how many pron•,.;sor,., \n•re u,.;Pd. 

It is dear that load im!Jalance i:-; the most signifi

cant source of overhead. About half of this load 

imbalance can be attrilnlted to tlw uneven assign

ment of indices to threads. since 1 b. :3:2. and -tB 

are not divisors of n_,.. For example. u,.;ing :3:2 pro

cessors the tile size is 11. which results in two 

processor,.; being idle. Thi,.; could be ameliorated 

by transforming all double-rwsted loops over i 

and j into one loop from 1 to n . .- X n, .. 

The remaining load imbalance cannot he ex

plainPd by unevPn assignment of indices to 

threads in PEl\TA (see Section 6.6;. Lsing hard

ware monitoring information we discm·erecl that in 

many of the tiled loops. some threads are stalled 

waiting for data almost twice as !on!! as others. 

Table 3. Owrhead Analysis per Time Step 

.\umlwr of ( :elb 

16 :~:2 -t8 

.\ka~un·d tirne s.:w -t. -:'.) :3.60 

-'ain' iclt·al tinw '7. lJO :3.80 :2.SS 

Total overhead (). 70 0. <):) 1.0.) 

L nparallt·lized 

emit• ov<-'rhf'tHI (J. -tO 0.-tO 0.-tO 

Load -imLalance 

overhead 0.70 0.7;) (J. -t.) 

M_emory acce,;s 

overhead -0.60 -0.-t.) 0.00 

Svnchron iza tion I 

,.;chPdulinl! 

overhead 0.20 0.2:> 0.:30 

Remote access 

time 0.1;) 0.13 0.15 

1\'ote. :\II tirnPs an· in set·tnuJs and an-· ~in-·n to du· rH·an·st 

()_();) Se{'OflcJ,;. 

although all have the same workload. This addi

tional stalling is not caused Ly remote accesses. 

but Ly subcache misses. The implication of this is 

that for certain values of i and j there is consider

ably more overhashing (and ht>nce displacement) 

of subcache lines, than for others. The precise 

cause of this is current!,- not clear. but we believe 

it may be a side effect of havinl! a number of large 

arravs with a varietv of sizes. ~lore research is . . 
needed to understand and overcome this over-

head source. since it causes sif!nificant degrada

tion of performance with increasing numbers of 

cells. 

The next most important source of overhead is 

the unparallelized code. ~lost of this code is con

cerned with setting boundary conditions. and 

again with some more effort it may be possible to 

parallelize some of these sections. although, of 

course. doing so may increase the overheads from 

other sources. There is little that can be done to 

reduce the cost of svnchronization and tile sched

uling. In each time step around 200 parallel loops 

are executed r:there is some variation depending 

on the number of steps required in the conjugate 

gradient solver). Experiments ha,·e shown that 

each parallel loop incurs a synchronization and 

scheduling overhead of 1 ms for small numbers of 

cells. risintr to 1.-t ms on .')6 cell:'i. Finally we note 

that remote data accpsses are the least significant 

source_ of performance loss. hence there is no 

point in attempting to reduce the number of re

mote accesses before the other more significant 

sources of overhead have been addressed. 

8 FUTURE WORK 

After the validation of the code with a simple ge

ometry. we intend to apply it tu a real-world estu

ary. Bideford Bay (southwest Lnited Kingdom). 

which is used as a benchmark to allow a standard

ized approach to the testing and comparison of 

modeling software used for hydrodynamic and 

bacterial dispersion modeling [ 11]. This will re

quire a more sophisticated load-balancing strat

egy in order to cope efficiently with highly irregular 

wet/ dry boundaries which may be changing 

markedly with time. One possible strategy consists 

of allowing the boundaries between the partitions 

of the horizontal plane to change as the simulation 

proceeds, in such a way as to equalize the time 

spent by each proce~sor [2]. 

Section 7 showed that further analysis is neces

sarv to understand and overcome some overhead 
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sources, particularly the load imbalance. and the 

remaining unparallelized code. l\ote that the load 

imbalance problems should be solved by a dy

namic load-balancing strategy. It would also be 

interesting to verify the parallelization strategy on 

other virtual shared memory architectures, such 

as the Cray T3D and Convex Exemplar. 

There are several planned enhancements to the 

computational model, including pollution trans

port, sediment transport, and plume dispersion. 

Also a more sophisticated turbulence model in

volving the transport of Reynolds stresses directly 

is planned. Algorithms for biological and chemical 

behavior of pollutants are also desirable. Since the 

governing equations for each of these additions 

are of essentiallv similar form to those studied 

here, and are assumed to be largely uncoupled 

from the hydrodynamics equations, we can expect 

to apply the same algorithmic structure and paral

lelization strategy. 

We also envisage some enhancements to the 

numerical scheme, including the avoidance of the 

time step limitation due to the explicit treatment of 

horizontal mixing. This could be achie"~ed by an 

implicit treatment, possibly as a fractional step 

process. A greater challenge, especially for paral

lelization, will arise from the introduction of adap

tive mesh refinement. For example we might 

adopt a strategy where mesh sizes are successively 

halved in proportion to the inverse of water depth 

and spatial flow gradients, e.g., vorticity (9]. 

9 CONCLUSIONS 

We have described the parallelization of a three

dimensional shallow-water estuarv model on the 

Kendall Square Research KSR-1. Although the 

semi-implicit Lagrangian scheme was initially de

scribed as an algorithm well suited for vectoriza

tion [1], we have found that its parallelization is 

natural and easy to perform, resulting in excep

tionally efficient execution. 

Recall that the time stepping solution process 

revolves around the solution of a pentadiagonal 

system of equations describing the evolution of the 

surface elevation. This system of equations can 

itself be solved in parallel, but parallelism can also 

be exploited in all other major computation seg

ments such as the set up of the matrix and right

hand side coefficients for the system describing 

the new surface elevation. These matrix coeffi

cients and right-hand side terms result from the 

solution of a set of independent tridiagonal sys-

tems of equations, one at each grid point in the 

horizontal plane. The parallel algorithm partitions 

the horizontal plane equally between threads. 

each one setting up and soh·ing a !!roup of inde

pendent tridiagonal systems. This partitioning ap

proach is used for all other code segments. except 

for the conjugate gradient solver itself. 

In practical terms we have demonstrated that a 

simulation which would require several days of 

CPU time on a powf:'rful workstation or a modest 

vector processor can be run overnight on :32 cells 

of a KSR-1. ~-e have also found that the develop

ment process. consisting of sequential optimiza

tions followed by an incremental parallelization 

strategy. has given very good performance without 

an excessive amount of programmer effort. \,.e 

have performed an analysis of the sources of over

head in the parallel version of the code. which hail 

allowed us to identify the aspects of the parallel

ization strategy which are most in need of atten

tion should it prove desirable to further reduce the 

run-time by using more processors. 
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