
Parallelization of software for coastal hydraulic

simulations for distributed memory parallel

computers using FORGE 90

Z.W. Song, D. Roose, C.S. Yu, J. Berlamont

2,
B-3001 Heverlee, Belgium

Abstract

Due to the increasing availability of powerful distributed memory parallel
computers, the parallelization of existing sequential software is a very important
issue. Since this is often difficult and time-consuming, the usage of software
tools for analysis and (semi-)automatic parallelization may be of great help.
In this study, the usage of the FORGE 90 software tool is illustrated by its
application to two software packages in the field of coastal hydraulics. FORGE
90 consists of two parts : 'BaWmg FCUfGE W provides many facilities to
analyze sequential Fortran programs, and the 'FORGE 90 parallelized is an
interactive tool which can be used to create a parallel version of a Fortran
program targeted to execute on a distributed memory machine. The former
function of the package has been used to analyze the water quality model -
DIVAST. The latter function of FORGE 90 has been used to parallelize the
hydrodynamic model mu-CSM.

1 Introduction

Parallel computing will only be accepted by a broad application community, if
parallel programming can be made nearly as easy as sequential programming.
With the existing programming models we are still far from that goal [1]. Two
paradigms dominate the programming of parallel computers: the shared memory
model and the message-passing model. Programming in the shared memory
paradigm can be facilitated and made machine independent by coordination
languages [2] or by using parallelizing compilers. Programming in the
message-passing model is made machine independent and is simplified by

 Transactions on Information and Communications Technologies vol 9, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

204 High-Performance Computing in Engineering

appropriate parallel programming libraries. Examples are PVM (Parallel Virtual
Machine) and MPI (Message Passing Interface). However, the programmer still
has to take care of domain partitioning, communication and synchronization.
The ultimate solution for the parallel programming problem will be compilers
that automatically translate a (sequential) code into a optimized parallel version.
Then, the user can program the application in a conventional style, without
having to be concerned with parallel computing aspects such as data
partitioning, data distribution, communication and synchronization. Research in
the domain of parallelizing compilers currently goes into two directions. In the
first approach, the programmer guides the compiler in parallelizing the program
by means of directives. The best-known example of a language for directive-
driven parallel programming is High Performance Fortran (HPF). In the second
approach the compiler parallelizes a program automatically. An example of
such a compiler is FORGE 90, developed by Applied Parallel Research (APR),
Placerville, CA.

Very interesting and practical questions are: (a) to which extend the present
parallel software tools, such as FORGE 90, can help the programmer to do the
porting job? (b) which parallel performance can be achieved?

In this paper, we first briefly describe the capabilities of the FORGE 90
software tool. We report on the use of 'Baseline FORGE 90' for the analysis of
a sequential FORTRAN code, namely the water quality model DIVAST,
developed at the Univ. of Bradford, U.K. [5]. Further, we study the (semi-)
automatic parallelization of some sequential codes using FORGE 90. Several
numerical kernels (Jacobi, Gauss-Seidel and ADI type) used in the solution of
the Two Dimensional Shallow Water Equations have been parallelized using
FORGE 90 and tested on an iPSC/860 parallel computer. A Fortran code
developed at K.U.Leuven, Belgium [9], for the simulation of 2D water flow has
been parallelized using FORGE 90. Timing results for the tidal flow simulation
of the Northwest European Continental Shelf Seas on an iPSC/860 are
presented.

2 Introduction to FORGE 90

Many simulation codes have been developed, maintained and renewed by
different persons over a long time period. Furthermore, many of these codes
were written by engineers who are not well-trained in software development.
This leads to a situation where a program's control flow and data flow may no
longer be easily comprehensible.

To port and to maintain a Fortran program, a global view of its symbol
usage and its control structure must be available.

'Baseline FORGE 90' is a comprehensive set of tools that provides the
required high-level approach to these problems. It consists of a Fortran syntax
parser, database generator, program maintaining facility, and database viewing
tools that enable to examine and manipulate an entire Fortran program as a
simple entity. The analysis capabilities of FORGE 90 enable to understand

 Transactions on Information and Communications Technologies vol 9, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

High-Performance Computing in Engineering 205

program control flows and usage of variables and data. Runtime statistics are
provided by an instrumentation facility [3].

The 'FORGE 90 parallelized is an interactive tool that can be used to create
a version of a Fortran program targeted to execute on a distributed memory
machine. Higher-level analysis and restructuring modules for vectorization and
parallelization are added to the baseline system. A pre-processor and a run-
time library that executes on the parallel system allow the interactive
parallelizer to work essentially independent of the target system. Specific
system dependencies are handled by the pre-processor and the run-time library.
FORGE 90's role is to advise the user regarding the parallelizability of do-
loops, and to display the inter-processor communications required when loops
are parallelized. The actual parallelization of Fortran code occurs when the
user chooses a set of loops to be distributed over the processors, and a data
partitioning scheme for the arrays enclosed in those loops. The 'FORGE 90
parallelizer' does the rest, rewriting the loops and inserting array partitioning
and data communication directives to be handled by the pre-processor. The
FORGE 90 distributed memory parallelizer uses the Single Program - Multiple
Data (SPMD) model. The primary concerns for this SPMD model are the
choice of loops to be distributed and the partitioning of data over processors
[4]-

3 Analysis of the DIVAST software for water quality
simulation using 'Baseline FORGE 9ff

DIVAST is a numerical model designed for predicting the water elevation and
depth averaged velocity components in the horizontal plane and up to eight user
specified water quality constituents and sediment transport fluxes. DIVAST is
developed by R.A. Falconer [5] at the University of Bradford, UK. The
governing differential equations are solved using a finite difference
discretization and a time-integration scheme based on the Alternating Direction
Implicit (ADI) formulation. The model has been used extensively by industrial
engineering companies for commercial applications and by over 30 universities
world-wide for research purposes.

The parallelization of the ADI scheme is quite difficult due to the
alternating data dependencies in x- and y-direction respectively. Several
approaches to parallelise ADI-schemes have been developed during the last
years (see Song et. al. [6]). The most time consuming part of the porting work
is the understanding of the control flow and data flow of the Fortran code. The
parallelization is based on a partitioning of the domain into several
sub-domains. The coordination of the sub-domains is done by exchanging
information between the sub-domains. Depending on the partitioning strategy,
the variables involved in the communication must be identified. To do this, the
global and local variables in each routine must be separated. For the global
variables - which are passed between various subroutines - it has to be clear
which variables are used, set or used and set in a particular routine. The global

 Transactions on Information and Communications Technologies vol 9, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

206 High-Performance Computing in Engineering

array variables in the overlap regions must be updated before they are used.
The global variables which are set in a routine must be transferred to the
processors holding neighbouring sub-domains to re-fresh the overlap regions.
In the DIVAST model, also some scalar global variables are set in some
routines. For this type of variables, a broadcast is necessary instead of
communication between neighbouring sub-domains.

Implementation of the communications described above (communication
between neighbours or broadcasting) is not difficult, but to determine the proper
communication for all variables is very time consuming. In this respect,
FORGE 90 provides more information and support than classical compilers.

Using FORGE 90, it is easy to display the global input and output variables
(parameters or arguments and COMMON block variables) for each routine.
For each routine, a table is generated, from which it can be easily determined
which variables are updated in a particular routine. In case a scalar variable is
updated, it is very likely that a broadcast of that variable from one of the
processors is necessary. In case an array variable is updated and this variable
is used in some routine afterwards, it is probably necessary to introduce a
communication step in between.

The COMMON Block Grid function in FORGE 90 lists all the COMMON
blocks and summarizes the usage of variables in COMMON blocks in each
routine. This function gives a general picture of the COMMON variables in
the sequential code.

FORGE 90 also displays the inter-dependencies between subroutines (or
program blocks) in a table, which shows, for each subroutine, which other
routines are called by that particular routine.

The analysis function of FORGE 90 can be summarized as follows: trace
variables, display constants, query the database, list all routines, show the
COMMON grid, perform the data flow analysis and view timing information.

The analysis capabilities of FORGE 90 enable us to understand, to explore
and to scrutinize complicated Fortran application code within a short time
period. Our experiences with FORGE 90 baseline to analyze the water quality
model DIVAST are very positive. With 'Baseline FORGE 90\ we can
efficiently examine the program using a tool set designed for easy query of the
database information. A clear picture of the DIVAST code was available within
a week.

4 Parallelization of numerical kernels using 'FORGE 90

parallelized

In coastal hydraulics, hydrodynamic models are based on the Shallow Water
Equations (SWEs). Commonly used time integration schemes for the SWEs
range from explicit, semi-implicit to implicit. The numerical kernels involved
in these schemes are an explicit (or Jacobi type) update, an ADI scheme and
iterative linear system solvers of Gauss-Seidel type. To test the capability of the
'FORGE 90parallelized for distributed memory parallel computers, these kernel

 Transactions on Information and Communications Technologies vol 9, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

High-Performance Computing in Engineering 207

problems for the solution of the 2D SWEs have been parallelized using FORGE
90 and executed on an Intel iPSC/860 machine.

An explicit time-integration scheme (or Jacobi-type scheme) can be
parallelized easily.

The semi-implicit Alternating Direction Implicit (ADI) method is a popular
time-integration scheme. The data dependencies in the ADI scheme occurs
alternatingly in x- and y-direction, respectively. As mentioned before, the
primary aims of the FORGE 90 parallelizer are the distribution of do-loops and
the data partitioning. Thus, the only reasonable way to parallelize the ADI
method using FORGE 90 is to introduce a complete data transposition operation
in between the two half-steps in order to avoid the distribution of the coupled
data over several processors in one of the half-steps.

When an implicit time-integration scheme is used, the resulting linear
systems are normally solved by iterative methods. Gauss-Seidel (or SOR)
iteration is a simple and, in case of SWEs, a relatively efficient method.
However, the lexicographic Gauss-Seidel (or SOR) method can not be
parallelized. To explore parallelization, a colouring scheme has to be used (e.g.
Red-Black Gauss-Seidel).

We have compared the timing results and the parallel performance of the
hand parallelized version and the version parallelized using FORGE 90 for the
kernel problems mentioned above. The results are listed in tables 1, 2 and 3.
The parallel efficiencies are always computed using the original sequential code
as reference.

Table 1: Jacobi type scheme (timings in seconds and parallel efficiency)

Proc.

Hand coded

FORGE

1

17.96/100%

18.07/99%

9.

9.

2

13/9894

14/98%

4

4

4

73/9594

78/94%

Table 2: Gauss-Seidel type scheme (timing in seconds and parallel efficiency)

Proc.

Hand coded

FORGE

10.

10

1

36/10094

.56/98%

2

5.35/97%

5.43/95%

2

2

4

.87/90%

.99/87%

Table 3: ADI type scheme (timing in seconds and parallel efficiency)

Proc.

Hand coded

FORGE

45

68

1

69/100

.5/67%

2

27.4/83%

36.4/63%

15

18

4

2/75%

8/61%

 Transactions on Information and Communications Technologies vol 9, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

208 High-Performance Computing in Engineering

By using the 'FORGE 90 parallelized, porting a sequential Fortran code into
a machine-independent parallel code becomes straightforward. FORGE
parallelizes a code by distributing the execution of a do-loop over the
processors. This is essentially equivalent to a one-dimensional partitioning of
the work load. The choice of loops to be distributed and the data partitioning
are the two major concerns for the programmer, while all the machine-
dependent issues, communication and synchronization between processors are
handled by the run-time library. The performance results of the code
parallelized using FORGE 90 are nearly the same as that of a hand parallelized
code for simple kernel problems (tables 1 and 2). However, the ADI kernel
(table 3) poses some problems. The execution time of the parallel code
generated by FORGE is much higher than that of the code parallelized by hand.
This is especially true when only 1 or 2 processors are used. We do not have
an explanation for this. When 4 processors are used, the differences in
execution time are acceptable. Some of the inefficiencies introduced by FORGE
are due to additional communication when FORGE cannot decide at compile-
time about data dependencies. In these cases, additional communication is
inserted to ensure correct results.

5 Parallelization of mu-CSM hydrodynamic model using

FORGE 90

mu-CSM is a numerical model for simulating tidal flows in the Northwest
European Continental Shelf Seas. mu-CSM has been jointly developed by the
Laboratory of Hydraulics, K.U.Leuven and the Management Unit of the
Mathematical Models of the North Sea and the Scheldt Estuary, Belgium [7,8].
The model is constructed based on a finite difference discretization and a
modified ADI time integration scheme [9]. The model covers an area from
12°W to 13°E and 48°N to 63°N. The mesh is defined by a spherical grid with
a grid size of 2.5 minutes in the latitude direction and 5 minutes in the
longitude direction, which results in a resolution of about 4km x 4km in the
centre of the model area. The total number of grid points is 102,076 while
44,302 grid points are 'wet' points for which the calculation must be performed.

The performance results obtained with the code parallelized by hand and
the version parallelized using FORGE 90 are listed in table 4.

Table 4: Timing in seconds and parallel efficiency for the mu-CSM model.

Proc.

Hand coded

FORGE (original

FORGE (modified

code)

code)

1

1017/100%

2927/35%

1690/60%

2

575/8894

3223/16%

962/53%

4

312/81%

3682/7%

637/40%

 Transactions on Information and Communications Technologies vol 9, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

High-Performance Computing in Engineering 209

When the original mu-CSM code is parallelized using the 'FORGE 90
parallelized, the performance results for the Northwest European Continental
Shelf Sea application are unacceptable (table 4, second row). This can be
explained as follows. Due to the traditional way of programming in
hydrodynamic modelling, the velocities in x- and y-direction are calculated
according to the orientation of the velocity. The one-dimensional partitioning
strategy in FORGE 90 leads to a situation where the inner loops are distributed.
This situation generates many short messages for communication and this
results in a substantial degradation in performance. We have modified the mu-
CSM code such that the inner loop distribution disappeared. The execution
time decreased significantly but is still much higher than the timing for the
hand coded version (see table 4, third row).

The parallel efficiency of the modified mu-CSM code generateded by
FORGE 90, is much lower than the efficiency of the hand coded parallel code
also for the following reasons. The computational domain of the Northwest
European Continental Shelf Sea application has a irregular shape but the
information is stored in matrices, i.e. regular structures. The domain partitioning
done in FORGE 90 is based only on the regular data structures that are
allocated, so an unbalanced work load distribution occurs, because large parts
of the allocated data structures are not used. This is an important factor that
influences the performance results. Further, the mu-CSM code is a complicated
operational model. Due to this complexity, FORGE 90 introduces more
communications between processors than in the hand parallelized code, in order
to ensure correct results.

6 Conclusions

FORGE 90 provides the problem-solving capabilities needed when one is trying
to understand a complicated Fortran code in its current environment, and when
porting it to a parallel architecture. A significant time saving has been
experienced in analysing the water quality model DIVAST.

The 'FORGE 90 parallelized is capable of parallelizing simple kernel
problems efficiently. For application codes, such as the mu-CSM model, a
detailed analysis of the usage of the variables in the routines and some
modifications to the original code are necessary to be able to obtain a good
parallel performance. Applications with irregular data, e.g. the Northwest
European Continental Shelf Sea application, can hardly be parallelized well by
using the 'FORGE 90 parallelized. This is especially true if regular data
structures (matrices) are used to store the (irregular) data. In such case, a
partitioning of the allocated data structures does not necessarily lead to a well-
balanced partitioning of the actual data. It is important to point out that, in our
experiences, the codes generated by FORGE 90 always produce correct results.

 Transactions on Information and Communications Technologies vol 9, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

210 High-Performance Computing in Engineering

ACKNOWLEDGEMENT

We are grateful to Uwe Block from Genias GmbH for his kind cooperation on
the usage and the evaluation of the FORGE 90 package. We acknowledge also
the help of Applied Parallel Research (APR). Thanks also to Liliane De Roose
for her help concerning the use of the iPSC parallel computer.

REFERENCES

1. Giloi, W.K. (1994) Programming Modelling and Tools for Massively
Parallel Computers, In L. Dekker, W. Smit and J.C. Zuidervaart (Eds),
Massively Parallel Processing Applications and Development, pp. 3.14,
Elsevier Sciences B.V, Amsterdam 1994.

2. Gelernter, D. Generative (1985) Communication in Linda, ACM Trans, on
Programming Languages and Systems, 1985, 7(1), 80-112.

3. Applied Parallel Research, (1992) FORGE PO Fcr̂ o,? &0
Sep. 1992.

4. Applied Parallel Research, (1993) FCUfGE W Fzrjmf? &7
Memory Parallelizer User's Guide, April, 1993.

5. Falconer, R.A. (1986) A Two-Dimensional Mathematical Model Study of
the Nitrate Levels in an Inland Natural Basin, pp. 325-344, Pro. Int. Conf.
on BHRA, Fluid Engineering, Paper Jl, June 1986.

6. Song, Z.W., C.S. Yu, D. Roose and J. Berlamont, (1993) Solving the 2D
shallow water equations by explicit and ADI methods on distributed memory
parallel computers, (eds Brebbia, C.A. and Power, H.), pp. 239-252,
Applications of Supercomputers in Engineering III, C o m p u t a t i o n a l
Mechanics Publications, Southampton.

7. Yu, C.S., A. Vermunicht, M. Fettweis, and J. Berlamont (1989) Numerical
simulation of long waves on the north-west European continental shelf. Part
1 : data collection and model test. Technical report to the Ministry of Public
Health and Environment, Belgium, Ref. BH/88/28.

8. Yu, C.S., A. Vermunicht, M. Rosso, M. Fettweis and J. Berlamont (1990)
Numerical simulation of long waves on the north-west European continental
shelf. Part 2 : Model setup and calibration. Technical report to the Ministry
of Public Health and Environment, Belgium, Ref. BH/88/28.

9. Yu, C.S. (1993) M)6W/mg 6Wf 6ga Dy/mmz'cj, Ph.D Thesis, Faculty of
Applied Science, K.U.Leuven, Belgium.

 Transactions on Information and Communications Technologies vol 9, © 1995 WIT Press, www.witpress.com, ISSN 1743-3517

