
Parallelization of Prime Number Generation Using Message Passing

Interface

IZZATDIN AZIZ, NAZLEENI HARON, LOW TAN JUNG, WAN RAHAYA WAN DAGANG
Department of Computer and Information Sciences

Universiti Teknologi Petronas
31750 Tronoh, Perak

MALAYSIA
{izzatdin, nazleeni, lowtanjung}@petronas.com.my, wan.rahaya@gmail.com

Abstract:-. In this research, we propose a parallel processing algorithm that runs on cluster architecture
suitable for prime number generation. The proposed approach was written using Message Passing Interface
(MPI) and is meant to decrease computational cost and accelerate the prime number generation process.
Several experimental results conducted using High Performance Linpack (HPL) benchmark are presented to
demonstrate the viability of our work. The results suggest that the performance of our work is at par with other
parallel algorithms.

Key-Words: - Prime number generation, parallel processing, cluster architecture, MPI, primality test.

1 Introduction
Prime numbers which is a sub-branch of
mathematics called "number theory" which have
intrigued mathematicians for centuries. Despite the
efforts of many mathematicians over the centuries,
there is no general "formula" for generating prime
numbers. However there are some approximations
and theorems predicting the number of prime
numbers less than a particular upper bound. As of
2003 the largest known prime number is: The 39th
Mersenne prime.

Prime numbers has somehow stimulated
much of interest in mathematical field or in
computer security due to the prevalence of RSA
encryption schemes. Cryptography often uses large
prime numbers to produce cryptographic keys
which can be used to encipher and decipher data. It
has been identified that a computationally large
prime number is likely to be a cryptographically
strong prime. However, as the length of the
cryptographic key values increases, this will result
in the increased demand of computer processing
power to create a new cryptographic key pair. In
particular, the performance issue is tightly related
to time and processing power required for prime
number generation.

Prime number generation comprises of
processing steps in searching for and verifying
large prime numbers for use in cryptographic keys.
This is actually a pertinent problem in public key
cryptography scheme, since increasing the length of
key to enhance the security level would results in a

decrease in performance of a prime number
generation system.

Another trade off resulting from using large
prime numbers is pertaining to the primality test.
Primality test is the intrinsic part of prime number
generation and yet the most computational
intensive sub process. It has also been proven that
testing the primality of large candidates is very
computationally intensive.

Apart from that, the advent of parallel
computing or processing has invited many
interests to apply parallel algorithms in a number
of areas. This is because it has been proven that
using parallel processing can substantially increase
the processing speed.

Choosing the best parallel programming
paradigm is also another concern when it comes to
parallelization of an application or algorithm.
There are a few parallel programming paradigms
available such as Message Passing Interface (MPI)
,OpenMP, View-Oriented Parallel Programming
(VOPP) or Parallel Virtual Machine (PVM).

We have chosen MPI as the paradigm of
choice due to the nature of our problem, the
hardware components and the network setup that
we have in the laboratory. MPI consists of
specifications for message passing libraries that
can be used to write parallel programs. It is a
widely accepted standard and provides the
programmers with a programming model where
processes communicate with each other by calling
library routines to send and receive messages.

WSEAS TRANSACTIONS on COMPUTERS

Izzatdin Aziz, Nazleeni Haron, Low Tan Jung
and Wan Rahaya Wan Dagang

ISSN: 1109-2750 291 Issue 4, Volume 7, April 2008

This message passing paradigm not only
can be employed within a node but also across
several nodes in a cluster. This is the advantage of
MPI over OpenMP. Unlike OpenMP, MPI is also
viable for wide range of problems. Besides that,
MPI offers the user’s complete control over data
distribution and process synchronization. This
feature is vital in order to ensure optimum
performance of the parallelization. MPI also
provides supports that allow heterogeneity in its
specifications. With this capability, it will enable
the implementation of our parallelization to run on
heterogeneous network of workstations.

PVM may be more suitable for hetero-
geneous network setup and although MPI does not
have the concept of a virtual machine, MPI does
provide a higher level of abstraction on top of the
computing resources in terms of the message-
passing topology. In MPI a group of tasks can be
arranged in a specific logical interconnection
topology. Communication among tasks then takes
place within that topology with the hope that the
underlying physical network topology will
correspond and expedite the message transfers.

PVM does not support such an abstraction,
leaving the programmer to manually arrange tasks
into groups with the desired communication
organization [13]. Both MPI and VOPP can be
adopted for parallelization on distributed memory
parallel computers. However, VOPP programs are
not as efficient as MPI programs when the number
of processors becomes larger [14].

In this paper, we present a parallel
processing approach in cluster architecture for
prime number generation using MPI that would
provide improved performance in generating
cryptographic keys.

2 Related Work
Despite the importance of prime number
generation for cryptographic schemes, it is still
scarcely investigated and real life implementations
are of rather poor performance [1]. However, a
few approaches do exist in order to efficiently
generate prime numbers [1-5].

Maurer proposed an algorithm to generate
provable prime numbers that fulfill security
constraints without increasing the expecting
running time [2]. An improvement has been made
to Maurer’s algorithm by Brandt et al to further
speed up the prime number generation [3]. Apart
from that, the proposed work has also included a

few ways for further savings in prime number
generation [3].

Joye et al has presented an efficient prime
number generation scheme that allows fast
implementation on cryptographic smart card [1].
Besides that, Cheung et al has originated a scalable
architecture to further speed up the prime number
validation process at reduced hardware cost [4].
All of these researches however, were focusing on
processing the algorithm sequentially.

It has been proven that tasks accomplished
through parallel computation results in faster
execution as compared to a computational
processes that runs sequentially [9]. Tan et al has
designed a parallel pseudo-random generator using
Message Passing Interface (MPI) [5]. This work is
almost similar to ours but with different emphasis.
The prime numbers generated are to be used for
Monte Carlo simulations and not cryptography.
Furthermore, considerable progresses have been
made in order to develop high-performance
asymmetric key cryptography schemes using
approaches such as the use of high-end computing
hardware [6, 7, and 8].

3 Methodology
Traditional approach of system development
methodology that needs to get the development
model mostly correct in the early stage is
impossible as this involves more than just one area
of studies such as prime number generation
algorithm, primality tests, parallel processing and
MPI. Various issues need to be considered that
may be unforeseen at the beginning stage of
development. Thus different conditions and
techniques would involve during development
phase.
 Evolutionary development is an iterative
and incremental approach for system development.
The system will be delivered incrementally over
time. Evolutionary development is new to many
existing professional developer and many
traditional programmers as well. Fig. 1 illustrates
the phases involved in evolutionary development
approach.

WSEAS TRANSACTIONS on COMPUTERS
Izzatdin Aziz, Nazleeni Haron, Low Tan Jung
and Wan Rahaya Wan Dagang

ISSN: 1109-2750 292 Issue 4, Volume 7, April 2008

Fig. 1: Phases involved in Evolutionary Development
Approach

3.1 Specification Phase
A sequential program of prime number generation
in C using MPI libraries is developed. Then in this
phase the parts of the sequential program that
could be parallelized would be identified. This is
the beginning of the specification phase. Although
the main objective is to parallelize the prime
number generation, but not all part of the program
can be parallelized. This is where the partitioning
stage of the programming design takes place
which is intended to explore the opportunities for
parallel execution.

3.2 Development Phase
As mentioned earlier, the parallelization of the
algorithm was achieved by using MPI libraries.
The parallel program was written incrementally
over time which means troubleshooting was done
on the program from time to time to avoid error
that could not be debugged later on.

3.3 Validation Phase
The program prototype will then go through the
validation phase to ensure the project requirements
are achieved. If there are still areas that need to be
modified and altered, the whole phases will be
repeated all over again until the final version of
the program is released. Most of the evaluation
processes were carried out by the authors.

4 Development Tools
The main reason of choosing C to write the
program is because it provides an sequential
infrastructure that accommodates mechanism of
breaking down the problem into a collection of
data structures and operations that is matching the
characteristic of parallel processing.

Furthermore, C is also compatible with the
concept of partitioning and dynamic memory
allocation which, are the concept that is going to
be deployed in the parallelization of prime number
generation. As mentioned earlier, MPI is used for
the parallel processing of the algorithm; a library
of subroutine specifications that can be called
from C , this is also another reason why the
parallel program is written using C. The
application that is used to edit the program is
Linux gnu.

4.1 Libraries
MPI provides all the subroutines that are needed to
break the tasks involved in the massive
computational process into subtasks that can be
distributed to a number of available nodes for
processing. The goal of the MPI is to establish a
portable, efficient, and flexible standard for
message passing that will be widely used for
writing message passing programs. MPI provides
an appropriate environment for general purpose
message-passing programs, especially programs
with regular communication patterns. Fig. 2 shows
the general MPI program structure:

Fig. 2: General MPI Program Structure

 MPI contains approximately 125 functions
that greatly ease the tasks in implementing
common communication structures, such as send-
receive, broadcasts and reductions. However, MPI
is reasonably easy to learn as a complete message-
passing program can be written with just six basic
functions.

MPI contains useful communications
libraries for applications that need to be ported to
various platforms. Different versions of MPI exist
for virtually every major platform: message-
passing supercomputers, scalable shared-memory
machines, symmetric multiprocessors, loosely-
coupled workstation clusters, and even individual
PCs. With MPI, the programmer can write code
once and merely recompile it for each new
platform.

4.2 Platform
The parallel program of prime number generation
will be tested and run on a grid computing

WSEAS TRANSACTIONS on COMPUTERS
Izzatdin Aziz, Nazleeni Haron, Low Tan Jung
and Wan Rahaya Wan Dagang

ISSN: 1109-2750 293 Issue 4, Volume 7, April 2008

platform. It is worth mentioned here that the idle
workstations available in the lab were put together
to form a single cluster running MPI programs.

5 System Model

5.1 Experimental Setup
Fig 3 shows the experimental cluster set up in the
UTP lab which comprised of 20 SGI machines.
Each of the machines consists of off-the-shelf Intel
i386 based dual P3-733MHz processors with
512MB memory Silicon Graphics 330 Visual
Workstations. These machines are connected to a
Fast Ethernet 100Mbps switch. The head node
performs as master node with multiple network
interfaces [10]. Although these machines may not
be as powerful as the latest cluster-machine in
terms of the hardware and performance, the
important focus would be the parallelization of the
algorithm and how jobs can be disseminated
among the processors.

Fig.3 UTP Cluster

The software stack on all machines is consisting of
Linux Ubuntu 5.10 operating system, MPICH-
1.2.7p1 and openMosix for Kernel 2.4.26 stable
cluster middlewares, parallel High Performance
Linpack (HPL) version 1.0a and Flops.c version
2.0 both for parallel benchmark and individual
node flops benchmark, GCC-3.3.6 with Basic
Linear Algorithm Subroutine (BLAS) version 3.0
as the program compiler and its supporting math
library, and lastly is the MPI communication
benchmark using mpptest (part of perftest version
1.3b). The reasoning why we run only HPL C
version is by the assumption that the majority of
application programs are based on C programming
language rather than other programming languages
in our implementation [10].

5.2 Number Generation
In order to generate a number, a random seed is
picked and input into the program. The choice of
seed is crucial to the success of this generation as
it has to be as random as possible. Otherwise
anyone who uses the same random function would

be capable of generating the primes, thus beats the
purpose of having strong primes.

5.3 Primality Test
We have selected trial division algorithm as the
core for primality test. Basically trial division
divides an n-bit random number by primes up to
√(n) is a kind of deterministic primality test. This
algorithm is based on a given composite integer n,
and trial division consists of trial-dividing n by
every prime number less than or equal to √(n). If a
number is found which divides evenly into n, that
number is a factor of n.

In other words trial division primality test
is a method of sequentially trying test divisor into
a number n so as to partially or completely factor
n. The process starts with the first prime divisor,
i.e. 2, and keeps dividing n by 2 until no more
division can be done, then the next prime, i.e. 3, is
used as divisor on the remaining unfactored
portion. The process is repeated until a trial divisor
that is greater than the square root of the
unfactored portion since this unfactored portion is
a prime.

In factorization by trial division [11] up to
a specified maximum, m can be given in a form of,

Where f is the unfactored portion and f is larger
than the square of the largest trial divisor or f = 1.
The algorithm to implement this shall be,

get n , m;

i = 0; /*counts the number of distinct prime
factors*/

f = n; /*records the still unfactored portion*/

for d = 2 to 3 do {

 if (f mod d) = 0 then Divide(f,d,i)

 d = 5; inc = 2;}

while d <= m and d 2 <= f do { /*trial loop*/

 if (f mod d) = 0 then Divide(f,d,i);

 d = d + inc;

 inc = 6 – inc; }

if d 2 > f then do {/*a big prime*/

 i = i + 1;P1 = f;ei = 1;

 f = 1; } /* if d 2 > f then f is a prime*/

Divide(f,d,i) {

 i = i + 1;

 Pi = d;

 ei = 1;

 f = f/d;

fPPPn re
r

ee xx...xx 21
21=

WSEAS TRANSACTIONS on COMPUTERS
Izzatdin Aziz, Nazleeni Haron, Low Tan Jung
and Wan Rahaya Wan Dagang

ISSN: 1109-2750 294 Issue 4, Volume 7, April 2008

 While (f mod d) = 0 do {

 ei = ei +1;

 f = f/d; }

return }

In speeding up the trial division process we can
exploit the fact that after the first prime of 2, the
rest of the primes are odd. So 2 and odd numbers
may be used as trial divisor. A short description of
this algorithm is given by [12]. The algorithm
produces the multiset Ŧ of the primes that divide n,
given that n > 1.
1. [divide by 2]

Ŧ = { }; /*empty set*/

N = n;

while (2|N) { N = N/2;

 Ŧ = Ŧ U{2};}

2. [main division loop]

d = 3;

while(d2 <= N) {

 while(d|N) { N = N/d;

 Ŧ = Ŧ U{d}; }

 d = d + 2;}

if (N == 1) return Ŧ;

return Ŧ U{N};

5.4 Parallel Approach
Once a random number have been generated,
master node will create a table of dynamic 2D
array, which later will be populated with odd
numbers. As shown in Fig.4, a pointer-to-pointer
variable **table in master, will points to an array
of pointers that subsequently points to a number of
rows. This will result in a table of dynamic 2D
array. After the table of dynamic 2D array is
created, master will then initialize the first row of
the table only.

Fig.4 Master creates a dynamic 2D array to be

populated with odd numbers

The parallel segment begins when master
node broadcasts the row[0] to all nodes by using
MPI_Bcast. This row[0] will be used by each node
to continue populating the rest of the rows of the
table with odd numbers. Master node will then
equally divide n-1 number of rows left that is yet
to be populated by number of nodes available in
the grid cluster. Each node will be given an equal
number of rows to be populated with odd
numbers.

Fig.5. Master sends an equal size of row to each slave

This could be achieved by using MPI_Send.
A visual representation of this idea is depicted in
Fig.5.Each node will receive n numbers of rows to
be populated with odd numbers. This is where the
parallel process takes place. Each node will
process each row given concurrently. Each node
will first populate the rows with odd numbers.
Then they will filter out for prime numbers using
the primality test chosen. The odd prime numbers
will remain in the rows but those that are not will
be assigned to NULL. Each populated row are
then returned to master node, whom then
randomly pick for three distinct primes for the
value of p,q, and public key e of the cryptographic
scheme.
 As an example, if there are 4 processors
available to execute the above tasks, and there are
1200 rows need to be populated with prime
numbers, each slave will be given 300 rows to be
processed. The overall procedure is depicted in
Fig.6.

WSEAS TRANSACTIONS on COMPUTERS
Izzatdin Aziz, Nazleeni Haron, Low Tan Jung
and Wan Rahaya Wan Dagang

ISSN: 1109-2750 295 Issue 4, Volume 7, April 2008

Fig.6. Example of assigning 1200 rows to 4 processors
(slaves)

Processor 0 will process row(1) up to
row(299), processor 1 will be processing row(300)
up to row(599), processor 2 will be processing
row(600) up to row(899) and lastly processor 3
will be processing row(900) up to the last row,
row(1199).

After each node returns the populated rows
to master node, it will then pick randomly prime
numbers to be assigned as the value of p, q, and e.
These values can later be used for encryption and
decryption part of a cryptosystem algorithm. It is
to be reminded that the parallel process that takes
place in the whole program is only on the prime
number generation.

Fig.7. Sequential algorithm in a flow chart form

WSEAS TRANSACTIONS on COMPUTERS
Izzatdin Aziz, Nazleeni Haron, Low Tan Jung
and Wan Rahaya Wan Dagang

ISSN: 1109-2750 296 Issue 4, Volume 7, April 2008

6 Sequential Algorithm

6.1 Sequential Algorithm
The meticulous process of the sequential
algorithm to generate prime number is
presented in Fig.7 above. This process is
useful as later on it can be used to compare
time execution results with the proposed
parallel approach. Using the same primality
test as mentioned in section 5.3, a loop is
utilized to iterate the process. A series of
selection takes place to finally produce the
prime number. The sequential program as
shown below uses which, is equivalent
to

unsigned int trial_division_squaring
(unsigned int n) { unsigned int x,
x_squared;

 for(x=2, x_squared=4;
 x_squared > 2*x – 1 && x_squared <= n;
 x++, x_squared += 2*x – 1)
 {
 if ((n % x) == 0) {
 return x;
 }
 }
 return IS_PRIME;}
}

int main(int argc, char* argv[]) {
 int i;
 unsigned int n = atoi(argv[2]);

 if (strcmp(argv[1], “trial_division_sqrt”) ==
0) {
 for(i=0; i<10000 – 1; i++)
trial_division_sqrt(n);
 printf(“%u\n”, trial_division_sqrt(n));
 }
 else if (strcmp(argv[1],
“trial_division_squaring”) == 0) {
 for(i=0; i<10000 – 1; i++)
trial_division_squaring(n);
 printf(“%u\n”,
trial_division_squaring(n));
 }
 else if (strcmp(argv[1], “trial_division_odd”)
== 0) {
 for(i=0; i<10000 – 1; i++)
trial_division_odd(n);
 printf(“%u\n”, trial_division_odd(n));
 }

else if (strcmp(argv[1],
“trial_division_primes”) == 0) {
 generate_prime_list(65536);
 for(i=0; i<10000 – 1; i++)
trial_division_primes(n);
 printf(“%u\n”, trial_division_primes(n));
 } else {
 printf(“Invalid algorithm selection.\n”);
 }
 return 0;}

6.2 Proposed Parallel Algorithm
 The algorithm of the parallel program is as
follows:

Start

Master creates a table of odd numbers and

initialized row [0] only

Master broadcasts row [0] to all slaves

Master sends a number of rows to each slave

Each slave will receive an initialized row from

master

Each slave will populate row prime numbers

Each slave will return populated row to

Master

Master waits for results from slaves

Master receives populated rows from each

slave.

Master checks unpopulated rows

 If maxRow > 0

 Master sends unpopulated row to

slave

Master picks prime numbers randomly

Prompt to select program option

Switch (method)

 Case 1: prompt to enter a value

 greater than 10000

 If value > 10000, generate key

 primes

 Else, Exit program

 Case 3: open file and decrypt

 Case 4: exit program

 End

End

A better understanding of the algorithm

is perhaps best represented in the flowchart
form as depicted in Fig.8. As clearly shown,
the parallelization takes place mainly at

WSEAS TRANSACTIONS on COMPUTERS
Izzatdin Aziz, Nazleeni Haron, Low Tan Jung
and Wan Rahaya Wan Dagang

ISSN: 1109-2750 297 Issue 4, Volume 7, April 2008

generating prime number. Slaves’ processors
will play an active participation during this
part; where as the master processor would
mainly disseminate and gather the finalized

result. This piece of algorithm would basically
exist in each and every processor upon the
execution of run command in console.

Fig.8.The proposed parallel algorithm represented in a flowchart form

WSEAS TRANSACTIONS on COMPUTERS
Izzatdin Aziz, Nazleeni Haron, Low Tan Jung
and Wan Rahaya Wan Dagang

ISSN: 1109-2750 298 Issue 4, Volume 7, April 2008

7 Evaluation
It is significant to report that the time
measurement obtained from the execution using a
sequential prime number generation was at
average of 7.6 ms for three trials. Subsequent
paragraph discussed the time measurement with
the parallel approach.

Table 1: Comparison of Execution Time for Different

Number of Nodes.

Number of nodes Execution Time (ms)
1 7.850
2 0.039
3 0.039
4 0.042
5 0.043
6 0.043
7 0.049
8 0.051
9 0.051
10 0.053
15 0.060
20 0.072
25 0.089
30 0.093

Table 1 shows timing measurements of

the parallel implementation of the prime number
generation using various numbers of nodes. The
times are obtained by calculating the total time
taken by master node to compute its tasks as well
as the total time for slave node to complete the
assigned tasks. As expected, there is a significant
improvement of performance using three nodes
over one node. However, the performance is
degraded slowly with the increasing number of
nodes. As shown in the Table 1, using 30 nodes
did not improve much performance over using 5
nodes, although it is 6 times more nodes, yet the
different of the execution times is just 0.05
milliseconds. We noted that, this effect is due to
the fact that the communication overhead now
outweighs any reduction in computation time. As
the problem increases, however, the scalability
would improve, resulting in higher efficiency for
larger number of nodes.

It would be trivial to compare the
sequential execution of the prime number
generation algorithm with a single node execution
of the parallel approach. Noted, that the sequential
approach is faster by 0.25 ms as compared to the
parallel approach. This is plausibly due to the
masters demanding tasks to disseminate the jobs
to other processors even though it is a single node
execution. However master would still need to

perform this tasks as commanded in the parallel
algorithm.
Fig.9 shows the performance measurement using
MPI_GATHER tested on 15 nodes. This figure
was captured using the MPICH Jumpshot4 tool to
evaluate the algorithm usage of MPI libraries. The
numbers plotted shows the amount of time taken
for each node to send back the prime numbers
discovered back to the master node.

0

0
.0

3
5
9

0
.0

3
5
4

0
.0

3
2
5

0
.0

3
1
8

0
.0

2
9
3

0
.0

3
0
3

0
.0

2
7
3

0
.0

2
7
3

0
.0

2
6
4

0
.0

2
5
4

0
.0

2
5
3

0
.0

2
4
7

0
.0

1
4
2

0
.0

1
3
7

0
.0

3
8
5

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Node

Time (Seconds)

Fig.9. Time taken for MPI_BCAST and
MPI_GATHER running on 15 nodes.

From the figure, it is observed that the
algorithm gather was massive for the first node
and deteriorated as it approached the last node.
This is due to the frequent prime numbers
discovered at the beginning of the number series
and becomes scarce as the numbers becomes
larger towards the end. This will prove that the
relative frequency of occurrence of prime numbers
decreases with size of the number which result in
lesser prime numbers were sent back to master
node by later nodes.

7.1 Benchmarking
High Performance Linpack (HPL) is chosen over
other parallel benchmarking application since this
utility provides the necessary computational
performance figure that we set to achieve. A
quick description of HPL is an application to
identify the computational performance using
dense matrix factorization [15] [16].

The basic platform as skimmed earlier is
parallel HPL P3-CBLAS, again under the
assumption that the majority of applications are in
C using Linux (or OpenSource) BLAS library

WSEAS TRANSACTIONS on COMPUTERS
Izzatdin Aziz, Nazleeni Haron, Low Tan Jung
and Wan Rahaya Wan Dagang

ISSN: 1109-2750 299 Issue 4, Volume 7, April 2008

from Automatically Tuned Linear Algebra
Software (ATLAS) project. Other math library
has been reported to have better performance at
the cost of less stability (for example, GOTO is
faster but has instability issue). Throughout the
performance measurement, only the GCC version
3.3.6 is used due to the unfortunate fact that the
recommended openMosix stable patch only
available for Linux Symmetrical Multi-Processor
(SMP) kernel 2.4.26 machine (Linux kernel 2.4 is
only compilable using GCC 3.xx and lower).

 After countless trial run and reference
study from numerous resources resemblance to our
cluster testbed, few essential parameters are
established and the complete parameters list is
attached in the appendix section of this paper [17]
[18].

HPL algorithm is based on block cyclic
distribution to load-balance the matrix-matrix
multiplication and LU decomposition, however it
may not be the perfect solution for heterogeneous
environment [19]. In brief description, HPL
algorithm is to solve a linear system of order n,

bAx = , by computing the LU factorization using
partial row pivot of n-by-n+1 coefficient matrix

][[][]yULbA ,= in which data is distributed onto
matrix PxQ grid of processes to achieve load
balance and scalable algorithm.

The best problem size (Ns) is determined by
the maximum available physical memory just
before start using the virtual memory (swapping to
slower storage, i.e. harddrive) which shall be
avoided. Hence advisable figure is around 80% of
the total available memory from all nodes
involved in benchmarking and leaving 20% for the
operating system and any other necessary
applications.

The optimum matrix block size (NBs) is
recommended by the HPL’s guideline somewhere
between 32-256 and our trial run found 144, as
shown on the result chart to be the best block size
to achieve good data distribution for
computational granularity, i.e. smaller NB the
more balanced load but too small will not utilize
the data reuse in memory for computing
performance [20].

For the dimension of process rows and
columns for LU matrix factorization (PxQ = total
#s of nodes), it is suggested for simple ethernet
network interconnection to have fairly flat process
grid (close figures of lower Ps and higher Qs) are
recommended due to performance and scalability
limitation of HPL benchmark. So 4-by-9 matrix to

equaling 36 nodes total provides the optimum
result.

HPL LU matrix panel decomposition
broadcast pattern has a significant role in
distributing the process via the MPI message.
Hence, both the parameters with panel broadcast
2, the increasing-2-ring and panel broadcast 3, the
increasing-2-ring modified, are the optimum for
our performance measurement.

Figure 10. Panel Broadcast 2, The Increasing-2-Ring

Figure 11. Panel Broadcast 3, the Increasing-2-ring
modified

However the hybrid cluster does not take
the advantage of this communication feature since
all process initiated by MPICH will only be run
locally and be distributed by openMosix’s mosrun
later on.

7.2 Parallel Benchmark Result

The efficiency is calculated from the theoretical
performance figure, which is 12.138 Gflops using
the previous single node benchmark and the
theoretical formula.

Table 2: 36 Nodes Performance and Efficiency for

Beowulf

NB Gflops % efficiency

112 6.982 0.57

128 7.160 0.59

144 7.394 0.61

160 7.026 0.58

WSEAS TRANSACTIONS on COMPUTERS
Izzatdin Aziz, Nazleeni Haron, Low Tan Jung
and Wan Rahaya Wan Dagang

ISSN: 1109-2750 300 Issue 4, Volume 7, April 2008

Table 3: 36 Nodes Performance and Efficiency for
Hybrid

NB Gflops % efficiency

112 1.570 0.129

128 1.601 0.132

144 1.600 0.132

160 NA NA

Computational Performance

0

1

2

3

4

5

6

7

8

112 128 144 160

Block Size

G
fl
o
p
s

MPICH

MPICH+openMosix

 500

 1000

 1500

 2000

 2500

 3000

 0 200 400 600 800 1000 1200

tim
e
(u
s)

Size (bytes)

Communication Performance for MPI (MPICH-1.2.7p1)

The result explain the poor performance of the
multiprocessing in single node approach in which
the MPI communication library becomes the main

barrier in achieving high performance. This is a
very strong evidence that it follows in which as
the processor number (n) increases the
performance decreases due to the overhead of
multiprocessing on the very same node. Load
imbalance may also contribute since openMosix
does it’s own load balancing algorithm while HPL
via MPICH also tries to balance in distributing the
process, hence only partial nodes are utilized at
any given time (HPL using MPICH alone will
distribute and load balance evenly on all
computing nodes).

This MPI communication benchmark is
somewhat consistent and able to explain the HPL
benchmark results for relative comparison
purposes. A performance figure by a factor of
roughly 1/4 to 1/5 for hybrid cluster is subs-
tantially slower compare to pure MPI cluster.

8 Future Work
Our work raises a number of issues for further
researches. One of the important issues is to find
the suitable load balancing algorithm for allocating
the tasks among the nodes efficiently. Currently,
all tasks are assigned at random to all nodes,
which means some nodes will receive simple tasks
(due to small prime numbers) and some will need
to perform very exhaustive tasks due to big prime
numbers to resolve. As a result, the workload of
the nodes will vary during the run time and
subsequently give impact to the overall
performance of the prime number generation.
Therefore, it will be interesting to study on what
metrics are needed to determine the node’s
workload so that the tasks allocation can be made
efficiently. By having a suitable load balancing
algorithm, substantial speed up of execution of the
application is expected.

Another issue that worth investigating is
pertaining to dynamic memory allocation. We are
using fixed size array and we would like to
investigate the performance of the application if
linked list is used instead. It has been mentioned in
the literature that linked list is more flexible in
terms of inserting and deleting elements. However,
this is yet to be tested for this application.

We are also currently working on resolving
the communication overhead problem. From the
results, it can be clearly seen that as number of
nodes grows, the communication overhead will as
well increase and outweigh any reduction in
computation time.

Fig 12. HPL Benchmark result

Fig 13. MPI Communication Performance

cpunP

WSEAS TRANSACTIONS on COMPUTERS
Izzatdin Aziz, Nazleeni Haron, Low Tan Jung
and Wan Rahaya Wan Dagang

ISSN: 1109-2750 301 Issue 4, Volume 7, April 2008

9 Conclusion
We have proposed a parallel approach to
accelerate the process of prime number generation.
The parallel algorithm was implemented on a
clustered architecture and being tested with large
prime numbers. The outcome of this approach
demonstrated a high degree of reduction in prime
number generation time. This reduction is possible
due to the parallel generation of prime number on
each of the grid nodes. However, the authors shall
suggest the followings that may provide further
improvements:

(1) Use other primality test that is more significant
or feasible for large prime number generation such
as Rabin-Miller algorithm.

(2) Use other random number generation that can
produce random numbers with less computation
yet provides higher security level. One good
candidate shall be the prime number sieve i.e. the
sieve of Eratosthenes [21]. In this implementation
the upper bound of the sieve must be specified,
say n. The generalized algorithm may be
expressed as below:

 Eartisthenes(n)

 {initialization}

 A[1] ← 0

 For i = 2 to n do a[i] ← 1

 p = 2

 while p
2
 <= n do

 {sieve out multiples of p}

 For j = p to [n/p] do a[jp] = 0

 {find the next prime}

 Repeat p = p+1 until a[p] = 1

 Return(a)

Note that we can avoid storing the integers

themselves (which might need a large storage
space) by storing a 1 in location i if i is a prime,
and 0 otherwise. This algorithm returns an array of
such that for all I with 1 <= i <= n, we have a[i] =
1 if i is prime, otherwise a[i] = 0.

However do take note that in practice this
algorithm is more of storage space concerned
rather than time which may be interpreted in the
advantage of fast prime number generation i.e.
less time concerned.

(3) To compare the parallel algorithm proposed
with other parallel algorithms using the same
system model and hardware setting.

References:

[1] M. Joye, P. Paillier and S. Vaudenay,
Efficient Generation of Prime Numbers,
Cryptographic Hardware and Embedded Systems,
vol. 1965 of Lecture Notes in Computer Science,
pp. 340-354, Springer-Verlag, 2000.

[2] Maurer, Fast Generation of Prime Numbers
and Secure Public-Key Cryptographic Parameters,
Journal of Cryptology, vol.8 no.3 (1995), 123-
156.

[3] J.Brandt, I. Damgard, and P. Landrock.
Speeding up prime number generation. In

Advances in Cryptology -- ASIACRYPT '91, vol.
739 of Lecture Notes in Computer Science, pp.
440--449, Springer-Verlag, 1991.

[4] Cheung, R.C.C., Brown, A., Luk, W.,
Cheung, P.Y.K., A Scalable Hardware
Architecture for Prime Number Validation, IEEE
International Conference on Field-Programmable
Technology, 2004. pp. 177-184, 6-8 Dec. 2004.

[5] Tan, C. J. and Blais, J. A. PLFG: A Highly
Scalable Parallel Pseudo-random Number
Generator for Monte Carlo Simulations. 8th

international Conference on High-Performance

Computing and Networking (May 08 - 10, 2000).
Lecture Notes In Computer Science, vol. 1823.
Springer-Verlag, London, 127-135.

[6] Agus Setiawan, David Adiutama, Julius
Liman, Akshay Luther and Rajkumar Buyya,
GridCrypt : High Performance Symmetric Key
Cryptography using Enteprise Grids. 5th

International Conference on Parallel and

Distributed Computing, Applications and

Technologies (PDCAT 200) , Singapore. Springer
Verlag Publications (LNCS Series), Berlin,
Germany. December 8-10, 2004.

[7] Praveen Dongara, T. N. Vijaykumar,
Accelerating Private-key cryptography via
Multithreading on Symmetric Multiprocessors. In
Proceedings of the IEEE International Symposium

on Performance Analysis of Systems and Software

(ISPASS), March 2003.

WSEAS TRANSACTIONS on COMPUTERS
Izzatdin Aziz, Nazleeni Haron, Low Tan Jung
and Wan Rahaya Wan Dagang

ISSN: 1109-2750 302 Issue 4, Volume 7, April 2008

[8] Jerome Burke, John McDonald, Todd
Austin, Architectural Support for Fast Symmetric-
Key Cryptography. Proc. ACM Ninth Int'l Conf.

Architectural Support for Programming

Languages and Operating Systems (ASPLOS-IX),
Nov. 2000.

[9] Selim G Aki, Stefan D Bruda, Improving
A Solution's Quality Through Parallel Processing.
The Journal of Supercomputing archive.Volume
19 , Issue 2 (June 2001).

[10] Dani Adhipta, Izzatdin Bin Abdul Aziz,
Low Tan Jung, Nazleeni Binti Haron
.Performance Evaluation on Hybrid Cluster: The
Integration of Beowulf and Single System Image,
The 2nd Information and Communication

Technology Seminar (ICTS),Jakarta. August
2006.

[11] David M Bressoud, “Factorization and
Primality Testing”, Springer Book 1989.

[12] Richard Crandall, Carl Pomerance,
“Prime Numbers A Computational Perspective”,
2nd edition, Springer Book.

[13] Gropp W., and Lusk E., Why are PVM
and MPI so Different? Technical Report

PREPRINT ANL/MCS-P667-0697, Mathematics
and Computer Science Division, Argonne
National Laboratory, June 1997.

[14] Huang,Z., Purvis, M., and Werstein P.,
Performance Comparison between VOPP and
MPI. In: Proc. of the Sixth International

Conference on Parallel and Distributed

Computing, Applications and Technologies,
pp.343-347, IEEEComputer Society (2005).

[15] J. J. Dongarra, "Performance of Various
Computers Using Standard Linear Equations
Software," 2006.

[16] P. M. Papadopoulos, C. A. Papadoulos,
M. J. Katz, W. J. Link, and G. Bruno,
"Configuring Large High-Performance Clusters at
Lightspeed: A Case Study," 2005

[17] O. I. Vdovikin, "Running High-
Performance Linpack on IBM pSeries JS20 cluster
with Myrinet interconnect."

[18] F. Crawford, "Building Australia's Fastest
Computer," vol. AUUG 2004, 2004.

[19] Y. Kishimoto and S. Ichikawa, "An
Execution-Time Estimation Model for
Heterogeneous Clusters," Proceedings of the 18th
International Parallel and Distributed Processing
Symposium (IPDPS'04), 2004.

[20] Z. Wenli, F. Jianping, and C. Mingyu,
"Efficient Determination of Block Size NB for
Parallel Linpack Test," 2004

[21] Eric Bach, Jeffrey Shallit, “Algorithmic
Number Theory – Efficient Algorithms”,
Foundations of Computing Series, Vol.1, The MIT
Press.

WSEAS TRANSACTIONS on COMPUTERS
Izzatdin Aziz, Nazleeni Haron, Low Tan Jung
and Wan Rahaya Wan Dagang

ISSN: 1109-2750 303 Issue 4, Volume 7, April 2008

