
Parallelization of the

Vehicle Routing Problem

with Time Windows

Jesper Larsen

LYNGBY 1999
Ph.D. THESIS

NO. 62

IMM

ISSN 0909-3192

c© Copyright 1999

by

Jesper Larsen

Printed by IMM - DTU Technical University of Denmark

ii

Preface

This Ph.D. thesis entitled “Parallelization of the Vehicle Routing Problem
with Time Windows” has been prepared by Jesper Larsen during the period
June 1995 to May 1999, partly at the Department of Computer Science
(DIKU) at the University of Copenhagen, partly at the Department of
Mathematical Modelling (IMM) at the Technical University of Denmark
(DTU).

The Ph.D. project has been supervised by my main advisor professor Jens
Clausen and associate professor Oli B. G. Madsen. The subjects of the
thesis are improving the performance of the sequential algorithm for the
VRPTW and parallelization of the vehicle routing problem with time win-
dows. The thesis is submitted as a partial fulfillment of the requirement
for obtaining the Ph.D. degree at the Technical University of Denmark.

The project was supported by the EPOS (Efficient Parallel algorithms for
Optimization and Simulation) project of the Danish NSF (Statens Natur-
videnskabelige Forskningsr̊ad).

Acknowledgements

A Ph.D. project is not a one-man project, therefore I would first and fore-
most like to thank my supervisors Jens Clausen and Oli B. G. Madsen for
their support and encouragements throughout the project. Without them
this project would definitely not have been possible. I would also like to

iii

iv

thank my former colleagues from the Algorithmics and Optimization group
at the Department of Computer Science, University of Copenhagen, and my
present colleagues from the section of Operations Research at the Depart-
ment of Mathematical Modelling, Technical University of Denmark. Espe-
cially I would like to thank Stefan Karisch for a positive office-partnership
during the 6 months we shared the same office. I would also like to thank
Niklas Kohl, Ph.D. from the Department of Mathematical Modelling, for
quick responses to my numerous e-mails on his code and the VRPTW in
general.

A special thanks goes “down under” to New Zealand. My 5 1
2 month stay at

the Department of Engineering Science at the University of Auckland, New
Zealand, was in every respect wonderful. Professor David Ryan delivered
invaluable support and supervising. Additionally I would like to thank the
entire Ryan family for letting me become a natural part of 10 Ngapuhi
Road for the 5 1

2 months.

I would like to thank Stefan Tschöke, Georg Kliewer and Torsten Fahle
from the University of Paderborn, Germany, for their support. Although
all production runs of my parallel code was made on the IBM SP2 at
UNI•C, it was a significant help for me to be able to build and test the
code on the parallel computers at the University of Paderborn, at a central
moment where CPLEX was not available at the IBM SP2, and I always
got an answer on my numerous emails, when I was stuck with some inane
error message. Thanks to them the parallel code was ready for productions
runs as soon as the necessary software was available on the IBM SP2.

Finally I would like to thank friends and family for their support during the
almost 4 years it took to complete this thesis. During a project that lasts
almost 4 years there are bound to be periods where things aren’t working
as they are supposed to do. In these periods encouragement and comfort
from friends and family was never missing.

Lyngby, May 1999.

Jesper Larsen

Summary

Routing with time windows (VRPTW) has been an area of research that
have attracted many researchers within the last 10 – 15 years. In this
period a number of papers and technical reports have been published on
the exact solution of the VRPTW.

The VRPTW is a generalization of the well-known capacitated routing
problem (VRP or CVRP). In the VRP a fleet of vehicles must visit (ser-
vice) a number of customers. All vehicles start and end at the depot. For
each pair of customers or customer and depot there is a cost. The cost
denotes how much is costs a vehicle to drive from one customer to an-
other. Every customer must be visited exactly ones. Additionally each
customer demands a certain quantity of goods delivered (know as the cus-
tomer demand). For the vehicles we have an upper limit on the amount
of goods that can be carried (known as the capacity). In the most basic
case all vehicles are of the same type and hence have the same capacity.
The problem is now for a given scenario to plan routes for the vehicles in
accordance with the mentioned constraints such that the cost accumulated
on the routes, the fixed costs (how much does it cost to maintain a vehicle)
or a combination hereof is minimized.

In the more general VRPTW each customer has a time window, and be-
tween all pairs of customers or a customer and the depot we have a travel
time. The vehicles now have to comply with the additional constraint that
servicing of the customers can only be started within the time windows of
the customers. It is legal to arrive before a time window “opens” but the
vehicle must wait and service will not start until the time window of the

v

vi

customer actually opens.

For solving the problem exactly 4 general types of solution methods have
evolved in the literature: dynamic programming, Dantzig-Wolfe (column
generation), Lagrange decomposition and solving the classical model for-
mulation directly.

Presently the algorithms that uses Dantzig-Wolfe given the best results
(Desrochers, Desrosiers and Solomon, and Kohl), but the Ph.D. thesis of
Kontoravdis shows promising results for using the classical model formula-
tion directly.

In this Ph.D. project we have used the Dantzig-Wolfe method. In the
Dantzig-Wolfe method the problem is split into two problems: a “master
problem” and a “subproblem”. The master problem is a relaxed set parti-
tioning problem that guarantees that each customer is visited exactly ones,
while the subproblem is a shortest path problem with additional constraints
(capacity and time window). Using the master problem the reduced costs
are computed for each arc, and these costs are then used in the subproblem
in order to generate routes from the depot and back to the depot again.
The best (improving) routes are then returned to the master problem and
entered into the relaxed set partitioning problem. As the set partition-
ing problem is relaxed by removing the integer constraints the solution is
seldomly integral therefore the Dantzig-Wolfe method is embedded in a
separation-based solution-technique.

In this Ph.D. project we have been trying to exploit structural properties
in order to speed up execution times, and we have been using parallel
computers to be able to solve problems faster or solve larger problems.

The thesis starts with a review of previous work within the field of VRPTW
both with respect to heuristic solution methods and exact (optimal) meth-
ods. Through a series of experimental tests we seek to define and examine
a number of structural characteristics.

The first series of tests examine the use of dividing time windows as the
branching principle in the separation-based solution-technique. Instead
of using the methods previously described in the literature for dividing a
problem into smaller problems we use a methods developed for a variant
of the VRPTW. The results are unfortunately not positive.

vii

Instead of dividing a problem into two smaller problems and try to solve
these we can try to get an integer solution without having to branch. A
cut is an inequality that separates the (non-integral) optimal solution from
all the integer solutions. By finding and inserting cuts we can try to avoid
branching. For the VRPTW Kohl has developed the 2-path cuts. In the
separationalgorithm for detecting 2-path cuts a number of test are made.
By structuring the order in which we try to generate cuts we achieved very
positive results.

In the Dantzig-Wolfe process a large number of columns may be generated,
but a significant fraction of the columns introduced will not be interesting
with respect to the master problem. It is a priori not possible to determine
which columns are attractive and which are not, but if a column does
not become part of the basis of the relaxed set partitioning problem we
consider it to be of no benefit for the solution process. These columns are
subsequently removed from the master problem. Experiments demonstrate
a significant cut of the running time.

Positive results were also achieved by stopping the route-generation pro-
cess prematurely in the case of time-consuming shortest path computations.
Often this leads to stopping the shortest path subroutine in cases where
the information (from the dual variables) leads to “bad” routes. The pre-
mature exit from the shortest path subroutine restricts the generation of
“bad” routes significantly. This produces very good results and has made
it possible to solve problem instances not solved to optimality before.

The parallel algorithm is based upon the sequential Dantzig-Wolfe based
algorithm developed earlier in the project. In an initial (sequential) phase
unsolved problems are generated and when there are unsolved problems
enough to start work on every processor the parallel solution phase is ini-
tiated. In the parallel phase each processor runs the sequential algorithm.
To get a good workload a strategy based on balancing the load between
neighbouring processors is implemented. The resulting algorithm is effi-
cient and capable of attaining good speedup values. The loadbalancing
strategy shows an even distribution of work among the processors. Due to
the large demand for using the IBM SP2 parallel computer at UNI•C it
has unfortunately not be possible to run as many tests as we would have
liked. We have although managed to solve one problem not solved before

viii

using our parallel algorithm.

Resumé (in Danish)

Ruteplanlægning med tidsvinduer (VRPTW) har inden for de sidste 10 –
15 år optaget mange forskere. Der er i denne periode publiceret mange
artikler og rapporter inden for emnet eksakt løsning af VRPTW.

VRPTW er en generalisering af det velkendte ruteplanlægningsproblem
med kapacitetsbegrænsninger (VRP eller CVRP). I VRP skal en fl̊ade af
biler besøge en række kunder. Bilerne starter og slutter deres ruter i et
depot, og for hver direkte forbindelse mellem to kunder eller en kunde og
depotet er der fastlagt en omkostning. Hver kunde skal besøges af præ-
cis en bil. Desuden ønsker hver kunde en bestemt mængde varer leveret.
Den samlede mængde varer, der kan transporteres af en bil er begrænset
af bilens kapacitet. For et givet scenario ønskes at minimere den omkost-
ning i form af kørt afstand som bilerne akkumulere under deres kørsel, de
faste omkostninger (hvor meget koster det at holde en bil kørende) eller en
kombination heraf.

I VRPTW tildeles hver kunde et tidsvindue samt rejsetider mellem hver af
kunderne og mellem kunderne og depotet. En bil skal nu betjene kunden
indenfor det givne tidsvindue. Kommer bilen før tidsvinduets start må den
vente indtil kundens tidsvindue “̊abner”.

Indenfor eksakte metoder til løsning af VRPTW er der i litteraturen blevet
beskrevet 4 mulige metoder: dynamisk programmering, Dantzig-Wolfe (søj-
le-generering), Lagrange dekomposition og direkte løsning af den klassiske
modelformulering.

Til dato har algoritmer, der bygger p̊a Dantzig-Wolfe givet de bedste re-

ix

x

sultater (Desrochers, Desrosiers og Solomon, og Kohl), men Kontoravdis’
ph.d.-afhandling, hvori der arbejdes direkte med den klassiske modelformu-
lering ser lovende ud.

I Dantzig-Wolfe metoden, som benyttes i dette ph.d.-projekt, opdeles pro-
blemet i 2 delproblemer: et “master problem” og et “subproblem”. Master
problemet er et relaxeret klassedelingsproblem som sikrer, at hver kunde
besøges præcis en gang, mens subproblemet et er korteste-vej-problem, som
tager hensyn til kapacitetsbegrænsninger og overholdelse af tidsvinduer.
Vha. master problemet beregnes de reducerede omkostninger for de enkelte
direkte forbindelser mellem kunderne (og kunder og depotet). Disse bruges
s̊a i subproblemet til at beregne den/de korteste veje fra depot og tilbage
til depotet. De bedste ruter returneres til master problemet, der tilføjer
ruterne som søjler i det relaxerede klassedelingsproblem. Eftersom man
ikke er garanteret en heltallig løsning indsættes Dantzig-Wolfe metoden i
en separations-baseret løsningsmetode.

I denne afhandling er der dels arbejdet med udnyttelse af problemstrukturer
til at give hurtigere løsningstider, dels brug af parallelcomputere for at
kunne løse større problemer eller løse problemer hurtigere.

Afhandlingen indledes med en gennemgang af eksakte og heuristiske me-
toder for VRPTW, samt en teoretisk gennemgang af problemet. Igennem
en lang række eksperimentelle afprøvninger søges en række strukturelle
egenskaber defineret og undersøgt.

Undersøgelserne starter med en række tests af brug af tidsvinduerne som
forgreningskriterie i en separations-baseret løsningsmetode. I stedet for at
bruge de klassiske metoder til deling af et ikke løst delproblem i to min-
dre delproblemer udføres en metode beskrevet for en variant af VRPTW.
Resultaterne er desværre ikke positive.

I stedet for at opdele et delproblem i to mindre delproblemer kan man
gennem tilføjelse af gyldige uligheder, dvs. uligheder der afskærer den
bedst fundne ikke-heltallige løsning fra alle heltalsløsningerne, søge at opn̊a
en heltalsløsning uden brug af forgreningsteknikken. Til VRPTW er de
s̊akaldte “2-path uligheder” udviklet af Kohl. I forbindelse med brug af
2-path uligheder udføres en række tests med henblik p̊a effektivisering af
separationsalgoritmen. Her opn̊as meget positive resultater i forbindelse
med en ordnet gennemgang af mulige gyldige uligheder.

xi

I Dantzig-Wolfe processen dannes en mængde ruter, og en stor del af disse
vil ikke være interessante i forhold til master problemet. Det er a priori
svært at se hvilke søjler der ikke er interessante, men hvis en søjle ikke opn̊ar
at indg̊a i en basis til løsningen af et LP-relaxeret klassedelingsproblem, må
den skønnes at være uden nytte. Disse kan fjernes fra master problemet.
Eksperimenter viser, at dette resulterer i en væsentlig nedgang i algoritmens
køretid.

Positive resultater er ogs̊a opn̊aet ved at stoppe rutegenererings processen
tidligere i tilfælde af lange køretider for korteste-vej-algoritmen. Ofte bliver
processen stoppet i tilfælde, hvor manglende informationer giver “d̊arlige”
ruter. Dermed undg̊as dannelsen af mange d̊arlige ruter. Denne idé giver
meget gode resultater og har muliggjort løsningen af problemer, der ikke
tidligere har været løst til optimalitet.

Den parallelle algoritme tager sit udgangspunkt i den sekventielle Dantzig-
Wolfe baserede algoritme udviklede tidligere i projektet. Efter en initiel
fase, hvor der dannes et antal endnu uløste delproblemer fordeles uløste
delproblemer p̊a alle processorer. Herefter sker problemløsning parallelt.
For at sikre en ligelig lastfordeling, er der implementeret en strategi til
lastfordeling. Den resulterende parallelle algoritme er effektiv og i stand
til at opn̊a gode speedups. Lastfordelings-strategien fremviser en meget
jævn fordeling af delproblemer imellem processorene. Grundet det store
pres p̊a UNI•C’s SP2 parallelcomputer har det ikke været muligt at udføre
ret mange eksperimenter p̊a endnu uløste problemer. Det er dog lykkedes
vha. den parallelle algoritme at løse et probleminstans som aldrig før har
været løst til optimalitet.

xii

List of Abbreviations

Abbreviations Meaning First
occurrence

CVRP Capacitated Vehicle Routing Problem 3
ESPP Elementary Shortest Path Problem 16
ESPPCC Elementary Shortest Path Problem with

Capacity Constraints
16

ESPPTW Elementary Shortest Path Problem with 16
Time Windows

ESPPTWCC Elementary Shortest Path Problem with 16
Time Windows and Capacity
Constraints

GAP Generalized Assignment Problem 26
GLS Guided Local Search 44
GRASP Greedy Randomized Adaptive Search

Procedure
43

MCVRPTW Multi Compartment Vehicle Routing 96
Problem with Time Windows

MDVRPTW Multi Depot Vehicle Routing Problem
with Time Windows

94

MIMD Multiple Instruction-stream Multiple 103
Data-stream

MISD Multiple Instruction-stream Single 105
Data-stream

Continued on the next page

xiii

xiv

Continued from the previous page

Abbreviations Meaning First
occurrence

MPI Message Passing Interface 7
MPP Massively Parallel Processing 107
PRAM Parallel Random Access Machine 102
PVM Parallel Virtual Machine 7
RAM Random Access Machine 102
SAP Semi Assignment Problem 26
SIMD Single Instruction-stream Multiple 103

Data-stream
SISD Single Instruction-stream Single 103

Data-stream
SPP Shortest Path Problem 80
SPPTW Shortest Path Problem with 85

Time Windows
SPPTWMCC Shortest Path Problem with Time 96

Windows and Multiple Capacity Con-
straints

TSP Travelling Salesmans Problem 3
TSPTW Travelling Salesmans Problem with 14

Time Windows
VRP Vehicle Routing Problem 3
VRPBTW Vehicle Routing Problem with Back-

hauling and Time Windows
97

VRPLC Vehicle Routing Problem with 5
Length Constraint

VRPTW Vehicle Routing Problem with 4
Time Windows

Contents

Preface iii

Summary v

Resumé (in Danish) ix

List of Abbreviations xiii

Contents xv

1 Introduction 1

1.1 Motivation . 2

1.2 Combinatorial Optimization 6

1.3 Why go parallel? . 7

1.4 Outline of the thesis . 8

1.5 Overview of contribution of this thesis 8

2 Routing with Time Windows 11

2.1 A mathematical model of the VRPTW 11

xv

xvi Contents

2.2 Complexity issues . 14

2.3 Review of optimal algorithms 17

2.3.1 Dynamic Programming 18

2.3.2 Lagrange Relaxation-based methods 21

2.3.3 Other methods . 27

2.4 Review of approximation algorithms and heuristics 28

2.4.1 Route-building heuristics 28

2.4.2 Route-improving heuristics 31

2.5 Overview of exact methods and heuristics 45

3 Sequential Routing with Time Windows 49

3.1 A set partitioning model of the VRPTW 49

3.2 Preprocessing . 50

3.3 Branch-and-Price . 53

3.3.1 Column Generation 54

3.3.2 Branch-and-Bound 56

3.4 Achieving tighter lower bounds 65

3.4.1 The Subtour elimination constraints 66

3.4.2 Comb-inequalities 67

3.4.3 2-path inequalities 68

3.5 Putting it all together . 73

4 Shortest Path with Constraints 77

4.1 The mathematical model . 77

4.2 A Dynamic Programming Algorithm 80

4.2.1 The algorithm . 80

Contents xvii

4.2.2 Dominance criterion 85

4.2.3 Elimination of two-cycles 86

4.3 Implementation issues . 89

4.3.1 Implementation of dominance 89

4.3.2 Generalized buckets 89

4.3.3 Miscellaneous remarks 90

5 Generalizations of the VRPTW model 93

5.1 Non-identical vehicles . 93

5.2 Multiple depots . 94

5.3 Multiple Compartments . 96

5.4 Multiple Time Windows . 97

5.5 Soft Time Windows . 97

5.6 Pick-up and delivery . 97

5.7 Additional constraints . 99

6 Parallel Implementation 101

6.1 Parallel Programming . 101

6.2 The IBM SP2 computer at UNI•C. 105

6.3 A parallel VRPTW algorithm 109

6.3.1 Solving the subproblem (SPPTWCC) 109

6.3.2 Solving the master problem 111

6.3.3 Branching and bounding 111

6.4 Implementational details . 117

6.4.1 The initial phase . 117

6.4.2 The parallel phase 117

6.4.3 The message passing/load balancing framework . . . 119

6.5 Summary . 121

xviii Contents

7 Sequential computational experiments 123

7.1 The Solomon test-sets . 124

7.2 Using the Ryan-Foster branching rule in VRPTW 128

7.3 Experiments with branching on resources 131

7.4 Speeding up the separation algorithm for 2-path cuts 137

7.4.1 A new way of generating the S sets 142

7.4.2 Heuristic for the “feasibility TSPTW” problem . . . 147

7.5 Using the “trivial” lower bound 153

7.6 Generating cuts outside the root node. 156

7.7 Reducing the number of columns 158

7.8 Speeding up the column generation. 167

7.8.1 Random selection. 167

7.8.2 Forced early stop. 171

8 Parallel computational experiments 183

8.1 The basic parallel program 184

8.2 Strategy for selection of subspaces 188

8.3 Exchange of “good” routes 190

9 Conclusions 195

9.1 The Road Ahead . 195

9.1.1 Forced early of stop the the 2-path separation algorithm195

9.1.2 Describing and implementing new cuts 196

9.1.3 Redesign of the 2-path cuts 197

9.1.4 Heuristics based on the column generation technique 197

9.1.5 Advanced branching methods 197

Contents xix

9.1.6 Stabilized column generation 201

9.1.7 Limited subsequence 203

9.1.8 Speeding up the parallel algorithm 204

9.2 Main conclusions . 205

Bibliography 209

A The R1, C1 and RC1 problems 225

B The R2, C2 and RC2 problems 249

C Ph. D. theses from IMM 267

xx Contents

Chapter 1

Introduction

All obstacles in life are mere opportunities.
- (written on a bench at Mt. Hobson park, Auckland)

In modelling of routing problems terminology is to a great extent derived
from graph theory. Notions like vertex, node, arc, path etc. will not be
explained. In general it is assumed that the reader is familiar with the
concepts of graph theory and linear programming.

The notation presented and used throughout this thesis is identical to the
notation used in [Koh95].

1

2 Chapter 1. Introduction

1.1 Motivation

In the real world many companies are faced with problems regarding the
transportation of people, goods or information – commonly denoted routing
problems. This is not restricted to the transport sector itself but also
other companies e.g. factories may have transport of parts to and from
different sites of the factory, and big companies may have internal mail
deliveries. These companies have to optimize transportation. As the world
economy turns more and more global, transportation will become even more
important in the future.

Back in 1983 Bodin et al. in [BGAB83] reported that in 1980 approximately
$400 billion were used in distribution cost in the United States and in the
United Kingdom the corresponding figure was £15 billion. Halse reports
in [Hal92] from an article from the Danish newspaper Berlingske Tidende
that in 1989 76.5% of all the transportation of goods was done by vehi-
cles, which underlines the importance of routing and scheduling problems.
Fisher writes in [Fis97] that a study from the National Council of Physical
Distribution estimates that transportation accounts for 15% of the U.S.
gross national product (1978). In Denmark the figures are 13% for 1981
and 15% for 1994 according to [The98].

Therefore solving different kinds of routing and scheduling problems is an
important area of Operations Research (OR). Cutting even a small fraction
of the costs may result in large savings and reduce the strain on the envi-
ronment caused by pollution and noise. In [Bod90] a number of successful
applications made over the past 20 years are mentioned.

In a pure routing problem there is only a geographic component, while
more realistic routing problems also include a scheduling part, that is, a
time component.

The problems in research are often more simple than real-life problems. But
even though a number of real-life constraints are left out (e.g. constraints
forced by legislation, trade unions or nature) the research models typically
model the basic properties and thereby provide the core results used in
the analysis and implementation of systems in real-life problems. There-
fore a number of basic models exist that researchers agree are important
investigating. These models will briefly be introduced here.

1.1 Motivation 3

One of the best known routing problem is at the same time the simplest
one namely the Traveling Salesman Problem (or TSP). A number of cities
have to be visited by a salesman who must return to the same city where he
started. The route has to be constructed in order to minimize the distance
to be traveled. A typical solution to a TSP problem is shown in figure 1.1.
This problem often acts as a test bed for new ideas or paradigms before
moving on to the more advanced models.

✈ ✈

✈

✈

✈

✈

✟✟✟✟✟✟✟

❅
❅

❅
❅

❅❅
❅

❅
❅

❅
❅❅

✏✏✏✏✏✏✘✘✘✘✘✘✘

Figure 1.1: A typical solution to a TSP instance.

In the m-TSP problem, m salesmen have to cover the cities given. Each city
must be visited by exactly one salesman. Every salesman starts off from
the same city (called the depot) and must at the end of his journey return
to this city again. We now want to minimize the sum of the distances of
the routes. Both the TSP and m-TSP problems are pure routing problems
in the sense defined above.

The Vehicle Routing Problem (or VRP) is the m-TSP where a demand
is associated with each city, and each vehicle have a certain capacity (not
necessarily identical). For a survey of the VRP refer to [Lap97, Gol84].
Be aware that during the later years a number of authors have “renamed”
this problem the Capacitated Vehicle Routing Problem (or CVRP). The
sum of demands on a route can not exceed the capacity of the vehicle
assigned to this route. As in the m-TSP we want to minimize the sum
of distances of the routes. Note that the VRP is not purely geographic
since the demand may be constraining. The VRP is the basic model for a
large number of vehicle routing problems. We mention the most important

4 Chapter 1. Introduction

here. In figure 1.2 a typical solution to the VRP is shown. Note that the
direction in which the route(s) are driven is unimportant both for the TSP
and the VRP .

1
✈

✈

✈

✈

✈

❅
❅

❅❅

�
�

��
❳❳❳❳❳❳❳

❳❳❳❳❳❳❳

❙
❙

❙
❙

❙
❙❙

2

✈

✈

✈✁
✁
✁✁

✟✟✟✟

✏✏✏✏✏

3

✈

✈

✈

✈

✈

✈
◗

◗
◗

◗
◗◗

❅❅
❇
❇
❇
❇
❇❇
◗

◗
◗

◗
◗◗✑

✑
✑

✑
✑✑

❅
❅

❅❅

4

✈ ✈

✈

✈

✈✈

✈✡
✡
✡

✡
✡✡

✟✟✟
✏✏✏✏✏✏✁

✁
✁✁

◗
◗

◗
◗

◗◗

Figure 1.2: A typical solution to a VRP instance (4 routes). The square
denotes the depot.

If we add a time window to each customer we get the Vehicle Routing
Problem with Time Windows (VRPTW). In addition to the capacity con-
straint, a vehicle now has to visit a customer within a certain time frame.
The vehicle may arrive before the time window “opens” but the customer
can not be serviced until the time windows “opens”. It is not allowed to
arrive after the time window has “closed”. Some models allow for early
or late servicing but with some form of additional cost or penalty. These
models are denoted “soft” time window models (see e.g. [Bal93]). By far
the most research has been made on “hard” time window models and this

1.1 Motivation 5

is the problem dealt with in this thesis.

Another variant of the VRP is the Vehicle Routing Problem with Length
Constraint (VRPLC). Here each route is not allowed to exceed a given
distance. Other variants could be to include more than one depot, or
more than one type of items to be delivered. In the Split Delivery model
the demand of a customer is not necessarily covered by just one vehicle
but may be split between two or more. The solutions obtained in a split
delivery model will always be at least as good as for the “normal” VRP
and often we may be able to utilize the vehicles better and thereby save
vehicles. Finally we mention the Pickup and Delivery variant where the
vehicles not only deliver items but also pick up items during the routes.
This problem can be varied even more according to whether the deliveries
must be completed before starting to pick up items or the two phases can
be interleaved.

These problems are all “hard” to solve (a more formal complexity analysis
is given in section 2.2). For the VRPTW exact solutions can be found
within reasonable time for some instances up to about 100 customers. A
review of exact methods for the VRPTW is given in section 2.3.

As indicated above, often the number of customers combined with the
complexity of real-life data does not permit solving the problem exactly.
In these situations one can apply approximation algorithms or heuristics.
Both approximation algorithms and heuristics produce a feasible but not
necessarily optimal solution. Whereas a worst-case deviation is known
for approximation algorithms nothing a priori is known for heuristics, but
typically they can be tuned to perform very well. These non-exact methods
for the VRPTW will be reviewed in section 2.4.

If the term “vehicle” is considered more loosely, numerous scheduling prob-
lems can also be regarded as VRPTW. An example is that for a single ma-
chine, we want to schedule a number of jobs where we know the flow time
and the time to go from running one job to the next one. This scheduling
problem can be regarded as a VRPTW with a single depot, single vehicle
and the customers represents the jobs. The cost of changing from one job
to another is equal to the distance between the two customers. The time
is takes to perform the action is the service time of the job.

6 Chapter 1. Introduction

For a general and in-depth description of the field of routing and scheduling
see [DDSS93, Bre95, CL98].

1.2 Combinatorial Optimization

The problems that will be investigated in this thesis are all optimization
problems. An optimization problem can generally be formulated as min-
imizing or maximizing (from now on we will only consider minimization)
the value of a function f called the objective function. The variables xi

(for i = 1, 2, . . . , xk) are called decision variables (alternatively we write
x = (x1, x2, x3, . . . , xk)). A number of constraints determines the set of fea-
sible solutions S. S is called the solutions space. An optimization problem
can then be stated as:

min f(x)
subject to x ∈ S

The solution set S is typically described implicitly by a set of equations
and inequalities to be fulfilled by feasible solutions. It is important to
note that a given optimization problem can be formulated in a number of
different ways with respect to objective function, decision variables and de-
scription of the solution space. Different formulations of the same problem
can in practice yield very different algorithms for solving the problem and
consequently different computational effects.

Combinatorial optimization problems are optimization problems for which
the set of feasible solutions are finite, but usually exponentially large or
countably infinite, as a function of the problem data. Efficient algorithms
exist for some of these, while others seem solvable only by methods re-
quiring exponential time. Problems of the latter type are called NP-hard
problems (for a further discussion on complexity issues see section 2.2 or
refer to [GJ79]).

1.3 Why go parallel? 7

1.3 Why go parallel?

For the VRPTW optimal algorithms of today can solve problems up to
about 100 customers. In order to push the limit further we have a number
of methods in our tool-box. One of the methods is to use parallel computers,
thereby increasing the computational power beyond what is available with
sequential computers. A parallel computer is a set of processors that are
able to work cooperatively to solve a computational problem, a definition
that includes both “real” parallel computers but also sequential computers
in a network.

Besides solving previously unsolved problems another attractive aspect is
the ability to solve problems faster. If it takes weeks or months before
a solution to a problem is found it becomes hard to use the results in
research that demands a lot of experiments for example because of tuning
of the algorithm. But if it successfully can be parallelized the running time
may be cut to days or even hours which makes it possible to run several
tests.

But parallel computing is also interesting from the perspective of the in-
dustry. In highly time-critical environments programs on even the fastest
sequential computer may not be fast enough. Here the parallel computer
may be an alternative to cutting down on accuracy, problem size or flexi-
bility.

One of the main problems of parallel computing is that a uniform model of
computing does not exist, as a number of new parameters are introduced.

Another problem used to be that each parallel computer had its own set
of commands for controlling the parallelism making it very difficult and
expensive to port to another platform.

From the beginning of the 90’s a number of message passing interfaces
for parallel computers started to emerge as for example P4, PARMACS
and PICL. These were macros and library routines so portability was often
achieved by compromising performance, but they made migration from one
platform to another, if not simple, then at least a lot easier than before.

With the development of de facto standards as Parallel Virtual Machines
(PVM, see [GBD+94]) and Message Passing Interface (MPI, see [GLS94,

8 Chapter 1. Introduction

Pac95]) this process has been made considerably more easy. As these be-
came de facto standards the vendors have constructed portable and effi-
cient implementations of the message passing paradigm. With MPI one
can start off using a network of workstations as a parallel computer (e.g.
at night when nobody else are using them). If the project then turns out
to be a success or the financial support becomes available a “real” parallel
computer can take over the job with a minimal effort in moving the code.

The target machine for the parallel programs developed in this thesis will
be MIMD parallel computers with distributed memory (the terminology
will be explained in chapter 6).

1.4 Outline of the thesis

In chapter 2 a mathematical model for the VRPTW is presented. Further-
more complexity results and a review of relevant literature is presented.

The sequential algorithm is presented in the chapters 3 and 4, and in chap-
ter 6 the parallel algorithm is described.

Chapter 7 contains a description of the experimental setup and the results
obtained for the experiments made with the sequential algorithm, while
chapter 8 contains the tests made using the parallel algorithm. Finally the
thesis ends with a conclusion in chapter 9.

1.5 Overview of contribution of this thesis

The two main contributions of this thesis are the development and imple-
mentation of a parallel algorithm for the VRPTW and a thorough investi-
gation in the characteristics of the execution of a column-generation-based
VRPTW algorithm. The analysis resulted in techniques for significant re-
duction of the running time. Among the developed techniques are new
methods for constructing sets for 2-path cuts, removal of unused columns
and premature stop of the route generating subroutine. These contribu-
tions have made it possible to solve instances from the Solomon test-set
that have not previously been solved to optimality.

1.5 Overview of contribution of this thesis 9

Other contributions are made on the investigation of resource constrained
branching and use of a heuristic for solving the “feasibility TSPTW” as a
subroutine in generating 2-path cuts.

10 Chapter 1. Introduction

Chapter 2

The Vehicle Routing
Problem with Time
Windows

In this chapter we formalize the loose description of the VRPTW as it was
presented in the introduction. We state the problem mathematically and
discuss complexity issues. Finally we look briefly at related research both
for optimal algorithms and for heuristics and approximation algorithms.
Huge amounts of results exist for the VRP. The amount of research done
on the VRPTW is growing as an acknowledgement to the importance of
the problem.

2.1 A mathematical model of the VRPTW

The VRPTW is given by a fleet of homogeneous vehicles (denoted V), a set
of customers C and a directed graph G. The graph consists of |C|+2 vertices,
where the customers are denoted 1, 2, . . . , n and the depot is represented by
the vertex 0 (“the driving-out depot”) and n + 1 (“the returning depot”).

11

12 Chapter 2. Routing with Time Windows

The set of vertices, that is, 0, 1, . . . , n + 1 is denoted N . The set of arcs
(denoted A) represents connections between the depot and the customers
and among the customers. No arc terminates in vertex 0, and no arc
originates from vertex n+1. With each arc (i, j), where i 6= j, we associate
a cost cij and a time tij, which may include service time at customer i.

Each vehicle has a capacity q and each customer i a demand di. Each
customer i has a time window [ai, bi]. A vehicle must arrive at the customer
before bi. It can arrive before ai but the customer will not be serviced
before. The depot also has a time window [a0, b0] (the time windows for
both depots are assumed to be identical). [a0, b0] is called the scheduling
horizon. Vehicles may not leave the depot before a0 and must be back
before or at time bn+1.

It is assumed that q, ai, bi, di, cij are non-negative integers, while the tij’s
are assumed to be positive integers (reasons for this assumption are a bit
technical and will be discussed in chapter 4). It is also assumed that the
triangular inequality is satisfied for both the cij’s and the tij ’s.

The model contains two sets of decision variables x and s. For each arc
(i, j), where i 6= j, i 6= n + 1, j 6= 0, and each vehicle k we define xijk as

xijk =

{

0, if vehicle k does not drive from vertex i to vertex j
1, if vehicle k drives from vertex i to vertex j

The decision variable sik is defined for each vertex i and each vehicle k
and denotes the time vehicle k starts to service customer i. In case the
given vehicle k does not service customer i sik does not mean anything.
We assume a0 = 0 and therefore s0k = 0, for all k.

We want to design a set of minimal cost routes, one for each vehicle, such
that

• each customer is serviced exactly once,

• every route originates at vertex 0 and ends at vertex n + 1, and

• the time windows and capacity constraints are observed.

2.1 A mathematical model of the VRPTW 13

We can state the VRPTW mathematically as:

min
∑

k∈V

∑

i∈N

∑

j∈N

cijxijk s.t. (2.1)

∑

k∈V

∑

j∈N

xijk = 1 ∀i ∈ C (2.2)

∑

i∈C

di

∑

j∈N

xijk ≤ q ∀k ∈ V (2.3)

∑

j∈N

x0jk = 1 ∀k ∈ V (2.4)

∑

i∈N

xihk −
∑

j∈N

xhjk = 0 ∀h ∈ C, ∀k ∈ V (2.5)

∑

i∈N

xi,n+1,k = 1 ∀k ∈ V (2.6)

sik + tij −K(1 − xijk) ≤ sjk

∀i, j ∈ N , ∀k ∈ V (2.7)

ai ≤ sik ≤ bi ∀i ∈ N , ∀k ∈ V (2.8)

xijk ∈ {0, 1} ∀i, j ∈ N , ∀k ∈ V (2.9)

The constraints (2.2) states that each customer is visited exactly once,
and (2.3) means that no vehicle is loaded with more than it’s capacity
allows it to. The next three equations (2.4), (2.5) and (2.6) ensures that
each vehicle leaves the depot 0, after arriving at a customer the vehicle
leaves again, and finally arrives at the depot n + 1. The inequalities (2.7)
states that a vehicle k can not arrive at j before sik + tij if it is traveling
from i to j. Here K is a large scalar. Finally constraints (2.8) ensures that
time windows are observed, and (2.9) are the integrality constraints. Note
that an unused vehicle is modelled by driving the “empty” route (0, n+1).

As mentioned earlier VRPTW is a generalization if both TSP and VRP.
In case the time constraints ((2.7) and (2.8)) are not binding the problem
becomes a VRP. This can be achieved by setting ai = 0 and bi = M
(where M is a large scalar) for all customers i. It should be noted that the
time variables enable us to formulate the VRP without subtour elimination

14 Chapter 2. Routing with Time Windows

constraints (described later). If only one vehicle is available the problem
becomes a TSP. If more vehicles are available and additionally c0j = 1, j ∈ C
and cij = 0 otherwise we get the Bin-packing problem. As the order in
which we visit the customers become unimportant (due to the “free” trips)
the objective becomes to “squeeze” as much goods into as few vehicles
(bins) as possible.

In case the capacity constraints (2.3) are not binding the problem becomes
a m-TSPTW (again if only one vehicle is available we get a TSPTW).

Finally when we remove the assignment constraints (2.2) the problem be-
comes a Elementary Shortest Path Problem with Time Windows and Ca-
pacity Constraints (ESPPTWCC) for every vehicle, that is, find the short-
est path from the depot and back to the depot that does not violate the
time and capacity constraints and visits the customers on the route at
most one time. As all vehicles are identical all ESPPTWCC’s also become
identical.

2.2 Complexity issues

In this section we discuss the computational complexity of the VRPTW
and related problems. First though we give a small review of complexity
theory.

An algorithm is a general step-by-step procedure for solving problems. For
our purposes we can think of it as being a computer program. Generally we
are interested in finding the most “efficient” algorithm for a given problem.
The problem is how to measure the efficiency. Here, as in almost everywhere
in the literature, we focus on efficiency with respect to the running time of
the algorithm. We measure the time requirement in terms of the “size” of
the problem instance. So in order to do this we need to specify an encoding
scheme for the problem. The input length of an instance is then defined
to be the number of symbols in the description of the instance. The time
complexity function for an algorithm expresses the largest time requirement
for each possible input length.

An algorithm is said to have polynomial time complexity if the running
time is of order O(nk), where n denotes the input length and k is a con-

2.2 Complexity issues 15

stant independent of n. If the time complexity function can not be bounded
by a polynomial the algorithm is said to have exponential time complex-
ity . If the expression gl, where l is a constant and g is the largest input
value, is part of the bounding function then the algorithm is said to have
Pseudo-polynomial running time. Hence, if an upper bound is imposed on
g the algorithm becomes polynomial. In many algorithms used in practical
situations such bounds may arise naturally, and in these cases the pseudo-
polynomial algorithm may be just as good as a polynomial algorithm.

A decision problem is a problem that can be answered with “yes” or “no”.
P denotes the class of decision problems which can be solved in polynomial
time, and NP is the class of decision problems solvable in nondeterministic
polynomial time, that is, the problem can be solved in polynomial time
by a nondeterministic Turing machine (computer). The nondeterministic
computer can be viewed as a computer capable of executing an unbounded
(but finite) number of computations in parallel.

A problem X is said to be NP-complete, if any problem in NP can be
transformed to X in polynomial time (X is said to belong to the class
NPC). So in a sense the NP-complete problems constitutes a class of
the “hardest” problems in NP. If just one problem in NPC is solvable
in polynomial time then by transitivity every problem can be solved in
polynomial time. Obviously P ⊆ NP, but whether P = NP holds or not is
unknown. There are though many reasons to believe that P 6= NP . Finally
a problem is NP − complete in the strong sense if no pseudo-polynomial
algorithm exists unless P = NP.

Given a decision problem Y, whether a member of NP or not. If a NP-
complete problem can be transformed to Y, Y can not be solved in polyno-
mial time (unless of course P = NP). The problem Y is at least as hard
as the NP-complete problems and therefore Y is called NP-hard.

The VRPTW contains several NP-hard optimization problems implying
that VRPTW is also NP-hard. Among the NP-hard problems contained
as special cases are TSP ([GJ79, problem ND22] and [LK81]), Bin Pack-
ing ([GJ79, problem SR1]) and VRP ([LK81]).

Even finding a feasible solution to VRPTW with a fixed number of vehicles
is NP-hard in the strong sense (see [Koh95]). If the number of vehicles

16 Chapter 2. Routing with Time Windows

available is unlimited feasibility amounts to determine whether a solution
consisting of the routes depot - i - depot , ∀i ∈ C, is feasible. This is an easy
task and can be done in O(n) time.

For the shortest path problems we know that the “normal” Shortest Path
Problem (SPP) is polynomial. It can be solved in O(nm) by the Bellmann-
Ford-Moore algorithm (here n denotes the number of vertices and m the
number of edges) (see e.g. [CGR93]).

Adding constraints that imposes each vertex must to be visited at most
one time results in the Elementary Shortest Path Problem (ESPP). Adding
capacity constraints defines the problem denoted ESPPCC, time windows
gives us ESPPTW and finally adding both capacity constraints and time
windows results in the ESPPTWCC. As the following proposition shows
these problems are all NP-hard in the strong sense.

Proposition 2.1 ([Koh95]) The ESPPTWCC, ESPPCC, ESPPTW and
ESPP are NP-hard in the strong sense.

Proof: Let us consider the ESPP. As this problem is a special case of the
remaining problems it suffices to prove the proposition.

The proposition will be proven by proving that if a pseudo-polynomial algo-
rithm exists for the ESPP then an pseudo-polynomial algorithm would also
exist for the Directed Hamiltonian Circuit Problem. This problem is stated
as NP-complete in the strong sense in [GJ79, problem GT38]. Thereby we
would get P = NP.

The Directed Hamiltonian Circuit Problem is given by a directed graph
G = (N ,A). The question is whether G contains a Hamiltonian circuit.

Consider the instance of ESPP given by the fully connected directed graph
G′ = (N ,A′). Let us denote one vertex s as the origin. Now we associate
a cost ce with each edge e ∈ E ′ as

ce =

{

−1, if e ∈ E
0, otherwise

Now if and only if the objective function value of the ESPP from s and back
to s again is −|N|, then G contains a Hamiltonian circuit. ✷

2.3 Review of optimal algorithms 17

We can make the problems somewhat easier by relaxing the “elementary”
constraint as the following proposition states.

Proposition 2.2 SPPTWCC, SPPTW and SPPCC are NP-hard, but sol-
vable by a pseudo-polynomial algorithm if

1. tij > 0, ∀i, j ∈ N , and

2. di > 0, ∀i ∈ C

Proof: In [DS88a] an algorithm for the SPPTW problem is developed. The
algorithm has a time complexity of O(min{md, nD}), where n is the number
of vertices and m the number of arcs. The widest time windows, that is,
maxi∈N{bi−ai +1} is denoted by d, and D is the number of possible labels.
So this algorithm is pseudo-polynomial. Along the same lines one can add
another constraint and still get a pseudo-polynomial algorithm.

Note that for SPPTWCC only one of the conditions has to be satisfied, for
the two other problems one of the conditions is irrelevant. ✷

2.3 Review of optimal algorithms

The first paper proposing an exact algorithm for solving the VRPTW was
published back in 1987 in [KRT87]. Since then a number of papers have
been published and almost all the algorithms use one of three principles:

1. Dynamic Programming.

2. Lagrange Relaxation-based methods.

3. Column Generation.

The method based on column generation is implemented as part of this
Ph.D. project, as at the moment it looks to be the best of the available

18 Chapter 2. Routing with Time Windows

methods. Therefore a thorough discussion is presented in chapter 3. It has
been implemented and described previously in [DDS92, Koh95].

Most of the approaches rely on the solution of a shortest paths problem
with additional constraints.

A different approach is described in the Ph.D. thesis [Kon97] by Kon-
toravdis. This will be described later in this section.

The research on the VRPTW has been surveyed in the papers [BGAB83,
SD88, DLSS88, DDSS93].

Presently no parallel implementation of the algorithms for the VRPTW is
known to the author.

2.3.1 Dynamic Programming

The dynamic programming approach for VRPTW is presented for the
first (and only) time in [KRT87]. The paper is inspired by a earlier pa-
per [CMT81] where Christofides et al. use the dynamic programming pa-
radigm to solve the VRP.

The algorithm of Kolen et al. use Branch-and-Bound to achieve optimal-
ity. Each node α in the Branch-and-Bound tree corresponds to three sets:
F (α) which is the set of fixed feasible routes starting and finishing at the
depot, P (α) which is a partially build route starting at the depot, and C(α)
denotes the set of customers forbidden to be next on P (α).

Branching is done by selecting a customer i that is not forbidden, that is
i 6∈ C(α), and that does not appear on any route, that is i 6∈ F (α)∪ P (α).
Branching decisions are taken on route-customer allocations. Then two
branches are generated: one in which the partially build route P (α) is
extended by i and one where i is forbidden as the next customer on the
route, that is, i is added to C(α). Customer i is chosen as the customer
the partial route P (α) was extended with in the calculation that lead to
the lower bound of node α.

At each Branch-and-Bound node dynamic programming is used to calculate
a lower bound on all feasible solutions defined by F (α), P (α) and C(α).

2.3 Review of optimal algorithms 19

First we discuss the case of the root node (F (α) = ∅, C(α) = ∅ and P (α) =
depot). Here we construct a directed graph with vertices v(i, q, k) for i =
0, 1, . . . , n, q = 0, 1, . . . , Q and k = 0, 1, . . . , m, where n is the number
of customers, m the number of vehicles and Q is the sum of all customer
demands qi. Hence, associated with each Branch-and-Bound node is a set
of routes.

A directed path from v(0, 0, 0) to v(i, q, k) in the graph corresponds to a set
of k routes with a total load of q and with different last visited customers
(each one in {1, 2, . . ., i}). The arc lengths in the directed graph will be
defined as the total length of the corresponding routes. The lower bound
is then given by the minimum over k = 1, 2, . . . , m of the shortest paths
lengths from v(0, 0, 0) to v(n, Q, k). Note that there are no constraints
enforcing customers (not belonging to either F (α) or P (α)) to be visited
by any of the routes generated. Therefore the resulting minimum is a lower
bound.

Dynamically we try to extend a set of k routes with load q and last cus-
tomers {1, 2, . . . , i} to last customers {1, 2, . . . , i + 1}. Here there are two
possibilities:

• Customer i+1 is not included as endpoint of any of the routes. This
results in an arc from v(i, q, k) to v(i + 1, q, k) with length 0.

Note that a customer i + 1 that is not an endpoint might still be
member of one of the other routes generated by the function F (i, q)
described below.

• Insert customer i+ 1 as the last customer on a route of load q′. This
generates an arc from v(i, q, k) to v(i + 1, q + q′, k + 1) of length
F (i + 1, q′) for each possible value of q′ (see figure 2.1). Generally,
F (i, q) is defined as the minimum length of a feasible route with total
load q and last customer i. This problem is a shortest path problem
with side constraints. It is relaxed to allow a customer to be serviced
more than once and is solved by an “extended” version of the Dijkstra
algorithm (as explained in chapter 4).

The routes associated with a given vertex v(i, q, k) are the routes
given from the computation of F (i, q) and the extension made using
the arcs in the graph.

20 Chapter 2. Routing with Time Windows

v(i, q, k)
v(i + 1, q, k + 1)

v(i + 1, q + q′1, k + 1)

v(i + 1, q + q′2, k + 1)

v(i + 1, q + q′p, k + 1)

·
·
·
·
·

0

F (i + 1, q ′
1)

F (i + 1, q ′
2)

F
(i+

1, q ′
p)

Figure 2.1: Possible outgoing arcs from a vertex v(i, q, k) in the graph
underlying the dynamic programming scheme. Note q′1 < q′2 < . . . < q′p.

If we are at an arbitrary node in the Branch-and-Bound tree we distinguish
between two cases:

1. P (α) = ∅ and

2. P (α) 6= ∅.

If P (α) = ∅ we just adjust the problem for the number of already generated

routes k̂, their load q̂ and the set of customers already used in these routes

2.3 Review of optimal algorithms 21

Î . The above described dynamic programming algorithm can then be used
on this reduced problem.

In the case of P (α) 6= ∅ exactly one of the routes in the lower bound is
an extension of P (α). Now, let F̄ (i, q) be the minimum length of such an
extension (F̄ (i, q) is calculated in the same way as F (i, q)). As before, the

problem can be reduced according to k̂, q̂ and Î . The directed graph is now
extended to contain vertices v(i, q, k) and v̄(i, q, k) and the following arcs:

• Arcs of length 0 from v(i, q, k) to v(i + 1, q, k) and from v̄(i, q, k) to
v̄(i + 1, q, k). These corresponds to not using the customer i + 1 in
the routes.

• Arcs of length F (i + 1, q′) from v(i, q, k) to v(i + 1, q + q′, k + 1) and
from v̄(i, q, k) to v̄(i + 1, q + q′, k + 1) v̄(i + 1, q + q′, k + 1) for each
possible value of q′.

In [KRT87] problems up to 15 customers are solved by this method.

2.3.2 Lagrange Relaxation-based methods

The second method mentioned contains a number of papers using slightly
different approaches. There is variable splitting followed by Lagrange re-
laxation [JMS86, FJM97, Mad88, Hal92], K-tree approach followed by La-
grange relaxation [FJM97] and finally Kohl et al. in [KM97] presented
shortest path with side constraints approach followed by Lagrange relax-
ation.

In [KM97] Kohl et al. relaxes the constraints ensuring that every customer
is served exactly once, that is

∑

k∈V

∑

j∈N

xijk = 1 ∀i ∈ C

is relaxed and the objective function with the added penalty term then
becomes

min
∑

k∈V

∑

i∈N

∑

j∈N

(cij − λj)xijk +
∑

j∈C

λj .

22 Chapter 2. Routing with Time Windows

Here λj is the Lagrange multiplier associated with the constraint that en-
sures that customer j is serviced. The model now decomposes into one
subproblem for each vehicle, but as the vehicle are assumed to be identical
all the |V| subproblems are identical. The resulting subproblem is a short-
est path problem with time window and capacity constraints and as the
arc costs are modified by subtracting the relevant Lagrange multiplier the
graph may even contain negative cycles. This shortest path problem is very
difficult to solve, and a solution to the problem is discussed in chapter 4.

The master problem which consists of finding the optimal Lagrange multi-
pliers, i.e. Lagrange multipliers that yields the best lower bound, is solved
by a method using both sub-gradient optimization and a bundle method.
Kohl et al. managed to solve problems of 100 customers from the Solomon
test cases (see reference [Roc]), among them some previously unsolved prob-
lems.

In [FJM97] Fisher et al. presents an algorithm for solving the VRPTW
optimally where the problem is formulated as a K-tree problem with degree
2K on the depot. A K-tree for a graph containing n + 1 vertices is a set
of n + K edges spanning the graph. Informally, the VRPTW could be
described as finding a K-tree with degree 2K on the depot, degree 2 on
the customers and subject to time and capacity constraints. A K-tree with
degree 2K on the depot therefore becomes equal to K routes.

2.3 Review of optimal algorithms 23

In [FJM97] the problem is defined as follows:

min
x∈X,y∈Y

∑

i,j∈N ,i 6=j

cijxij s.t. (2.10)

∑

i∈N ,i 6=j

xij =

{

1 if j ∈ C

k else
(2.11)

∑

j∈N ,j 6=i

xij =

{

1 if i ∈ C

k else
(2.12)

∑

i∈S

∑

j∈Ŝ

xij ≥ k(S) ∀S ⊆ C, |S| ≥ 2 (2.13)

∑

i∈Ŝ

∑

j∈S

xij ≥ k(S) ∀S ⊆ C, |S| ≥ 2 (2.14)

mp−1
∑

h=i

xih,ih+1
≤ mp − 2 ∀p ∈ P (2.15)

yij = xij + xji ∀i, j ∈ N (2.16)

xij ∈ {0, 1} (2.17)

yij ∈ {0, 1} (2.18)

where xij is set to 1 if a vehicle travels directly from customer i to customer
j and 0 otherwise. yij is equal to the number of arcs joining customers i
and j, that is xij + xji. k(S) is a lower bound on the number of vehicles
required to service the customers in S. Finally, X is all the xij variables
and Y the set of y variables that defines a K-tree with degree 2K on the
depot, that is

Y = {y : yij ∈ {0, 1} and y defines a K-tree with
n

∑

i+1

y0i = 2K}.

P = 〈i1, i2, . . . , imp
〉 is any time violating path, that is, there is no way to

deliver the customers in the path given while satisfying the time windows.

All constraints except the constraints ensuring that at most one arc is join-
ing customers i and j are then Lagrangian relaxed. The problem is then

24 Chapter 2. Routing with Time Windows

solved with a minimum degree-constrained K-tree problem as subproblem
and the Lagrange multipliers are set using the sub-gradient approach (these
ideas were already sketched in [Fis94a] as an extension of a optimal algo-
rithm for the VRP but not implemented). Since there are exponentially
many constraints in (2.13), (2.14) and (2.15) only a subset of these are gen-
erated and dualized. The constraints are generated as they are violated.

As mentioned, for given Lagrange multipliers the master subproblem is a
minimum degree constraint K-tree problem. A polynomial algorithm for
solving this problem is given in [Fis94b]. Here first a minimum spanning
tree is constructed and then the K least cost unused arcs are added to the
tree. If the depot is not incident to 2K arcs, the K-tree is modified by a
series of arc exchanges until the depot has reached degree 2K.

This algorithm (depicted in figure 2.2) was able to solve several of the
clustered Solomon test case problems to optimality, but it was not able to
solve any of the random Solomon test case problems exactly.

1 〈 Initialize lagrangean multipliers 〉
2 〈 find a minimum spanning tree 〉
3 〈 add the k least cost unused arcs 〉
4 〈 exchange arcs until the depot has degree 2k 〉
5 〈 remove arcs incident to the depot 〉
6 if 〈 relaxed constraints are violated 〉 then
7 〈 update lagrangean multipliers 〉
8 if 〈 more iterations 〉
9 goto 1
10 else
11 〈 Branch-and-Bound 〉
12 goto 1
13 else
14 〈 optimal solution 〉

Figure 2.2: The minimum degree constrained K-tree procedure.

Variable splitting (sometimes also referred to as Lagrange decomposition,
or Cost splitting [NW88]) for the VRPTW was first presented in a technical

2.3 Review of optimal algorithms 25

report in [JMS86] by Jörnsten et al. in 1986 but no computational results
were given here. In [Mad88] four different variable splitting approaches
are mentioned but again none are implemented or tested. In the Ph.D.
thesis [Hal92] of Halse three approaches are analysed and one of these is
implemented (the fourth variable splitting approach outlined in [Mad88]
seemed not be be competitive with the other three approaches at all).

In order to decompose the problem we introduce a decision variable yik

defined as:

yik =

{

1, if vehicle k visits customer i
0, otherwise

Now the constraints

yik =
∑

j∈N

xijk ∀i ∈ N , k ∈ V (2.19)

are introduced to the problem. By expressing some of the constraints using
x-variables in y-variables, different variable splitting approaches can be
obtained.

First we rewrite (2.2) and (2.3) by using yik instead of xijk and thereby
get:

∑

k∈V

yik = 1 ∀i ∈ C (2.20)

∑

i∈C

diyik ≤ q ∀k ∈ V. (2.21)

Additionally we introduce

yik ∈ {0, 1}.

Note now that (2.19) is the only constraints coupling (2.20) and (2.21),
and (2.4) to (2.9). If only the coupling constraints (2.19) are relaxed we
get the objective function

∑∑

(cij + λik)xijk −
∑∑

λikyik. (2.22)

26 Chapter 2. Routing with Time Windows

The problem can now be split into two subproblems: One is based on (2.4)
to (2.9):

min
∑ ∑

(cij + λik)xijk

subject to network constraints
time constraints.

This problem is an Elementary Shortest Path Problem with Time Windows
(ESPPTW), a problem that with respect to difficulty is closely related to
the ESPPTWCC problem which is treated in chapter 4, and the other
problem is based on (2.20) and (2.21):

min −
∑ ∑

λikyik

subject to capacity constraints
visiting customer constraints

which is a General Assignment Problem (GAP). The GAP is in itself a
rather difficult combinatorial optimization problem to solve. Several meth-
ods exist and in [Mad90] a hybrid between two methods is used. This
approach was implemented by Olsen [Ols88]. Instances containing up to
16 customers are solved.

Another way of decomposing is moving the capacity constraints from the
second subproblem to the first. We then get:

min
∑ ∑

(cij + λik)xijk

subject to network constraints
time constraints
capacity constraints

which is an Elementary Shortest Path Problem with Time Windows and
Capacity Constraints (ESPPTWCC), and the second subproblem becomes

min −
∑ ∑

λikyik

subject to visiting customer constraints.

This problem is called a Semi Assignment Problem (SAP) and is basically
a GAP without capacity constraints. The SAP can easily be solved by
inspection. This approach was implemented by Halse in [Hal92] and some

2.3 Review of optimal algorithms 27

problems from the Solomon test cases (see reference [Roc]) with 100 cus-
tomers were solved.

Finally one may duplicate the capacity constraints and place them in each
of the two subproblems. This results in an ESPPTWCC and GAP. Even
though this results in two time-consuming problems, one could hope for
sharper bounds and thereby less work. In [Mad90], Madsen reports on not
so promising results, although no figures are presented. This approach has
not yet been implemented.

As all methods built on Lagrange relaxation use relaxation (eg. we solve a
SPPTW or SPPTWCC instead of an ESPPTW or ESPPTWCC) a branch-
and-bound framework has to be implemented as well. Kohl [Koh95] shows
that if there exists feasible solutions to a VRPTW problem, the lower bound
achieved by GAP and ESPPTWCC is not better than the one obtained by
SAP and ESPPTWCC. Hence, solving the more difficult GAP instead of
the SAP does not produce better bounds.

2.3.3 Other methods

The 3-index formulation of the VRPTW as presented in section 2.1 can
be transformed into a 2-index formulation, if we do not care about which
vehicle visits which the customers. This 2-index formulation is the ba-
sis of the algorithm presented in the just recently published Ph.D. Thesis
by Kontoravdis [Kon97]. In contrast to the other approaches (dynamic
programming, Lagrange relaxation and column generation), Kontoravdis
works with the formulation as it is. The model is relaxed by removing the
integrality constraints. Then a series of bounds are calculated in an effort
to reduce the gap. The main part of the algorithm is a branch-and-cut-
algorithm using well-known inequalities, but also a set of new inequalities
– incompatible path inequalities and incompatible pair inequalities – are
suggested. These new classes of inequalities can, however, only be used
if one works directly with the formulation using xij variables. As we are
going to use a different formulation, these inequalities can not be utilized
in our algorithm and therefore further discussion is omitted.

Additionally, Kontoravdis works with an objective function not previously
used when the problems are solved to optimality. His objective function is

28 Chapter 2. Routing with Time Windows

to minimize the number of vehicles used. The distance traveled is secondary
and is only estimated by running a heuristic on the optimal solution found
by the branch-and-bound-algorithm. Kontoravdis achieves some very good
results on the standard problems, but this may have something to do with
the objective function used.

2.4 Review of approximation algorithms and
heuristics

The field of non-exact algorithms for the VRPTW problem has been very
active – far more active than that of exact algorithms. A long series of
papers has been published over the recent years.

In the field of approximation algorithms and heuristics one sometimes clas-
sifies an algorithm as sequential or parallel. In a sequential algorithm one
route at a time is constructed, while a parallel algorithm may build more
routes at the same time. This conflicts with the notion of a sequential
algorithm (running on one processor) and a parallel algorithm (running on
several processors) used later in the thesis. We will therefore avoid the use
of this classification of heuristics.

Heuristic algorithms that build a set of routes from scratch are typically
called route-building heuristics, while an algorithm that tries to produce an
improved solution on the basis of an already available solution is denoted
route-improving.

2.4.1 Route-building heuristics

The first paper on route-building heuristics for the VRPTW is [BS86].
Their algorithm is an extension of the legendary Savings heuristic of Clark
and Wright for the VRP problem ([CW64]). The algorithm begins with
all possible single-customer routes (depot - i - depot). In every iteration
we calculate which two routes can be combined with the maximum saving,
where the saving between customers i and j are calculated as:

savij = di0 + d0j − Gdij. (2.23)

2.4 Review of approximation algorithms and heuristics 29

Here G is sometimes referred to as the route form factor . In [BS86], a time-
oriented nearest neighbour algorithm is developed by defining the savings
as a combination of distance, time and “time until feasibility”. A similar
heuristic based on the savings algorithm is developed in [Sol87], but here
the time aspect is not part of the savings function. Instead the arcs that
can be used are limited by how large the waiting times get if they are
used (if the waiting time would get larger than a threshold value W it is
not valid). Due to the existence of time windows we have to take account
of route orientation. Additionally we have to check for violation of the
time windows when two routes are combined. These heuristics have time
complexity of O(n2 log n2). Solomon reported reasonable results for this
heuristic.

Also van Landeghem has presented a heuristic based on the Savings heuris-
tic. His bi-criteria heuristic presented in [vL88] uses the time windows
in (2.23) in order to get a measurement of how good a link between cus-
tomers is in terms of timing.

Another heuristic described in the paper by Solomon is a Time-Oriented,
Nearest-Neighbour heuristic. Every route in this heuristic is started by
finding the unrouted customer that is closest to the depot. The “closeness
relation” tries to take both geographical and temporal closeness of the
customers into account. At every subsequent iteration the customer closest
(again using the same metric as before) to the last customer added to the
route is considered for insertion to the end of the route presently generated.
When the search fails a new route is started.

The Solomon paper also describes three Insertion heuristics. Here the
best feasible position for each unserviced customer i is computed using a
function f1. The best customer for insertion is then selected by another
function f2. If no insertion is possible a new route is started. In the
Solomon paper three different sets of f1 and f2 functions are presented, each
weighting different aspects of the routes (one of these function sets describes
the I1 heuristic often used to generate the initial solution in improvement
heuristics). The best of the three heuristics (I1) minimizes a weighted sum
of detour (in time units) and delay to identify the best insertion place for
each customer. The selection of the customer to be inserted is then based
on a generalization of the Savings heuristic.

30 Chapter 2. Routing with Time Windows

Finally a Time-Oriented Sweep Heuristic is presented. Here a popular
decomposition into first a clustering phase, assigning customers to different
clusters, and then a scheduling phase, building a route for each cluster is
used. Building each route the becomes a TSPTW problem which can be
solved using the TSPTW heuristics developed by Savelsbergh in [Sav56,
Sav90].

Assigning customers to clusters is done by using a technique introduced
in a paper by Gillet and Miller for the VRP. Here a “center of gravity” is
computed and the clusters are partitioned according to their polar angle.
Scheduling the customers, one of the previously developed tour-building
heuristics are used to build a 1-route solution. Due to the time windows
and/or capacity constraints some customers may now be unscheduled. In
order to schedule these the scheduled customers are removed and the pro-
cess is repeated.

The sweep heuristic typically performs better than the other heuristics in
cases where many customers can be assigned to each route.

In general the heuristics of Solomon and van Landeghem return a solution
fast. Their solution does however generally lack in quality. Most of the
time the solutions are more than 10 percent from optimum.

A problem of building one route at a time is usually that the routes gener-
ated in the latter part of the process are of poor quality as the last unrouted
customers tends to be scattered over the geographic area. In [PR93] Potvin
and Rousseau tries to overcome this problem of the Insertion heuristics by
building several routes simultaneously. The initialization of the routes is
done by using the insertion heuristic of Solomon. On each route the cus-
tomer farthest away from the depot is selected as a “seed customer”. Then
we proceed by computing the best feasible insertion place for each unser-
viced customer and insert the one with the largest difference between the
best and the second best insertion place. This method is better than the
Solomon heuristics but still the solutions are quite far away from optimum.
Russell elaborates further on the insertion approach in [Rus95].

Antes and Derigs describes in [AD95] another approach build upon the
classical insertion idea. Here every unrouted customer requests and re-
ceives from every route in the schedule a prize for insertion (set to infinity

2.4 Review of approximation algorithms and heuristics 31

if insertion is not possible), defined in a similar way as in the Solomon
heuristics. Then the unrouted customers send a proposal to the route with
the best offer, and now each route accepts the best proposal among those
customers with the fewest number of alternatives. Note that more cus-
tomers can be inserted in each iteration. If a certain threshold of routes
is violated a certain number of customers are removed and the process is
initiated again. The results of Antes and Derigs are comparable to those
presented in [PR93]. Generally building several routes in parallel results in
better solutions than building the routes one by one.

Like the route-first scheduling-second principle mentioned above, Solomon
in [Sol86] suggests doing it the other way around in the Giant-Tour Heuris-
tic. First the customers are scheduled into one giant route and then this
route is divided into a number of routes (the initial giant tour could for
example be generated as a traveling salesman tour not considering capacity
and time windows). No computational results are given in the paper for
the heuristic.

The only implementation of a route-building heuristic on parallel hardware
is reported in [FP93] where an insertion heuristic that simultaneously builds
the routes is described using an (unnamed) Solomon heuristic to generate
the initial seed customers.

2.4.2 Route-improving heuristics

The basis of almost every route-improving heuristic is the notion of a neigh-
bourhood. The neighbourhood of a solution S is a set N(S) of solutions
that can be generated with a single “modification” of S.

Checking some or all of the solutions in a neighbourhood might reveal
solutions that are better with respect to objective function. This idea can
be repeated from the better solution. At some point no better solution
can be found and an optimum has been reached. It is definitely a local
optimum but it might even be global. This algorithm is called local search.
Metaheuristics are typically based on local search but with methods added
for escaping an optimum in order to check other parts of the search space
for even better solutions.

32 Chapter 2. Routing with Time Windows

First, neighbourhood structures used in various VRPTW heuristics will be
introduced, and then the algorithms in which they are used are described.

Neighbourhoods for the VRPTW

One of the most used improvement heuristics in routing and scheduling is
the r-Opt heuristic. Here r arcs are removed and replaced by r other arcs.
A solution obtained using a r-Opt neighbourhood that cannot be improved
further is called r-optimal. Usually r is at most 3. Using the 3-Opt on
the routes of a solution to the VRPTW problem is not without problems.
For all possible 2-Opt interchanges and some of the exchanges in the 3-Opt
neighbourhood, parts of the route is reversed. This may very likely lead to
a violation of the time windows.

In [PR95], Potvin and Rosseau presents two variants 2-Opt∗ and Or-Opt
that maintain the direction of the route.

In Or-Opt a segment of the route, that is, l consecutive customers, are
moved to another place on the route. An example of the Or-Opt is shown
in figure 2.3. It is quite easy to see that Or-Opt’s are a subset of 3-Opt’s
as we exchange 3 special arcs with 3 others. The size of the neighbourhood
is although reduced from O(n3) to O(n2). Generally the size of a r-Opt
neighbourhood is O(nr). The 2-Opt∗ is exchanging one segment of one
route with a segment of another route. This is illustrated in figure 2.4.
Again the size of the neighbourhood is O(n2). This neighbourhood operator
is sometimes denoted crossover or simply cross.

The last part of either route will become the last of the other. Note that
if (i, is) is the first arc on one of the routes and (j, js) is the last one on
the other route the two routes will be merged into one. Note also that the
crossover contains Or-opt as a special case.

The relocate operator moves a customer from one route to another as
shown in figure 2.5. Here the edges (ip, i), (i, is) and (j, js) are replaced
by (ip, is), (j, i) and (i, js).

The exchange operator swaps customers in different routes, thereby in-
terchanging two customers simultaneously into the other routes (see fig-

2.4 Review of approximation algorithms and heuristics 33

js

i

j

is

i1 il
.

js

i

j

is

i1 il
.

Figure 2.3: An example of an Or-Opt exchange. The figure on the left
presents the route before the Or-Opt is performed, and the figure on the
right is the route after the exchange. Note that orientation of the customers
from i1 to il remains the same. The square represents the depot.

ure 2.6). This idea may be extended to swap segments of routes between
two routes.

The k-node interchange by Christofides and Beasley is modified by several
authors to take time windows into account. Sequentially each customer
i is considered and the sets M1 and M2 are identified. M1 is defined as
the customer i and its successor j. Then the elements of M2 are found as
the two customers closest to i and j but not on the same route as i and j
(found by minimizing insertion cost calculated by the Euclidean distance).
A neighbourhood is then defined by removing the elements of M1 and M2

and inserting them in any other possible way. As this neighbourhood is
quite large, only the k most promising candidates are checked.

Another neighbourhood is the λ-interchange by Osman originally developed
for the VRP. It is a generalization of the relocate operator. Here a subset
of customers of size ≤ λ in one route is exchanged with a subset of size ≤ λ
from another route. Typically there is also given an ordering in which the
different set sizes are tested. For example using a 2-interchange scheme we
would first try to move one element from one route to the other, and none

34 Chapter 2. Routing with Time Windows

j

i

js

is

j

i

js

is

Figure 2.4: An example of an 2-Opt∗ exchange. The squares represent the
depot. The left picture is before and the right is after the exchange. Note
that there may be any number of customers on the path between the depot
and i respectively j and again between is respectively js and the depot.

j

ip

js

is

i

j

ip

js

is

i

Figure 2.5: An example of an relocate operator. The square represents the
depot. Again the left picture is before and the right is after the relocation.
Note that there may be any number of customers on the path between the
depot and i respectively j and again between is respectively js and the
depot.

2.4 Review of approximation algorithms and heuristics 35

jp

ip

js

is

j

i jp

ip

js

is

j

i

Figure 2.6: An example of an exchange operator. The picture on the left
is before the relocate and the picture on the right is after the relocate is
performed.

the other way. Then we would try the reverse situation, and then try to
exchange one element from one route with one from the other etc. This
would be written as (1, 0), (0, 1), (1, 1), (0, 2), (2, 0), (2, 1), (1, 2), (2, 2).

Finally, a neighbourhood denoted shift-sequence is used by Schulze and
Fahle in [SF99]. A customer is moved from one route to another then
checking all possible insertion positions. If an insertion is made feasible by
removing another customer j, it is removed and inserted in another route.
This procedure is repeated until feasibility is restored. A summary of the
neighbourhoods including am informal description is presented in table 2.1.

In the papers [Rus95] and [PR95] local search heuristics are developed.
Whereas Russell in [Rus95] use the modified k-move interchange to improve
the solution generated by his route-building heuristic described in the same
paper, Potvin and Rousseau in the other paper introduces the 2-Opt∗ and
uses it in conjunction with the Or-Opt neighbourhood.

Simulated Annealing

Simulated Annealing was one of the first metaheuristics developed. When
using simulated annealing one does not search for the best solution in the

36 Chapter 2. Routing with Time Windows

Operator Description Reference

Or-Opt A continuous segment of cus-
tomers is moved from one posi-
tion on a route to another

[PR95]

2-Opt∗ Changing one segment of a route [PR95]
(crossover, cross) with another segment from an-

other route
Relocate Move one customer from one

route to another
[KPS97]

Exchange Interchange two customers be-
tween two routes

[KPS97]

k-node interchange Sequentially each customer i is
considered. Customer i and its
successor j and the two cus-
tomers closest to i and j but not
on the same route are removed.
The neighbourhood is defined by
trying to insert these four ver-
tices in any other possible way.
As this neighbourhood is quite
large, only the k most promising
candidates are checked.

[Rus95]

λ-interchange A subset of customers of size ≤ λ
is exchanged with a subset of cus-
tomers of size ≤ λ from another
route

[TOS94]

Shift-sequence A customer is moved from one
route to another checking all pos-
sible insertion positions. If an
insertion is feasible by removing
another customer j, it is removed
and inserted in another route.
This procedure is repeated until
feasibility is restored.

[SF99]

Table 2.1: Summary of neighbourhood-operators.

2.4 Review of approximation algorithms and heuristics 37

neighbourhood of the current solution. Instead one simply draws at random
a solution from the neighbourhood. If the solution is better it is always
accepted as a new current solution, but if the solution is worse than the
present current solution it is only accepted with a certain probability. The
acceptance probability is determined by a “temperature” which is gradually
decreased. By reducing the temperature the selection becomes more and
more selective in accepting new solutions. The idea of simulated annealing
comes from thermodynamics and metallurgy: when a metal in fusion is
cooled slowly enough it tends to solidify in a structure of minimal energy.

Chiang and Russell develop in [CR96] three different simulating annealing
methods: one using a modified version of the k-node interchange mecha-
nism and the second one using the λ-interchange mechanism as proposed
by Osman with λ set to 1.

The third algorithm borrows the concept of a tabu list (this algorithm
reflects a recent trend within the metaheuristic community to combine
features from different metaheuristic paradigms into hybrid heuristics) from
the Tabu Search metaheuristic (explained later). Using simulated annealing
with the λ-interchange mechanism the tabu list contains moves that will
not be allowed for the time being.

The last two methods have faster convergence than the first, although the
first yields slightly better results. The travel distances obtained by the
three simulated annealing algorithms was between 7 and 11.5 percent from
optimum.

In [TOS94] a non-monotone probability function is used. Thangiah et al.
are using the λ-interchange with λ = 2 scheme to define the neighbour-
hood. The temperature is decreased after every iteration. In case the en-
tire neighbourhood has been explored without finding any accepting moves
the temperature is increased. This is called a “reset”. The temperature is
increased to the maximum of the temperature at which the best solution
was found and half of the temperature at the last reset. After R resets
without improving the best solution the algorithm terminates.

The quality of the solutions obtain in [TOS94] is about the same as those
obtained by Chiang and Russell in [CR96].

38 Chapter 2. Routing with Time Windows

Tabu Search

Just as simulated annealing, the Tabu Search heuristic is one of the “old”
metaheuristics. It was introduced by Glover in two papers from 1989 and
1990 (for a tutorial see [Lau94a, HTd95]). At each iteration the neigh-
bourhood of the current solution is explored and the best solution in the
neighbourhood is selected as the new current solution. In order to allow
the algorithm to “escape” from a local optimum the current solution is set
to the best solution in the neighbourhood even if this solution is worse than
the current solution. To prevent cycling visiting recently selected solutions
is forbidden. This is implemented using a “tabu list”. Often, the tabu list
does not contain “illegal” solutions, but forbidden moves. It makes sense
to allow the tabu list to be overruled if this leads to an improvement of the
current overall best solution. Criteria such as this for overruling the tabu
list are called aspiration criteria. The most used criteria for stopping a
tabu search are a constant number of iterations without any improvement
of the over-all best solution or a constant number of iteration in all.

In the paper [GPR94] by Garcia et al., two improvement heuristics 2-opt∗

and Or-opt are used to explore the neighbourhood. In order to restrict the
amount of work, not all possible 2-opt∗ or Or-opt operation are carried out.
The exploration of the neighbourhood is restricted to the exchange of arcs
that are close in distance.

Solomon’s I1 heuristic (one of the insertion heuristics developed in [Sol87])
is used to generate the initial solution. The algorithm shifts between the
two strategies. When one has not made any improvement for a certain
number of iterations the other strategy is used instead and vice versa.
In order to minimize the number of routes the algorithm tries to move
customers from routes with few customers to other routes. This is done
using Or-opt.

The technical report [TOS94] describes a tabu search which used λ-inter-
changes. In addition the Tabu Search is combined with the Simulated
Annealing algorithm (described previously) using the parameters of the
Simulated Annealing to accept or reject solutions worse than the current
solution.

In [BGG+95], Badeau et al. first generate a series of solutions and then

2.4 Review of approximation algorithms and heuristics 39

new solutions are composed by randomly selecting from the already gen-
erated routes. The selection is done biased to the good routes. When one
route is selected the remaining routes servicing customers from this route
is excluded. This process is continued until all customers are serviced by a
route, or the algorithm runs out of routes. In the later case the remaining
customers are added to the solution by the use of Solomons I1 heuristic.

The solution is now decomposed into groups of routes (the groups are
generated by the use of polar angle and center of gravity). For each group
a Tabu Search is performed using the exchange operator on segments. Fur-
thermore segments of costumers are moved around within each route. In
order to force the algorithm to make a thorough exploration of the search
space, frequently performed crossovers are penalized.

Another tabu search algorithm with similarities to [GPR94] is developed
by Potvin et al. in [PKGR96]. It is based upon the local search methods
discussed in [PR95].

In [SF99] a feasible solution is first found by using the Solomon I1 heuristic.
The neighbourhood is then defined by the shift sequence operator. The shift
sequence with the highest gain is chosen. Furthermore route elimination is
used on routes with few customers (trying to move the customers to other
routes). Additionally the Or-opt exchange is used on every modified route.

Several papers have been written about parallelization of the Tabu Search
heuristic (see [GPR94, BGG+95, SF99]). Their efforts can be divided into
three groups:

1. Partitioning of the neighbourhood.

2. Run parallel threads of Tabu Searches.

3. Decompose the problem into subproblems each solved by parallel
Tabu Searches.

In [GPR94] the strategy 1 is used to parallelize the Tabu Search. One pro-
cessor (called the “master”) controls the Tabu Search, while the remaining
processors (called “slaves”) are used to explore the neighbourhood, which
is partitioned among them. After exploration the best move from each

40 Chapter 2. Routing with Time Windows

processor is send to the master. Now exchanges independent of each other
can be applied simultaneously to the current routes. The exchanges to be
used are determined by a simple greedy heuristic. Note that the master
waits for all slaves to deliver their exchanges, thereby making the algorithm
highly synchronous.

Another parallel Tabu Search algorithm is developed in [SF99] where the
sequential algorithm described above is parallelized. In [GPR94] the neigh-
bourhood is partitioned on all but one processor. But instead of waiting
for all slave processors to finish exploring the neighbourhood a threshold
decides when enough shift sequences have been supplied by the slave pro-
cessors for the master to start processing. The results from the remaining
slaves are simply ignored.

The tabu search heuristic for the VRPTW reported in the technical re-
port [BGG+95] by Badeau et al. is essentially a parallelization of the Tabu
Search presented in [TBG+95]. Here a combination of strategy 2 and 3
is used. After the generation of a solution at the master processor, the
solution is decomposed into groups of routes. At each slave processor an
“independent” Tabu Search tries to improve the overall solution by improv-
ing the solution for the routes it received from the master processor.

Among the parallel implementations the algorithm developed in [SF99]
performs slightly worse that the other parallel algorithms when working in
problems with tight windows. As time windows get larger all algorithms
perform equal with respect to the quality of the solution. As different par-
allel computers or network of computers are used it is difficult to compare
the algorithms with respect to running time.

The Reactive Tabu Search was developed by the Battiti and Tecchiolli in
order to strengthen the basic tabu search concept. In reactive tabu search
the length of the tabu list is not fixed but can dynamically be varied during
the search procedure in order to avoid limit cycles where we repeatedly visit
the same sequence of solutions.

In [CR97] the reactive tabu search metaheuristic is applied to the parallel
construction approach of [Rus95]. The tabu search route improvement
procedure is invoked each time another 10 percent of the customers have
been added to the emerging routes using the λ-interchange of Osman as
the neighbourhood. If the same solution defined by

2.4 Review of approximation algorithms and heuristics 41

• number of vehicles,

• total accumulated distance, and

• total accumulated travel time

occurs to often (more than three times) the tabu list is increased by a
constant factor. If waiting time is eliminated, the customer is fixed at
its position for a number of iterations, and as in [BGG+95] too frequent
switches of customers is penalized. On the other hand if no feasible solution
is found by the tabu search, the size of the tabu list is decreased by (possibly
different) constant factor. The paper presents the solution for two well-
known standard test instances and report on a gap of around 3 percent.
Generally it is among the best heuristics for the VRPTW. One of the
conclusions in the paper is that diversification/intensification (the extension
and contraction of the tabu list) is just as important in obtaining good
solutions as variable length tabu list

The Genetic Algorithm

Genetic Algorithms is an iterative procedure that maintains a population
of κ candidates (solutions). The population members can be seen as en-
tities of artificial chromosomes (of fixed length with binary values). Each
chromosome has a fitness value describing the “goodness” of the solution.
Variation into the population is introduced by cross-over and mutation.
Cross-over is the most important operator. Here some chromosomes un-
dergo a two point cross-over and produce offspring for the next generation.
Mutation prevents loss of important information by randomly mutating
(inverting) bits in the chromosomes. The termination criterion is usually a
certain number of iterations.

The genetic algorithm of Potvin and Bengio, presented in [PB96], operates
on chromosomes of feasible solutions. The selection of parent solutions is
stochastic and biased toward the best solutions. Two types of cross-over are
used. Both only rarely produce valid solutions and the solutions therefore
has to undergo a “repair phase”, as the algorithm only works with feasible
solutions. The reduction of routes is often obtained by the two mutation

42 Chapter 2. Routing with Time Windows

operators. The routes are optimized by an Or-opt-based local search every
k iterations.

A genetic algorithm for the VRPTW is presented in [TOS94]. This algo-
rithm uses the cluster-first route-second method mentioned earlier. Clus-
tering is done by a Genetic Algorithm while routing is done by an insertion
heuristic. The Genetic Algorithm works by dividing the chromosome into
K divisions of B bits. The algorithm is based on dividing the plane by
using the depot as origo and assigning the polar angle to each customer.
Each of the divisions of the chromosome then represent the offset of the
seeds of a sector. The seeds are polar angles that bound the sector and
thereby determine the members of the sector. Further specialization of the
algorithm is presented in [TOS], where the insertion heuristic is replaced
by a local search phase using the λ-interchange with λ equal to 2, simulated
annealing or tabu search.

Competitive Neural Networks

In two papers [PR99, PDR96] the insertion heuristic of Potvin and Rousseau
(see page 30) is extended. Instead of selecting the customers farthest away
as seed customers, the seed customers are selected by a competitive neural
network and a genetic algorithm.

In [PR99] a special type of neural network called competitive neural net-
work is used to select the seed customers. Competitive neural network is
frequently used to cluster or classify data. For every vehicle we have a
weight vector. Initially all weight vectors are placed randomly close to the
depot. Then we select one customer at a time. For each cluster we calcu-
late the distance to all weight vectors. The closest weight vector is updated
by moving it closer to the customer. This process is repeated for all cus-
tomers a number of times, each time the process is restarted the update
of the weight vector becomes less sensitive. At the end of this phase the
seed customers are selected as the customers closest to the weight vectors.
Finally the insertion heuristic by Potvin and Rousseau is used to construct
a solution. This algorithm is about 25% slower than the insertion heuristic
of Potvin and Rousseau but the solutions generated are between 10 and
25% better.

2.4 Review of approximation algorithms and heuristics 43

The insertion heuristic is extended further is [PDR96]. In the insertion
heuristic two constants determine the importance of travel cost and travel
time in the score of each unrouted customer. Furthermore the “route form
factor” of Clark and Wright (see page 28) is used. Which value to assign the
constants is to some extend not determined by the problem. In [PDR96]
a genetic algorithm is used to find values for the three constants that give
the best results. For each class of problems from the Solomon test-set the
genetic algorithm is run for about 15 minutes. The idea is that for in-
stances with the same characteristics only one run of the genetic algorithm
is needed as the settings obtained can be reused. The results are better
compared to the using the insertion heuristic without the preprocessing but
only fractionally (here the running time of the genetic algorithm is not in-
cluded in the overall running time of the algorithm as the settings from the
genetic algorithm can be reused on many instances). The seed customers
are selected using the approach from [PR99].

It seems strange that the authors of [PR99] do not take time windows into
account when they determine the seed customers. In VRPTW the time
windows often result in routes that are not confined to one geographical
region of the plane, therefore clustering should take time windows into
account. In [PDR96] a discussion of how to identify two instances as being
equal lacks. An important point in using the genetic algorithm is that the
running time of 15 minutes is justified by the idea of reusing the obtained
values, therefore a discussion of how two instances are “equal” is needed.

Miscellaneous metaheuristics

Another general heuristic paradigm used for the VRPTW is the GRASP
approach described in [KB95]. GRASP stands for Greedy Randomized
Adaptive Search Procedure and is a combination of greedy heuristics, ran-
domization, and local search. First an initial pool of feasible solutions is
constructed. Then at each iteration all feasible moves are ranked according
to an adaptive greedy function. One of the k best solutions is chosen at
random and a local search is applied. This process is repeated a certain
number of times. The GRASP algorithm of Kontoravdis et al. constructs
feasible solutions by an randomized version of the insertion algorithm pre-
sented in [PR93]: instead of selecting the best customer for insertion every

44 Chapter 2. Routing with Time Windows

time, one of the k best candidates is chosen. After generating five solutions
this way the best is chosen for local search. In the local search part each
route ρ is considered for elimination by moving all its customers into other
routes, or if this is not possible, replacing a customer with another which
is then moved to another route.

The Guided Local Search (GLS) approach has been used for the VRPTW
in the paper [KPS97] by Kilby et al. GLS is a memory-based metaheuristic
like tabu search. In GLS the cost function is extended by adding penalty
term encouraging diversification, that is, escaping from local minima is
done by penalizing particular solution features. The local search phase of
Kilby et al. uses the 2-Opt on single routes, the relocate, the exchange and
2-Opt∗ neighbourhoods. In their heuristic, using the same arc over and
over again is penalized. GLS performs quite well compared to two of its
competitors. GLS is also used in [The97] from the GreenTrip1 consortium,
an EU-funded project focused on the development of flexible and effective
routing software.

A quite different approach from the metaheuristics, which all use some way
of escaping local minima, is the Large Neighbourhood Seach put foreward
by Shaw in [Sha97]. This heuristic is a greedy heuristic and it does not try
to escape a possible local minimum. Instead, the neighbourhood structure
is made considerably larger in order to enhance the chances of delivering a
high-quality solution. The initial solution is made up of routes supplying
just a single customer.

Finally Kanstrup Kristensen uses a hybrid in his master thesis [Kri95].
Here the exact shortest path algorithm of the Branch-and-Price approach
(to be explained in the next chapter) is replaced by a tabu search, thereby
mixing exact and heuristic approaches. The results are generally acceptable
in quality as most solutions only diverge less than 2-3 per cent from the
best known solutions. The author does admits, though, that the approach
is both time and memory consuming. In [CJR81] Cullen et al. also uses
the set partitioning approach for a heuristic. An interactive heuristic is
described, where the branching decision is guided by the user that selects
the arcs to be used to branch on.

1Homepage: www.cs.strath.ac.uk/˜ps/GreenTrip/

2.5 Overview of exact methods and heuristics 45

2.5 Overview of exact methods and heuris-
tics

Since 1987 numerous researchers have been using the Solomon test-sets
when they test their heuristics or exact algorithms. Unfortunately, there is
not a general consensus on two important aspects: objective and calculation
of distance (and travel times) between vertices (customers and the depot).
The test-sets are described in more detail in section 7.1.

As can be seen from the tables 2.2, 2.3 and 2.4 several different objectives
have been proposed. For the entries marked with (?) in the column “Dis-
tance and time” in the tables 2.2 and 2.3 it is assumed that the calculation
methods are based upon the methods used in the papers describing the
algorithm(s) used as reference algorithms as no indication of the calcula-
tion method is given otherwise. When solving the problems to optimality,
the most widely used approach is to minimize the total traveled distance,
while the heuristics in almost every case have several objectives, the pri-
mary usually being minimization of the number of vehicles used.

As the customers are given by a pair (x, y) in the plane the (Euclidean)
distances have to be calculated. In most papers, real arithmetic is used,
that is, the results are neither rounded or truncated, but simply used as
they are. As noted in [AD95, PR93] this makes the solution and running
times dependent on the chosen hardware and the chosen precision. Some
authors round or truncate to one or three decimals. Table 2.2, 2.3 and 2.4
present the choices taken regarding objective and calculation of distance
and travel times in papers known to the author, and where the developed
heuristic or exact algorithm for the VRPTW is tested using the Solomon
test-sets. There does exist some papers on heuristics, which do not use
the Solomon test-sets. Among those are [vL88]. These papers will not
commented upon here.

The difference in objective and calculation of time and cost makes it hard
to make direct comparisons between the exact methods and the heuristics.

1The routing cost is defined as the sum of travel time, service time and waiting time.
2A remark concerning the problems of using real arithmetic suggests that something

else may have been used, but the choice is not stated in the paper.
3This paper contains two algorithms.

46 Chapter 2. Routing with Time Windows

Reference Objective Distance and time
[Sol87] 1. Min number of vehicles Real arithmetic

2. Min schedule time
3. Min travel distance
4. Min waiting time

[PR93] 1. Min number of vehicles Real arithmetic
2. Min route time

[FP93] 1. Min number of vehicles Real arithmetic (?)
2. Min travel distance

[GPR94] 1. Min number of vehicles Real arithmetic (?)
2. Min routing cost1

[TOS94] 1. Min number of vehicles Real arithmetic (?)
2. Min travel distance

[PR99] 1. Min number of vehicles Real arithmetic
2. Min route time

[KB95] 1. Min number of vehicles Real arithmetic
2. Min travel distance

[Rus95] 1. Min number of vehicles Real arithmetic
2. Min schedule time
3. Min travel distance

[AD95] 1. Min number of vehicles ?2

2. Min routing cost1

[BGG+95] Min travel distance Multiplied by 1000
and rounded to nearest integer

[RT95] 1. Min number of vehicles Real arithmetic
2. Min travel distance

[SF96] 1. Min number of vehicles Real arithmetic
2. Min travel distance

[PKGR96] 1. Min number of vehicles Real arithmetic
2. Min route time

[PB96] 1. Min number of vehicles Real arithmetic
2. Min route time

[PDR96] 1. Min number of vehicles Real arithmetic
2. Min route time

Continued on the next page.

Table 2.2: Overview of strategies chosen for objective and calculation of
distance for heuristic methods. (Part 1)

2.5 Overview of exact methods and heuristics 47

Continued from the previous page.

Reference Objective Distance and time
[CR96] 1. Min number of vehicles Real arithmetic

2. Min schedule time
3. Min travel distance

[Sha97] 1. Min number of vehicles Real arithmetic
2. Min travel distance

[KPS97] Min travel distance Real arithmetic (?)
[The97] Min travel distance Real arithmetic (?)
[GTA99] 1. Min number of vehicles Real arithmetic (?)

2. Min route time
[Tha] 1. Min number of vehicles Real arithmetic (?)

2. Min routing cost1

[TOS] 1. Min number of vehicles Real arithmetic (?)
2. Min travel distance

Table 2.3: Overview of strategies chosen for objective and calculation of
distance for heuristic methods. (Part 2)

Reference Objective Distance and time
[DDS92] Min travel distance One decimal point and truncation

(travel times no decimal point
and truncation)

[Hal92] Min travel distance One decimal point and rounding
[FJM94]3 Min travel distance Real arithmetic

One decimal point and rounding
[Koh95] Min travel distance One decimal point and truncation
[GDDS95] Min travel distance One decimal point and truncation
[KM97] Min travel distance One decimal point and truncation
[Kon97] Min number of ve- One decimal point and truncation

hicles

Table 2.4: Overview of strategies chosen for objective and calculation of
distance for exact methods.

48 Chapter 2. Routing with Time Windows

The VRPTW community is using the Solomon test-sets extensively, there-
fore we need to find a common objective function and a common method
for calculating time and cost.

Time and cost should be calculated to with some rounded or truncated
precision and it seems that the method first used in [Hal92] is becoming
a standard for exact methods. The wide spread use of real arithmetic
without rounding or truncation in the heuristics must stop. Instead the
method of [Hal92] should also be used here, making comparison between
the algorithms easier.

The objective function should be to minimize the total travel distance
(cost). This objective function can also incorporate the minimization of
the number of vehicles by assigning the cost of using a vehicle to the (0, i)
arcs.

A number of heuristics seem to perform equally well. Using the idea of
minimum-escaping as performed by the metaheuristics lead to significantly
higher quality of the solution. The better solutions do not come for free.
The running time of the metaheuristics are significantly higher than the
route-contruction or route-building heuristics. A number of methods gen-
erate solutions of almost equal quality. As the algorithms are tested on dif-
ferent computers an exact comparison is very difficult. The methods gener-
ating the best quality solutions (around 5% from optimum) are the GRASP
approach [KB95], Tabu Search-based approach [BGG+95, RT95, CR97]
and the method developed by the GreenTrip project [KPS97].

Among the exact methods it is difficult to compare [Kon97] with the oth-
ers as a different objective is used. Otherwise column-generation based
methods seems to be best right now, closely followed by methods based on
Lagrange relaxation. The dynamic programming based methods can not
compete with the column-generation and Lagrange relaxation.

Chapter 3

The sequential algorithm
for the VRPTW

In this chapter we describe the sequential VRPTW algorithm, which will
be used as the basis for the parallel algorithm developed later. In the
following, it is assumed that all vehicles have the same capacity.

The column generation scheme presented in this chapter is first used in 1989
in [AMS89] for the VRP problem, while Desrosiers, Soumis and Desrochers
in [DSD84] and again in 1985 Desrosiers, Soumis, Desrochers and Sauvé
in [DSDS85] used the column generation approach to solve the m-TSP
with time windows (or VRPTW without capacity constraints depending
on taste). In [DDS92], the column generation approach is used for the first
time for solving the VRPTW, and in [Koh95] a more effective version of
the same model with addition of valid inequalities solves more instances to
optimality than in [DDS92].

3.1 A set partitioning model of the VRPTW

Like many routing problems, the VRPTW can be described as a set par-
titioning problem (SP) (see e.g. [Sal75]). In this model each column corre-

49

50 Chapter 3. Sequential Routing with Time Windows

sponds to a feasible route, while the rows in the constraint matrix corre-
sponds to customers. For each column, the variable xr is defined by

xr =

{

1, if route r is used in the solution
0, otherwise

and cr denotes the cost (distance) of route r. The resulting model becomes:

min
∑

r∈R

crxr s.t. (3.1)

∑

r∈R

δirxr = 1 ∀i ∈ C (3.2)

xr ∈ {0, 1} (3.3)

where R is the set of all feasible routes, and δir is 1 if customer i is ser-
viced by route r and 0 otherwise. Figure 3.1 shows an instance and the
corresponding set partitioning model of the instance is shown in figure 3.2.

Note that the constraints concerning time windows, capacity and flow are
assumed to be respected as R only contains feasible routes. This makes the
model very versatile as other demands are hidden from the set partitioning
formulation by the “route generator”. Note also that a solution to the
set partitioning formulation does not completely state a solution to the
VRPTW as the order of service of the customers in each route is not given.
This information has to be supplied separately, that is, two representations
of the routes, one for the set partitioning problem, where we just indicate
whether a customer is serviced on a given route or not, and one where the
actual lay-out of the route is given, have to be maintained.

3.2 Preprocessing

In preprocessing the formulation is tightened before the actual optimization
is started. This can be done by fixing some variables, reducing the interval
of values a variable can take etc. The aim is to narrow the solution space.

In VRPTW the time windows can be reduced if as in our case the triangu-
lar inequality holds. Kontoravdis and Bard uses the triangular inequality

3.2 Preprocessing 51

3[8;18]

1[2;32]

D [0;100]

4 [20;32]

2 [4;14]

8

8

5

4

4

4

4

5

5

88

4

4

4 4

6

6

Feasible routes
D – 1 – D (x1) D – 2 – 1 – D (x5)
D – 2 – D (x2) D – 2 – 4 – D (x6)
D – 3 – D (x3) D – 3 – 4 – D (x7)

D – 4 – D (x4)

Figure 3.1: Instance graph of a routing problem. The time windows for
each customer is shown beside the vertices. Here cij = tij and service time
for all customers is set to 10 time units. Demands are all 1 and capacities
of the vehicles are set to 3.

52 Chapter 3. Sequential Routing with Time Windows

min 8x1 +12x2 +8x3 +8x4 +15x5 +14x6 +16x7

x1 + x5 = 1
x2 + x5 + x6 = 1

x3 + x7 = 1
x4 + x6 + x7 = 1

Figure 3.2: The set partition formulation of figure 3.1.

in [KB95] to strengthen the time windows. As the triangular inequality
holds the earliest time a vehicle can arrive at a customer is by arriving
straight from the depot and the latest time is by driving the fastest way to
the depot, that is, straight back to the depot. So for a customer i the time
window can be strengthened from [ai, bi] to [max{a0 + t0i, ai}, min{bn+1 −
ti,n+1, bi}].

A further reduction of the time windows can be achieved by the scheme
developed by Desrochers et. al in [DDS92]. The time windows are reduced
by applying the following four rules in a cyclic manner. The process is
stopped when one whole cycle is performed without changing any of the
time windows. The four rules are:

1. Minimal arrival time from predecessors:
al = max{al, min{bl, min(i,l){ai + til}}}

2. Minimal arrival time to successors:
al = max{al, min{bl, min(l,j){aj − tlj}}}

3. Maximal departure time from predecessors:
bl = min{bl, max{al, max(i,l){bi + til}}}

4. Maximal departure time to successors:
bl = min{bl, max{al, max(l,j){bj − tlj}}}

The first rule adjusts the start of the time window to the earliest time a
vehicle can arrive coming straight from any other possible predecessor. The
rule is illustrated in figure 3.3.

3.3 Branch-and-Price 53

i : [ai bi]

j1 : []

j2 : []

j3 : []

L

Figure 3.3: The start of the time window for customer i can be moved
from ai to L as this is the earliest possible arrival, when we start as early
as possible from any of the 3 possible predecessor (j1, j2 and j3).

In a similar fashion the second rule adjusts the start of the time window
in order to minimize the excess time spend before the time windows of all
possible successors opens if the vehicle continues to a successor as quickly
as possible.

The two remaining rules uses the same principles to adjust the closing of
the time window.

3.3 Branch-and-Price

For the small instance in the example given in figure 3.1 it was possible to
generate all feasible routes (columns) and then solve the set partitioning
problem. This becomes if not impossible then very cumbersome for even
small instances. To illustrate this, consider an instance with 40 customers
where the constraints make every route of up to 7 customers possible. As

54 Chapter 3. Sequential Routing with Time Windows

there exists

(

40
i

)

routes of i customers there will be in order of

6
∑

i=1

(

40
i

)

≈ 4.6 million

routes that has to be generated.

The number of feasible routes quickly becomes very large, and in addition
the set partitioning problem is NP-hard. This makes the problem difficult
to handle both with respect to memory and running time. This can be
overcome by relaxing the integrality constraints. Then our integer program
becomes a linear program, that is solvable by available software.

3.3.1 Column Generation

If a linear program contains too many variables to be solved explicitly, then
we can initialize the linear program with a small subset of the variables
(corresponds to setting all other variables to 0) and compute a solution of
this reduced linear program. Afterwards, we check if the addition of one
or more variables, currently not in the linear program, might improve the
LP-solution. This check can be done by the computation of the reduced
costs of the variables. In our case, a variable of negative reduced cost can
improve the solution.

Column generation (an introduction to column generation can be found
in [BJN+94, BJN+98] and in Danish in [MJ, chapter 7]) has turned out
to be an efficient method for a range of vehicle routing and scheduling
problems. In our case we have to drop the integrality constraints (3.3). This
changes our our integer program to a linear denoted the linear relaxation
of the integer program. The drawback is that we might end with a non-
integral solution (if we are lucky the solution is integer and we are finished).
To guarantee that we end up with an integer solution we use Branch-
and-Bound to close the gap between the lower bound (the result of the
relaxation) and the integer solution. Column generation used together with
Branch-and-Bound is denoted Branch-and-Price (due to the analogy with

3.3 Branch-and-Price 55

I II

min c1x1 + c2x2 + · · · + cfxf + · · ·

= 1
= 1
.
.
.
.
.
.
.
.

= 1

Figure 3.4: An illustration of the column generation approach. The
columns in part I are present, whereas the columns in part II are “rep-
resented” by the pricing algorithm.

Branch-and-Cut where rows instead of columns are added successively to
the problem).

In figure 3.4 part I of the constraint matrix are the routes actually generated
and included while the remaining routes (part II) are “represented” by a
pricing algorithm. If no variables have positive reduced costs then the
current optimal solution can not be improved further, one normally says
that “all variables price out correctly”. In the case that the variables do not
price out correctly we add the column(s) with negative reduced cost to the
problem, re-optimize and run our pricing algorithm again. Sometimes, one
applies a heuristic pricing algorithm instead of an exact pricing algorithm.
Thereby the entire algorithm becomes a heuristic as it is not guaranteed
that all variables price out correctly. As lower bound used by the Branch-
and-Bound part of the algorithm is not guaranteed, optimal bounding is
performed using values that may be larger than the optimal value, this
may result in nodes being fathomed that would not have been fathomed if
the optimal value of the lower bound was known. The Branch-and-Bound
therefore also becomes a heuristic.

In our case, the subproblem (to be solved by the pricing algorithm) is an
ESPPTWCC, as all constraints are handled here. The reduced cost rj of
a non-basic variable j corresponding to a LP-solution with dual variables

56 Chapter 3. Sequential Routing with Time Windows

π ∈ Rm is defined as:

rj = cj − πT δ·j

where cj is the cost of the route and δ·j is the “route vector”.

The column generation part of the Branch-and-Price is summarized in fig-
ure 3.5.

3.3.2 Branch-and-Bound

As previously described the column generation approach does not necessar-
ily lead to an integer solution. Instead we may end up with a solution that
is not feasible for the VRPTW at all. At this point we can apply another
basic algorithmic technique called Branch-and-Bound.

The problem we have to solve is to minimize a function f(x) over a set of
variables (x1, x2, . . . , xn) over a set of feasible solutions S, that is,

min f(x), s.t.

x ∈ S.

Branch-and-Bound is a divide-and-conquer approach that dynamically sear-
ches through a search tree, where the original problem is divided into
smaller problems (by adding more constraints). When dividing a prob-
lem into smaller problems the original problem is denoted the parent node
and the smaller problems are usually denoted subproblems, child nodes or
subspaces. Note that the terminology subproblem may conflict with the
subproblem in the column generation approach. We will therefore use the
work subspace. In the worst case all subspaces in the search tree have to
be explored.

Before starting the exploration of the search tree, we either have to produce
a feasible solution e.g. using an approximation algorithm or a heuristic, or
we may simply set the upper bound sufficiently high (“∞”). It should be
noted that the existence of a good initial feasible solution is important as
it limits the number of subspaces that have to be explored. The solution is
known as the global upper bound (or sometimes the current best solution or

3.3 Branch-and-Price 57

Generate
initial
routes

Solve
relaxed

SP

Add routes
to problem

Run
SPPTWCC

Return
Solution

Start

End

�
�

�
�❅

❅
❅

❅
�

�
�

�❅
❅

❅
❅

Reduced
cost

negative?

❄

❄

✲

✻

YES

✛

❄
NO

✲

✛

Figure 3.5: Diagram of the column generation part of the VRPTW algo-
rithm.

58 Chapter 3. Sequential Routing with Time Windows

the incumbent). It is possible however to start without an initial solution by
setting the initial value of the global upper bound to either a large number
that is definitely an upper bound or use the total accumulated distance of
all depot - i - depot routes.

In each iteration of the Branch-and-Bound algorithm, an unexplored child
node is chosen. The bounding function is then called and produces a local
lower bound. If the global upper bound is smaller than the local lower
bound the child node may be discarded (sometimes called fathomed), as
no feasible solution contained in the set represented by the subspace can
be better than the existing global upper bound. In the case where the
local lower bound is smaller than the global upper bound, we check if the
local lower bound is the value of a feasible solution. If that is the case, the
local lower bound becomes the new global upper bound. If the local lower
bound is smaller than the value of the global upper bound we perform a
branching operation thereby splitting the child node into a number of even
smaller subspaces, as there is a possibility for a better feasible solution in
the subspace than the current global upper bound.

A typical Branch-and-Bound algorithm therefore consists of three major
components:

1. Bounding

2. Selection

3. Branching

Bounding

In order to evaluate a given subspace, a bound value is computed. In our
case, a lower bound is computed, that is, no feasible solution in a given
subspace can attain a value lower than this bound. The bound used for
the VRPTW is the LP relaxation of the IP model of the set partitioning
problem, and as a part of the bounding process, the column generation is
performed.

If a subspace has a lower bound larger than the current global upper bound,
the subspace can be discarded as mentioned before. Two strategies for

3.3 Branch-and-Price 59

assigning lower bounds to subproblems are often used and investigated. In
one, lazy evaluation, we postpone the computing of the actual bound as
long as possible, and in the other, eager evaluation, we do it as soon as
possible.

In lazy evaluation, the bound of the parent node is often used. As more
restrictions are placed on the child node the bound of the parent node
is also a lower bound for the child node albeit maybe a weak one. The
advantage is that we avoid doing bound calculations if the parents lower
bound is already worse than the global upper bound.

The idea behind eager evaluation is to bound the subspaces as soon as
possible and thereby assign a stronger bound to the subspaces than in lazy
evaluation. Of course the drawback is that more bound calculations have
to be performed than in the lazy evaluation strategy.

Selection

During the execution of the Branch-and-Bound algorithm we have a set U
of generated but unexplored subspaces. The selection of the next subspaces
to be evaluated is performed by the selection function h, where we chose
the subspace that has the minimum value of h.

In Best-first Search (BeFS) the subspace to be explored is the one that
has the lowest lower bound, that is, h ≡ bounding function. Here no
superfluous computation is done once the optimal solution has been found.
Even though this may seem like a good idea, serious memory problems may
arise as the search tree grows exponentially as a function of the depth.

Another selection function, which exhibits the same memory problem, is
the Breadth-First Search (BFS). Here h ≡ L, where L is the level of the
subspaces. The level of a subspace is the depth of its position in the Branch-
and-Bound tree, i.e. the root node is on level 0, its children on level 1 etc.

In the Depth-First Search (DFS) with h ≡ −L (that is, the child node with
the largest level is selected) the memory usage is only linear in the depth
of the search tree. Additionally, it tends to be simpler to implement as the
generated child nodes can be stored on a stack. The drawback is that a

60 Chapter 3. Sequential Routing with Time Windows

large number of subspaces may have to be explored if the gap left by the
initial setting of the global upper bound is large.

Sometimes a combination of DFS and BeFS is used. Then DFS is used as
the main principle of selection, and BeFS is used to select among subspaces
on the same level.

Branching

Just as bounding, branching is a decision related to the problem we are
trying to solve. During the years a number of different branching operations
for the VRPTW has been proposed in the literature [DDS92, Hal92, Koh95,
GDDS95]. We will describe the following methods:

1. branching on the number of vehicles,

2. branching on the flow variables (xijk),

3. branching on the sums of flow variables, and

4. branching on resource windows.

Branching on the number of vehicles

This branching rule was proposed by Desrochers, Desrosiers and Solomon
in [DDS92]. If our bounding function returns a solution where the number
of vehicles k is fractional it is natural to introduce a bound on the number
of vehicles.

We branch on the number of vehicles by creating two child nodes equal to
the current subspace but adding

∑

j∈C f0j ≥ ⌈k⌉ respectively
∑

j∈C f0j ≤
⌊k⌋ to the child nodes in the master problem. Here fij denotes the “flow”
of vehicles on the arc (i, j).

3.3 Branch-and-Price 61

Branching on flow variables

Branching on a single variable xijk is only possible if each vehicle can be
distinguished. In the column generation environment this can be done
by solving a subproblem (SPPTWCC) for each vehicle and in the master
problem we introduce an additional constraint

∑

p∈Pk

yp = 1

for each vehicle k, where Pk is the set of routes generated for vehicle k
and yp is either 0 or 1 ensuring that each vehicle drives exactly one of
the generated routes. This ensures that each vehicle is used for one path
only. As all our vehicles are identical this option will not be considered any
further.

Instead of branching on a single variable xijk we can branch on the sums of
flow. This can be done in two ways: either

∑

j xijk or
∑

k xijk (equivalent
to fij).

Branching on
∑

j xijk means fixing customers i to vehicle k, which implies
that the subproblems of different vehicles are not identical. If we instead
branch on

∑

k xijk this can be done by fixing arcs (i, j) in the graph (that is,
changing the graph for all vehicles). So the subproblems remain identical.

Branching on
∑

k xijk is equivalent to branching on single flow variables fij.
As all subproblems remain identical only one SPPTWCC must be solved
in each iteration. The branch fij = 0 is imposed by removing the arc (i, j)
from the graph. The other branch, fij = 1, is imposed by removing arcs
originating in i (unless i is the depot) and arcs terminating in j (unless j is
the depot) except for the (i, j) arc. This forces a route to continue directly
to j after visiting customer i. We have used this branching scheme in our
basic implementation.

The branching decision
∑

j xijk was first proposed by Halse in [Hal92]. Im-
posing

∑

j xijk = 0 is done by removing all arcs originating or terminating
in customer i for vehicle k, and

∑

j xijk = 1 is imposed by removing all
arcs originating or terminating in customer i for all vehicles but vehicle k.
This will “force” customer i to be visited by vehicle k.

62 Chapter 3. Sequential Routing with Time Windows

In order to create more complex strategies the branching schemes can be
mixed.

All branching rules discussed in this section will produce an integer solution
in a finite number of steps.

Branching on resource windows

The idea of branching on resource windows is introduced by Gélinas et al.
in [GDDS95]. In our VRPTW model we can branch on the time windows,
but the capacity constraint can also be viewed as resource windows. We will
only discuss branching on time windows, as the capacity is significantly less
constraining in most cases. In [GDDS95] only branching on time windows
is used.

In branching on time windows we branch by splitting a time window into
two time windows. The branching has to be done to ensure that at least
one route is infeasible in each of the two “sub windows”.

In order to branch on time windows we have to make the following decisions:

1. How should we choose the node for branching?

2. Which time window should be divided?

3. Where should the time window be divided?

In order to determine where branching on time windows is possible we
define feasibility intervals [lri , u

r
i] for all vertices i ∈ N and all routes r with

fractional flow. lri is the earliest time that service can start at vertex i on
route r, and ur

i is the latest time that service can start, that is, [lri , u
r
i] is the

time interval during which route r must visit vertex i to remain feasible.

The intervals can easily be computed by a recursive formula. Let the
fractional route r be defined by r = 〈i0, i1, i2, . . . , ie〉 where i0 = 0 and
ie = n + 1. The intervals can then be calculated by:

lrik
=

{

0 if k = 0
max{lrik−1

+ tik−1,ik
, aik

} if k = 1, 2, . . . , e− 1
(3.4)

ur
ie

=

{

T if k = e
min{ur

ik+1
− tik,ik+1

, bik
} if k = e− 1, e− 2, . . . , 1

(3.5)

3.3 Branch-and-Price 63

If a route is visiting a customer more than once it results in a feasibility
interval for each visit. Additionally we define

Li = max
fractional routes r

{lri }, i ∈ N (3.6)

Ui = min
fractional routes r

{ur
i}, i ∈ N (3.7)

Now if Li > Ui at least two routes (or two visits by the same route) have
disjoint feasibility intervals, i.e. the vertex is a candidate for branching on
time windows. It should be noted that situations can arise where there
are no candidates for branching on time windows, but the solution is not
feasible. We can branch on a candidate vertex i by dividing the time
windows [ai, bi] at any integer value in the open interval [Ui, Li[.

Here three different strategies are proposed in [GDDS95]:

Elimination of cycles: As will be discussed in chapter 4 there may be
cycles in the routes generated. These cycles leads to lower bounds
which are not as tight as if we did not allow for cycles. This strategy
therefore tries to select a candidate vertex where a cycle would be
removed if the time window is split.

Number of visits: Here the vertex selected is the candidate vertex i with
a minimum number of visits. We thereby hope that the number of
routes that remain feasible in the two new problems is small.

Flow values: Dividing a time window into two smaller ones results in
elimination of flow in both part. Let α1 be the flow eliminated by
choosing the first part and α2 be the flow eliminated by using the
second part of the time window. Here we choose the vertex i where

α1 + α2 − |α1 − α2|

is maximized. Hence, we select the candidate vertex for which the
total quantity of flow eliminated for the two new problems is both
maximal and best balanced.

We will elaborate further on these criteria later.

64 Chapter 3. Sequential Routing with Time Windows

After having chosen the candidate vertex i for branching we now have to
choose an integer t ∈ [Ui, Li[in order to determine the division.

Now, let Γi be the total number of feasibility intervals for vertex i. To avoid
too many indices we omit the route index r from now on. The feasibility
interval [lγi , uγ

i] is the γth visit to vertex i. The total amount of flow visiting
every vertex is 1 and each of the Γi visits contributes with a certain amount.
We now try to divide the time window of vertex i in a way to 1) balance
the eliminated amount of flow from each side and 2) make it as large as
possible.

In order to choose t, we determine the bounds the li and ui, t ∈ [ui, li[. Let
Ai(t) be the flow eliminated if the time window is restricted to [ai, t] and
let Bi(t) be the flow eliminated if the time window is restricted to [t+1, bi].
We now determine li and ui in order to satisfy:

|Ai(ui) − Bi(li)| is minimized (3.8)

[ui, li[⊆ [Ui, Li[and [ui, li[6= ∅ (3.9)

li is chosen among the lγi s (3.10)

ui is chosen among the uγ
i s (3.11)

lγi /∈]ui, li[and uγ
i /∈]ui, li[(3.12)

We want our solution to result in a split that balances the flow as mush
as possible (3.8). Condition 3.9 ensures that the current optimal solution
becomes infeasible in both the two new problems, while the next two condi-
tions ensure that li and ui corresponds to boundaries of feasibility intervals.
The final condition 3.12 ensures that we eliminate as much flow as possible.

The bound li and ui can easily be computed. All lγi s and uγ
i s (hereafter

referred to as points) are sorted together in non-decreasing order (and lγi s
are put before uγ

i s in case of equal value). Now we run through the list
starting from the first element. Here Ai(t) is equal to 1 and Bi(t) is equal
to 0. Every time we encounter a lower bound, Ai(t) is decreased with the
amount of flow it contributes, and every time an upper bound is encoun-
tered it is increased with the amount of flow it contributes. In case we meet
an upper bound immediately followed by a lower bound a candidate split
is found and its |Ai(ui) − Bi(li)| value is determined. After inspecting all
points the best pair of lower and upper bound is returned.

3.4 Achieving tighter lower bounds 65

In [GDDS95] the branching on resource constraints is compared to one
(unspecified) strategy for branching on flow variables. In 15 out of 21
benchmark tests branching on time windows are fastest, while branching
on flow variables is best in the remaining 6 cases. In 8 of the 21 instances
branching on time windows in more than twice as fast as branching on flow
variables.

3.4 Achieving tighter lower bounds

Often the only way to solve difficult integer programming problems is to use
a relaxation of the original problem. Typically the optimal solution to the
relaxed problem is not feasible in the original problem. To get an integer
solution the most popular method has been to use Branch-and-Bound.

Another method is to try to improve the polyhedral description of the
relaxed problem in order to get an integer solution or at least tighten the
bound.

Let C be the set of constraints that are defining the VRPTW ((2.2) –
(2.9)), and let S be the polytope defined by the same constraints, but now
with the integrality constraints relaxed, that is, instead of xijk ∈ {0, 1} we
now have 0 ≤ xijk ≤ 1.

If it is possible to describe the convex hull of C we can use ordinary linear
programming to solve the problem if the description is “small enough”.
The LP with constraints defining the convex hull will automatically result
in a feasible and optimal integer solution.

Alas, finding an inequality description of the convex hull of C is not easy
(see [NW88]).

So, in general the optimal solution to S will be fractional. Therefore we try
to identify an inequality (a cut) that separates the optimal solution from
all the integer solutions. If such an inequality can be found it is added to
the problem and the new enhanced problem is solved resulting in a new
optimal solution. Generally this leads to an improvement in the objective
function. As long as we can find new cuts this process can be continued
iteratively.

66 Chapter 3. Sequential Routing with Time Windows

There exists both general cuts and cuts specific for a given problem. One of
the general cuts are the Gomory-Chvátal cuts (see [NW88, CCPS98]). The
typical problem with the general cuts is that they are rather “weak”, that is,
only a very small part of the solution space is removed. Therefore attention
has mainly been focused on the problem-specific cuts, especially after the
success obtained by Padberg, Rinaldi, Grötschel and Holland using cuts to
solve the TSP.

The “deepest” cuts are those associated with the facets of the convex hull of
S. Algorithms that identify cuts are called separation algorithms; they play
the same role for cuts as the pricing algorithm does for column generation.
Often one distinguishes between heuristic separation algorithms and exact
separation algorithms. An exact separation algorithm finds a cut if one
exists, whereas if something is found by a heuristic separation algorithm it
is a cut, but cuts may actually exist without being detected.

If the process of detecting and adding (and in more complex situations also
managing) cuts is done in every (or almost every) node of the Branch-and-
Bound tree we have a Branch-and-Cut algorithm.

We will now briefly describe the cuts used in our implementation of the
algorithm for solving the VRPTW. Note that in identifying cuts for the
VRPTW we can not construct valid inequalities in the variables of the
master problem, that is, valid inequalities based on the Set Partitioning
Problem. As there is no way of transferring the simplex multipliers from
these constraints to the subproblem this is not compatible with the column
generation context. We therefore have to detect the cuts on the basis of
((2.2) – (2.9)) and then “translate” the cuts into the Set Partition Problem
formulation.

3.4.1 The Subtour elimination constraints

The sub-tour elimination constraints originate from the TSP. Let us there-
fore now consider the usual LP-formulation of the TSP. Given a graph
G = (N, E), let ce and xe, e ∈ E, be the cost respectively the decision
variable for arc e. If xe = 1 the arc e is part of the solution, if xe = 0 it is
not. δ(S) denotes the set of arcs with exactly one endpoint in S. Finally
the complement of set S is denoted S̄. TSP can now be stated as:

3.4 Achieving tighter lower bounds 67

min
∑

cexe, s.t. (3.13)
∑

e∈δ(i)

xe = 2 ∀i ∈ N (3.14)

∑

e∈δ(S)

xe ≥ 2 ∀S ⊂ N, S 6= ∅ (3.15)

xe ∈ {0, 1} (3.16)

The constraints (3.14) are denoted assignment constraints, while the con-
straints (3.15) are the subtour elimination constraints of which there are
exponentially many. An LP-based solution procedure starts with only as-
signment constraints and (3.16) relaxed to 0 ≤ xe ≤ 1. Now the subtour
elimination constraints are generated as they are needed.

For the VRPTW the flow out of a set S of customers (denoted X(S) will
be: X(S) =

∑

k∈V

∑

i∈S

∑

j∈N\S xijk =
∑

i∈S

∑

j∈N\S fij.

The weak form of subtour elimination inequalities are given by

X(S) ≥ 1.

Solving the SPPTWCC, this inequality is not necessarily satisfied. Had
we instead solved the ESPPTWCC in our effort to generate new columns,
Kohl has shown in [Koh95] that the weak form of the subtour elimination
inequalities would automatically be satisfied.

In the case of running SPPTWCC, violated valid weak subtour elimination
constraints can be identified in polynomial time for the equivalent separa-
tion problem.

3.4.2 Comb-inequalities

Subtour-elimination constraints alone do not guarantee integrality of the
LP solution. Comb-inequalities form another class of inequalities that are
often added to further strengthen the LP.

68 Chapter 3. Sequential Routing with Time Windows

A comb consists of a handle (denoted H) and an odd number (greater than
1) of teeth (denoted W1, W2, W3, . . . , Wh). The handle and the teeth are
sets of vertices. The teeth are disjoint, and all teeth share at least one
vertex with the handle and have at least one vertex that is not part of the
handle.

The arcs in the comb are the ones with either both endpoints in the handle
or both endpoints in one of the teeth. If an arc have both endpoints in the
handle and a teeth it will be counted twice in the inequality shown below.
A comb inequality is now given by:

∑

e∈E(H)

xe +
h

∑

i=1

∑

e∈E(Wi)

xe ≤ |H|+
h

∑

i=1

(|Wi| − 1) −
h + 1

2
.

A comb with one handle and three teeth is the smallest comb (see fig-
ure 3.6). The concept has been generalized by Grötschel and Pulleyblank
to inequalities with several handles with associated teeth (called clique
trees).

A polynomial separation algorithm for the special case where |Wi| = 2 is
given by Padberg and Rao; an efficient implementation of this algorithm
and a very fast heuristic is given by Grötschel and Holland. For more
general classes of combs, no polynomial separation algorithms are known.

3.4.3 2-path inequalities

As mentioned earlier cuts especially for the VRPTW have been developed
and discussed by Kohl in [Koh95] and by Kohl et al. in [KDM+99]. These
cuts are also used in our implementation and are now briefly described. It
should be noted that in [Koh95] the separation algorithm is only run in
the root node of the Branch-and-Bound tree, therefore the implemented
algorithm is not a Branch-and-Cut algorithm.

The basis of this set of cuts is the subtour elimination inequality in the
strong form:

x(S) ≥ k(S) ∀S ⊆ C

3.4 Achieving tighter lower bounds 69

Tooth W1 Tooth W2

Tooth W3

Handle

Figure 3.6: The simplest possible comb inequality.

70 Chapter 3. Sequential Routing with Time Windows

where x(S) is the amount of flow leaving the set S, and k(S) is the minimum
number of vehicles needed to service the customers in S. Now finding k(S)
is very hard, but using the fact that the travel times satisfy the triangle
inequality we have

S1 ⊂ S2 ⇒ k(S1) ≤ k(S2).

Using this fact one tries to find sets S that satisfy x(S) < 2 and k(S) > 1.
As k(S) is an integer, k(S) > 1 implies k(S) ≥ 2. That is, we are trying
to identify sets S that requires at least two vehicles to be serviced, but are
currently (in the fractional solution) serviced by less than two vehicles.

For a given set S two checks have to be performed. First we check whether
k(S) > 1, which is easily done, as we just have to check whether there
is sufficient capacity in one vehicle. The second check is to test whether
the customers of S can be serviced by a single vehicle, that is, solving a
corresponding Traveling Salesman Problem with Time Windows feasibil-
ity problem. This problem is NP-hard in the strong sense (proved by
Savelsbergh in [Sav56]), but as the size of S will be rather small in our
applications, it will remain manageable. This part is solved using dynamic
programming. Note that the hardest problems are the infeasible ones as
all possibilities have to be checked.

Finding the sets S for which x(S) < 2 are found using a heuristic. Starting
with S = ∅ customers are added to S as long as x(S) < 2. If no additional
customer can be added without violating x(S) < 2 then checking k(S) > 1
is performed.

Implementing the cuts in our set partitioning environment is by no means
straightforward as the customers are not variables in the master problem
of the column generation model. Our variables are the routes generated.
If a route contains at least one customer that is in the detected set S the
coefficient of that route in the constraint we wish to add must be non-zero.
Now recall that x(S) is the flow out of the set S. If the variable for a
route is non-zero it represents a flow through that route. So if one of the
customers in S is on such a route it is contributing to the flow out of S,
unless it’s successor is also a member of S. So the coefficient of a given
route is the number of customers that is member of S minus the number

3.4 Achieving tighter lower bounds 71

1

2 3

4

5

6

7

S

Figure 3.7: Determining the coefficient for a route/cut-pair. This route
(1-2-3-5-6-7) twice leaves the set S therefore the coefficient is equal to two,
which is equal to the number of customers in S minus the number of con-
secutive customers in S.

of consecutive pairs of members of S, as only the last customer in that
sequence is contributing to x(S) (see figure 3.7).

So for the root node we extend our column generation scheme depicted
in 3.5 to also include the separation algorithm for cut generation (see fig-
ure 3.8).

While subtour- and comb-inequalities are valid no matter where in the
Branch-and-Bound tree they are identified (we say they are globally valid),
this is generally not the case for the 2-path cuts.

No matter where in the Branch-and-Bound tree a 2-path cut is found it is
globally valid if k(S) ≥ 2. If the underlying graph is changed the 2-path
cut generated can be globally valid, but it is not guaranteed.

Branching on vehicles does not changes the underlying structure of the
problem. Therefore a cut found in a Branch-and-Bound node where only
vehicle restrictions have been imposed is also globally usable. If a TSPTW
tour can not be found here it can not be found in the root node either and
therefore the cut is global.

72 Chapter 3. Sequential Routing with Time Windows

Generate
initial
routes

Solve
relaxed

SP

Add routes
to problem

Run
SPPTWCC

Solve
separation-
problem

Start

End

�
�

��❅
❅

❅❅
�

�
��❅

❅
❅❅

cuts
generated?

�
�

��❅
❅

❅❅
�

�
��❅

❅
❅❅

Reduced
cost

negative?

❄

❄

✲

✻
YES

✛

❄
NO

✲

✛

✲

YES

❄
NO

Figure 3.8: Diagram of the column generation part of the VRPTW algo-
rithm.

3.5 Putting it all together 73

If we branch on arcs (also denoted branching on flow) we have two situa-
tions:

• Lets assume we have deleted the arc (x, y) in the graph. If a cut C
contains x but not y (or vice versa) the cut will be general applicable.
As y is not among the customers in the set it will have no influence
on the feasibility of the TSPTW problem.

If C is a cut containing both x and y the cut is not necessarily general.
The might exist a TSPTW tour in the root node by using the missing
(x, y) arc.

• Now lets assume we have deleted all arcs leaving x and entering y
but (x, y). Furthermore we assume that the cut contains x but not y.
Clearly no TSPTW tour can be generated as there is no way we can
leave x. Therefore it may be highly possible that a TSPTW exists in
the original graph. Same arguments can be made in the symmetric
case.

In the case where both x and y are members of the cut we are forced
to use the (x, y) arc. In the root this is not the case and it might
therefore be possible to generate a TSPTW tour.

So these cuts are not necessarily general but can be.

In the case of time window reduction it is quite obvious that a cut using
a customer with reduced time windows might actually not be a cut in the
root as the larger original time window might allow a TSPTW tour.

3.5 Putting it all together

This chapter has described the basic approach to solving the VRPTW using
column generation and cuts. Figure 3.9 recaps the overall structure of the
algorithm.

The master problem is initiated by generating the depot - i - depot routes
for every i. The dashed box in figure 3.9 contains the parts of the algorithm
that are only executed in the root. In the root if no more routes can be

74 Chapter 3. Sequential Routing with Time Windows

Solve
relaxed

SP

Run
SPPTWCC

Run
separation
algorithm

�
�

�❅
❅

❅
�

�
�❅

❅
❅

Add
routes?

�
�

�❅
❅

❅
�

�
�❅

❅
❅

Add
cuts?

�
�

�❅
❅

❅
�

�
�❅

❅
❅

Solution
IP?

�
�

�❅
❅

❅
�

�
�❅

❅
❅
LB ≤ GUB?

Update
GUB

Branch

Get new
subspace

❄

✲

✛

YES

✛

NO

✲

✛

YES

✛

NO

❄
NO

✛YES

✛YES

✲

✲

NO

Figure 3.9: Overall structure of the algorithm for solving the VRPTW
exact using column generation and cuts. The two segments of code in the
dashed box is only executed in the root node.

3.5 Putting it all together 75

generated the algorithm tries to identify some cuts that can strengthen the
formulation. Hereafter the route generating algorithm is run again. Only
when no more routes and no more cuts can be generated the lower bound of
the Branch-and-Bound node is determined. In all other Branch-and-Bound
nodes than the root the algorithm does not run the separation algorithm.

Now if the solution is integer we compare it with the current global upper
bound (GUB). If the lower bound is not integer, and the value of the lower
bound is higher than GUB then node is fathomed, otherwise the Branch-
and-Bound node is divided into two new child nodes, and these are entered
into the datastructure that holds the unsolved subspaces.

Finally the next subspace to be solved is fetched from the pool of unsolved
Branch-and-Bound nodes. If the pool is empty the algorithm prints out
the solution and terminates. The column generator is run at all nodes in
the Branch-and-Bound tree.

76 Chapter 3. Sequential Routing with Time Windows

Chapter 4

Shortest Path with Time
Windows and Capacity
Constraints

As seen in the previous chapter the ESPPTWCC must be solved as a
subproblem. In this chapter we describe an algorithm for solving the sub-
problem of the column generation approach.

4.1 The mathematical model

Using the column generation approach introduced in section 3.1 with the
set partitioning problem as the master problem, the subproblem becomes
the following mathematical model:

77

78 Chapter 4. Shortest Path with Constraints

min
∑

i∈N

∑

j∈N

cijxij, s.t. (4.1)

∑

i∈C

di

∑

j∈N

xij ≤ q (4.2)

∑

j∈N

x0j = 1 (4.3)

∑

i∈N

xih −
∑

j∈N

xhj = 0 ∀h ∈ C (4.4)

∑

i∈N

xi,n+1 = 1 (4.5)

si + tij −K(1 − xij)≤ sj ∀i, j ∈ N (4.6)

ai ≤ si ≤ bi ∀i ∈ N (4.7)

xij ∈ {0, 1} ∀i, j ∈ N (4.8)

Constraint (4.2) is the capacity constraint, constrains (4.6) and (4.7) are
time constraints, while constraint (4.8) ensures integrality. The constraints
(4.3), (4.4) and (4.5) are flow constraints resulting in a path from the depot
0 and back to the depot n + 1. The ĉij is the modified cost of using arc
(i, j), where ĉij = cij −πi. Note that while cij is a non-negative integer ĉij

can be any real number. As we are now dealing with one route the index
k for the vehicle has been removed.

As can be seen from the mathematical model above the subproblem is a
shortest path problem with time windows and capacity constraints where
each vertex can participate at most once in the path/route. For this prob-
lem (sometimes denoted the Elementary Shortest Path Problem with Time
Windows and Capacity Constraints (ESPPTWCC)) there is no known ef-
ficient algorithm, making the problem unsolvable for practical purposes.
Therefore some of the constraints are relaxed. Cycles are allowed thereby
changing the problem to the Shortest Path Problem with Time Windows
and Capacity Constraints (SPPTWCC). Even though there is a possibility
for negative cycles in the graph the time windows and the capacity con-
straints prohibits infinite cycling. Note that capacity is accumulated every
time the customer is serviced in a cycle.

4.1 The mathematical model 79

Arcs can now be used more than once, and customers may therefore be
visited more than once. This must be incorporated into the model above.
We therefore replace decision variables xij and si with xl

ij and sl
i. Now xl

ij

is set to 1 if the arc (i, j) is used as the l’th arc on the shortest path, and 0
otherwise, and sl

i is the start of service of customer i as customer number

l, where l ∈ L = {1, 2, . . . , |L|}, |L| = ⌊ bn+1

min tij
⌋ (remember that bn+1 is the

closing time of the depot). The SPPTWCC can now be described be the
following mathematical model:

min
∑

l∈L

∑

i∈N

∑

j∈N

ĉijx
l
ij, s.t. (4.9)

∑

i∈N

∑

j∈N

x1
ij = 1 (4.10)

∑

i∈N

∑

j∈N

xl
ij −

∑

i∈N

∑

j∈N

xl−1
ij ≤ 0 ∀l ∈ L − {1} (4.11)

∑

i∈C

di

∑

l∈L

∑

j∈N

xl
ij ≤ q (4.12)

∑

j∈N

x1
0j = 1 (4.13)

∑

i∈N

xl−1
ih −

∑

j∈N

xl
hj = 0 ∀h ∈ C ∀l ∈ L − {1} (4.14)

∑

l∈L

∑

i∈N

xl
i,n+1 = 1 (4.15)

sl
i + tij −K(1 − xl

ij) ≤ sl
j

∀i, j ∈ N ∀l ∈ L − {1} (4.16)

ai ≤ sl
i ≤ bi ∀i ∈ N (4.17)

xl
ij ∈ {0, 1} ∀i, j ∈ N (4.18)

(4.10) states that the first arc can only be used once, while (4.11) states
that arc l can only be used provided that arc l − 1 is used. The remaining
constraints are the enhancements of the “original” constraints (2.3) to (2.9)

80 Chapter 4. Shortest Path with Constraints

with the additional superscript l and the related changes. Note that (4.10)
is redundant as it is covered by (4.13), but it has been kept in the model
as to indicate the origin of the problem.

4.2 A Dynamic Programming Algorithm

In this section we will present a pseudo-polynomial dynamic programming
algorithm for the SPPTWCC.

4.2.1 The algorithm

The Shortest Path Problem (SPP) (without any additional constraints) is
a fundamental problem in network optimization. Hundreds of papers on
SPP have been written (see for example the surveys [GP88, CGR93]) and
it must be considered one of the truly classical problems in algorithmics.

Even though Dijkstras algorithm for solving SPP might not seem useful in
relation to SPPTWCC (arcs must be non-negative and it does not operate
with additional constraints) it is a good starting point for building our
dynamic programming algorithm for solving SPPTWCC.

The Dijkstra algorithm is very simple, and intuitively very easy to under-
stand. Lets assume we have a graph with non-negative edge-costs (lij) and
a vertex s as the origin of the shortest paths we are about to find. Initially
we have a list of all vertices not yet visited (the algorithm starts by visit-
ing s), and for each vertex i we have a label di which is the length of the
shortest path from s to i found so far (initially ds = 0 and di = ∞, i 6= s).
In each step of the algorithm the vertex with the smallest label among all
unvisited vertices is visited. When the algorithm visits a vertex i it checks
all out-going arcs (i, j) whether di + lij < dj holds. If this is the case, dj is
updated to di+lij otherwise dj remains unchanged. Vertex i is the removed
from the list of unvisited vertices, and unless the set of unvisited vertices is
empty a new step of the algorithm is started. The Dijkstra algorithm can

4.2 A Dynamic Programming Algorithm 81

be described by the dynamic program:

ds = 0,

dj = min
(i,j)∈A

{di + lij | j ∈ V \ {s}}.

As described the Dijkstra algorithm builds up the shortest path by ex-
tending “good” paths, and in each iteration the algorithm tries to extend
a “good” path to all possible successors. If all possible paths had to be
checked the algorithm should in the worst case check and compare expo-
nentially many paths. But by checking whether di + lij < dj holds or not
we try to extend only the “good” paths, the remaining paths are not ex-
tended any further. The di + lij < dj is called a dominance criterion and
this concept of discarding “bad” paths will be important in our effort to
build an efficient SPPTWCC algorithm.

In order to build the SPPTWCC algorithm we have to make two assump-
tions:

1. Time is always increasing along the arcs, i.e. tij > 0.

2. Time and capacity are discretized.

While a state in Dijkstras algorithm only contained the vertex i, this state
is now enlarged with the current time t of arrival and the accumulated
demand d to:

(i, t, d).

The label is then defined as c(i, t, d). The algorithm is based on the fol-
lowing simple extension of the dynamic programming behind the Dijkstra
algorithm:

c(0, 0, 0) = 0

c(j, t, d) = min
i

{ĉij + c(i, t′, d′) | t′ + tij = t ∧ d′ + di = d}.

States are treated in order of increasing time (t). Note that for each label
i there may now exist more than one state. The number of states is given

82 Chapter 4. Shortest Path with Constraints

by

Γ =
∑

i∈N

(bi − ai)(q − 1).

This is nevertheless the upper limit, many of these states might even not
be possible, and others will not be considered as they are dominated by
other states.

In a straightforward implementation we maintain a set NPS of not pro-
cessed states. Initially this set only has one member: the label (0, 0, 0). As
long as there exist unprocessed labels in the set the one with the lowest
time is chosen and the algorithm tries to extend this to the successors of
the vertex. States at vertex n + 1 are not processed and are therefore kept
in a special set of “solutions”, from which the best one is returned as the
algorithm terminates. When a label has been processed it is removed from
the set of unprocessed labels. The algorithm is described in pseudo-code
in figure 4.1.

This algorithm is denoted a reaching algorithm by Desrochers in [Des88],
since all successors of a label are treated in the same iteration. In the
pulling algorithm also presented by Desrochers in the same technical report
all predecessors of a given state are treated in the same iteration. We will
only use the reaching algorithm in this thesis.

In the paper [DS88b] by Desrochers and Soumis a reoptimization algorithm
for the SPPTW is proposed. After having computed the non-dominated
paths a number of disjoint paths are produced one at a time. Instead of
starting from scratch after having removed the vertices from the optimal
path, a primal-dual function is maintained in order to reoptimize the ex-
isting paths to the new conditions.

Let Z0 denote the problem for which the non-dominated paths were ob-
tained originally. The vertices of the best path generated are removed from
Z0 (let us denote the problem Z1) and the path is returned.

Central to the reuse of the old solution is the fact that the non-dominated
paths for a given vertex j ∈ N of the solution for Z0 can be divided into
two categories:

4.2 A Dynamic Programming Algorithm 83

〈 Initialization 〉
NPS= {(0, 0, 0)}
c(0, 0, 0) = 0

repeat
(i, t, d) = BestLabel(NPS)

for j := 1 to n + 1 do
if (i 6= j ∧ t + tij ≤ bj ∧ d + dj ≤ q) then

〈 Label feasible 〉
if c(j, max{t + tij, aj}, d + dj) > c(i, t, d) + ĉij then

〈 New label better 〉
InsertLabel(NPS, (j, max{t + tij, aj}, d + dj))
c(j, max{t + tij, aj}, d + dj) = c(i, t, d) + ĉij

until (i = n + 1)
return

Figure 4.1: The algorithm for finding the shortest path with time windows
and capacity constraints. BestLabel returns a label with vertex different
from n + 1 and minimal accumulated time if one exists. Otherwise a label
with vertex n+1 is returned. InsertLabel inserts the newly generated label
in NPS possibly overwriting an old label if it already exists.

1. Pj = {(T k
j , Ck

j) | the path Xk
0j associated with (T k

j , Ck
j) is feasible}.

The paths associated with labels in Pj are still feasible paths in Z1.
Furthermore these paths remain non-dominated paths in the solution
to Z1.

2. Dj = {(T k
j , Ck

j) | the path Xk
0j associated with (T k

j , Ck
j) is removed}.

The paths associated with labels in Dj have at least one vertex in the
optimal path from the solution to Z0. As the vertices in the optimal
path of the solution Z0 are removed the paths associated with labels
in Dj are no longer feasible.

The labels of Dj will be replaced in the reoptimization phase. The

84 Chapter 4. Shortest Path with Constraints

labels in Dj are lower bounds on the values of their replacements
because the labels of Dj dominate their eventual replacements.

In the reoptimization phase two new sets are computed.

cost

arrival time

x1

x2 x3

x4

x5 x6

Figure 4.2: Solving problem Z0 6 labels were generated at vertex j. After
having removed the best path only 3 labels x1, x3 and x6 are still feasible.
The other labels were associated with paths that used at least one of the
removed vertices. These labels are replaced in the reoptimization phase.

Consider figure 4.2. For a vertex j 3 (x2, x4 and x5) out of previously 6
labels have been removed in the first phase. Now the new paths that are
generated can only be extended to vertex j if their labels fall within the
shaded area. If a new label is above a shaded area it is dominated by an
existing label, and if it is below a shaded area it is not dominated and
should also have been generated when we were solving problem Z0.

The first set we calculate is the set of (non-dominated) labels that fall in
the shaded area and are generated by finding all paths Xpi for which the

4.2 A Dynamic Programming Algorithm 85

extension by arc (i, j) produces a path Xpj with a label lying in the shaded
area. This set is referred to as Rj.

The second set is obtained by calculating feasible solutions located in the
identified zone. Feasible solutions are calculated by finding all feasible paths
Xpi whose extension by an arc (i, j) produces a path Xpj whose label is
placed within the shaded area. This set is denoted PRj.

Now the replacement can take place. Start by finding new feasible labels
(∈ PRj) to be added to Pj. Secondly add infeasible (6∈ PRj) but non-
dominated labels (∈ Rj) to Dj after eliminating the labels to be replaced.
The change to Dj defines the new lower bound for future computations.

In our implementation we try to speed up computations by adding more
than one route (path) to the set partitioning problem in each iteration.
Kohl made a number of tests in [Koh95] indicating that it is worthwhile
accepting more than one route to the set partitioning problem (as long as
the reduced cost is negative, of course). Synergy effects between the routes
typically lead to faster improvements and one reason for this is that several
routes have one or more customers in common. Therefore we have not tried
the reoptimization algorithm of Desrochers and Soumis in practice.

It should be noted that the SPPTW can be represented and solved as an
ordinary shortest path problem in an enlarged graph by having one vertex
for each pair of customer and feasible “time of service”. Furthermore note
that Spira and Pan in 1975 proved that the complexity of reoptimization
is equal to the complexity of optimization for the shortest path problem.

4.2.2 Dominance criterion

In order to make the algorithm considerably more efficient we will (like in
Dijkstra’s algorithm) introduce a dominance criterion.

Assume that for a given vertex i we have two states (i, t1, d1) and (i, t2, d2)
where c(i, t1, d1) ≤ c(i, t2, d2), t1 ≤ t2 and d1 ≤ d2. Clearly as long as the
extensions based on (i, t2, d2) are valid the extensions based on (i, t1, d1)
are also valid, and these will always be lower in cost (or at least not
higher). Therefore the label (i, t2, d2) can be discarded. Formally we say

86 Chapter 4. Shortest Path with Constraints

that (i, t1, d1) dominates (i, t2, d2) (or (i, t1, d1) ≺ (j, t2, d2)) if and only if
all of the following three conditions hold:

1. c(i, t1, d1) ≤ c(i, t2, d2)

2. t1 ≤ t2

3. d1 ≤ d2.

Each time a new label is generated we have to check with the other labels
at the same vertex to see if the new label is dominated by some label or
the new label dominates another label. This can be implemented quite
effectively as will be describe later (see section 4.3).

We have not done any thorough experiments to measure the impact of the
dominance criterion, but is seems to give a considerable speedup and also
the amount of memory needed is much smaller.

Note that if a dominated label ℓ is not discarded, the labels generated based
on ℓ will also be dominated (by the labels generated on the basis of the
label that dominated ℓ). Therefore the label ℓ and labels generated on the
basis of ℓ can never be part of the shortest path.

For the vertex corresponding to the depot n + 1 the dominance relation is
only dependent on the accumulated cost of the path/route, that is, label
(n + 1, t1, d1) dominates label (n + 1, t2, d2) if and only if c(n + 1, t1, d1) <
c(n + 1, t2, d2).

4.2.3 Elimination of two-cycles

As we have relaxed the original constraints and thereby allowed for cycles
one will typically find a lot of path cycling between two “good” vertices.
These paths can be detected (and therefore avoided) by a method developed
by Houck et al. and described in [Koh95].

In order to describe the algorithm, the labels are extended with on addi-
tional field pred, which denotes the predecessor of the vertex of the label.
In addition to the extra field each label has a type being either strongly
dominant, semi-strongly dominant or weakly dominant.

4.2 A Dynamic Programming Algorithm 87

A label (i, t, d, pred) is denoted strongly dominant if it is not dominated by
any other label and at least one of the following conditions are satisfied:

1. t + t
i,pred > bpred

2. d + dpred > q.

This implies that a strongly dominant label can not participate in a two-
cycle due to either time or capacity constraints (or both).

The label is called semi-strongly dominant if it is not dominated by any
other label and none of the conditions

1. t + t
i,pred > bpred

2. d + dpred > q

are satisfied, which implies that a semi-strongly dominant label has the
potential of being part of a two-cycle.

Finally, we call a label weakly dominant if it is only dominated by semi-
strongly dominant labels, and the semi-strongly dominant labels have the
same predecessor, and their common predecessor is different from the pre-
decessor of the weakly dominant label.

It should be noted that the two-cycle elimination scheme does not change
the computational complexity of the SPPTWCC algorithm. Let a state
(i, t, d) be given, then exactly one of the following three cases is true:

1. There is no label for this state.

2. There is one strongly dominant label for this state.

3. There is one semi-strongly dominant label and at most one weakly
dominant label for this state.

So the total number of labels is growing at most by a factor 2, thereby
retaining the computational complexity.

88 Chapter 4. Shortest Path with Constraints

As semi-strongly dominant labels can be part of a two-cycle, they are not
permitted to be extended back to the predecessor. Instead we allow for the
existence of weakly dominant labels. They are dominated by semi-strongly
dominant labels and they can be extended “back” to the predecessor of
the semi-strongly dominant labels. The weakly dominant label will only be
extended to the predecessor of a semi-strongly label as it is dominated by
a semi-strongly dominant label for all other possible extensions.

If a new label is dominated by an old label it can be discarded if:

1. The old label is not semi-strongly dominant. If the old label is not
semi-strongly dominant it is either strongly dominant or weakly dom-
inant. In both cases dominated labels are not allow, therefore the new
label can be discarded.

2. The old label is semi-strongly dominant and

(a) the old and the new label have the same predecessor.

(b) the new label is dominated by two or more labels with different
predecessors.

(c) the new label can not be extended to the predecessor of the old
label.

Case (2a) should be obvious. The reason for keeping weakly dominated
labels is to be able to extend a path from the given vertex to the predecessor
of a semi-strongly dominant label (in order to avoid 2-cycles it is not allowed
to extend the path associated with the semi-strongly dominant label back
to its predecessor). But if labels with different predecessors exist we do not
need the weakly dominant label to be able to get back to a predecessor,
and therefore the new label can be discarded in case (2b). If the new label
cannot be extended back to the predecessor of the old label there is no
reason for keeping it, as it will be dominated on all other extension, which
proves cases (2c).

The same rules can also be applied if a new label is dominating an old label.
Additionally a dominated label that is not discarded can change type to
weakly dominant.

4.3 Implementation issues 89

4.3 Implementation issues

A few question of a more technical nature are still open. These implemen-
tation issues will be discussed in this section.

4.3.1 Implementation of dominance

In order to allow for an effective check of dominance we maintain a list of
labels for each vertex. These labels are sorted lexicographically according to
arrival time, accumulated demand and accumulated cost. The list of labels
at the same vertex is scanned checking whether the label we want to insert
into the list is dominated. This process terminates as the lexicographically
right position in the list is reached. If the new label is dominated it might
either be discarded straight away (for example if the new label is dominated
by a weakly dominated label) or “marked” as being dominated if it is
possible to keep it as a weakly dominated label according to the dominance
rules.

If the label is inserted in the list the remaining part of the list can not
dominate the label, but instead the newly inserted label might dominate
one or more of the remaining ones.

4.3.2 Generalized buckets

The procedure BestLabel returns the label with smallest accumulated time.
Instead of just returning one label it is possible to return more labels that
all can be processed independently. This is the idea realized with the
generalized bucket datastructure.

In datastructures a “bucket” is typically a list of elements all within some
pre-specified interval.

Now let tmin be the minimal “time-length” of any arc, that is, tmin =
min(i,j){tij}. So whenever a label is extended, the time of the new label
is at least increased by tmin. If the new label is extended from a label
with the presently smallest time t′, it can not dominate any of the labels

90 Chapter 4. Shortest Path with Constraints

in the interval [t′, t′ + tmin[. Therefore labels within this interval can not
be deleted. So when BestLabel returns the currently best label it can
also return the labels having an accumulated time within the mentioned
interval. And all these labels can be processed without doing consecutive
calls of BestLabel.

This can be accomplished in two ways. Either by a dynamic or a static
approach.

In the dynamic approach, we keep track of the currently best label with
respect to time (let us call its time t). Additionally we have a “pool” of
labels that can be processed. This pool is initiated with the label (0, 0, 0).
When the pool is empty, the pool is refilled with labels with a “time stamp”
within the interval [t, t + tmin[. Hereafter all these labels can be processed
etc.

Another way is chopping up the interval [a0, bn+1] in smaller intervals of
size tmin (starting with [a0, a0 + tmin[) as depicted in figure 4.3. The labels
are then inserted in the corresponding interval as they are generated. Due
to the fact that the accumulated time of the newly generated label is a
least tmin higher, the newly generated label will be inserted in a bucket
succeeding the bucket of the label it was expanded from.

Here the processing simply starts from the first bucket containing (0, 0, 0),
and proceeds to a new bucket as soon as all the labels in the current bucket
have been processed. The order in which the labels in a bucket is processed
is unimportant.

For this implementation of the SPPTWCC algorithm the last “static” vari-
ant of the general bucket structure is chosen because it is the simplest
approach. Regarding the running time of the two approaches they seem
equally fast. The final algorithm is described in figure 4.4.

4.3.3 Miscellaneous remarks

Instead of just maintaining one label at vertex n+1 it may be advantageous
to keep more than one. Often several routes with negative reduced costs
will be found and can be returned and entered into the master problem.
This does in practice speed up the column generation process.

4.3 Implementation issues 91

✻

✲

a0 bn+1 time

customer

✛ ✲✛ ✲✛ ✲tmin tmin tmin

1

2

3

4

Figure 4.3: Division of the time span in smaller intervals and the time
windows of the customers.

92 Chapter 4. Shortest Path with Constraints

〈 Initialization 〉
tmin = min(i,j){tij}
Generate (bn+1 − a0)/tmin buckets in structure Bucket
Bucket[0]= {(0, 0, 0)}
c(0, 0, 0) = 0
CurrBucket=0

while (CurrBucket ≤ ((bn+1 − a0)/tmin))
〈 Adjust CurrBucket to the next non-empty bucket 〉
while (Bucket[CurrBucket]=∅)

CurrBucket++

(i, t, d) = NextElement(Bucket[CurrBucket])

for j := 1 to n + 1 do
if (i 6= j ∧ t + tij ≤ bj ∧ d + dj ≤ q) then

〈 Label feasible 〉
if c(j, max{t + tij, aj}, d + dj) > c(i, t, d) + ĉij then

〈 New label better 〉
t′ = max{t + tij, aj}

InsertLabel(Bucket[⌈ t′−a0

tmin
⌉], (j, t′, d + dj))

c(j, t′, d + dj) = c(i, t, d) + ĉij

return

Figure 4.4: The algorithm for finding the shortest path with time windows
and capacity constraints with the generalized buckets. NextElement returns
a label from the specified bucket.

Chapter 5

Generalizations of the
VRPTW model

A number of additional constraints or properties of more complex routing
problems can be modelled using the framework just developed. In this
section we will briefly discuss how to allow non-identical vehicles, work
with more than one depot, multi-compartment vehicles, and the use of
multiple time windows or soft time windows.

5.1 Non-identical vehicles

Vehicles can be non-identical in several ways. The typical way a heteroge-
neous fleet of vehicles is characterized is by the capacity, but it could also
be different due to different arc costs for each vehicle, different travel times,
time windows or other characteristics.

The fleet is made up of several groups of vehicles, where all the vehicles in
a group are treated as identical. For each group of vehicles a SPPTWCC
problem with different vehicle capacity, arc cost, travel times etc. has to
be solved. If there exists an upper or lower limit on the number of vehicles

93

94 Chapter 5. Generalizations of the VRPTW model

available for each group this can be modelled in the master problem. Be-
tween each call of the master problem one can choose to run one or more
SPPTWCC’s. If the only difference between the groups are on vehicle ca-
pacity it is not necessary to solve one SPPTWCC for each group. Instead
the underlying graph can be extended and only one SPPTWCC has to be
solved. The extension is described in [Hal92, Koh95].

5.2 Multiple depots

In real-life problems there might be more than one depot. The VRPTW
can be used to model situations where multiple depots exist. The customers
are serviced by several depots, each depot having their own fleet of vehicles.
Usually one assumes that vehicles must return to the same depot as they
started from. In a relaxed form we only demand that the number of vehicles
arriving at the depot equals the number of vehicles leaving it. In a further
relaxation seldom used there are no constraints on which depots the vehicles
should return to.

The Multi Depot VRPTW (MDVRPTW) has only recently be the focus
of attention. In our column generation-based approach we can solve the
MDVRPTW using the same master problem, as each customer still must
be serviced by at least one vehicle. The modifications can be isolated to
the SPPTWCC.

If the vehicles are based at different depots, that is, the vehicles must return
to the depot they started from, one SPPTWCC must be solved for each
depot. Bounds on the availability of vehicles are handled in the master
problem, where we need one set of upper/lower constraints for each depot.

If we relax the problem and just want the number of vehicles that arrives at
a depot to the same at the number of vehicles that leaves the depot it is only
necessary to solve one SPPTWCC. As figure 5.1 demonstrate we introduce
one “super leaving-depot” (SLD) and one “super arriving-depot” (SAD).
A route now starts at the SLD continues to an ordinary depot then to the
customers. The route ends by visiting an ordinary depot and the finally the
(SAD). For each depot there is a constraint in the master problem ensuring
that the number of vehicles arriving equals the number of vehicles leaving.

5.2 Multiple depots 95

leaving

arriving
depots

depots

customers

SLD

SAD

Figure 5.1: The underlying graph is extended by the SLD and the SAD.
Now every route starts at the SLD and ends at the SAD.

96 Chapter 5. Generalizations of the VRPTW model

The corresponding simplex multipliers modifies the cost of arcs originating
in the depot and arcs terminating in the depot (with opposite sign).

5.3 Multiple Compartments

If the vehicles have two or more compartments the routing problem is
known as a Multiple Compartment VRPTW (MCVRPTW). The use of
multiple compartments is relevant, when the vehicles transports several
commodities which must remain separated during transportation. An ex-
ample is the distribution of oil products to service stations where the tank
trucks are divided into a number of compartments in order to transport
the different kinds of petrol.

The multiple compartments have no influence on the master problem. The
overall structure of the SPPTWCC is not changed either. The multiple
compartments are modelled by extending the number of states required.
In the SPPTWCC the labels have four states: the label, accumulated cost,
accumulated time and accumulated demand. If each vehicle has c compart-
ments the capacity constraints must be modelled by c states instead of one.
The general principle is the still the same but now we have to have one state
for each compartment in order to keep track of the accumulated demand for
each compartment. In this way we end up with a SPPTWMCC (Shortest
Path Problem with Time Windows and Multiple Capacity Constraints).

In the same way we can extend the VRPTW model in order to handle
multi-dimensional capacity constraints. In VRPTW the capacity is one
dimensional. This dimension can be the weight, volume, value or pieces.
However, the capacity constraints can be multi dimensional, for instance
weight and volume in order to be able to handle cases where many large
boxes do not violate the weight constraint but their volume is to large for
one vehicle, or the other way around.

5.4 Multiple Time Windows 97

5.4 Multiple Time Windows

In the VRPTW each customer has one time window where the service
must take place. Allowing customers to have multiple (and disjoint) time
windows in which they can be serviced can be handled straightforward
in the SPPTWCC. A vehicle that arrives between two time windows must
wait until the beginning of the next time window. Note that preprocessing,
dominance criterion etc. remains valid.

5.5 Soft Time Windows

Sometimes a cost p(si) depending on the service time si of a customer i is
introduced in order to penalize arrivals that are feasible but undesirable.
The time window is then said to be soft. If the cost is non-decreasing
with time, i.e. s1

i ≤ s2
i ⇒ p(s1

i) ≤ p(s2
i) the dominance criterion remains

valid and the soft time windows can be incorporated in our VRPTW. The
case where the penalty function p(·) is a general function is not efficiently
solvable.

5.6 Pick-up and delivery

In VRPTW we either pick-up goods at the customers or goods are delivered
to the customers. In pick-up and delivery the vehicles can perform both
tasks. In the simple backhauling version (sometime denoted VRPBTW
– the Vehicle Routing Problem with Backhauling and Time Windows) of
pick-up and delivery the vehicles must be completely empty before the
pick-up phase starts.

In this simple case the customers can be divided into two classes of cus-
tomers: a set of delivery customers and a set of pick-up customers. Now
by removing all arcs from pick-up customers to delivery customers we en-
sure that it is not possible to service a delivery customer after a pick-up
customer. Two capacity labels, one for delivery and one for pick-up, are
handled in the SPPTWCC.

98 Chapter 5. Generalizations of the VRPTW model

In [GDDS95] Gélinas et al. demonstrates that only one capacity resource
is sufficient. Now let qi be the load of the vehicle if customer i is a delivery
customer. If customer i is a pick-up customer qi denotes the load of the
vehicle before customer i is visited. Let dj be the amount of goods to be
delivered to customer j, if (i, j) is an arc between two delivery customers
the quantity of goods to be delivered to customer j is placed on arc (i, j),
that is, qij = dj. For an arc between two pick-up customers the amount to
be picked up at customer i is placed in arc (i, j), that is, qij = pi, where pi

is the amount to be picked up at customer i.

As all deliveries have been accomplished the load of the vehicle is reset to
zero. This is done by setting qij = −q on every arc going from delivery
customers to pick-up customers. So going from a delivery customer to a
pick-up customer we get:

Qj = max{Qi + qij, 0} = max{Qi − q, 0} = 0,

as capacity is not allowed to become negative.

In the more general backhauling problem, where customers, pick-up or
delivery, may be serviced in any order requires two resources to ensure that
the capacity constraints of the vehicles are satisfied.

As previously q denotes the capacity of the vehicles. The use of resource
k, k ∈ {1, 2} on arc (i, j) is called rk

ij. As a customer is either a pick-up

customer or a delivery customer at least one of r1
ij and r2

ij are 0. If j is

a pick-up customer r1
ij will denote the amount to be picked up (for all i).

If j is a delivery customer then r2
ij is equal to the amount to be delivered.

A label in the shortest path subproblem consists of 4 states (i, t, r1, r2),
where i is the customer, t the accumulated time and r1 and r2 are the
accumulated pick-ups and deliveries. The accumulated cost of the label is
c(i, t, r1, r2).

The dominance criterion remains the same (although extended by one la-
bel), but the updating becomes more complicated. Now let label (i, t, r1, r2)
be extended to vertex j. The new label will then be

(j, t + tij, r
1 + r1

ij, max{r2 + r2
ij, r

1 + r1
ij}).

The label for the quantity picked up is updated as usual. For the delivery
label the updating formula becomes more complex. Note that the label

5.7 Additional constraints 99

is never allowed to become smaller than r1, as the vehicle is maximally
loaded, when the difference between the two resource labels are maximal.
A positive difference means that there is less available for deliveries. This
is controlled by increasing r2 up to r1.

5.7 Additional constraints

A large number of extra “minor” constraints from real-life applications can
be incorporated without problems.

An upper or lower limit on the length (in cost or time) of the routes can be
modelled using additional resources. Using additional resources also makes
it possible to set a limit on the number of customers that can be serviced.
It is also possible to only allow specific vehicles to use certain arcs or service
certain customers.

Note that it is also possible to introduce time-dependent travel speed for
example in order to take account of rush hour traffic. If time-dependent
travel speeds are introduced it is not guaranteed that the triangle inequality
holds.

100 Chapter 5. Generalizations of the VRPTW model

Chapter 6

Parallel Implementation

In this chapter the efforts undertaken and the results thereof with respect
to developing a parallel algorithm based upon the sequential Branch-and-
Price code described in chapter 3 are described. First, a short introduction
to the field of parallel computing is presented, and then the description and
analysis of making the parallel program follows.

6.1 Parallel Programming

Parallel computing enjoys significant interest both in the scientific com-
munity and industrially due to an increasing demand for computational
power and speed and the decreasing cost/performance ratio for parallel
computers.

Alas, the new possibilities do not come without a price: parallel program-
ming is inherently more difficult.

In contrast to sequential programming where almost everyone can agree on
how a sequential computer is viewed, the world of parallel programming is
not so clear-cut. The sequential paradigm views the computer as a single
processor which can access a certain amount of memory. This paradigm is

101

102 Chapter 6. Parallel Implementation

in the literature also called RAM – Random Access Machine. The RAM is
equipped with an instruction set that includes basic operations for writing
to and reading from the memory and a number of arithmetic and logic
operations (depicted in figure 6.1(a)). The success of this model is due
to its simplicity and the great similarity with real-life von Neumann-type
computers.

Even though modern computers allow more than one user at the same time
on the same machine, the view of the programmer is still the same; he/she
views the computer as a single-user machine.

In parallel programming the situation is unfortunately not that simple; here
there does not exist a commonly accepted model (see for example [vD96]).

There exists theoretical models, but the theoretical models and the real-
world parallel computers are very far apart from each other. The most
general model is the PRAM - Parallel Random Access Machine. This model
is purely theoretical and consists of an unlimited number of processors all
directly connected to one shared memory (which consists of an unlimited
number of memory cells). Sometimes a local memory is added to each
processor. The processors communicate with each other through the shared
memory, which can be accessed in unit time, that is, just as fast as e.g. a
multiplication operation. This model is often used for evaluating parallel
algorithms with respect to their asymptotic time-complexity.

In [KLK89] Kindervater et al. gives three reasons why parallel computers
have not broken through yet. The main obstacle is the lack of uniformity
in available architecture as a number of new aspects are introduced by
parallelism. As mentioned below this obstacle has now been removed to a
large extent.

The remaining two obstacles are that more realism will be required in theo-
retical models of parallel computation. We need models that include factors
like for example location of memory and processor topology (some current
efforts are LogP [CKP+96] and the Distributed Memory Model (DMM) de-
scribed in [MDF+95]), and finally more formal techniques for the design
and implementation of efficient parallel algorithms are needed.

The performance and usability of the different parallel models depend on
factors like computational concurrency, processor topology, communica-

6.1 Parallel Programming 103

tion, location of memory (local or shared), scheduling and synchronization.
These factors also highly influence which kind of algorithms/programs that
are suitable for a specific parallel computer.

A general introduction to parallel programming with a theoretical approach
can be found in [JáJá92], while a more practical approach can be seen
in [Fos94, CT96].

The different qualities of the parallel computers have led to several differ-
ent classification schemes for parallel computers, where the Flynn’s taxon-
omy [Dun90, KL86] must be regarded as the most widely used. In Flynn’s
taxonomy computers are divided into four groups:

SISD or Single Instruction-stream Single Data-stream computers: This is
the normal stand-alone sequential computer also commonly known as
the von Neumann architecture. This type is depicted in figure 6.1(a).

SIMD or Single Instruction-stream Multiple Data-stream computers: This
type of computers are sometimes also denoted vector computers. An
array of (normally fairly simple) processors are controlled by an ex-
ternal host via a controller. Here only one instruction at a time is
performed, but on different data-elements. Either a processor per-
forms the instruction given or it sits idle. This type of computers
normally operates on problem instances where p ∈ Ω(n). As this
type of computer can be emulated by the more general MIMD class
computer (see below) these computers are more often seen as special
components instead of independent computers.

Real-life examples are the CM-2 (Connection Machine 2), the MasPar
and the CPP DAP Gamma.

MIMD or Multiple Instruction-stream Multiple Data-stream computers:
The MIMD is the most versatile architecture. Here the operation
performed by each processor is independent of each other.

This class can be subdivided according to the character of the mem-
ory:

Shared Memory This subclass is often also called multiprocessors.
All processors share the same memory space. As in the PRAM

104 Chapter 6. Parallel Implementation

model, communication between the processors are carried out
via the memory. It can easily be seen that the memory access
quickly becomes a sever bottleneck of the system as the num-
ber of processors are increased. Therefore some shared memory
systems are a hybrid between this subclass and the distributed
memory subclass (see below) as the memory is physically dis-
tributed (as in the distributed memory subclass) but hardware
emulates a globally addressable memory space (as in this sub-
class). This type of parallel computer is sometimes called virtual
shared memory and is normally placed in the shared memory
subclass as this is the way it acts seen from the programmers
view (depicted in figure 6.1(b)).

An example of the virtual shared memory is the KSR-1 (there
does also exists software libraries like TreadMarks [ACD+96]
that simulates shared memory on a distributed memory com-
puter). Examples of “real” shared memory machines includes
Cray J90- and T90-series, Convex C4 series and the Silicon
Graphics Power Challenge.

Distributed Memory This subclass is sometimes also referred to
as multicomputers. Processors have their own local memory.
Accessing the memory of another processor can therefore only be
done by message-passing (depicted in figure 6.1(c)). Examples
here include Cray T3E, the Paragon, the Meiko CS-1 and CS-2,
and the Parsytec.

A network of workstations could also be classified as a MIMD Dis-
tributed Memory architecture. In order to distinguish them from
“dedicated” parallel computer systems with a very fast highly spe-
cialized network the network of workstations is usually referred to
as loosely coupled and the “dedicated” parallel computer as tightly
coupled.

The physical topology of the network used to be a major issue when
designing parallel algorithms. Processors that had to communicate
during the execution of a parallel algorithm should preferably be
neighbouring processors in order to obtain good performance. The
programmer had to remember how the processors physically were

6.2 The IBM SP2 computer at UNI•C. 105

connected, and spend time considering how to setup the parallel pro-
gram. But in systems of today almost any topology can virtually
be imposed, and the performance difference between exploiting the
physical topology and using the imposed virtual topology is, if not in-
significant, then very small [Ant96]. This is mainly due to dedicated
communication processors in today’s parallel computers.

MISD or Multiple Instruction-stream Single Data-stream computers. Here
several different kinds of action are performed on the same data. This
class is usually included for completeness only as no computer of this
type has ever been built.

A comprehensive overview of real-life parallel computers can be found
in [vD96, DS96].

As stated earlier the different set of communication procedures, setup com-
mands etc. for each parallel computer used to be a major obstacle. This
made it very costly to port a program from one parallel computer to an-
other even if the underlying architecture was identical. This impediment
has to a great extent been removed by different interfaces using the message
passing paradigm, where the different processors exchange information by
sending messages around the communication network.

Among a number of different interfaces two have emerged as de facto stan-
dards: MPI (Message-Passing Interface) and PVM (Parallel Virtual Ma-
chine). Efforts to merge them are described in [FD96]. Presently work
is in progress to melt the two standards into one (codename: “PVMPI”).
We have used MPI ([ABMS94, Mal96, MMHB, Pac95]) in our efforts to
parallelize the sequential code.

6.2 The IBM SP2 computer at UNI•C.

The parallel experiments conducted during this project were all carried
out on the IBM SP2 computer owned by UNI•C1, the Danish center for
high-performance computing.

1Homepage: www.uni-c.dk.

106 Chapter 6. Parallel Implementation

P M✲✛

(a) Picture of a sequential
computer where P is the
processor and M is the

memory

P

P

P

M.
.
.
.
.
.

✲✛

✲✛

✲✛

(b) The Shared Memory
model of a parallel computer.

P

P

P

M

M

M

.

.

.

.

.

.

.

.

.

.

.

.

✲✛

✲✛

✲✛

✲

✲

✲

(c) The Distributed Memory
model of a parallel computer.

Figure 6.1: Diagram of the three computer models from Flynn’s taxonomy
that exists in the real world. Here P refers to a processor, while M is an
independent block of memory.

6.2 The IBM SP2 computer at UNI•C. 107

Using parts originally designed for the RS/6000 workstations IBM devel-
oped the RS/6000 Scalable Powerparallel System, or just SP2 parallel com-
puter. It is a full-fleshed MPP (Massively Parallel Processing) computer
having the memory distributed among the processors, making the SP2 re-
semble a network of workstations. The SP2 starts with 2 nodes, expandable
to 512. The SP2 at UNI•C (called “jensen”) consists of 88 nodes in 4 main
categories:

• 4 nodes for interactive use:
66 MHz Power2 CPU, 512 Mb RAM.

• 12 nodes for test jobs:
160 MHz P2SC CPU, 512 Mb.

• 64 nodes for parallel batch:
120 MHz P2SC CPU, 33 of which have 512 Mb RAM the rest are
equipped with 256 Mb RAM.

• 20 nodes for serial batch:
10 135 MHz P2SC CPU, 2 Gb RAM.
10 160 MHz P2SC CPU, 1 Gb RAM.

All running with a 1:1 ratio of processor speed vs. memory speed. Note
that the memory of the 64 processors in the parallel batch adds up to 32
Gb. We might be able to speed up the computations if it is possible to
get several processors to solve the problem collectively, but we may also be
able to solve larger problems as we have a total of 32 Gb of memory at our
disposal.

All nodes are interconnected by a very fast High Performance Switch. The
4 interactive SP nodes also act as fileservers for the 64 Gb user disk area.

Each node is equipped with a 128Kb data cache and a 32Kb instruction
cache. The data cache is four-way set associative.

An SP2 system contains two main building blocks: nodes and switchboards.
A switchboard consists of 32 communication chips (hereof 16 are “shadow-
chips” for fault recovery). Chips work in pairs (one handling input one
handling output). These pairs are then wired to construct a four way by

108 Chapter 6. Parallel Implementation

four way cross-bar implementing a 16 bidirectional multistage interconnec-
tion network. This switchboard together with Power2 processors constitute
the “SP2 frame” – a unit with at most 16 processors and their memory and
the switchboard for intra- and inter-connection within the SP2. In systems
with more than 80 nodes, intermediate switchboards are required.

Messages can be sent between two processors either using Ethernet or the
high performance switch. The high performance switch can be used with
two different protocols, Internet protocol and User Space protocol. In our
case we have used the latter as it is according to UNI•C considerable faster.

When sending small messages the communication time is approximately
linear in the size of the message. The communication time depends on
two parameters: τS is the start-up latency and τB is the bandwidth. The
start-up latency is the time it takes to set up the connection, while the
bandwidth is the rate at which data can be transferred when the connection
is established. Using the high performance switch with the User Space
protocol the values are given in table 6.1

Message size Latency Bandwidth
0 – 4096 bytes 53 µs 53.1 Mb/s

4096 – 55900 bytes 118 µs 67.8 Mb/s
55900 – bytes 363 µs 96.5 Mb/s

Table 6.1: Communication speed for the high performance switch using the
User Space protocol.

The processors used for parallel batch jobs each have a peak performance
of 480 Mflops.

Running batch jobs is carried out by the LoadLeveler, that maintains
four different queues: tiny (max. 4 processors), small (max. 8 processors),
medium (max. 16 processors) and large (max. 32 processors). Using more
than 32 processors requires a special arrangement with UNI•C. When run-
ning production runs of programs on the SP2 the processors allocated to
the program are not shared with other programs or users.

6.3 A parallel VRPTW algorithm 109

6.3 A parallel VRPTW algorithm

Our Branch-and-Price model contains roughly four main parts:

1. Solving the subproblem (SPPTWCC).

2. Solving the master problem (relaxed set partitioning).

3. Branching.

4. Bounding.

We will examine each of these components and try to estimate the potential
of parallelization.

As we focus on the MIMD architecture with distributed memory this will
be the basis of our analysis.

6.3.1 Solving the subproblem (SPPTWCC)

Parallelism can be introduced by trying to parallelize the SPPTWCC sub-
routine. Indeed, some simple parallel schemes are fairly obvious. For ex-
ample an initial pool of labels is generated on one processor, then the pool
is distributed among all processors and thereafter each processor can run
independently on the basis of the assigned labels. This procedure stops
when all processors have finished generating labels on the basis of the ini-
tial labels assigned. Another idea would be to stop when a number of
routes have been generated and sent to the master. Note that communi-
cation is needed in order to resolve dominance between labels on different
processors. Running without dominance checks between processors would
lead to a large increase in the number of labels, potentially “drowning” the
processors in work.

We are not guaranteed to receive the best routes from the subproblem, but
the main point is that the routes the SPPTWCC subroutine is returns are
“good” ones (i.e. routes with negative reduced costs).

The idea results in an algorithm depicted in figure 6.2. Note that the
only place where parallelism is introduced is the SPPTWCC subroutine,

110 Chapter 6. Parallel Implementation

as a designated master processors executes the remaining tasks (branching,
solving the master problem etc.).

〈 run the SPPTWCC code until k labels are generated 〉
〈 distribute k

p−1 to each of the p − 1 slave processors 〉

while (〈 stopping criterion not meet 〉)
for each 〈 slave processor 〉 do

〈 run the SPPTWCC code on the basis of the labels 〉
return 〈 generated routes to the master 〉

Figure 6.2: Parallelization of the SPPTWCC code. The stopping criterion
may be a simple one stopping when all slaves are finished, or a more complex
for example stop all slaves when a certain number of routes are generated.

Even now with a possible design of a parallel SPPTWCC subroutine the
question is whether it is worthwhile implementing. Preliminary test runs
of our sequential VRPTW algorithm suggests that this is not the case. We
have collected information on a sample of runs of our sequential VRPTW
algorithm in table 6.2. The high percentage of running time spent in the
SPPTWCC subroutine favours the parallelization but two other observa-
tions indicates performance problems.

As one can see the running time spent in the SPPTWCC subroutine is not
spent in one or two calls but in many calls, which results in low average time
spent in one call of the SPPTWCC subroutine. And even though some calls
of the SPPTWCC subroutine takes longer time than others, the average
time spend in the SPPTWCC subroutine does not exceed 15 seconds. Only
in 2 out of the instances presented in table 6.2 is the average running time
of the SPPTWCC subroutine above 0.5 seconds. This is clearly not enough
to parallelize on a MIMD machine. As a considerable amount of time is
used for setup and initialization before actually doing any “useful” work
it is important that the time not used for “useful” work can be regained
later. With these small running times these gains can not be achieved. We
will therefore not consider this idea further.

6.3 A parallel VRPTW algorithm 111

Instance Overall Time in No. of Average largest
Customers time SPPTWCC Calls time time

R101 100 20.60 2.19 88 0.025 0.08
R102 100 111.32 100.22 46 2.179 25.82
R105 100 331.78 26.70 369 0.0724 1.03
C103 100 1090.25 1025.05 89 11.517 224.25
C105 100 65.21 8.67 87 0.097 0.59
C107 100 53.26 7.73 74 0.131 0.59
C108 100 59.11 18.28 68 0.290 2.23
RC101 100 46.97 5.47 94 0.058 0.27
RC105 100 166.56 34.28 211 0.162 2.32

Table 6.2: Time used running in the SPPTWCC and the total number of
calls for a selected number of Solomon problems.

6.3.2 Solving the master problem

The master problem is a set partitioning problem which is relaxed and
solved by an LP-solver. The topic of parallelizing the computation of an
LP-solver is ongoing research. As far as the author knows there is still a
long way to efficient parallel LP-solvers, so we will focus on parallelizing
the other part of the algorithm. This is also a topic outside the scope of
the Ph.D. project.

6.3.3 Branching and bounding

Branch-and-Bound is often computationally very intensive. There are two
basic ways of reducing the execution time of Branch-and-Bound:

• Improve the effectiveness of the bounding rule, and

• Parallelize the computation.

While the first item requires knowledge of the problem to be solved, the
second requires skills in parallel programming.

112 Chapter 6. Parallel Implementation

There exist a number of papers on parallel Branch-and-Bound [PL90, GKP,
Cla96, Cla97, LRT95, Rou96, GC94, TP96]. As branching and bounding
are dependent on each other they will be analyzed together in this section.

In [GC94] the authors distinguish between three kinds of parallelism. In
parallelism of type 1 the parallelism is introduced on the generated sub-
problems. The parallelism discussed in section 6.3.1 and 6.3.2 is an example
of parallelism of type 1. Note that this type of parallelism has no influ-
ence on the general structure of the Branch-and-Bound tree and that the
parallelism therefore is dedicated to the problem solved.

Solving more subproblems simultaneously is parallelism of type 2. Here the
processing of the Branch-and-Bound tree is reflected by the decisions made
during analysis and design of the parallel algorithm.

Finally parallelism of type 3 consists of building more than one Branch-and-
Bound tree in parallel, thereby using different operations (for example dif-
ferent branching operations or bounding functions) in each tree. The global
upper bound can still be shared among the Branch-and-Bound trees, and
maybe, even other structural results can be exchanged during the com-
putation. Here the aim is to take advantage of the strength of different
operations.

The parallelism of type 2 has been subject of intensive research. This will
also be the type of parallelism we introduce. Besides, many concepts and
ideas discussed with respect to parallelism of type 2 is also applicable with
respect to parallelism of type 3. Parallelism of type 1 is already discussed
and will not be considered further.

Parallelism of type 2 is very well suited for implementation on MIMD struc-
tured parallel computers.

A further classification criteria seen in several surveys ([GC94, PL90, Rou96,
Cla96]) is determined by the placement of the work pool. Generally these
schemes are referred to as the master-slave paradigm and distributed load-
ing (in [PL90] they are referred to as central list respectively distributed
list, and in [Rou96] as centralized respectively distributed).

In the centralized master-slave paradigm one processor is designated as the
master and the remaining processors are named “slaves”. This approach

6.3 A parallel VRPTW algorithm 113

is the oldest and originates from the times of the old SIMD computers
where a “normal” computer was acting as front-end of the system. This
computer was also responsible for sending the commands to the processors
of the system.

The master processor is responsible for maintaining the work pool, and the
slave processors perform the processing of subspaces distributed to them
by the master. In this way it is ensured that the slaves always work on
subspaces that from a global point of view look “promising”. Work loading
is then not a problem, and also termination detection is easily solved. The
principle is depicted in figure 6.3.

Master

Slave Slave Slave Slave . . . Slave

Figure 6.3: The Master processor is feeding the Slave processors with prob-
lems that needs to be solved. In the opposite direction the slaves send
solutions or requests for more work to the master.

A major drawback of this approach however is the communication between
the slaves and the master [TO89]. With increasing number of processors
this quickly becomes a bottleneck [Cla90, Cla96]. This is documented
in [dRT88] by de Bruin et al., where a series of experiments lead to the
conclusion that the bottleneck appears between 8 to 16 processors, i.e. this
approach has scalability problems. Scalability can be overcome to a certain
extent by implementing several levels of master processors and “distribute”
the global work pool. Instead of all slaves connected to one master, the
processors are structured in a tree. This principle is shown in figure 6.4.

The approach can be improved by doing a series of Branch-and-Bound op-
erations before communicating with the master. As the Branch-and-Bound

114 Chapter 6. Parallel Implementation

Master

Slave
Master

Slave
Master

Slave
Master

Slave Slave Slave Slave Slave Slave

✻

❄❄ ❄

✻

❄ ❄

✻

❄ ❄

✻

❄ ❄

Figure 6.4: An example of a “distributed master” setup. 10 processors are
placed in three layers. The six processors on the bottom level all work
as slave-processors only, while the top processor only acts as a master-
processor. The three processors in the middle layer acts both as slave-
processor with respect to the master-processor in the top level, but also as
a master-processor for the two slaves in the level below. As in figure 6.3 ar-
rows pointing down symbolizes the transfer of unsolved Branch-and-Bound
nodes and arrows pointing upwards is a indication of new global upper
bounds and requests for more work flowing the other way.

operations are usually not equally fast this may distribute the communica-
tion better.

Our parallel algorithm will be implemented using the distributed loading
approach. In the distributed approach all processors are “equal” after an
initial distribution of unsolved Branch-and-Bound nodes.

In static load distribution (or static parallel Branch-and-Bound) the initial
distribution is the only distribution of unsolved Branch-and-Bound nodes.
Hereafter each processor only handles the Branch-and-Bound nodes from
the initial distribution or the child nodes generated hereof. The advantage
of this approach is its simplicity. This strategy has been investigated by
Laursen in [Lau94b]. The approach looks to be quite effective, but it is

6.3 A parallel VRPTW algorithm 115

very sensitive to the assignment of subspaces to processors in the initial
distribution phase.

We have therefore implemented the dynamic load balancing approach. The
processors are set up in some topology (possibly depending on the physical
topology of the parallel computer), and work is then passed around between
neighbouring processors. The strength of this approach is the scalability.
On the other hand work load distribution and termination detection is not
that simple any more. As subspaces are generated and dealt with inde-
pendently on the different processors, the efficiency of the load balancing
scheme becomes crucial with respect to efficiency for the implementation
of the parallel Branch-and-Bound.

Two problems have to be addressed in order to obtain an efficient workload
distribution algorithm:

• Idle time for each processor has to be minimized.

• Each processor is only allowed to spend a (small) fraction of time on
the load distribution scheme compared to the time used working on
the Branch-and-Bound-nodes.

Workload distribution is done with a local strategy in our algorithm, that
is, the distribution only depends on the workload between two neighbouring
processors. Each time information is passed along from one processor to
another, be it a number of new unsolved Branch-and-Bound-nodes or a new
global upper bound, information on the size of the work pool is also passed
along. It is vital for this approach that the communication is effective
in two ways: we do not wish to use too much time communicating vs. the
time used on computation, and we prefer to send “promising” work around,
in order to keep every processor busy working on “promising” subspaces.
Among possible strategies proposed in the literature are:

1. Sending the most recently generated Branch-and-Bound nodes.

2. Sending the most recently generated Branch-and-Bound nodes with
the lowest lower bounds.

3. Sending the Branch-and-Bound nodes with the lowest lower bounds.

116 Chapter 6. Parallel Implementation

4. Sending Branch-and-Bound nodes with “low” (not necessarily the
lowest) lower bounds among all Branch-and-Bound nodes in the work
pool.

5. All newly generated Branch-and-Bound nodes are sent to other pro-
cessors.

As we do not have a designated master in the distributed approach the ter-
mination detection becomes more difficult than in the centralized approach.
A number of different termination detection strategies have been suggested
(see for example [Tel94, chapter 8]). We have implemented the termination
detection algorithm by Dijkstra, Feijen and van Gasteren [DFvG83], which
will be briefly described.

In the termination detection algorithm one processor (let’s say processor 0)
is responsible for detecting the stable state were all processors have termi-
nated (i.e. are passive). Often processor 0 is denoted the “master”, but note
that it is not supervising the solution of subspaces as the master processor
in the master-slave paradigm did. Each processor has an associated colour
– it is either white or black. Additionally we have a token that also has a
colour (again either white or black). Initially all processors are white, but a
processor changes its colour to black as it transmits one or more messages,
thereby indicating to the token that the processor has been active since it
was previously visited by the token. Upon receiving the token an active
processor keeps it until it becomes passive, and then it sends it along to the
next processor in the ring. If the processor is black the token is coloured
black before it is sent otherwise the token is passed on without changing
the colour. As the token is passed on, the transmitting processor becomes
white.

The detection scheme is initiated by processor 0. It transmits a white token
to the next processor in the ring (thereby making itself white).

By this scheme a token returning to processor 0 still being white indicates
that all processors are passive. If the token returns to processor 0 being
black a new “probe” is initiated.

6.4 Implementational details 117

6.4 Implementational details

The sequential algorithm for the VRPTW described in chapter 3 and 4 is
used as the starting point for the construction of the parallel algorithm. As
stated earlier, MPI was chosen as the interface providing the communica-
tion framework of the message-passing scheme.

6.4.1 The initial phase

In the initial phase only the master processor is active. The remaining
processors are waiting to get their initial set of unexplored subspaces. The
master processor runs the sequential algorithm for the VRPTW. The pro-
cess is stopped if the problem is solved (a signal is then broadcasted from
the master to the remaining processors to stop work on all processors) or if
k · p unexplored subspaces have been generated, where k is a pre-specified
constant and p is the number of processors.

So in the interesting cases, k problems for each processor are generated.
It should be fairly obvious that it is of paramount importance that the
running time spent in this initial phase is kept as small as possible in order
to get all processors working on the problem as quickly as possible. Still
assuming that the problem is not solved the master processor broadcasts
problem characteristics (number of nodes, the geographic position of the
nodes, the time windows etc.) and generated cuts to the other processors.
Hereafter each processor receives k unsolved problems from the master.
This ends the initial phase.

6.4.2 The parallel phase

In this part of the execution of the algorithm all processors solve different
Branch-and-Bound nodes. The master processor is in charge of termina-
tion detection and returning the result at the end of the execution of the
algorithm. Otherwise there is no difference between the master and the re-
maining processors. Every processor is running a slightly modified version
of the sequential algorithm for the VRPTW.

118 Chapter 6. Parallel Implementation

Parallelism introduces one major difference to the sequential algorithm for
the VRPTW. Via the message-passing interface new unexplored Branch-
and-Bound nodes arrive and new global upper bounds may also be passed
along.

Subspaces with a value higher than the value of the global upper bound are
denoted passive, while the remaining subspaces are called active. As the
heap of unsolved subspaces during computation might contain subspaces
that are not longer necessary (as their value is greater than or equal to
the global upper bound) the number of nodes in the heap is not giving a
correct picture of the workload on each processor. This can be dealt with
in several ways:

1. Do nothing. We take care not to send passive subspaces to other
processors but otherwise we only adjust the number of nodes when
the heap no longer contains active subspaces (in this case the heap is
emptied).

2. Every time the global upper bound gets updated some subspaces
in the heap might change type from active to passive. Therefore the
number of passive subspaces is counted and subtracted from the total
number of subspaces in the heap. This will give an accurate measure
of the workload of the heap, as no new passive subspaces will be put
on the heap.

3. As an extension of the previous idea we can actually delete passive
subspaces whenever the global upper bound is lowered. Hereafter the
total number of subspaces in the heap, is also the total number of
active subspaces in the heap.

We have opted for setup number 1 in order to spend as little time as
possible in the load balancing phase (see next section). When the heap
does not contain any more Branch-and-Bound nodes with a selection value
smaller than the present global upper bound it is an easy task to delete the
remaining Branch-and-Bound nodes and continue with an empty heap. It is
reasonable to assume that the number of “bad” subspaces is evenly spread
throughout the processors, which means that each heap has approximately
the same number of “bad” subspaces.

6.4 Implementational details 119

The load balancing phase is only entered if the processor is currently out
of work or after a constant number of subspaces have been processed. It
should happen often enough to keep the workload fairly distributed, ensur-
ing that every processor is doing meaningful work, but not too often. If
load balancing is done too often time that could have been spend better
solving subspaces is used for insignificant load balancing operations.

6.4.3 The message passing/load balancing framework

This part of the parallel algorithm is identical for each processor and is
only run after a certain number of subspaces have been processed or the
processor is out of work. It takes care of receiving, handling and sending
messages to the neighbouring processors.

The overall design is based on the design of a message passing/load bal-
ancing framework presented by Perregaard and Clausen in [PC98].

Each processor allocates memory for two buffers for each neighbour: one for
incoming messages and one for outgoing messages. Every message received
is acknowledged by returning a confirmation message to the sending neigh-
bour. By allocating one buffer for incoming messages for each neighbour
and by not sending more messages before a confirmation is received, the
processors do not have to sit idle while transferring messages. If a message
has not been acknowledged, the processor simply ignores that particular
neighbour with respect to sending new information along.

Deadlock occurs when two processors wait for a message from each other
thereby halting them. This cannot occur in our implementation. If a pro-
cessor has sent message to one of its neighbours it does not halt until an
acknowledgement arrives. Instead it regularly checks whether the acknowl-
edgement has arrived from the receiving processor. If this is not the case
the processors continues to work on other tasks (load balancing or solving
subspaces). Meanwhile no further message is sent in the direction of the re-
ceiving processors. Sooner or later an acknowledgement will arrive (unless
the network breaks down, but recovering from network/link breakdown is
entirely outside the scope of this project).

There are 3 types of messages: new subspaces, update of global upper
bound and termination message. Upon receiving a termination message

120 Chapter 6. Parallel Implementation

the processors passes the termination message to the next processor and
terminates. The first termination message is sent from the master as soon
as it detects that all processors are idle.

A message with a new global upper bound consists of the value of the global
upper bound and the routes that constitute the global upper bound. Only
the master problem records the routes. The remaining processors send the
routes along, but do not keep track of them.

Finally a message with new unsolved subspaces can be received. The mes-
sage might actually not contain any message. Such a message indicates
that the sending processor has no subspaces left to process. In order not
to flood the network with these “out of work” messages, a flag is set so
that the next “out of work” message can not be sent before the proces-
sor has received at least one unsolved Branch-and-Bound node. In case
the message contains Branch-and-Bound nodes these are extracted from
the buffer, checked against the value of the global upper bound and in-
serted in the heap. With each batch of subspaces, the senders heap size
is included, and the local estimate on the senders heap size is hence only
updated when the receiver received a batch of Branch-and-Bound nodes or
a special “out of work” message. The token in the termination detection
process is integrated in the messages with new unsolved subspaces.

Sending unsolved Branch-and-Bound nodes to a neighbour is thus based
on an estimate of the size of the neighbours heap. This estimate is the
latest received size. Let n be the heap size of the sending processor and
n′ the estimate of the heap size of the receiving processor. If the receiving
neighbour is out of work, or n > 2 and n − n′ > n

2
at least one subspace

is transfered. The number of subspaces transfered is determined by the
formula

max{
n − n′

3
, 1}.

This formula is also used by Perregaard and Clausen in [PC98]. Among a
number of different load balancing criteria this formula resulted in the best
performance for the job-shop scheduling problem. Whether this criteria is
also best for VRPTW has not been investigated, but would be interesting
to study.

6.5 Summary 121

6.5 Summary

The parallel algorithm for the VRPTW developed is principally a number
of sequential VRPTW algorithms splitting the work of solving the Branch-
and-Bound nodes among each other.

Initially at least one subspace per processor is generated. If the problem
is not solved during this initial phase the subspaces are divided among the
processors.

The processors are set up in a ring, where it is possible to send and receive
messages from both neighbours. Every time a new better global upper
bound is determined it is communicated to the other processors via the
ring. If the difference between the workload of two neighbouring processors
becomes too large, the processor with a light load receives a number of
unsolved subspaces from the heavy loaded processor. For every message
received the receiving processor sends an acknowledgement back to the
sending processor. It is not possible to send a message to a processor that
has not yet acknowledged the last message that was send.

Termination detection is implemented using the algorithm described by
Dijkstra et al. in [DFvG83].

A setup of 11 processors with 1 “master” and 10 “slaves” is depicted in
figure 6.5.

122 Chapter 6. Parallel Implementation

Master

1 2

3

4

5

6

7

8

9

10

0

Figure 6.5: A example of the doubly-connected ring topology that the
processors are organized as. Each processors can send and receive unsolved
subspaces and new global upper bounds to and from both of its neighbours,
while tokens in the termination detection process are only send one way
(clock-wise).

Chapter 7

Sequential computational
experiments

This chapter discusses the experiments made with the sequential code.
The tests were run on two Hewlett-Packard HP 9000 series 800 model
K460 computers called serv2 and serv3 at IMM. Both are equipped with
PA-8000 processors running at 180 MHz. While serv2 has 928 Mb of
memory serv3 only has 608 Mb. From SPEC1 the HP-9000 K460 has a
SPECint95 index of 11.8 and a SPECfp95 index of 22.2 (approximately the
same performance figures are achieved by PC-systems based on the Intel
Pentium II 300MHz systems). All running times presented in this chapter
are presented in seconds. In order not to use too much of IMM’s computer
resources the algorithm was stopped after 50000 columns were generated
or 2000 Branch-and-Bound nodes checked.

The algorithms are coded in C. We have used the LP-solver CPLEX version
3.0 for solving the master problem.

1Homepage: www.spec.org.

123

124 Chapter 7. Sequential computational experiments

7.1 The Solomon test-sets

Getting involved in research on solving the VRPTW (in some older papers
also referred to as VRSPTW – Vehicle Routing and Scheduling Problem
with Time Windows) means that you sooner or later meet the Solomon
test-sets first put forward by Solomon in [Sol87]. The test-sets, which can
be downloaded from the WWW at

http://dmawww.epfl.ch/~rochat/rochat data/solomon.html,

consists of sets of instances based on data from some of the problems used
by Christofides et al. in [CMT79] for the standard routing problem. The
test-sets reflects several structural factors in vehicle routing and scheduling
as geographical data, number of customers serviced by a single vehicle and
the characteristics of the time windows (e.g. tightness, positioning and the
fraction of time-constrained customers in the instances). Customers are
distributed within a [0, 100]2 square.

The instances are divided into 6 groups (test-sets) denoted R1, R2, C1,
C2, RC1 and RC2. Each of the test-sets contain between 8 and 12 in-
stances. In R1 and R2 the geographical data is randomly generated by a
random uniform distribution (see figure 7.1). In the test-sets C1 and C2
the customers are placed in clusters (see figure 7.2), and finally in the RC1
and RC2 test-sets some customers are placed in clusters while others are
placed randomly (see figure 7.3). In the test sets R1, C1 and RC1 the
scheduling horizon is short permitting approximately 5 to 10 customers on
each route. The R2, C2 and RC2 problems have a long scheduling hori-
zon making routes with more then 30 customers feasible. This makes the
problems very hard to solve exactly and they have until now not been used
to test exact methods. The time windows for the test sets C1 and C2 are
generated to permit good, maybe even optimal, cluster-by-cluster solution.
For each class of problems the geographical position of the customers are
the same in all instances whereas the time windows are changed.

Each instance has 100 customers, but by considering only the first 25 or
50 customers smaller instances can easily be generated. It should be noted
that considering 25 or 50 customers for the RC-sets the customers are

7.1 The Solomon test-sets 125

1

2

3

4

5 6

7

8

910

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

Figure 7.1: Example of the geometry of R-instances (R102 with 50 cus-
tomers) where the depot is marked as a black square.

126 Chapter 7. Sequential computational experiments

1

2

3

4

5

6

7
8

9

10

11

12

13

14

15

16

1718

19

20

2122

23

24

25

26

27

28

29

30

31

3233

34

35

36

3738

39

40

4142

43

4445

46

47

48

49

50

Figure 7.2: Example of the geometry of C-instances (C101 with 50 cus-
tomers) where the depot is marked as a black square.

7.1 The Solomon test-sets 127

1

2

3

4

5

67

8

9
10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35
36

3738

39

40

41

42

43

4445

46

47

48

49

50

51

52

53

5455

56

57

58

59

60

61

62

63

64

65
66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83
84

858687

88

89

90

91 92

93

94

95

96

97

98

99

100

Figure 7.3: Example of the geometry of RC-instances (RC101 with 100
customers) where the depot is marked as a black square.

128 Chapter 7. Sequential computational experiments

clustered as the clustered customers appear in the beginning of the file.
Travel time between two customers is usually assumed to be equal to the
travel distance plus the service time at customer we are starting from.

7.2 Using the Ryan-Foster branching rule in
VRPTW

During a 5 month visit to the Department of Engineering Science of the
University of Auckland the possibility of using the Ryan-Foster branching
rule [RF81] instead of the arc branching rule that has traditionally been
used within the vehicle routing community was investigated under the su-
pervision of professor David M. Ryan.

The Ryan-Foster rule has been used in several papers solving crew schedul-
ing and rostering problems. In crew scheduling, a number of flights (called
legs) are to be manned (as legislation and union-contracts are different
between pilots and cabin-crew, scheduling is done for each group indepen-
dently). This is done by linking legs to form rosters that start at a crew-base
and end at the same crew-base. Hence, customers in VRPTW corresponds
to legs in crew scheduling, the depot in VRPTW becomes the crew-base in
crew scheduling, and a route in VRPTW corresponds to a roster for an un-
named pilot/cabin crew. It is therefore obvious to try to use the experience
gained from the crew scheduling problem in solving VRPTW.

In VRPTW terms the Ryan-Foster rule amounts to selecting two customers
i1 and i2 and generating two Branch-and-Bound nodes: one in which i1
and i2 are serviced by the same vehicle and one where they are serviced
by different vehicles. This is slightly different from the arc-branching rule
normally used. In arc-branching i2 must follow immediately after i1 in one
of the nodes, and in the other Branch-and-Bound node i2 is not allowed to
follow immediately after i1. In the Ryan-Foster rule there is no constraint
on the order of the customers. This should give a more balanced search
tree, as opposed to arc-branching, where one arc is removed in one of the
Branch-and-Bound nodes while up to 2(n−1) arcs are removed in the other
Branch-and-Bound node. The drawback is that the branching decisions can
not be implemented by changing the underlying graph.

7.2 Using the Ryan-Foster branching rule in VRPTW 129

Therefore, we have to add an array to each label containing two entries for
each pair of customers that is in the “branching-path”. If for instance, a
branch is made in which (i1, i2) must be serviced by the same vehicle and
(i3, i4) are not allowed to be serviced by the same vehicle, an array of size
4 needs to be allocated with each label to monitor whether the customers
has been visited or not. This corresponds to adding new resources.

Depot

i1

Depotli1

l

Figure 7.4: Comparison of two labels: The label li1 represents a partial
route that contains customer i1, while label l represents a partial route
that does not contain customer i1.

Consider figure 7.4 and assume that we have branched on the customer-
pair (i1, i2) and we are working on the branch where both customers have
to appear on the same route. Now in case the partial route containing i1
dominates every other label at customer j, and no extension of the partial
route to the depot containing customer i2 results in a route with negative
accumulated costs, no route will be available for insertion in the master

130 Chapter 7. Sequential computational experiments

problem. Therefore the dominance criteria must be extended if we want to
use the Ryan-Foster rule. In the case where two customers have to be on the
same route the labels representing a partial route containing both i1 and
i2 dominates other configurations as long as they dominate with respect
to distance/accumulated cost and time. Between the remaining types of
partial routes no dominance can be established. The same considerations
has to be applied to the branch where i1 and i2 can not be part of the same
route.

The initial test with small problems looked promising, but when we turned
our attention to medium and large scale problems the running times deteri-
orated drastically. When the depth of the Branch-and-Bound-tree became
5 or 6 (which is not unusual) the weaker dominance criterion decreased the
performance substantially, and the scheme was not competitive.

We did not perform a large test of the VRPTW algorithm using the Ryan-
Foster branching rule. The method had problems solving instances where
the Branch-and-Bound trees were deep and therefore it did not seem worth
to continue the work. To illustrate the problem we consider two instances.
The R101 with 100 customers has a relatively small Branch-and-Bound
tree and therefore the running time of the two branching rules (Ryan-
Foster and arc-branching almost alike). Using the Ryan-Foster rule 15
Branch-and-Bound nodes are needed to obtain a solution in 22.24 seconds,
while the algorithm with the arc-branching rule returned a solution after
25 Branch-and-Bound nodes and 27.78 seconds. In the case of R103 with
50 customers a solution was found in 42.16 seconds after examining 51
Branch-and-Bound nodes using arc-branching. Here the Ryan-Foster rule
needed 312.11 seconds and 41 Branch-and-Bound nodes. Clearly the added
states in the labels weakens the dominance criteria too much.

One of the important differences between vehicle routing and crew schedul-
ing is the depth of the Branch-and-Bound trees. The depth in Branch-and-
Bound trees of a crew scheduling problem is typically significantly smaller
in vehicle routing. Another important aspect is that in crew scheduling
cycles are not possible (it is not possible to fly the same leg twice). We
have therefore not pursued the idea further.

7.3 Experiments with branching on resources 131

7.3 Experiments with branching on resources

In [GDDS95] Gélinas et al. described how to branch on resource constraints.
In the VRPTW model resource constraints are either capacity constraints
or time windows.

The computational tests in [GDDS95] are made for a special variant of the
VRPTW: the VRPTW with backhauling. In the backhauling variant of the
VRPTW, customers are divided into two groups – a group of pick-up points
and a group of delivery points. A restriction that all delivery points must
be visited before any pickup point is furthermore imposed in [GDDS95].
With this model the following conclusion is drawn:

This strategy of branching on resource variables proved much
more effective than branching on flow variables.

The implemented branching scheme uses branching on the number of ve-
hicles, branching on time windows and branching on arcs (branching on
flow). As capacity windows seldom are constraining we do not try to use
them to branch on. The arc-branching is only used in cases where branch-
ing on time windows cannot be applied. Hence, whenever branching on
time windows is possible it is used. The branching scheme is tested against
a scheme which branches only on the number of vehicles and arc-branches.
Out of 21 instances, branching on time windows performed best in 17 cases,
but only significantly (more than a factor 2) better in 9 cases. These results
do not seem impressive, hence we set out to try to combine the branching
on time window and arc-branching in a more intelligent way, trying to de-
velop a branching scheme depending on the present geography, customer
distribution, time window size etc.

In many papers it seems to be a foregone conclusion to use a best-first ea-
ger evaluation approach. Before evaluating branching on time windows the
two selection functions best-first and depth-first in combination with the
two bound evaluation schemes eager evaluation and lazy evaluation were
tested. In eager evaluation, bounding of the Branch-and-Bound nodes is
done before they are returned to the data structure handling the selection,
while in lazy evaluation each Branch-and-Bound node is inserted with the

132 Chapter 7. Sequential computational experiments

bound value of for example the parent and bounding takes place immedi-
ately before branching.

In an initial phase we developed four versions of the branch-and-price al-
gorithm for the VRPTW: two using best-first for node-selection and two
using depth-first for node-selection. For each node-selection strategy we
implemented a lazy and eager bound evaluation approach (as discussed by
Clausen and Perregaard in [CP]).

From the rich set of instances in the Solomon test-sets we selected 8 in-
stances (table 7.1), which are fairly difficult to solve and have different
characteristics. These were used as a test-bed in the initial phase of the
experiments. First of all we wanted to confirm the results of Gélinas et al.
We therefore ran the 4 developed algorithms with:

• Setup 1:

– Branching on the number of vehicles.

– Branching on time windows.

– Branching on arcs.

• Setup 2:

– Branching on the number of vehicles.

– Branching on arcs.

For each setup, 4 runs of the test-bed problems were made. The results
are shown in table 7.2 and 7.3. The NoCo (“No more columns”) entry
indicates that the max. number of 20000 columns allowed were exceeded.

First thing to notice in table 7.2 is that the stack-implementation using
eager evaluations is never the best. Even though the stack-implementation
using lazy evaluation is the best on 3 instances it is only by a small margin,
and when it is not the best it is way off the best running times. On the
remaining instances the heap-implementation using lazy evaluation per-
forms better. Note that the performance of depth-first based Branch-and-
Bound can be improved by using an initial solution value better than ∞.
A fast heuristic that can generate a good quality solution can significantly

7.3 Experiments with branching on resources 133

Problem No. of Description
Cust.

R101 100 All time windows are of size 10
R103 50 Half of the time windows are of size 10,

the other half almost not constraining
R105 100 All time windows are of size 30
R107 50 Half of the time windows are of size 30,

the other half almost not constraining
R110 50 All time windows are big (at least size 30)
R111 50 All time windows are big (at least size 30)
RC104 50 10 time windows of size 30, the rest

are almost not constraining
RC108 50 All time windows are big (at least size 50)

Table 7.1: Description of the test-bed. For all instances the scheduling
horizon is [0; 230].

reduce the depth of the Branch-and-Bound tree. For a best-first Branch-
and-Bound a good initial solution value can help reduce the number of
Branch-and-Bound nodes stored in the heap.

For the setup where branching on time windows is not used (table 7.3)
the results are even more clear. Again the stack-implementation using
eager evaluation is never the best. Among the remaining setups the heap-
implementation using lazy evaluation edges in front. Five times it is the
best and it is never worse than than second.

So in our further tests of the time window branching scheme an implemen-
tation using a heap to store unsolved Branch-and-Bound nodes (best-first
strategy) and lazy evaluation (storing each Branch-and-Bound node in the
heap according to the bound of the parent).

Now comparing our two chosen implementations it is noteworthy that
branching on time windows is better in 5 out of 8 instances, but only
in 2 of the 5 instances is the difference really significant (both in R107 with
50 customers and RC108 with 50 customers branching on time windows is
about a factor 2 faster).

1
3
4

C
h
a
p
ter

7
.

S
eq

u
en

tia
l
co

m
p
u
ta

tio
n
a
l
ex

p
erim

en
ts

Heap Stack
Lazy Eager Lazy Eager

Problem time (s) BB time (s) BB time (s) BB time (s) BB
Customers Veh. Arc TW Veh. Arc TW Veh. Arc TW Veh. Arc TW

R101 100 28.79 41 35.51 20 25.33 41 36.63 21
1 7 14 1 5 13 1 7 12 1 7 12

R103 50 34.24 31 35.82 15 50.19 81 38.29 19
1 0 23 1 0 13 1 0 39 1 0 17

R105 100 817.56 381 1048.98 190 1432.21 789 2489.84 383
8 0 242 6 0 183 9 0 385 10 0 372

R107 50 36.51 41 38.12 16 696.52 797 1591.77 404
2 0 27 1 0 14 5 2 391 2 5 396

R110 50 26.87 11 26.02 6 4199.32 4193 2740.84 945
1 0 5 1 0 4 100 6 1990 46 12 886

R111 50 568.01 629 525.24 254 1912.278 1615 7522.68 1144
38 0 386 18 0 235 64 13 730 62 10 1071

RC104 50 187.74 9 186.30 5 185.33 9 194.112 5
1 0 3 1 0 3 1 0 3 1 0 3

RC108 50 354.19 167 358.49 80 255.41 177 414.26 83
1 0 112 1 0 78 1 0 87 1 0 81

Table 7.2: Using time windows (setup 1) on the test-bed. The first line for each instance contains the
running time and the number of Branch-and-Bound nodes that was necessary to solve the problem.
The second line displays the number of branchings performed on the number of vehicles, on arcs and
using time windows.

7
.3

E
x
p
erim

en
ts

w
ith

b
ra

n
ch

in
g

o
n

reso
u
rces

1
3
5

Heap Stack
Lazy Eager Lazy Eager

Problem time (s) BB time (s) BB time (s) BB time (s) BB
Customers Veh. Arc TW Veh. Arc TW Veh. Arc TW Veh. Arc TW

R101 100 18.82 25 24.25 13 16.76 25 24.87 14
1 14 0 1 11 0 1 11 0 1 12 0

R103 50 54.12 49 54.99 21 56.15 69 70.48 32
5 33 0 3 17 0 3 31 0 3 28 0

R105 100 680.92 327 920.02 166 NoCo NoCo

20 151 0 17 148 0
R107 50 75.48 67 95.11 34 101.33 117 138.91 58

2 52 0 2 31 0 2 56 0 2 55 0

R110 50 26.89 13 27.23 7 NoCo 9669.23 1472
2 5 0 2 4 0 3 1468 0

R111 50 545.64 559 713.80 275 472.83 555 689.31 270
31 327 0 14 260 0 15 262 0 16 253 0

RC104 50 244.79 25 242.15 13 248.17 41 295.50 22
1 14 0 1 11 0 1 19 0 1 20 0

RC108 50 712.47 341 902.78 171 NoCo NoCo

3 235 0 1 169 0

Table 7.3: Not using time windows (setup 2) on the test-bed.

136 Chapter 7. Sequential computational experiments

In order to evaluate the branching schemes we selected three instances
R105, R107 and R111 for further tests. In R105 all time windows are of
size 30 which is small compared to the scheduling horizon. In R107 half of
the time windows are of size 30 while the remaining half are significantly
larger than size 30 and in R111 all time windows are significantly larger
than size 30.

Now all time windows (except the time window of the depot) are changed
from [ai, bi] to [ai +r, bi−r] so for positive r the time windows are reduced
symmetrically around the center of the interval, while negative values of r
enlarges the time windows accordingly. The experiments were carried out
for r = −10,−5,−3,−1, 1, 3, 5, 10 and results are depicted in table 7.4.

Our first expectation was that reducing the time windows would lead to
smaller running times, and, obviously, enlarging the time windows would
lead to larger running times. Furthermore the idea was that as the time
windows get larger, branching on time windows would become more effi-
cient than branching on arcs. Finally we wanted to confirm the results
of [GDDS95].

Making the time windows smaller did not however reduce running times.
Looking at both the runs where we used branching on time windows and
those were we did not use it, the running time may actually go up even
though the time windows are smaller, e.g. as time windows are reduced by
one third going from r = 0 to r = 5 in R105 running time goes up by a
factor 4.5 from 823.49 to 3682.59 using branching on time windows, and by
around a factor 2 from 665.32 to 1428.41 if not. There is no general trend
in the relationship between size of time window and the running time in
these data.

The reason for this behaviour must be found elsewhere, and in fact the
reason is quite straightforward. Table 7.3 shows the gap in percent be-
tween the initial LP relaxation and the optimal IP solution. As the time
windows are changed we unfortunately also change the general structure of
the problem and this does in some cases lead to a weaker LP relaxation.
In this model of the VRPTW the impact is significant as the gap is usually
only closed in very small steps.

In the 24 new tests we ran only one (R107, r = −10) did not produce
a result for any of the two branching strategies. In only 10 of 23 tests

7.4 Speeding up the separation algorithm for 2-path cuts 137

something is gained using branching on time windows, and only half of
these actually led to a significant decrease (by more than a factor 2) in the
running time.

As the change of every time window clearly did change the problem too
much we tried on R105 and R107 to leave the “big” time windows un-
touched and only change part of the remaining ones; the philosophy being
that changing the big time windows with the relative small values we are
using does not change the structure significantly. R111 is not used in these
tests because all time windows are relatively large. For the same set of
possible r-values we tried only to change every second and every fourth
“small” time window. The result of these runs are shown in the tables 7.6
and 7.7.

Again these results are not encouraging at all. Our problem is still that we
cannot control the gap between the LP and the IP. Therefore, even small
changes may result in quite drastic changes in running times. Out of the
32 new instances branching on time windows only performed better than
branching on flows in 12 instances (1 instance could not be solved by any
setup).

The conclusion from these tests are that our initial hypothesis that as time
windows grow larger, branching on time windows helps can not be justified.

In fact, the picture is not clear. It is presently not clear to us in which
situations branching on time windows yields better results than branching
on arcs. Further investigations have to find relations between problem
characteristics and the performance of branching on time windows.

7.4 Speeding up the separation algorithm for
2-path cuts

The (heuristic) separation algorithm for the 2-path cuts is developed by
Kohl in [Koh95]. It contains a number of points where tuning is possible.
In this section we report on ideas for tuning the generation of S sets and
the checking whether the vertices can generate a TSPTW tour.

138 Chapter 7. Sequential computational experiments

Problem No. of r Using TW Not using TW
Cust. time (s) BB time (s) BB

R105 100 0 823.49 381 665.35 327

R105 100 1 2320.12 1025 1331.28 732
R105 100 3 11959.71 4961 2193.08 1087
R105 100 5 3682.59 1745 1428.41 749
R105 100 10 18.30 29 14.59 21

R105 100 -1 2515.54 1097 2955.46 1177
R105 100 -3 18411.63 4389 8735.96 2523
R105 100 -5 NoCo 6569.79 1723
R105 100 -10 NoCo 8028.87 2675

R107 50 0 39.48 41 74.51 279

R107 50 1 62.74 53 36.51 33
R107 50 3 4080.12 1775 NoCo

R107 50 5 460.64 507 1243.58 891
R107 50 10 26.11 43 38.83 75

R107 50 -1 354.22 321 115.23 111
R107 50 -3 220.78 229 182.96 167
R107 50 -5 138.32 151 176.72 215
R107 50 -10 NoCo NoCo

R111 50 0 561.84 629 550.37 559

R111 50 1 323.14 461 220.69 267
R111 50 3 115.43 123 114.66 111
R111 50 5 24.82 29 48.18 35
R111 50 10 11.83 15 15.20 23

R111 50 -1 1729.87 1487 548.32 587
R111 50 -3 4303.42 2201 NoCo

R111 50 -5 383.18 297 1425.56 589
R111 50 -10 556.49 439 1062.48 591

Table 7.4: Testing branching on time windows on the same geography but
different time windows.

7.4 Speeding up the separation algorithm for 2-path cuts 139

Problem No. of r LP IP gap in
Cust. %

R105 100 0 13461.422 13553 0.68

R105 100 1 13591.179 13722 0.96
R105 100 3 14043.772 14207 1.16
R105 100 5 14389.533 14547 1.09
R105 100 10 16602.143 16672 0.42

R105 100 -1 13319.500 13431 0.84
R105 100 -3 13030.200 13189 1.22
R105 100 -5 12643.756 12814 1.35
R105 100 -10 12025.317 12144 0.99

R107 50 0 7044.380 7111 0.95

R107 50 1 7111.175 7164 0.74
R107 50 3 7236.800 7397 2.21
R107 50 5 7374.133 7492 1.60
R107 50 10 7899.500 7965 0.83

R107 50 -1 6977.321 7108 1.87
R107 50 -3 6950.300 7057 1.54
R107 50 -5 6874.659 6970 1.39
R107 50 -10 NoCo

R111 50 0 6918.122 7072 2.22

R111 50 1 7047.800 7165 1.66
R111 50 3 7197.714 7276 1.09
R111 50 5 7241.641 7304 0.86
R111 50 10 7395.500 7453 0.78

R111 50 -1 6901.500 7072 2.47
R111 50 -3 6787.745 6980 2.83
R111 50 -5 6515.462 6689 2.66
R111 50 -10 6405.750 6561 2.42

Table 7.5: The gap between the LP relaxation and the optimal IP value.

140 Chapter 7. Sequential computational experiments

Problem No. of r Using TW Not using TW
Cust. time (s) BB time (s) BB

R105 100 0 823.49 381 665.35 327

Every second changed

R105 100 1 85.95 59 56.44 31
R105 100 3 62.60 45 39.52 21
R105 100 5 3546.56 1651 2337.59 1225
R105 100 10 35.26 39 23.24 17
R105 100 -1 7023.80 2505 3482.01 1433
R105 100 -3 1373.31 657 11484.09 3299
R105 100 -5 7473.87 2207 10906.47 3063
R105 100 -10 NoCo NoCo

Every fourth changed

R105 100 1 340.35 203 210.29 145
R105 100 3 454.73 273 259.38 167
R105 100 5 135.47 93 123.19 85
R105 100 10 19.98 9 28.71 17
R105 100 -1 5588.24 2177 3782.05 1485
R105 100 -3 2949.82 1167 2574.70 1041
R105 100 -5 759.88 447 779.67 411
R105 100 -10 4072.78 1419 1464.65 697

Table 7.6: Not every time window is changed for R105.

7.4 Speeding up the separation algorithm for 2-path cuts 141

Problem No. of r Using TW Not using TW
Cust. time (s) BB time (s) BB

R107 50 0 39.48 41 74.51 279

Every second changed

R107 50 1 113.76 115 54.13 51
R107 50 3 214.34 157 242.19 119
R107 50 5 1608.23 887 469.26 379
R107 50 10 25.80 25 43.31 51
R107 50 -1 44.27 43 70.27 63
R107 50 -3 133.51 147 80.76 81
R107 50 -5 22.72 5 22.18 5
R107 50 -10 119.09 141 94.03 103

Every fourth changed

R107 50 1 51.02 21 40.75 29
R107 50 3 92.60 49 70.25 79
R107 50 5 42.97 19 19.60 11
R107 50 10 791.43 395 788.70 515
R107 50 -1 59.35 31 72.59 67
R107 50 -3 110.42 55 67.37 61
R107 50 -5 37.95 3 29.04 11
R107 50 -10 33.65 5 24.94 13

Table 7.7: Not every time window is changed for R107.

142 Chapter 7. Sequential computational experiments

7.4.1 A new way of generating the S sets

To generate candidates for 2-path cuts a number of sets of customers S
are generated. Starting with S being the empty set customers are added
as long as x(S) < 2. The question is which customers to add when. The
order in which they are added may influence the cuts that are found and
thereby how much the gap between the LP-value and the IP-value can be
tightened.

Kohl et al. [KDM+99] uses the numerical order of the customers to de-
termine when to add which vertices to the set S, which essentially means
random order. We analyzed how the cuts that where found by Kohl’s code
were geographically distributed. The next four figures (7.5 – 7.8) show
how the sets that were recognized as 2-path cuts were positioned. They
are typical for the more than 20 tests we made.

It is quite evident that cuts are clusters of customers close to each other.
Looking at the four presented figures (and additional plots all show the
same characteristics as the ones in the thesis) the closest neighbour within
a cut was one of the five closest customers on an over-all basis.

A systematic search for cuts will make the search more effective. We there-
fore propose the following scheme:

1. Start adding customers to the cuts on a nearest-neighbour basis. The
search is started with the set {i} for all customers i.

2. Check only the closest neighbours. It seems that the customers in
the cuts are close to each other, therefore it does not make sense to
try to extend the set S with all possible customers.

The number of customers checked is limited to the nearest 5 not yet
in the set.

Additionally we introduced a success criteria. If the number of sets S
generated that leads to cuts gets below a certain threshold we backtrack
without investigating the branch further. A number of preliminary tests
lead to a threshold of 3%.

7.4 Speeding up the separation algorithm for 2-path cuts 143

1

2

3

4

5 6

7

8

9

10

11

12

13

14
15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33
34

35

36

37

38

39

40

41

42

43

44

45

46

47 48

49

50

Figure 7.5: R103 with 50 customers. The dashed lines represents the sets
that did become 2-path cuts.

144 Chapter 7. Sequential computational experiments

1

2

3

4

5 6

7

8

910

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27 28

29

30

31

32

33 34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

Figure 7.6: R105 with 50 customers. The dashed lines represents the sets
that did become 2-path cuts.

7.4 Speeding up the separation algorithm for 2-path cuts 145

1

2

3

4

5 6

7

8

910
11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Figure 7.7: R110 with 25 customers. The dashed lines represents the sets
that did become 2-path cuts.

146 Chapter 7. Sequential computational experiments

1

2

3

4

5

67

8

9

10
11

12

13

14

1516

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31
32

33

34

3536
37

38

39

40

41

42

4344
45

46

47

48

49

50

Figure 7.8: RC103 with 50 customers. The dashed lines represents the sets
that did become 2-path cuts.

7.4 Speeding up the separation algorithm for 2-path cuts 147

This scheme was tested using 49 instances from the Solomon test-sets and
our instances developed in section on resource-branching (section 7.3) The
results are show in the tables 7.8 and 7.9. Both loss in quality and gain
in time are percentages, where a negative number in the “loss in quality”-
column indicate a tighter bound in the new scheme and an negative number
in the “Time gain”-column indicate that the old scheme was faster.

All in all, the loss in total quality was a mere 0.01% and we achieved
a scheme that totally was 174% faster. Looking at the numbers for the
individual runs it is remarkable that the largest gains are made where
the running times where largest and these gains are achieved without any
decrease in quality. In fact, the bounds achieved by the new scheme are
better (see instance 28, 34, 38, 41 and 42). The instances 43 – 49 are the
RC1 problems with 50 customers and it is noteworthy that in 5 out of the
6 cases where the new scheme took longer time to run are among those
problems – further investigation might reveal why that is the case.

7.4.2 Heuristic for the “feasibility TSPTW” problem

The TSPTW problem has only been the subject of attention in a few pa-
pers. In the first paper on the subject ([Sav56]) by Savelsbergh, a heuristic
is developed for the TSPTW. More important for our purpose is the proof
by Savelsbergh that even the problem of finding a feasible solution to the
TSPTW is NP-hard. Savelsbergh therefore develops a heuristic for finding
a feasible solution before he applies his TSPTW heuristic. The heuristic
for finding a feasible TSPTW is using the same principles as the 2-stage
insertion heuristic for the VRPTW presented by Solomon in [Sol87].

In the 2-stage insertion sort, the first stage is used to find the best insertion
point for each unrouted customer. The “attractiveness” is determined by
a function f1. A function f2 then determines which one of the insertions is
to be performed.

In the implementation of the 2-path cuts by Kohl, a dynamic programming
algorithm is used to check whether there is a TSPTW tour or not. The
algorithm terminates when all possibilities have been checked or a TSPTW
tour has been found. This algorithm is not polynomial but it is relatively
fast as the number of vertices is rather small.

148 Chapter 7. Sequential computational experiments

No. LP bound Old S Scheme New S Scheme Loss in qty.
Bound Time Bound Time Time gain

1 13419.50 13452.02 7.32 13443.19 5.47 0.07 33.77
2 12125.32 12132.40 13.14 12130.68 8.12 0.01 61.86
3 13130.20 13165.59 8.13 13165.25 6.17 0.00 31.81
4 12743.76 12779.34 7.81 12755.05 5.77 0.19 35.34
5 13691.18 13716.41 8.36 13760.86 5.95 -0.32 40.42
6 16702.14 16727.33 4.60 16708.67 3.70 0.11 24.31
7 14143.77 14246.13 7.13 14242.38 5.57 0.03 28.02
8 14489.53 14600.25 8.20 14600.25 5.87 0.00 39.78
9 7027.32 7034.56 2.35 7033.83 1.66 0.01 41.52

10 6747.95 6750.71 2.87 6748.28 2.37 0.04 21.01
11 7000.30 7005.15 2.44 7004.71 1.43 0.01 71.01
12 6924.66 6924.82 2.21 6924.82 1.53 0.00 44.31
13 7161.18 7171.60 2.21 7171.60 1.62 0.00 36.30
14 7949.50 7953.83 2.31 7953.83 2.07 0.00 11.59
15 7286.80 7293.25 1.88 7293.25 1.41 0.00 33.19
16 7424.13 7433.25 2.20 7431.68 1.76 0.02 25.26
17 6951.50 6956.37 3.47 6956.37 2.09 0.00 66.09
18 6455.75 6460.23 5.51 6460.14 2.84 0.00 94.08
19 6837.75 6842.49 5.09 6842.49 2.31 0.00 120.26
20 6565.46 6569.43 3.82 6569.43 1.74 0.00 119.66
21 7097.80 7100.25 2.10 7100.25 1.63 0.00 28.68
22 7445.50 7497.61 1.73 7497.61 1.74 0.00 -0.69
23 7247.71 7256.62 2.27 7257.64 1.54 -0.01 47.08
24 7291.64 7304.90 3.35 7291.68 1.33 0.18 151.35
25 16411.50 16440.00 5.86 16440.00 4.64 0.00 26.39
26 12163.12 12163.81 8.18 12163.81 5.51 0.00 48.47
27 9591.25 9606.80 85.06 9606.80 31.80 0.00 167.49
28 13561.42 13584.93 7.87 13587.08 5.71 -0.02 37.82
29 12364.40 12374.04 8.62 12369.54 5.63 0.04 53.20
30 11405.87 11426.34 10.94 11426.59 6.47 0.00 69.11
31 10584.82 10599.39 18.27 10599.39 11.18 0.00 63.45
32 10420.28 10420.75 13.35 10420.28 5.92 0.00 125.43
33 9291.92 9315.68 538.64 9319.14 112.45 -0.04 378.99
34 15940.94 16273.93 16.66 16272.76 8.83 0.01 88.65
35 14136.46 14478.48 27.35 14470.00 19.36 0.06 41.25
36 12284.95 12472.98 74.32 12472.63 30.36 0.00 144.80
37 11043.33 11223.54 872.90 11223.52 412.38 0.00 111.67
38 14811.60 15198.00 22.55 15193.75 9.10 0.03 147.73
39 13187.81 13432.83 81.47 13425.10 21.82 0.06 273.33

Table 7.8: Comparison between the old scheme for S sets by Kohl and our
new search scheme. Gains and losses are measured in %. (Part 1)

7.4 Speeding up the separation algorithm for 2-path cuts 149

No. LP bound Old S Scheme New S Scheme Loss in qty.
Bound Time Bound Time Time gain

40 11806.89 11901.61 254.90 11904.24 120.74 -0.02 111.12
41 10730.11 10904.53 961.22 10911.21 205.09 -0.06 368.68
42 8550.21 9466.60 0.67 9466.60 0.57 0.00 17.89
43 7249.02 7994.97 1.04 7994.97 0.56 0.00 86.02
44 6481.33 7136.82 1.02 7136.82 1.42 0.00 -28.27
45 5468.00 5487.50 8.33 5487.50 21.82 0.00 -61.84
46 7594.43 8453.46 0.82 8453.46 0.83 0.00 -0.72
47 6694.33 7209.79 11.95 7209.79 5.27 0.00 126.88
48 5964.76 6373.36 6.64 6373.36 8.36 0.00 -20.53
49 5439.57 5998.89 11.92 5998.89 22.16 0.00 -46.20

Total 494313.57 3161.04 494313.57 1153.67 0.01 174.00

Table 7.9: Comparison between the old scheme for S sets by Kohl and our
new search scheme. Gains and losses are measured in %. (Part 2)

Running a heuristic for sets with only a small number of vertices does not
seem reasonable but for some of the larger instances encountered this may
be a way to reduce the running time.

In the heuristic implemented by Savelsbergh in [Sav56], feasibility is the
most important but not the only criteria. His second criteria is to generate
a good starting solution for the second phase of his algorithm. Our sole
purpose is to find a feasible solution. Otherwise we have to run the exact
code of Kohl.

In our heuristic for the “feasibility TSPTW” problem we reuse the two-
stage concept, but focus only on maintaining as much flexibility as possible.

In order to explain how the heuristic constructs a solution a few terms have
to be defined. For every routed customer i variable si is the service time
of the customer. Now let PFSi (Push Forward Shift) be defined:

PFSi = bn+1 − (si +
n

∑

k=i

tk,k+1).

So PFSi is the difference between the earliest time we can arrive at the
depot disregarding time windows and the closing time of the depot. As
time windows are not regarded computing PFSi the difference is an upper
bound on the time available until the depot closes.

150 Chapter 7. Sequential computational experiments

Another measure is emi,u,j which denotes the extra mileage in time units
needed to go from customer i to customer j via customer u instead of going
directly from i to j.

For each routed customer i lti denotes the latest time is it possible to arrive
at customer i in order for the route to remain feasible, that is, lti can be
calculated by

lti = min{lti+1 − ti,i+1, bi}

and is maintained throughout the algorithm. Note that lti only has to
be recalculated for customers between the depot and the newly inserted
customer (see figure 7.9).

i

j

u

Figure 7.9: Only the latest arrival time of the customers from the depot to
customer i has to be recalculated. The customers from j to the depot do
not get their latest arrival time changed by the insertion of customer u.

In stage 1 the best possible insertion position for every unrouted customer
is found. The point of insertion chosen is the position between two routed

7.4 Speeding up the separation algorithm for 2-path cuts 151

customers that maximize

min{ltu − max{si + tiu, au}, PFSj − emi,u,j}.

By calculating ltu − max{si + tiu, au} we get a measure of how much of
the time window is left if we insert u between i and j. As PFSj is a
measurement of the flexibility of the path from j to the depot, PFSj −
emi,u,j is an estimate of how much flexibility that remains in the path
when we insert customer u between i and j. In order to retain as much
flexibility as possibly we maximize the minimum of the two numbers.

Whereas the insertion points selected in the first stage only depends on how
much of the flexibility of the inserted customer is destroyed, the selection
in the second stage focuses with a more “global” objective.

Among the best insertion points for each unrouted customer we choose the
one that minimizes lost flexibility of the predecessor k′ and the successor
k′′, that is,

min{(ltold
k′ − ltnew

k′) + (snew
k′′ − sold

k′′)}.

Furthermore small time windows are preferred to large time windows. This
forces the heuristic to insert the customers with small time windows first.
Small time windows are less flexible, whereas customers with large time
windows are likely to fit into the route at several insertion points. In
this heuristic a time window smaller than half the size of the present best
candidate is always chosen independently of the insertion quality.

We ran 3 tests using the “TSPTW feasibility” heuristic using a test-bed
of 27 instances. The 27 instances were selected among the Solomon test
cases and the instances generated for the test of the scheme for branching
on time windows.

The 27 instances were selected to be “fairly hard” to solve, that is, they
would at least require 2 minutes of computing time and should require at
least 50 Branch-and-Bound nodes to be solved. Of course changing the
algorithm does also change the running time and the number of Branch-
and-Bound nodes to be investigated but the instances where determined
by our first running version of the algorithm (without cuts, branching on
time windows etc.). For completeness the instances are listed in table 7.10

152 Chapter 7. Sequential computational experiments

No. Name Instance Customers

1 S105-1 R105 -1 100
2 S105-10 R105 -10 100
3 S105-3 R105 -3 100
4 S105-5 R105 -5 100
5 S1051 R105 1 100
6 S1053 R105 3 100
7 S1055 R105 5 100
8 S1073 R107 3 50
9 S1075 R107 5 50

10 S111-10 R111 -10 50
11 S111-5 R111 -5 50
12 S111-1 R111 -1 50
13 S1055-2 R105 5 2 100
14 S105-1-2 R105 -1 2 100
15 S105-3-2 R105 -3 2 100
16 S105-5-2 R105 -5 2 100
17 S105-10-2 R105 -10 2 100
18 S105-1-4 R105 -1 4 100
19 S105-3-4 R105 -3 4 100
20 S105-5-4 R105 -5 4 100
21 S105-10-4 R105 -10 4 100
22 – R103 100
23 – R104 50
24 – R105 100
25 – R111 50
26 – RC102 50
27 – RC107 50

Table 7.10: The 27 instances in our test-bed.

7.5 Using the “trivial” lower bound 153

In the first test we used the heuristic for every possible candidate set.
In the two remaining tests we only used the heuristic for sets containing
more than 8 respectively 11 customers. In case the heuristic can not find a
feasible route we need to also run the optimal method described by [Koh95]
therefore it seems to be a good idea to limit the use of the heuristic. For
the set with a small number of customers we only use the exact method.
The results are show in table 7.11.

It should be noted that we have also run a version of our VRPTW algo-
rithm not incorporating the “TSPTW feasibility” heuristic, but it returned
performance results almost identical to the “Above 11” test from table 7.11.

The numbers in the table are almost identical. The heuristic achieves a
quite good success-rate for the test where we used it on every possible
candidate set. But running the optimal method in case the heuristic does
not succeed is not a problem as the candidate sets are small. For the
“Above 8” and “Above 11” tests the heuristic is called too few times to
make a significant impact on the running time. In the light of the identical
running times we have not investigated this idea further.

7.5 Using the “trivial” lower bound

As we are using branching on vehicles we can almost without any cost
strengthen the lower bound on the number of vehicles. Summing the de-
mands of each customer and dividing the number by the capacity of the
vehicles gives us a (fractional) lower bound on the number of vehicles re-
quired. By taking the ceil (⌈·⌉) we get an integer lower bound. That is
instead of starting with 0 as a lower bound we can use ⌈

∑

i∈C di/q⌉. In
table 7.12 running times with and without this lower bound is compared.

In both tests, cuts were inserted in the root node, using our new scheme
for finding the S sets for the 2-path cuts.

In 10 out of 27 instances using the trivial lower bound actually makes the
algorithm perform worse than without it (that is with lower bound equal
to 0). Only in instance 4 the deterioration is significant which is partly due
to an increase in the number of Branch-and-Bound nodes.

1
5
4

C
h
a
p
ter

7
.

S
eq

u
en

tia
l
co

m
p
u
ta

tio
n
a
l
ex

p
erim

en
ts

Every time Above 8 Above 11
No. Time TSPTW Succ. Time TSPTW successes Time TSPTW successes

1 786.43 209 155 787.26 3 0 791.90 0 0
2 10035.18 225 155 10138.99 15 0 10084.01 0 0
3 3486.40 227 175 3487.86 6 1 3490.15 0 0
4 4858.22 226 179 4794.65 4 1 4883.50 0 0
5 238.73 214 173 242.77 4 0 237.14 0 0
6 362.44 222 167 365.84 1 0 360.64 0 0
7 606.63 277 205 612.05 1 0 605.69 0 0
8 2224.62 97 76 2182.89 6 0 2205.47 0 0
9 508.81 123 98 508.30 7 0 515.64 0 0

10 832.36 96 66 821.83 21 2 834.38 1 0
11 595.38 56 41 591.83 8 0 597.85 0 0
12 531.79 99 77 521.23 4 0 526.41 0 0
13 920.09 190 142 915.51 1 0 919.85 0 0
14 1660.32 236 195 1619.20 3 0 1688.93 0 0
15 2011.45 235 184 1951.10 6 1 2013.45 0 0
16 3628.71 209 162 3552.67 5 1 3675.66 0 0
17 6626.88 219 164 6546.74 6 1 6529.29 0 0
18 1220.05 210 170 1193.57 5 0 1212.19 0 0
19 1417.15 199 168 1384.99 3 1 1433.97 0 0
20 679.64 221 165 673.36 3 1 674.21 0 0
21 907.23 235 171 894.04 3 1 924.16 0 0
22 1602.40 149 125 1526.49 9 1 1532.76 0 0
23 834.61 105 68 1113.23 15 0 1128.58 1 0
24 231.25 219 182 229.94 3 0 232.06 0 0
25 291.32 116 92 288.29 7 0 293.31 0 0
26 1852.57 51 39 1835.95 7 2 1843.45 0 0
27 146.48 29 24 147.71 8 4 149.09 0 0

Table 7.11: Performance results of using the “TSPTW feasibility” heuristic.

7.5 Using the “trivial” lower bound 155

No. No lower bound Using lower bound
Time (s) BB Time (s) BB

1 551.24 181 545.86 183
2 9938.41 2051 9517.41 1967
3 2245.05 667 2118.98 673
4 4142.96 1249 5039.44 1297
5 298.10 97 286.20 97
6 382.77 113 391.53 113
7 309.39 65 284.87 63
8 1980.50 915 2190.60 907
9 417.79 389 392.69 407

10 1370.65 551 1278.18 527
11 797.15 335 696.77 335
12 648.30 533 599.57 525
13 970.43 401 1019.45 409
14 1433.01 521 1377.95 518
15 1298.80 441 1362.69 443
16 3241.34 875 3245.92 929
17 16746.09 2981 17524.91 3279
18 1150.14 402 1246.37 407
19 954.19 333 932.56 337
20 363.22 119 351.30 119
21 1097.26 393 972.43 345
22 2550.17 53 2082.70 53
23 1306.25 191 1232.92 199
24 296.80 101 284.06 99
25 363.41 339 378.42 345
26 1826.05 1645 1948.98 1681
27 276.93 75 257.21 79

Table 7.12: Comparison of the running times of the VRPTW algorithm
with and without the “trivial” lower bound.

156 Chapter 7. Sequential computational experiments

Generally the two sets of running times are not significantly different, al-
though with a slight advantage to the version of the algorithm using the
lower bound.

It is quite interesting to calculate the running time per Branch-and-Bound
node. In the 10 problems where the trivial lower bound results in a worse
performance the running time per Branch-and-Bound node is also worse
except for problem 15 and 16, and in the remaining 17 instances the running
time per Branch-and-Bound node is better using the trivial lower bound
except for problem 21. This means that the worse performance is not (only)
because of an increased number of nodes that has to be examined, but also
the average time for each node itself is larger.

Further research might reveal why the trivial lower bound is not that help-
ful, and under which conditions it is. The trivial lower bound will be used
in the code from now on.

7.6 Generating cuts outside the root node.

As discussed earlier in section 3.4.3 generating 2-path cuts in other sub-
problems than the root does not necessarily produce cuts that are globally
valid. In [Koh95], Kohl generates cuts as long as no arc-branching has been
performed.

Running the separation algorithm as long as no arc-branching has been
performed makes it possible to look for 2-path cuts and use them glob-
ally if any are found. Therefore, in a first small step towards running the
separation algorithm in additional Branch-and-Bound nodes the benefit of
running the separation algorithm after branching on the number of vehi-
cles were tested (see table 7.13). In the “Root only” test the separation
algorithm was only used in the root, while it was used additionally after
branching on the number of vehicles in the “Root and more” test.

Generally the results in table 7.13 do not present a clear picture. The
majority (17 out of 27) of tests indicate that running only the cuts in the
root is better, but the advantage tends to be a fraction larger when using
the separation algorithm as long as possible. The running times are with

7.6 Generating cuts outside the root node. 157

No. Root only Root and more
Time (s) BB Time (s) BB

1 528.94 183 463.73 147
2 9622.31 1967 10922.35 2079
3 2048.29 673 1549.99 513
4 4968.14 1297 5298.81 1399
5 287.71 97 290.98 97
6 387.82 113 399.95 100
7 282.33 63 271.49 33
8 2177.73 907 2346.82 933
9 391.40 407 388.87 355

10 1274.21 527 1072.56 517
11 695.54 335 703.17 335
12 584.91 525 567.67 479
13 1008.26 409 991.34 381
14 1406.80 518 1768.50 603
15 1363.43 443 1496.79 415
16 3301.59 929 3045.77 805
17 17418.91 3279 7844.59 1521
18 1261.14 407 1308.73 414
19 933.61 337 953.66 337
20 353.78 119 348.62 113
21 986.22 345 1042.31 337
22 2229.15 53 2419.49 55
23 1220.46 199 1226.28 199
24 284.09 99 321.05 99
25 377.82 345 338.57 291
26 1952.21 1681 1950.56 1681
27 256.06 79 263.75 79

Table 7.13: Comparison of the effects of generating cuts as long as possible,
that is, until we do arc-branching.

158 Chapter 7. Sequential computational experiments

the exception of instance 17 not far apart – the difference between the two
tests is never greater than 25%. As no clear conclusion can be drawn of
these tests we continue to use the setup of Kohl generating cuts as long as
no arc-branching has been performed.

Even though the 2-path cuts are not guaranteed to be globally valid when
generated in Branch-and-Bound nodes the information can be used locally
to fathom the Branch-and-Bound node. We therefore ran a version of our
algorithm where 2-path cuts and subtour elimination cuts were detected
also in the Branch-and-Bound nodes. The result is depicted in table 7.14.
We have used the algorithm only generating cuts in the root as reference.
As the difference in running time between the reference algorithm and the
version using the cuts locally is fairly small we have given the difference
in running time in table 7.14 in percentages. If the value is positive the
reference algorithm is faster.

In none of the 27 instances do the cuts lead to smaller running times. In 6 of
the instances fewer Branch-and-Bound nodes needed, but the running time
is not better than the reference algorithm, as the separation algorithms
have to be run on every Branch-and-Bound node.

A natural extension is to keep the generated cuts in a “cut pool” in order
to insert them in the problem whenever possible. This involve the develop-
ment of a cut management module to the existing program. Based on the
tests made this does not seem worthwhile.

7.7 Reducing the number of columns

Each call to the route generator (the SPPTWCC function) typically gen-
erates more than one route, and as mentioned earlier experiments made by
other authors suggest that if more than one route is available they should
be entered into the master problem (the relaxed set partitioning problem).
As also suggested by other authors we impose an upper limit on the num-
ber of columns that are entered into the master problem after each call to
the route generator. In order to rank the columns, the accumulated costs
are used.

7.7 Reducing the number of columns 159

No. Ref. Local cutting Diff. in
BB BB ZeroCut running time

1 183 183 117 1.15
2 1967 1967 1112 1.21
3 673 668 485 1.01
4 1297 1291 991 1.19
5 97 97 71 1.11
6 113 113 69 1.18
7 63 63 43 1.07
8 907 907 862 1.14
9 407 407 353 1.19

10 527 527 310 1.14
11 335 335 210 1.14
12 525 522 504 1.03
13 409 408 332 1.09
14 518 518 401 1.12
15 443 443 320 1.18
16 929 929 844 1.21
17 3279 3276 2941 1.16
18 407 407 361 1.22
19 337 337 275 1.09
20 119 119 110 1.11
21 345 345 299 1.12
22 53 53 31 1.23
23 199 199 181 1.22
24 99 96 45 1.07
25 345 345 237 1.04
26 1681 1681 1551 1.16
27 79 71 49 1.10

Table 7.14: Generating and using cuts locally. Column 2 contains the
number of Branch-and-Bound nodes used by the reference algorithm, while
column 3 contains the numbers used by the algorithm using the cuts locally.
The column labelled ’ZeroCut’ contains the number of Branch-and-Bound
nodes where no cuts where generated. Last column is the difference in
running time.

160 Chapter 7. Sequential computational experiments

After a number of Branch-and-Bound nodes have been processed, the num-
ber of columns can grow very large and some of the columns might never
have been part of the basis. Removing these columns would leave room
for some new ones. Additionally this might speed up the LP-code and the
work we have to do each time we start working on a new Branch-and-Bound
node (for example checking whether any of the arcs in the path of a route
are removed from the problem in the current Branch-and-Bound node). So
here we have two goals: being able to handle larger problems and solving
problems faster.

To check if anything can be gained, our 27 problems from the test-bed
where used. The program was extended with a possibility to keep track
of which columns that did participate in the basis at some point. The
result was that as few as 10% and as many as 28% of the columns had
been in the basis some time during the execution of the program. For the
bulk of the problems the percentage was approximately 16 to 18. So only
approximately 1 out of 5 entered columns ever became part of the basis.
At least from a memory point of view there is something to be gained.
Whether there is something to be gained in speed is more questionable. A
possible scenario is to remove the obsolete columns after every k Branch-
and-Bound nodes. Todays state-of-the-art LP-solvers (as CPLEX) are very
fast (our problems of more that 10000 columns are by no means large in
relation to solvable LP-problems) so it is not clear whether the contribution
by removing columns is significant enough to produce faster running times.
A side effect, as mentioned earlier, is that with fewer columns in the set
partitioning few columns have to be checked every time we start working on
a new Branch-and-Bound node. These effects have to counterbalance the
time used on removing obsolete columns and time used generating them
again in case they are needed in future Branch-and-Bound nodes.

To test the possibilities we ran four versions of our algorithm with column
removal added. One version deleted obsolete columns after every Branch-
and-Bound node, one after every 5 Branch-and-Bound nodes, one after
every 10 Branch-and-Bound nodes and finally one after every 20 Branch-
and-Bound nodes. Table 7.15 presents the results of running the algorithm
without column deletion for reference. The results for our 27 problems
in the test-bed are shown in table 7.16 - 7.19 (for reference columns 2 to
3 display the two most important columns from the reference algorithm

7.7 Reducing the number of columns 161

data (column 2 and 3 in table 7.15) for running the code without column
deletion). In the tables the column “BB” is the number of Branch-and-
Bound nodes needed in order to solve the problem, the column “Calls”
indicates the number of calls to the SPPTWCC subroutine during the
execution of the algorithm, and “RD” is the number of routes deleted
during all column deletion calls. In the test the trivial lower bound was
enforced, and the new scheme for generating the S sets was used.

As expected removing unused columns after every Branch-and-Bound node
lead to slower running times. Columns are often reused and as the algo-
rithm is shifting from one branch of the Branch-and-Bound tree to another
removing columns after every Branch-and-Bound nodes mean that columns
have to be regenerated very often. It also leads to bad running times as
the starting values of the dual variables are relatively bad resulting in gen-
eration of poor quality routes before better routes can be generated.

In none of the 27 instances does column deletion after every Branch-and-
Bound node result in the best running time. In fact worse performance is
only attained at instances 7 and 26. For the remaining 25 instances column
deletion after every Branch-and-Bound node yields the worst running time
consistently. In instance 7 and 26 running without column deletion per-
forms worse (for instance 7 column deletion after every Branch-and-Bound
node needs to check only a third of the Branch-and-Bound nodes as running
without column deletion and therefore performs better).

Column deletion after every 5 and 10 Branch-and-Bound nodes is in all
27 instances outperformed by column deletion after every 20 Branch-and-
Bound nodes. Column deletion after every 20 Branch-and-Bound nodes is
typically around a factor 2 better then column deletion after every 5 and
10 Branch-and-Bound nodes.

All the figures clearly show that running column deletion after every 20
Branch-and-Bound nodes does lead to an algorithm with better perfor-
mance. Comparing column deletion after 20 Branch-and-Bound nodes and
the algorithm without column deletion reveals that only for instance 22
is column deletion after every 20 Branch-and-Bound nodes outperformed.
Running without column deletion results in a running time 15% lower, but
the real reason for the lower running time is that only 53 Branch-and-Bound
nodes have to be checked, whereas the same number for column deletion

162 Chapter 7. Sequential computational experiments

No. Time (s) BB Calls

1 786.64 263 679
2 10114.34 2129 3759
3 3554.49 1057 2126
4 4906.45 1217 2453
5 240.55 95 307
6 363.02 101 325
7 605.27 107 345
8 2215.96 933 2030
9 514.46 441 983

10 788.73 465 1155
11 600.25 335 940
12 533.53 445 1069
13 910.79 381 821
14 1644.66 601 1283
15 1965.89 601 1322
16 3607.22 1091 2094
17 6550.68 1409 2688
18 1201.16 418 991
19 1396.38 479 1070
20 661.46 235 616
21 898.20 335 794
22 1525.23 53 297
23 1126.32 327 944
24 231.54 89 301
25 321.79 335 849
26 1863.87 1681 3162
27 148.35 79 339

Total 49259.23 15702 33742

Table 7.15: The reference algorithm not using column deletion.

7.7 Reducing the number of columns 163

Reference After every node
No. Time (s) BB Time (s) BB Calls RD

1 786.64 263 1487.97 261 4832 647011
2 10114.34 2129 14685.05 2039 33383 4380848
3 3554.49 1057 5696.65 1033 18734 2492619
4 4906.45 1217 7715.56 1361 24634 3343864
5 240.55 95 772.74 129 2471 329819
6 363.02 101 662.60 101 2176 287514
7 605.27 107 407.30 33 880 112018
8 2215.96 933 2816.52 957 14336 1753939
9 514.46 441 772.64 329 4473 536201

10 788.73 465 2524.39 547 7526 898682
11 600.25 335 1513.64 339 5576 689900
12 533.53 445 1144.51 455 5868 660267
13 910.79 381 1736.54 375 7379 970836
14 1644.66 601 4993.27 1087 19164 2552661
15 1965.89 601 2574.49 411 8020 1101773
16 3607.22 1091 4780.54 839 15520 2155006
17 6550.68 1409 9092.14 1439 25972 3430415
18 1201.16 418 3078.53 631 11040 1449278
19 1396.38 479 2566.00 561 9796 1281868
20 661.46 235 1060.69 201 3908 528762
21 898.20 335 2032.96 415 6914 897783
22 1525.23 53 5906.70 51 1665 260219
23 1126.32 327 3358.26 349 5891 753148
24 231.54 89 529.83 115 2056 265309
25 321.79 335 853.52 359 4670 523920
26 1863.87 1681 1448.77 1673 28008 3116443
27 148.35 79 288.09 75 1183 137762

Total 49259.23 15702 83469.9 16165 276075 35557865

Table 7.16: After every Branch-and-Bound node the columns that has not
been part of the basis are removed.

164 Chapter 7. Sequential computational experiments

Reference After every 5 nodes
No. Time (s) BB Time (s) BB Calls RD

1 786.64 263 716.66 263 2185 168315
2 10114.34 2129 7109.47 2179 17431 1363013
3 3554.49 1057 2926.65 1063 9015 712590
4 4906.45 1217 3731.19 1383 11651 939202
5 240.55 95 385.95 129 1094 80079
6 363.02 101 394.36 101 1010 79264
7 605.27 107 224.19 33 383 26244
8 2215.96 933 1229.94 951 7965 632561
9 514.46 441 287.30 331 2327 169713

10 788.73 465 922.89 557 4055 287399
11 600.25 335 542.02 339 2709 199472
12 533.53 445 442.63 447 3363 233533
13 910.79 381 897.82 379 3290 254528
14 1644.66 601 2320.79 1087 8845 678793
15 1965.89 601 1257.22 409 3480 282365
16 3607.22 1091 2499.16 907 7429 616438
17 6550.68 1409 4725.49 1551 13454 1062126
18 1201.16 418 1395.77 625 5052 382645
19 1396.38 479 1193.07 555 4377 337801
20 661.46 235 528.38 195 1606 132844
21 898.20 335 1047.50 451 3453 263802
22 1525.23 53 2768.40 53 722 67940
23 1126.32 327 1312.52 345 2967 244506
24 231.54 89 251.42 111 891 68049
25 321.79 335 319.59 339 2426 166064
26 1863.87 1681 1020.04 1615 15050 979063
27 148.35 79 209.08 79 734 48793

Total 49259.23 15702 40659.5 16477 136964 10277670

Table 7.17: After every 5 Branch-and-Bound nodes the columns that has
not been part of the basis are removed.

7.7 Reducing the number of columns 165

Reference After every 10 nodes
No. Time (s) BB Time (s) BB Calls RD

1 786.64 263 583.57 261 1696 97021
2 10114.34 2129 5582.53 2099 13184 753679
3 3554.49 1057 2271.20 1035 6794 393069
4 4906.45 1217 3476.04 1567 10327 606938
5 240.55 95 320.05 129 820 44099
6 363.02 101 343.81 101 773 43681
7 605.27 107 172.32 33 309 14384
8 2215.96 933 1021.63 961 6388 398196
9 514.46 441 232.84 333 1908 99997

10 788.73 465 728.08 565 3341 176089
11 600.25 335 413.88 337 2156 113968
12 533.53 445 356.31 449 2659 139004
13 910.79 381 724.93 377 2471 145769
14 1644.66 601 1824.17 1091 6776 379232
15 1965.89 601 1019.26 413 2735 161942
16 3607.22 1091 2122.55 899 5658 353346
17 6550.68 1409 3948.59 1553 10410 615854
18 1201.16 418 1191.33 635 3984 218404
19 1396.38 479 959.27 547 3327 185034
20 661.46 235 414.65 201 1248 73611
21 898.20 335 842.28 427 2509 141644
22 1525.23 53 2012.32 49 461 32799
23 1126.32 327 1054.33 313 2129 136102
24 231.54 89 213.86 111 692 39968
25 321.79 335 252.30 337 1956 100328
26 1863.87 1681 944.68 1621 12210 586640
27 148.35 79 162.01 75 562 28474

Total 49259.23 15702 33188.79 16519 107483 6079271

Table 7.18: After every 10 Branch-and-Bound nodes the columns that has
not been part of the basis are removed.

166 Chapter 7. Sequential computational experiments

Reference After every 20 nodes
No. Time (s) BB Time (s) BB Calls RD

1 786.64 263 311.03 263 1367 54320
2 10114.34 2129 3011.84 2117 10712 443946
3 3554.49 1057 1237.72 1047 5413 224949
4 4906.45 1217 1287.24 1119 5731 231572
5 240.55 95 156.56 129 677 23867
6 363.02 101 167.23 101 589 23874
7 605.27 107 84.24 33 226 7310
8 2215.96 933 540.80 977 5311 241709
9 514.46 441 124.51 333 1523 58233

10 788.73 465 357.83 563 2702 102475
11 600.25 335 233.17 337 1786 69449
12 533.53 445 186.13 453 2193 83094
13 910.79 381 382.03 379 1912 78083
14 1644.66 601 983.68 1085 5403 212610
15 1965.89 601 537.24 411 2094 86644
16 3607.22 1091 1203.92 935 4622 202148
17 6550.68 1409 2212.00 1557 8296 350750
18 1201.16 418 626.24 629 3093 118743
19 1396.38 479 531.26 547 2619 104080
20 661.46 235 231.11 197 933 37129
21 898.20 335 454.83 431 1993 77595
22 1525.23 53 1808.42 163 1271 80373
23 1126.32 327 658.93 315 1776 81028
24 231.54 89 113.05 111 558 21127
25 321.79 335 134.07 333 1535 55965
26 1863.87 1681 519.75 1611 9687 330128
27 148.35 79 87.75 75 453 13330

Total 49259.23 15702 18182.58 16251 84475 3414531

Table 7.19: After every 20 Branch-and-Bound nodes the columns that has
not been part of the basis are removed.

7.8 Speeding up the column generation. 167

after every 20 Branch-and-Bound nodes is 163.

It is worth noting that column deletion after 20 Branch-and-Bound nodes
outperforms the code not using column deletion totally by a factor 2.5, but
not because fewer Branch-and-Bound nodes have to be checked. Whereas
the algorithm without column deletion has to check a total of 15702 Branch-
and-Bound nodes column deletion after every 20 Branch-and-Bound nodes
needs additionally around 500 Branch-and-Bound nodes (note that approx-
imately twice as many calls to the SPPTWCC subroutine are necessary).
Gains are made because the checks on columns are drastically reduced. The
effectiveness is underlined by the fact that only for instance 7 does column
deletion after every 20 Branch-and-Bound nodes need significantly fewer
Branch-and-Bound nodes. For instance 14 column deletion after every 20
Branch-and-Bound nodes outperforms the algorithm without column dele-
tion with more than 50% although almost twice as many Branch-and-Bound
nodes is needed.

7.8 Speeding up the column generation.

As described earlier column generation is done by solving the SPPTWCC.
Each time the SPPTWCC function is called it either returns a number
of columns or none indicating that the solution of the master problem is
optimal. The further away from optimum the dual variables are the less
they reflect the optimal solution and thereby generally increase the running
time of the SPPTWCC usually generating routes of poor quality. We would
therefore like to tune the SPPTWCC part of the algorithm to get results
faster, but still maintain optimality.

7.8.1 Random selection.

The SPPTWCC code ranks the routes according to the most negative re-
duced costs using a dynamic programming formulation. Therefore the al-
gorithm terminates when the last label is checked. The upper limit on the
number of routes returned is controlled by a constant MAX COLS ITER.

168 Chapter 7. Sequential computational experiments

The SPPTWCC algorithm returns all the routes with negative accumu-
lated cost although at most MAX COLS ITER. But in order to return the
best routes all labels have to be checked.

Instead of returning the route with the lowest reduced cost we could gen-
erate a certain number of routes (lets call it MAX COLS GEN) and select
randomly from these a number of routes and return them. Now SPPTWCC
can be stopped as MAX COLS GEN is reached and the appropriate num-
ber of routes can be returned to the master problem. The price is that
we no longer return the best routes according to the dual variables, and
thereby we risk not being able to lower the objective value as much as
possible.

In many cases this is not a high price to pay. If only the route with the
lowest reduced cost was returned, this would surely be in the basis as the
optimal solution is returned from CPLEX, but as a number of routes are
returned synergy might result in the route with the lowest reduced cost
not being used in the basis at all. To test this we implemented it in our
SPPTWCC code and used our test-bed on the setting shown in table 7.20

Test name MAX COLS GEN MAX COLS ITER

sp200300 300 200
sp200inf ∞ 200
sp2030 30 20
sp2040 40 20

Table 7.20: Four test where made on random selection.

Note that problem sp200inf is different from running the ordinary code.
In both cases the SPPTWCC algorithm checks all labels. The difference
is that instead of selecting the 200 best we return 200 randomly selected
routes. The last column in each of the following tables is the number of
calls of the SPPTWCC subroutine where random selection of routes was
used (if fewer routes than the upper limit was generated random selection
was of course not used).

Comparing table 7.21 with table 7.22 the first observation is that the run-
ning times of the sp200inf configuration are consistently (in 21 out of 27

7.8 Speeding up the column generation. 169

sp200300

No. Time BB No. of Routes Random
SPPTWCC generated calls

1 577.40 173 503 9786 28
2 15512.60 2171 3869 19637 43
3 1555.75 493 1104 10701 27
4 6602.69 1345 2717 17617 36
5 302.49 97 331 8566 25
6 397.60 101 329 6866 19
7 206.52 33 175 6176 19
8 2582.86 965 2038 17868 30
9 339.08 337 743 8547 20

10 1263.08 521 1282 14302 27
11 744.30 335 922 12453 24
12 732.79 471 1102 11189 25
13 902.69 379 829 9030 21
14 1877.05 599 1304 11720 26
15 1645.50 451 1063 11626 29
16 3766.89 831 1622 12638 29
17 9172.49 1545 2943 17704 38
18 1262.23 395 901 11097 26
19 955.16 335 789 10577 27
20 338.93 111 331 8541 27
21 1092.16 335 763 10474 30
22 737.77 57 309 17109 64
23 1674.39 185 609 13397 36
24 265.51 99 300 7588 22
25 384.74 289 726 9157 21
26 2283.19 1647 3150 13670 15
27 288.76 79 331 8299 21

Table 7.21: Using random selection generating at most 300 routes, and
selecting 200 randomly.

170 Chapter 7. Sequential computational experiments

sp200inf

No. Time BB No. of Routes Random
SPPTWCC generated calls

1 417.76 147 442 7455 17
2 12568.64 2083 3735 15838 20
3 1518.31 505 1100 10025 21
4 5675.27 1603 3016 13554 17
5 290.16 97 316 6998 15
6 405.93 101 311 6247 16
7 199.20 31 144 5164 14
8 2401.09 945 2036 17639 27
9 340.77 365 782 7641 14

10 1139.85 533 1337 13272 21
11 686.46 335 930 10492 16
12 647.42 469 1149 10400 18
13 1003.55 383 832 8457 20
14 1691.33 599 1306 10804 18
15 1454.35 421 956 9263 18
16 3100.94 763 1527 11437 22
17 6689.06 1469 2825 14257 19
18 1184.08 395 920 9893 19
19 864.81 333 786 8924 18
20 338.12 113 355 7292 19
21 870.34 321 741 8501 16
22 1541.25 55 303 11319 34
23 1151.30 185 577 11443 26
24 270.44 101 322 6915 16
25 341.66 289 725 7889 14
26 2565.32 1839 3479 13745 11
27 286.34 79 346 7379 12

Table 7.22: Using random selection. A full run of the SPPTWCC sub-
routine is made. Among the routes with negative accumulated cost 200
selected randomly are returned.

7.8 Speeding up the column generation. 171

instances) better than those of the sp200300 configuration. The difference
is although not big. Beside instance 22, that is atypical of this test, we
never reach a factor 2 in improvement on either side.

It is also noteworthy that only a small fraction of calls to the SPPTWCC
subroutine use random selection. Returning at most 200 routes seems to
yield good performance. This result is confirmed by experiments done by
Kohl [Koh95]. But only a few of the calls to the SPPTWCC actually
produce 200 or more routes, and therefore it is only for a fraction of the
calls that random selection is being used.

Therefore in order to test the idea of random selection we need to have a
higher fraction of calls to the SPPTWCC subroutine. We therefore lowered
the number of routes being transfered from the SPPTWCC subroutine to
the master problem from 200 to 20.

The table 7.23 and 7.24 shows the results of the tests sp2030 respectively
sp2040.

Generally the difference in running times and the number of Branch-and-
Bound nodes needed to solve the problems is only marginally different.
The sp2040 configuration performed consistently better (24 out of the 27
instances) but in no instances is the difference significant.

The poor impact of the idea when applied to a high fraction of SPPTWCC
calls combined with the normally low number of SPPTWCC calls where
more than 200 routes with negative reduced cost are generated has lead us
to not do further research on this idea. It should be noted that the tests
show that when a number of routes are returned from the same call of the
route generator, the routes are typically of the same quality.

During some of the preliminary tests of random selection the idea for the
technique described in the next section came about. The basic idea is that
if all routes are basically of the same quality it does not make sense to find
the best routes if they are all of poor quality.

7.8.2 Forced early stop.

Along with the “standard tests”, we also ran a number of “breaking the
limit” tests where we tried to solve problems from the Solomon test-cases

172 Chapter 7. Sequential computational experiments

sp2030

No. Time BB No. of Routes Random
SPPTWCC generated calls

1 551.79 173 786 8476 321
2 13330.06 2157 4293 17834 551
3 1554.96 491 1407 10456 386
4 6118.72 1397 3135 15265 471
5 328.35 97 577 7241 299
6 435.70 103 559 6616 265
7 204.86 33 354 5224 232
8 1792.16 939 2307 13228 404
9 285.26 357 933 6110 199

10 893.44 527 1482 9207 291
11 854.17 335 1147 8864 301
12 703.06 467 1315 8156 258
13 801.45 381 1068 7768 269
14 1729.08 607 1580 10711 355
15 1399.64 415 1231 9637 349
16 3086.46 771 1854 11240 384
17 7709.11 1457 3208 15531 487
18 1186.88 415 1227 9584 340
19 869.80 335 1053 9177 343
20 354.06 113 591 7248 302
21 1163.17 361 1131 9533 365
22 1375.99 55 914 15249 700
23 4713.95 179 809 8394 332
24 301.06 99 574 7456 318
25 436.79 291 914 6870 233
26 1580.12 1697 3372 11141 263
27 424.36 79 564 6750 271

Table 7.23: After generating 30 routes 20 are randomly selected and re-
turned.

7.8 Speeding up the column generation. 173

sp2040

No. Time BB No. of Routes Random
SPPTWCC generated calls

1 524.46 173 746 8018 315
2 12011.30 1961 3989 16984 525
3 1444.13 487 1381 10010 355
4 6761.63 1615 3418 15218 441
5 310.83 97 556 7269 301
6 381.32 99 529 6191 253
7 201.33 33 358 5149 217
8 1616.13 937 2307 12871 396
9 270.47 361 943 6155 199

10 951.46 593 1625 9668 295
11 768.12 335 1139 8581 288
12 577.81 465 1268 7599 234
13 779.86 377 1028 7425 263
14 1610.80 589 1579 10446 340
15 1270.35 413 1219 9318 336
16 2812.46 757 1765 10583 365
17 6802.40 1479 3168 14378 430
18 1143.25 415 1214 9265 325
19 906.42 343 1092 9233 338
20 347.04 113 605 7258 301
21 996.69 335 1073 8943 337
22 1224.50 57 838 14049 646
23 4261.81 173 806 8561 337
24 302.23 99 563 7027 294
25 425.59 289 913 6685 231
26 1536.93 1665 3388 11276 259
27 431.53 79 548 6437 259

Table 7.24: After generating 40 routes 20 are randomly selected and re-
turned.

174 Chapter 7. Sequential computational experiments

not solved to optimality previously (these results are show later).

One of these tests highlighted an unpleasant “feature” of the code. The
output from our sequential algorithm for instance R203 with 25 customers
is shown in figure 7.10. As the figure shows 3 routes are needed to service
the 25 customers. The number in the round brackets indicates the column
number of the route in the set partitioning formulation, while the number
in the square brackets is the length of the route times 10. Hereafter follows
a couple of lines of statistics of the execution.

As can be seen, the majority of the running time is used in the root node.
Furthermore one of the calls to the SPPTWCC functions uses over 4400
seconds. This is a major drawback considering our efforts to develop an
efficient parallel code. It became essential to cut down the time used in the
root node. The SPPTWCC function is based on dynamic programming,
and in a effort to cut time the execution could be stopped before the un-
derlying search tree is fully investigated. Of course the execution can only
be stopped when at least one route has been identified. Otherwise the set
partitioning would remain unchanged and consequently the dual variables
would remain unchanged, which would result in an identical execution of
the SPPTWCC function.

The code for the SPPTWCC function was therefore changed. Two con-
stants LIMIT and MIN COLS PER ITER was introduced. The code has
always used a constant called MAX COLS ITER which is the maximum
number of routes that are returned, now MIN COLS ITER is the mini-
mum number of routes that should be generated before we prematurely
abort the generation of labels. Note that this is not necessarily the same
routes that would be returned if the SPPTWCC function was run opti-
mally and the MIN COLS ITER best routes was returned. The constant
LIMIT is the number of labels that have to be generated before we think
of prematurely stopping the SPPTWCC code. Based on the tracing from
the tests mentioned earlier the values LIMIT and MIN COLS ITER were
chosen manually.

In order to gain more knowledge on the properties of forced early stop 3
instances were selected for initial trials. R101 with 100 customers repre-
sented the easy problems as the customers in R101 have relatively small
time windows and the demands limit the routes to at most 10 customers.

7.8 Speeding up the column generation. 175

---------- Solution

Problem R203 with 25 customers is solved

The solution is the following routes:

(6648) [1533] d - 2 - 15 - 23 - 22 - 21 - 4 - 25 - 24 - 3 - 12 - d

(6946) [1041] d - 6 - 5 - 8 - 17 - 16 - 14 - 13 - d

(9688) [1365] d - 18 - 7 - 19 - 11 - 20 - 9 - 10 - 1 - d

---------- Statistics

This program ran on serv3 (hp9000s700).

Total execution time 13483.83 seconds

(Solving root 13249.63 seconds)

Time used in separation 0.29 seconds

Cuts generated 2

Accumulated time used in calls of SPPTWCC 13332.516 seconds

Time used in largest single SPPTWCC call 4447.04 seconds

Branching nodes examined 43 (Veh 1, Arc 20, TW 0)

(hereof 0 where not feasible)

No of calls to SPPTW 281, Routes generated 21250

Max no of columns selected per SPPTW 200

No of multiple customers deleted explicitly 0

IP value 3914

RP value 3816.250

LP value 3798.818

Figure 7.10: The result of solving R203 with 25 customers with our algo-
rithm.

176 Chapter 7. Sequential computational experiments

R103 with 50 customers represented the problems that are a bit more dif-
ficult to solve, while R202 represented the really tough problems (in R202
the time windows are relatively wide and the routes can contain up to
around 30 customers). For these problems the number of labels used in
each execution of the SPPTWCC code was recorded. Table 7.25 show the
results:

Problem Cust. SPPTWCC Routes No. of labels
calls made Min Max |Average|

R101 100 142 2098 1365 6005 2189
R103 50 178 2228 1350 20503 2573
R202 25 117 2009 422 275813 9631

Table 7.25: Characteristics for the “normal” trace of the 3 selected prob-
lems.

All three problems have the same feature with a number of relatively time-
consuming executions in the start. This is because our initial setting of the
dual variables is far away from the optimal dual values. Hence a number of
“heavy-duty” calls is necessary before the values are good enough to reduce
the size of the underlying search tree.

The results are depicted in the tables 7.26 to 7.28.

R101 – 100 customers
LIMIT – 4000 4000 2000 1000
MIN COLS ITER – 10 1 1 1

Running time (total) 19.94 16.22 16.37 16.11 72.27
Running time (root) 7.47 5.84 5.60 6.13 62.66
No. of nodes 15 15 15 15 15
SPPTWCC calls 88 89 89 117 2352
No. of routes 3970 3479 3479 3375 2555

Table 7.26: Testing prematurely stop of SPPTWCC on “easy” problems.

These preliminary results were surprisingly positive. Most noteworthy is
the phenomenal reduction in running time for R202 with 25 customers –

7.8 Speeding up the column generation. 177

R103 – 50 customers
LIMIT – 10000 5000 5000 2000 2000
MIN COLS ITER – 10 10 1 10 1

Running time (total) 41.27 34.38 26.81 27.30 33.75 61.62
Running time (root) 14.28 4.59 3.21 3.27 9.17 43.08
No. of nodes 39 45 43 43 43 41
SPPTWCC calls 158 168 157 157 292 719
No. of routes 5701 5743 5159 5159 4550 4507

Table 7.27: Testing prematurely stop of SPPTWCC on “medium” prob-
lems.

R202 – 25 customers
LIMIT – 50000 50000 10000 5000
MIN COLS ITER – 10 1 1 1

Running time (total) 3322.17 256.34 227.46 13.278 7.97
Running time (root) 3316.75 251.44 222.438 9.43 4.34
No. of nodes 5 5 5 5 5
SPPTWCC calls 59 63 63 59 58
No. of routes 6913 6921 6921 6174 5983

Table 7.28: Testing prematurely stop of SPPTWCC on “tough” problems.

from over 3300 seconds to a mere 8 seconds (more than a factor 400!).

The running time for solving the root node is the key to understanding the
greatly improved performance. For R202 with 25 customers the difference
between the overall running time and the time spent solving the root node
is roughly around 5 seconds, which means that the time is gained entirely
in solving the root node. Clearly the less reliable the dual variables are the
more one can gain from stopping early. The drawback of stopping early is
lack in route quality, but as the quality of the dual variables is low there is
practically nothing to loose. And even considering the “easy” problem an
improvement is made in the running time indicating that stopping early is
an advantage for all problems.

Now we can return to our initial example: R203 with 25 customers. As a

178 Chapter 7. Sequential computational experiments

test we ran it with LIMIT = 5000 and MIN COLS ITER = 1. The result
can be seen in figure 7.11.

---------- Solution

Problem R203 with 25 customers is solved

The solution is the following routes:

(5120) [1041] d - 6 - 5 - 8 - 17 - 16 - 14 - 13 - d

(5778) [1533] d - 2 - 15 - 23 - 22 - 21 - 4 - 25 - 24 - 3 - 12 - d

(9416) [1365] d - 18 - 7 - 19 - 11 - 20 - 9 - 10 - 1 - d

---------- Statistics

This program ran on serv3 (hp9000s700).

Total execution time 147.55 seconds

(Solving root 8.56 seconds)

Time used in separation 0.26 seconds

Cuts generated 2

Accumulated time used in calls of SPPTWCC 14.65 seconds

Time used in largest single SPPTWCC call 0.25 seconds

Branching nodes examined 41 (Veh 1, Arc 20, TW 0)

(hereof 0 where not feasible)

No of calls to SPPTW 273, Routes generated 19396

Max no of columns selected per SPPTW 200

Prematurely exiting of SPPTWCC enables.

LIMIT is set to 5000.

MIN_COLS_ITER is set to 1.

No of multiple customers deleted explicitly 0

IP value 3914

RP value 3816.250

LP value 3798.818

Figure 7.11: The result of solving R203 with 25 customers with our algo-
rithm improved the early stopping criteria.

Recall that before the running time was over 13000 seconds, now we are

7.8 Speeding up the column generation. 179

down to around 150 seconds - a reduction by a factor 91. Note how the
time spent in the most time consuming SPPTWCC call is reduced from
4447.04 seconds to 0.25 seconds.

To test our algorithm we tried to solve instances from the R2, C2 and RC2
test sets. Their large time windows make even instances with few customers
difficult to solve. The large time windows result in many feasible routes
thereby slowing down the SPPTWCC subroutine. For the few instances
where we know the running time of the original code it is reported in the
first column of table 7.29, where the results are reported. Every instance of
R2, C2 and RC2 using the 25 and 50 first customers were run for 30 minutes
before execution was stopped. An “R” in the second column indicates that
execution was stopped while working on the root node of the Branch-and-
Bound tree, whereas a boldface integer presents the Branch-and-Bound
node that the algorithm was working on as the algorithm was stopped.

The solutions of all the instances that were solved are presented in ap-
pendix B. Especially for large time windows forced early stop results in a
substantial decrease of running time. We were able to solve 16 of the de-
manding R2, C2 and RC2 problems. Comparing with the running times for
the algorithm without forced early stop the improvement in performance
is huge.

As a final test we tested forced early stop on the 27 instances of our test-
bed. The results are presented in table 7.30.

As can be seen from table 7.30 forced early exit is not the answer to all our
problems. The running times does not decrease as much as in the cases of
R2, C2 and RC2. The are in fact instances (9 out of 27) where the running
time increases when we use forced early stop. For some of these (instance
16 and 17) the larger running times can be explained by an increase in
the number of Branch-and-Bound nodes that have to be checked. But this
can not explain the bad performance in instance 9 where we get a worse
running time even though we have to explore fewer Branch-and-Bound
nodes. Worse performance is an indication that the construction of good
quality routes is stopped before all routes have been explored. Then a new
call of the SPPTWCC subroutine has to generate an almost identical set
of labels to reach the position where the previous call of the SPPTWCC
subroutine was aborted. This suggests that “quality control” should be

180 Chapter 7. Sequential computational experiments

Instance 25 customers 50 customers
Time (before) Time (now) Time (before) Time (now)

R201 14.82 1.92 10.73
R202 3322.17 7.97 272.92
R203 13249.63 147.55 > 10000 R
R204 3 R
R205 325.99 16.69 93
R206 12 R
R207 3 R
R208 > 10000 R R
R209 3 3
R210 18 R
R211 3 R
C201 48.57 3.12 > 10000 208.74
C202 107.93 12.9 R
C203 1411.91 33.17 R
C204 R > 10000 R
C205 28.55 7.66 R
C206 21.60 R
C207 > 10000 149.53 R
C208 80.28 R
RC201 8.52 1.29 70.83 47.30
RC202 35 R
RC203 14 R
RC204 R R
RC205 116.45 72.16 R
RC206 4 R
RC207 3 R
RC208 R R

Table 7.29: The results of our half-hour test of 25 and 50 customer prob-
lems from the test sets R2, C2 and RC2 (using LIMIT = 5000 and
MIN COLS ITER = 1).

7.8 Speeding up the column generation. 181

No Forced early stop Forced early stop
No. Time BB Time BB

1 809.63 263 553.89 215
2 10117.10 2129 10055.56 2065
3 3453.24 1057 3629.94 1059
4 4788.94 1217 4008.44 1383
5 239.27 95 205.57 95
6 360.18 101 342.68 101
7 596.75 107 496.37 105
8 2130.17 933 1811.92 931
9 481.12 441 499.46 425

10 760.55 465 794.83 431
11 582.26 335 564.41 335
12 519.02 445 743.51 441
13 891.43 381 764.93 379
14 1651.66 601 1402.66 591
15 1947.58 601 1783.73 597
16 3549.38 1091 4436.76 1273
17 6476.61 1409 6783.94 1517
18 1197.65 418 1059.65 397
19 1260.22 479 1190.19 493
20 663.42 235 687.86 233
21 904.23 335 827.77 339
22 1547.66 53 1479.62 51
23 1119.12 327 921.89 267
24 233.53 89 176.52 87
25 318.73 335 322.54 333
26 1719.57 1681 1812.13 1651
27 148.57 79 122.61 75

Table 7.30: Testing forced early stop on our standard test-bed (using
LIMIT = 5000 and MIN COLS ITER = 1).

182 Chapter 7. Sequential computational experiments

included in the decision whether to abort the current call of SPPTWCC or
continue.

On all the time consuming instances forced early stop does although re-
sult in a decrease in running time. The accumulated picture of table 7.29
and 7.30 shows that forced early stop is an effective technique to reduce
running time. The efficiency is significantly larger on instances with large
time windows, but using forced early stop in instances with small time
windows does only in a few instances give worse running times. This sug-
gests that the involved constants LIMIT and MIN COLS ITER should be
determined dynamically depending on geography, time windows etc.

Chapter 8

Parallel computational
experiments

The experimental tests of the parallel VRPTW algorithm were carried out
on the IBM SP2 at UNI•C. Even though parallel jobs using up to 32 pro-
cessors are possible (with a special permission even up to 64 processors are
allowed) the number of CPLEX licenses sets an upper bound of 10 proces-
sors on the experiments. On the IBM SP2 the installed version of CPLEX
is 6.0.1. This may result in differences from the results obtained for the
sequential experiments.

Another difference to the sequential experiments is that only a certain
amount of CPU hours have been available. In order to run experiments on
the IBM SP2 one has to apply for CPU hours and then it is a question of
having to fit your experiments according to the amount granted.

When running many tests it is very difficult to estimate how many CPU
hours are needed. We therefore used our time with care. Each configuration
of the parallel program has hence only been run once. A larger number is
generally preferable, but the minimum number was chosen to ensure that
all tests could be made with the amount of CPU time at our disposal.

183

184 Chapter 8. Parallel computational experiments

All programs are written in C and MPI is used for the communication
framework of the program.

8.1 The basic parallel program

First the basic parallel program as described in chapter 6 was tested to
measure the performance. We have run 4 relatively easy instances in 4
setups: sequentially, and in parallel using 4, 6 and 8 processors. The four
instances are: R104 with 50 customers, S1053 with 100 customers, S105-3-4
with 100 customers and S1055-2 with 100 customers.

The running times and the number of Branch-and-Bound nodes that were
used to solve the instances are shown in table 8.1.

No. of processors
Instance 1 4 6 8

R104 1170.80 780.43 701.07 705.24
189 278 245 282

S1053 356.36 146.55 143.49 151.07
113 114 131 189

S1055-2 1167.09 341.17 267.64 224.87
403 448 483 479

S105-3-4 1087.40 320.62 251.61 224.14
331 335 390 419

Table 8.1: Performance of the basic version of the parallel program. The
first line is the running time in seconds, and the second line is the number
of Branch-and-Boundnodes used to solve the instance.

Note that with 2 exceptions the number of Branch-and-Bound nodes are
increasing as more processors are used to solve the instance. This is a com-
mon feature of parallel best-first Branch-and-Bound. As more processors
are assigned to the task they do not always have the same global upper
bound, as a new global upper bound is found by one processor it has to be
distributed to the others before they can use it to fathom the Branch-and-
Bound tree.

8.1 The basic parallel program 185

In table 8.2 we present the speedup calculated on the basis of table 8.1.
Speedup is calculated as sn = t1

tn
where t1 is the running time of the

sequential algorithm and tn is the running time of the parallel algorithm
using n processors. Ideally we would like the speedup to be n (the parallel
program using n processors is n times faster than the sequential program),
but we would be satisfied with less. A linear growth in speedup with a
coefficient less than 1 would also be acceptable.

No. of processors
Instance 4 6 8

R104 1.50 1.67 1.66
S1053 2.43 2.48 2.36
S1055-2 3.42 4.36 5.19
S105-3-4 3.39 4.32 4.85

Table 8.2: The speedup achieved by the different test instances.

To get an overview of the speedup we have plotted the numbers in figure 8.1.

Instance R104 seems to behave very badly. Taking a closer look at the
statistics of the R104-runs reveals the reason. In our parallel program the
master processor has to generate n “live” Branch-and-Bound nodes before
the parallel phase can be initiated by sending 1 Branch-and-Bound node
to each processor. In R104 generating 4 “live” subspaces requires 550.22
seconds of computing. So almost half way through the time used by the
sequential program, the parallel program is still running like a sequential
program. The problem here is especially solving the root node, where the
first calls to the SPPTWCC subroutine are very costly.

After the initial phase is finished the parallel program uses approximately
205 seconds on each processor (a total of 821.83 seconds). For 6 processors
a total of 797.32 seconds are used in the parallel phase and for 8 processors
the amount is 1071.41 seconds. So apart from the test using 8 processors
the amount used in total in the parallel phase is almost identical, which
disregarding the bad initial phase suggests good speedup. In table 8.3 we
have calculated the totals of all the parallel phases.

The accumulated totals of the parallel phases underline the good results

186 Chapter 8. Parallel computational experiments

1.5

2

2.5

3

3.5

4

4.5

5

5.5

4 6 8

No. of processors

R104

✸

✸ ✸

✸

S1053

+ +
+

+
S105-3-4

✷

✷

✷

✷

S1055-2

×

×

×

×

Figure 8.1: Plot of the speedup.

8.1 The basic parallel program 187

No. of processors
Instance 4 6 8

R104 821.83 797.32 1071.41
S1053 458.27 640.82 852.80
S1055-2 1264.72 1432.09 1537.02
S105-3-4 1151.59 1298.59 1471.47

Table 8.3: Accumulated running time in the parallel phase.

obtained for the S1055-2 and S105-3-4 instances. It also shows that for
R104 the parallel algorithm also behaves quite well as soon as the parallel
phase is started.

Instance S1053 is clearly too small for 6 and 8 processors. Nice results are
although obtained for 4 processors.

The number of Branch-and-Bound nodes solved on each processor clearly
demonstrates the good performance of our loadbalancing scheme as shown
in table 8.4.

No. of processors
Instance 4 6

R104 82 61 68 67 56 39 42 35 37 36
S1053 41 26 21 26 34 23 18 19 20 19
S1055-2 126 113 101 108 96 80 82 78 76 71
S105-3-4 90 80 78 87 73 58 62 69 63 65

8

R104 49 31 40 31 34 29 38 30
S1053 36 26 22 20 18 25 25 18
S1055-2 75 64 54 62 62 64 46 52
S105-3-4 63 50 55 57 54 49 47 44

Table 8.4: The number of Branch-and-Bound nodes solved by each of the
processors.

Note that the first number in each field in table 8.4 is the number of Branch-
and-Bound nodes processed by the master processor. Included in this num-

188 Chapter 8. Parallel computational experiments

ber is also the number of Branch-and-Bound nodes processed in the “se-
quential” part of the parallel algorithm, that is, before the parallel phase
is started. Generally the numbers in table 8.4 are highly satisfactory. The
show that a very balanced load can be maintained by only using estimates
on the load of the neighbours and only using local information, that is,
information from the two neighbours in the ring topology. For the paral-
lel algorithm for the VRPTW it looks as if a more global load balancing
strategy is not needed.

8.2 Strategy for selection of subspaces

In our initial implementation unsolved subspaces are transferred from one
processor to another when n−n′ > n

2 , where n is the heap size of the sending
processor and n′ is the estimate of the heap size of the receiving processor.
Then the best max{n−n′

3 , 1} subspaces are transferred. Transferring the
best subspaces is likely to result in a significant loss of quality when solving
the next subspace.

Two approaches could resolve the undesired properties. One way would
be to send subspaces of different quality with respect to bounding value.
We still send max{n−n′

3
, 1} subspaces from the sending processor to the

receiving processor, but instead of only taking the best subspaces every
second subspace from the heap is chosen. The other subspace remain in
the heap of the sending processor.

A second approach would be to only transfer one subspace – the top Branch-
and-Bound node from the heap. This still leaves subspaces of high quality
for the sending processor. Furthermore this approach is faster than the
other approaches as only one subspace has to be packed for transmission
and the receiving processor only has to unpack one subspace.

Both new approaches are implemented in our parallel algorithm, and tested
on the instances previously used. Table 8.5 shows the performance of the
two new approaches (Half is the approach where we take 2 ·max{n−n′

3 , 1}
off the heap and transmit every second of the subspaces to the neighbour-
ing processor (the remaining are put back on the heap) and Best is the
approach where only the top element on the heap is transmitted).

8.2 Strategy for selection of subspaces 189

Selection No. of processors
strategy 1 4 6 8

R104

Ref. 1170.80 780.43 701.07 705.24
189 278 245 282

Best — 755.77 687.20 691.76
243 203 287

Half — 721.46 690.80 675.12
202 245 254

S1053

Ref. 356.36 146.55 143.49 151.07
113 114 131 189

Best — 146.77 167.55 147.36
114 161 169

Half — 226.35 145.13 107.54
122 160 152

S1055-2

Ref. 1167.09 341.17 267.64 224.87
403 448 483 479

Best — 324.08 266.95 242.21
413 460 494

Half — 291.34 221.09 178.14
406 436 440

S105-3-4

Ref. 1087.40 320.62 251.61 224.14
331 335 390 419

Best — 338.42 269.79 262.38
364 387 460

Half — 340.91 260.07 235.61
368 391 424

Table 8.5: Comparison of the performance of the selection strategy com-
pared with the basic version of the parallel algorithm (Ref).

190 Chapter 8. Parallel computational experiments

The running times and the number of subspaces that were necessary are
quite similar between the three strategies. All three strategies perform alike
and they all have the same problem with the smallest instance (S1053).
Half does however exhibits better scalability performance. Half seems
to be able to cope better with an increasing number of processors, so that
all processors for the most of the time are doing good work. Therefore this
exchange strategy is used from now on.

8.3 Exchange of “good” routes

In the basic model we distribute unsolved subspaces among the processors
at the start of the parallel phase. Each processor still has to generate all
the routes needed by itself. It seems obvious that the processors could help
each other by exchanging “good” routes.

When the slave processors start working they start with the depot - i - depot
routes as the only routes in the set partitioning problem. Thereby, every
slave processor is facing the same problems as the master processor initially
does, namely dual variables of poor quality. Solving the first subspace on
each processor may therefore take almost as much time as it took to solve
the root node, which is always the most time consuming Branch-and-Bound
node to solve. To get an effective parallel algorithm we have to ensure
that the process of solving the first subspace on each slave processor is
made more effective using information already generated. One way would
be to use the routes already generated in the initial phase of the parallel
algorithm, that is, utilize the routes generated by the master processor.

This can be accomplished in a number of ways:

1. Send routes that have been part of the basis of the optimal relaxed
solution.

2. Send routes that have been part of the basis of a solution to a sub-
space.

3. Send routes that are or have been part of a global upper bound.

8.3 Exchange of “good” routes 191

Here (2) is really an extension of (1). The idea of sending good routes to
all other processors is to exploit the “good” routes already found by the
master processor. This will give the slave processors a better start instead
of starting with only the generic routes: depot - i - depot.

Generally (2) will result in a significant number of good quality routes. As
the problems solved by the slave processors all have constraints imposed by
the branching operations there should routes enough to transfer to guaran-
tee that a fair fraction of them are feasible with respect to these constraints.
Therefore (1) and (3) are excluded as they only result in a limited num-
ber of routes (at most equal to the number of customers in the problem).
Indeed (3) might even result in no routes passed along if no global upper
bound is found in the initial phase (and that is very likely to happen for
large problems).

We have chosen to implement (2). In order to keep track of which routes
qualify for transmission we introduce a “basis” bit for each route. Initially
the basis bit is 0, but as soon as a route has been part of the basis of a
solution to a subspace it is set to 1.

When selecting routes for transmission we start from the beginning of the
array of routes. As subspaces are processed according to the bounding-value
of their parent we generally select routes from the low-valued subspaces first
by running though the array of basis bits from route 1 and upwards.

When all routes with a 1 in the basis bit is transfered to the buffer or as
soon as the buffer is full (the buffer is 10000 bytes which leaves room for
plenty of routes) the routes are broadcasted to the slave processors. Note
that we broadcast the routes as a sequence of customer visits, not as the
coefficients from the set partitioning matrix. Therefore each slave processor
will have to generate the coefficients for the set partitioning problem and
generate the coefficients originating from the cuts.

In table 8.6 we have compared the running time and the number of Branch-
and-Bound nodes needed with the parallel algorithm using the Half se-
lection strategy and broadcasting “good” routes initially Initial with the
parallel algorithm using the Half selection strategy only.

Unfortunately the results are not very clear. As the routes transfered
from the master processors to the slave processors may result in a different

192 Chapter 8. Parallel computational experiments

No. of processors
4 6 8

R104

Half 721.46 690.80 675.12
189 202 245 254

Initial 688.10 644.30 633.97
189 196 199 192

S1053

Half 226.35 145.13 107.54
113 122 160 152

Initial 144.84 132.63 124.96
113 114 137 162

S1055-2

Half 291.34 221.09 178.14
403 406 436 440

Initial 357.23 226.06 202.37
403 462 407 459

S105-3-4

Half 340.91 260.07 235.61
331 368 391 424

Initial 334.49 227.86 191.71
331 359 367 427

Table 8.6: Comparison of the performance of the selection strategy com-
pared with the basic version of the parallel algorithm (Ref). The number
of Branch-and-Bound nodes used by the sequential algorithm is displayed
emphasized in the first column.

8.3 Exchange of “good” routes 193

Branch-and-Bound tree than in Half the difference in the total number of
Branch-and-Bound checked can be quite large. It is not possible without
further tests to draw any conclusions.

The idea of exchanging routes can be taken one step further. Together
with a batch of subspaces we can send a set of “good” routes. When routes
where broadcasted after the initial phase “good” routes are routes that
have been part of the basis of an optimal solution to a subspace.

So after the subspaces have been moved to the transmission buffer we fill
the rest of the buffer with good routes. When we insert the new routes
in the set partitioning after the initial broadcast of routes they can be
inserted straight away without any problems. Now the receiving processor
may already have generated some of the routes itself. Either we allow
for a route to be in the set partitioning problem more than once, or we
check routes received from other processors before inserting them. Checking
before insertion of a route results in a significant amount of extra work as
thousands of routes has to be compared repeatedly. If we do not check
and the sending processor keep track of which routes have been sent to
which neighbour and additionally only transfer routes generated by the
given processor itself, at most 3 copies of the same route are in the set
partitioning problem (the one generated by the processor itself and one
copy from each neighbour).

If we use the column reduction idea proposed and implemented in section
7.7 the worse case of 3 columns will only exist for a limited amount of
Branch-and-Bound iterations, namely between two column reduction op-
erations. Due to the not very clear results of the scheme for an initial
distribution of routes we have decided not to implement this idea.

194 Chapter 8. Parallel computational experiments

Chapter 9

Conclusions

This chapter summarizes the contributions of the thesis and the conclu-
sions. A number of interesting ideas for further research are also presented.

9.1 The Road Ahead

A lot of interesting topics regarding the sequential VRPTW problem and
related areas are still open for research.

9.1.1 Forced early of stop the the 2-path separation
algorithm

In a small study of our new scheme for constructing S sets we printed
out the number of each cut. That is, for each candidate set S that was
checked for feasibility with respect to capacity and “feasibility TSPTW”
was assigned a consecutive number in the order they are generated.

By printing out the numbers of the candidate sets that actually were con-
firmed as being cuts we got a trace of the execution of the 2-path separation

195

196 Chapter 9. Conclusions

algorithm. For example for one instance the 4 cuts were generated by can-
didate set number 74, 106, 130 and 286, but additionally 9689 candidate
sets needed to be checked before the separation algorithm was finished. In
another example the candidate sets 65, 71, 1571, 1580, 2472, 2486 and 5357
were identified as cuts but after generating the last cut, a further 3937 can-
didate sets had to be checked before the separation algorithm terminated.

The picture illustrated by the two examples above was repeated for every
trace of the separation algorithm we made. After the last cut was found a
large number of sets still needed to be checked by the separation algorithm.

As we do not know when the last cut is generated a priori the ideas of when
to stop will always be based on estimates derived by information gathered
during the early part of the execution of the algorithm.

It would be interesting to see if information obtained during the generation
of cuts could be used to stop the separation algorithm earlier. One idea
would be to maintain an upper limit of how many candidate sets now being
identified as cuts are allowed between two cuts. This value could then be
adjusted during the run of the separation algorithm.

9.1.2 Describing and implementing new cuts

Work on cuts for the VRPTW has been scarse. In [Koh95] the first cuts
specifically for the VRPTW are introduced and implemented. In [Kon97]
two new sets of cuts are added to the list, but still work on cuts for the
VRPTW are rare. The cuts by Kontoravdis presented in [Kon97] can not
be used in a set partitioning formulation. Efforts should be made to try to
transfer the cuts of Kontoravdis to the set partitioning formulation.

Using established techniques and a thorough study of past results in re-
lated research areas should make it possible to describe and implement
new classes of cuts.

A class of “infeasible path elimination” constraints are presented by Ascheu-
er et al. in a preprint [AFG97] for the ATSP with time windows. No exper-
imental results are reported in the paper but it is stated that the new cuts
outperforms alternative formulations on some classes of problem instances.
Implementing these cuts for the VRPTW would be interesting.

9.1 The Road Ahead 197

9.1.3 Redesign of the 2-path cuts

Solving the R2, C2 and RC2 problems our algorithm did often hit the upper
limit of the number of customers allowed to be in a candidate set. The limit
(presently set to 15) is introduced in order to keep down the running time
of the TSPTW algorithm. In order to be able to take advantage of the 2-
path cuts even for the more difficult instances (larger time windows and/or
larger vehicle capacity) a redesign of the separation algorithm is worth
considering.

9.1.4 Heuristics based on the column generation tech-
nique

In our implementation of the algorithm for the VRPTW an upper limit
on the number of columns in the set partitioning problem is imposed. As
Kohl in [Koh95] we allow at most 50000 columns in the set partitioning
problem. Presently the algorithm stops as the upper limit is reached. It
would be interesting to use the information available (the 50000 columns,
obtained global upper bound etc.) in designing a heuristic.

For the set covering problem a number of papers have been published among
those [Kwa93, Ca93, Wed95]. The set covering problem is extensively used
in a number of airline related problems (for example the algorithm devel-
oped by Wedelin in [Wed95] is used in the CARMEN system for airline
crew scheduling).

Using the columns in an effective heuristic (previous similar or related
approaches have been made in [CJR81, Kri95, Tai96]).

9.1.5 Advanced branching methods

In the research done so far on exact methods the branching-criteria has not
been the focus of attention. Present ideas are simple and reflect the fact
that the main efforts of researchers so far have been on other aspects of
solving the VRPTW. More intelligent ways of branching include exploiting
information on geography, time windows etc. These areas of research are

198 Chapter 9. Conclusions

open for new ideas. Initial promising attempts were made in collaboration
with professor David M. Ryan from the University of Auckland.

Our present arc branching strategy is based on the accumulated arc flow.
One way to strengthen the arc selection might be to compute an estimate of
the additional costs of using a given branch by using more information than
only the accumulated arc flow. We now consider the arc (i, j) and assume
that the flow on the arc is fractional i.e. 0 < fij < 1. In the method we
propose here we will try to estimate the additional cost by repairing mass-
imbalance locally. Now if we where to raise the flow of (i, j) from its present
value of fij to 1 the customers i and j would have a mass-imbalance. Too
much flow (1− fij) is flowing out of i and to much flow (1− fij) is flowing
into j.

The excess flow at customer i can be removed by deleting customer i from
the remaining routes currently servicing customer i, that is, let these routes
go directly from the predecessor of i to the successor of i. In the same way
we manage the excess of in-flow to customer j. The flow added to the (i, j)
to get to flow 1 is supplied by the route depot - i - j - depot. The changes
in flow is depicted in figure 9.1. So our estimate of the cost of choosing to
raise the flow of arc (i, j) to 1 is:

(1 − fij) · (c0i + cij + cj0) +
∑

k(ck′k − ck′i − cik) · fik

+
∑

l(cl′l − cl′j − cjl) · fjl

Now if we want to estimate the cost of lowering the flow on (i, j) to 0
we estimate the cost of “redirecting” the vehicle driving the present route.
Instead of going from i to j we send it from customer i to customers j′,
the successor of customer j on the route. Thereby we save fij · (cij + cjj′)
but adds fijcij′ to the cost. Now customer j is serviced by (1−fij) vehicle
and in order to restore the mass balance we use the route depot - j - depot
to supply the lack in flow. This results in the following estimate:

fij · (2 · c0j − cij − cjj′ + cij′).

Instead of dropping customer j from the route a symmetric situation occurs
if we leave out customer i from the route. As an estimate we choose the
smallest one:

min{fij · (2 · c0j − cij − cjj′ + cij′), fij · (2 · c0i − cij − cii′ + ci′j)}

9.1 The Road Ahead 199

l’

i’

j’

i
j

k
l

k’

depot

Figure 9.1: The estimate on setting the flow between i and j is estab-
lished by redirecting the other routes with flow pass i and j and supply the
additional flow (1 − fij) from the depot.

200 Chapter 9. Conclusions

The situation for calculating the estimate when customer j is removed from
the route is depicted in figure 9.2.

depot

i’

i j

j’

Figure 9.2: The estimate of the cost when setting the flow between i and j
is calculated by removing the cost of the flow on the arcs (i, j) and (j, j′)
and adding the flow-cost on the dashed arcs.

This new rule for selecting the arc to branch on requires more computing
than the present arc branching method. Instead the more thorough esti-
mate hopefully results in better quality branching. Our preliminary tests
was ambiguous. On some instances the desired effect was produced, while
we did not receive better running times on a number of other instances.
Further and more thorough investigations are necessary and could result
in a promising a branching rule. This method and similar methods where
the aim is to produce better estimates deserves more attention in order to
construct better branching rules.

A more thorough investigation of the time window branching rule might
reveal under which conditions it is superior to the other branching rules.
Preliminary efforts in this directions were made. In an effort to utilize
both the concept of branching on time windows and on arcs, we designed a
branching scheme where arc branching was used on flows around 0.5 for the
chosen arc. Therefore as the flow on the chosen arc deviates from 0.5 it must
be regarded as a less attractive candidate. In the interval [0.5− ǫTW , 0.5]
arc-branching is regarded as attractive and branching on time windows is
not considered, while if the flow of the chosen arc-branch is in the interval

9.1 The Road Ahead 201

[0, 0.5−ǫTW [branching on time windows is also considered (see figure 9.3).

0 0.50.5− ǫTW

Using branching
on time windows

✻

Using branching
on arcs only

✻

Figure 9.3: Using branching on time windows only when the candidate for
branching on arcs does not seem attractive enough.

We did some preliminary tests of this scheme on our test-bed problems
with different values of ǫTW but did not get any conclusive results. Further
research in this direction is necessary.

Another interesting idea would be to branch in order to exploit properties
of the resulting matrices. In the literature 3 types of matrices are know
to have integral property, that is, the matrix represents a feasible region in
which all extreme points are integer. The 3 types are: total unimodular
matrices, balanced matrices and perfect matrices (a thorough description is
given in [RF88]). This would require a branching strategy that was guided
by how “close” the matrix was to one of the 3 types of matrices with integral
property.

9.1.6 Stabilized column generation

Adaptation and implementation of stabilized column generation should be
considered for the VRPTW. In a paper [dVDH99] by du Merle et al. a
method to stabilize and accelerate convergence of column generation is
described.

Two ways of overcoming (or at least reducing) degeneracy are to perturb
the problem slightly by adding bounded surplus and slack variables. So

202 Chapter 9. Conclusions

instead of

(P) min
x≥0

{cT x : Ax = b}

we try to solve

(Pǫ) min
(x,y−,y+)≥0

{cT x : Ax − y− + y+ = b, y− ≥ ǫ−, y+ ≥ ǫ+}.

Another method is adding penalties to the objective function. Here, we get

(Pδ) min
x≥0

cT x + δ‖Ax− b‖1 =

min
(x,y−,y+)≥0

{cTx + δy− + δy+ : Ax − y− + y+ = b}.

By combining the methods we get:

(Pǫ,δ) min
(x,y−,y+)≥0

{cT x + δy− + δy+ : Ax − y− + y+ = b,

y− ≥ ǫ−, y+ ≥ ǫ+}.

Here y− and y+ are vectors of surplus and slack variables with upper bounds
ǫ− and ǫ+. In the objective function y− and y+ are penalized by δ− and
δ+, respectively.

Now consider the dual of (P(ǫ,δ)) (denoted (D(ǫ,δ))).

max bT − w−ǫ− −w+ǫ+
(D(ǫ,δ)) s.t. AT φ̃ ≤ c

−φ̃ − w− ≤ −δ−
φ̃ − w+ ≤ δ+

w−, w+ ≥ 0

The penalisation of y− and y+ in (P(ǫ,δ)) amounts to penalize the dual

variables φ̃ when they lie outside the interval [δ−, δ+].

Let x∗, φ∗ be optimal solutions of (P) and the dual of (P), respectively.
Furthermore let (x̃∗, y∗+, y∗−) and (φ̃∗, w∗

+, w∗
−) be the optimal solutions of

(P(ǫ,δ)) and (D(ǫ,δ)), respectively. Then P ≡ P(ǫ,δ) if one of two conditions
is met:

9.1 The Road Ahead 203

1. ǫ− = ǫ+ = 0.

2. δ− < φ̃∗ < δ+.

These provide the stopping criteria for stabilized column generation. Du
Merle et al. presents in [dVDH99] strategies for updating δ+, δ−, ǫ− and ǫ+.
So the generic column generation method is extended with a new stopping
criteria and an updating scheme for δ+, δ−, ǫ− and ǫ+.

Sometimes, the column generation phase of the VRPTW algorithm exhibits
slow convergence (especially when solving the root node). Using stabilized
column generation, du Merle et al. achieve a speedup of 7.41 and a re-
duction of column generation iterations by a factor 3.33 solving an Airline
Crew Pairing problem. It would be interesting to adapt the method to the
VRPTW.

9.1.7 Limited subsequence

A technique frequently used in a number of heuristics is to only investigate
the candidates, that seen from a local perspective look most promising.
This way the number of possible combinations that have to be checked can
be drastically reduced.

The huge number of possible routes that sometimes have to be generated
in the SPPTWCC subroutine can maybe be reduced by using limited sub-
sequence. Instead of trying to extend a given label to all other labels
where time windows and capacity constraints are observed, we try to ex-
tend only to the kl closest customers. By choosing kl appropriately we
can cut the number of extensions significantly but at the same time still
be able to deliver routes that are as good as the ones generated by the
original SPPTWCC subroutine. This is similar to how it is used by profes-
sor David M. Ryan in solving rostering and scheduling problems for airline
crews (see [RF88, Rya92]), and the idea for using it on the VRPTW grew
out of numerous discussions with professor David M. Ryan. Note that in
order to ensure optimality we still have to run the original SPPTWCC
subroutine at least once to confirm optimality.

204 Chapter 9. Conclusions

Instance No lim. kl = 3 kl = 5 kl = 10
Customers subseq.

R101 100 17.88 16.10 15.43 13.71
R202 50 272.92 46.56 63.37 105.39
R203 25 147.55 80.92 116.65 382.85

Table 9.1: Running times of the sequential algorithm for VRPTW not using
limited subsequence and 3 different levels of limited subsequence.

We did some preliminary investigations on 3 problems. The results of
extending only to the 3, 5, and 10 closest customers are shown in table 9.1.

As can be seen from table 9.1 limited subsequence can lead to significant
savings with respect to running time. On the other hand it seems to be more
sensitive to how we choose the involved constant (kl) than forced early stop
from section 7.8.2. The idea is definitely promising as we generally obtain
faster running times, but on the other hand as the table shows sometimes
the running times gets worse (this will be the case if the variant of the
SPPTWCC subroutine uses almost as much time as the “exact” version,
thereby forcing us to make two time consuming subroutine calls instead of
only one).

In a more dynamic setting where the geography, vehicle capacity and time
windows are used in setting kl limited subsequence can be an effective way
to reduce computing time.

9.1.8 Speeding up the parallel algorithm

One of the present problems with the parallel algorithm is the dependency
on the time used to solve the root node. The root node contains the first
calls of the SPPTWCC routine that are often very time consuming relative
to the remaining calls of the subroutine. A Branch-and-Bound tree is often
called slim if only a few Branch-and-Bound nodes are alive on each level of
the tree depth. If the Branch-and-Bound tree is very slim, a considerable
amount of time may be used before the parallel phase can be started.
An idea would be to apply a heuristic instead of SPPTWCC in the first

9.2 Main conclusions 205

sequential part of the parallel algorithm. Then instead of only branching
once we branch enough times to give every processor at least one Branch-
and-Bound node to work on. As the parallel phase is started again we use
the SPPTWCC subroutine.

9.2 Main conclusions

The investigation of several characteristics of the execution of a column-
generation-based VRPTW algorithm have led to new insight in the practi-
cal performance of these algorithms. We have successfully implemented a
series of new techniques to overcome some of the challenges of the VRPTW.
The running time has been reduced with column deletion and forced early
stop from the SPPTWCC subroutine. New ways of generating 2-path cuts
have made that part of the code more effective. The new code made most
impact on the most time-consuming problems.

The techniques have made it possible to solve problems to optimality that
have not been solved before. Some of the R2, C2 and RC2 problems of
Solomon have been solved, and a number of previously unsolved problems
from the R1, C1 and RC1 sets have been solved.

A number of different techniques have been applied in order to speed up
the VRPTW algorithm based on column-generation. Our first experiments
tested the idea of branching on resource constraints developed by Gélinas
et al. ([GDDS95]). At the same time we tested whether lazy evaluation
and best first selection is the best setup of the Branch-and-Bound scheme
for the VRPTW. To my knowledge this has not previously been tested,
and therefore it has previously seemed to be a foregone conclusion to use
lazy evaluation and best first selection. It is worth noting that there exists
problems and techniques where the lazy evaluation/best first selection is
not the best choice (for example in [CP] side-effects make depth-first selec-
tion better for both the Job-Shop Problem and the Quadratic Assignment
Problem).

The idea of branching on resource constraints developed by Gélinas et al.
in [GDDS95] performs quite well. They work on the Vehicle Routing Prob-
lem with Backhauling and Time Windows (VRPBTW, see section 5.6).

206 Chapter 9. Conclusions

Obviously there are structural differences between VRPBTW and VRPTW
as we were not able to achieve the same positive results for the VRPTW.
Therefore further development of advanced branching strategies based on
branching on resource constraints were not carried out. It would be in-
teresting to analyze what characteristics of the backhauling scheme made
branching on resource windows behave well.

Experiments with the Ryan-Foster branching rule showed that due to the
large number of possible extensions of the partial routes in the SPPTWCC
this idea does not work for the VRPTW.

The new scheme for detecting S sets generates good results. By using
geographical information we are able to generate cuts faster. The imple-
mentation of a heuristic for the “feasibility TSPTW” does only have minor
effects on the performance. For the R1, C1 and RC1 instances the sets
that need to be checked are seldomly so large that the algorithm used by
Kohl has problems. For the R2, C2 and RC2 instances a few large sets are
generated but not checked due to an upper limit on the set size. If this
upper limit was removed the algorithm used by Kohl would have trouble
solving some cases. Here the heuristic could be used instead.

The trivial lower bound was tested. It does not seem to have any significant
effect. On the other hand it generally does not slow down the algorithm ei-
ther, and it is fast to perform. Generating cuts in other Branch-and-Bound
nodes beside the root node seems generally not to be worthwhile. Only a
few Branch-and-Bound nodes can be removed and the cuts generated can
not be inserted as they are not globally valid.

The column reduction scheme performs really well. The time saved remov-
ing columns not likely to be used again outweighs the administration costs
of the scheme. The performance results are very encouraging. In order to
obtain even better performance the number of Branch-and-Bound nodes
between calls of the reduction subroutine must be made dependent of the
breath of the Branch-and-Bound tree. For each “live” branch the “good”
routes are worth keeping so ideally we should keep track of which branches
are alive. In this way a “good” route belonging to a branch that is no longer
alive can be deleted with a good chance of not affecting performance. In-
stead it is simpler to have an estimate B on the number of “live” branches
and then call the reduction subroutine every time B Branch-and-Bound

9.2 Main conclusions 207

nodes have been processed.

Random selection did not contribute to faster execution time, but forced
early stop reduced the running time, sometimes drastically. Further inves-
tigations should determine under which condition the best performance is
obtained.

The experiments undertaken have added valuable knowledge on structure
and properties of solving VRPTW instances. It has identified bottlenecks
in computation that needs to be investigated in the future. Furthermore
instances not previously solved to optimality has been solved, including
a number of R2, C2 and RC2 instances (as reported in section 7.8) but
also R103 with 100 customers, R106 with 100 customers and R107 with
100 customers (the solutions can be found in appendix A). In an effort to
solve the R109, R110 and RC102 with 100 customers the limit on the num-
ber of Branch-and-Bound nodes was reached before the optimal solution
was found, and for R108 with 50 customers we reached the limit of 50000
columns before the optimal solution was found.

A number of tests were run on the SP2 using the parallel algorithm. For
the RC102 with 50 customers which is one of the most time consuming
instances solved in [Koh95] the running time for 5 processors was 882.42
seconds and for 10 processors the running time was cut to 350.19 sec-
onds, that is, we experience a speed-up anomaly. Furthermore the parallel
algorithm solved R112 with 50 customers in 4501.50 seconds using 10 pro-
cessors. This instance has never been solved to optimality before. Again
the load-balancing was excellent and the parallel phase was initiated after
approximately 500 seconds.

We have developed a parallel algorithm that exhibits good speedup perfor-
mance. The load-balancing strategy leads to good results as we get the work
quite well balanced both on 4 processors and on 8 processors. This par-
allel algorithm together with the newly designed strategies from chapter 7
could solve several of the Solomon problems not yet solved. Unfortunately
access to the SP2 is a sparse resource, and the job-queues for jobs that are
estimated to run for more than 1 hour are permanently congested.

Still, the main weakness of the parallel algorithm is the time it takes to gen-
erate k ·p unexplored subspaces. In particular the time it takes to solve the

208 Chapter 9. Conclusions

root node can be a serious problem. Further improvements of the parallel
algorithm should focus on using parallelism in initial sequential phase. Here
a parallel version of the SPPTWCC subroutine might be fruitful, when the
time windows are too wide to allow the sequential SPPTWCC to explore
the dynamic programming-tree fast.

Bibliography

[ABMS94] R. Alasdair, A. Bruce, James G. Mills, and A. Gordon Smith.
Chimp/mpi user guide. Technical report, Edinburgh Parallel
Computing Centre, University of Edinburgh, 1994. Available
via WWW at www.epcc.ed.ac.uk/epcc-tec/documents.

[ACD+96] Cristiana Amza, Alan L. Cox, Sandhya Dwarkadas, Pete Kele-
her, Honghui Lu, Ramakrishnan Rajamony, Weimin Yu, and
Willy Zwaenepoel. Treadmarks: Shared memory computing
on networks of workstations. IEEE Computer, pages 18 – 28,
February 1996.

[AD95] Jürgen Antes and Ulrich Derigs. A new parallel tour construc-
tion algorithm for the vehicle routing problem with time win-
dows. Technical report, Lehrstuhl für Wirtschaftsinformatik
und Operations Research, Universität zu Köln, March 1995.

[AFG97] Norbert Ascheuer, Matteo Fischetti, and Martin Grötschel. A
polyhedral study of the asymmetric travelling salesman prob-
lem with time windows. Available via WWW at www.zib.de,
February 1997. Preprint.

[AMS89] Yogesh Agarwal, Kamlesh Mathur, and Harvey M. Salkin. A
set-partitioning-based exact algorithm for the vehicle routing
problem. Networks, 19:731 – 749, 1989.

209

210 BIBLIOGRAPHY

[Ant96] Mario Antonioletti. Scalable computing – from workstations
to mpps. Available via WWW at www.epcc.ed.ac.uk/-

epcc-tec/documents, July 1996.

[Bal93] Nagraj Balakrishnan. Simple heuristics for the vehicle routing
problem with soft time windows. Journal of the Operational
Research Society, 44(3):279 – 287, 1993.

[BGAB83] Lawrence Bodin, Bruce Golden, Arjang Assad, and Michael
Ball. Routing and scheduling of vehicles and crews - the state
of art. Computers & Operations Research, 10(2):62 – 212, 1983.

[BGG+95] Philippe Badeau, Michel Gendreau, François Guertin, Jean-
Yves Potvin, and Éric Taillard. A parallel tabu search heuristic
for the vehicle routing problems with time windows. Techni-
cal Report CRT-95-84, Centre de recherche sur les transports,
December 1995.

[BJN+94] Cynthia Barnhart, Ellis L. Johnson, George L. Nemhauser,
Martin W. P. Savelsbergh, and Pamela H. Vance. Branch-and-
price: Column generation for solving huge integer problems. In
J. R. Birge and K. G. Murty, editors, Mathematical Program-
ming: State of the art 1994. Braun-Brumfield, 1994.

[BJN+98] Cynthia Barnhart, Ellis L. Johnson, George L. Nemhauser,
Martin W. P. Savelsbergh, and Pamela H. Vance. Branch-and-
price: Column generation for solving huge integer programs.
Operations Research, 46(3):316 – 329, 1998.

[Bod90] Lawrence D. Bodin. Twenty years of routing and scheduling.
Operations Research, 38(4):571 – 579, July-August 1990.

[Bre95] Alex Van Breedam. Vehicle routing: Bridging the gap between
theory and practice. Belgian Journal of Operations Research,
Statistics and Computer Science, 35(1):63 – 80, 1995.

[BS86] Edward K. Baker and Joanne R. Schaffer. Solution improve-
ment heuristics for the vehicle routing and scheduling problem
with time window constraints. American Journal of Mathemat-
ical and Management Science, 6(3, 4):261 – 300, 1986.

BIBLIOGRAPHY 211

[Ca93] N. Christofides and J. Paix ao. Algorithms for large scale set
covering problems. Annals of Operations Research, 43:261 –
277, 1993.

[CCPS98] William J. Cook, William H. Cunningham, William R. Pulley-
bank, and Alexander Schrijver. Combinatorial Optimization.
Integer and Combinatorial Optimization. Wiley Interscience,
1998.

[CGR93] Boris V. Cherkassky, Andrew V. Goldberg, and Tomasz Radzik.
Shortest path algorithms: Theory and experimental evaluation.
Draft, July 1993.

[CJR81] Frank H. Cullen, John J. Jarvis, and H. Donald Ratliff. Set
partitioning based heuristics for interactive routing. Networks,
11(2):125 – 143, 1981.

[CKP+96] David E. Culler, Richard M. Karp, David Patterson, Abhijit
Sahay, Eunice E. Santos, Klaus Erik Schauser, Ramesh Subra-
monian, and Thorsten von Eicken. Logp : A practical model of
parallel computation. Communications of the ACM, 39(11):78
– 85, 1996.

[CL98] Teodor Gabriel Crainic and Gilbert Laporte. Fleet Management
and Logistics. Kluwer, 1998.

[Cla90] Jens Clausen. Solving difficult combinatorical optimization-
problems – can parallel computers help? [In Danish], August
1990.

[Cla96] Jens Clausen. Parallel search-based methods in optimization.
draft, 1996.

[Cla97] Jens Clausen. Parallel branch and bound – principles and per-
sonal experiences. In Athanasios Migdalas, Panos M. Pardalos,
and Sverre Storøy, editors, Parallel Computing in Optimization,
Applied Optimization. Kluwer Academic Publishers, 1997.

[CMT79] Nicos Christofides, Aristide Mingozzi, and Paolo Toth. The
vehicle routing problem. In Nicos Christofides, Aristide Min-
gozzi, Paolo Toth, and Claudio Sandi, editors, Combinatorial

212 BIBLIOGRAPHY

Optimization, chapter 11, pages 315 – 338. John Wiley & Sons,
1979.

[CMT81] Nicos Christofides, Aristide Mingozzi, and Paolo Toth. Exact
algorithms for the vehicle routing problem, based on spanning
tree and shortest path relaxation. Mathematical Programming,
20(3):255 – 282, 1981.

[CP] Jens Clausen and Michael Perregaard. On the best search strat-
egy in parallel branch-and-bound - best-first-search vs. lazy
depth-first-search. to appear in Annals of Operations Research.

[CR96] Wen-Chyuan Chiang and Robert A. Russell. Simulated anneal-
ing metaheuristics for the vehicle routing problem with time
windows. Annals of Operations Research, 63:3 – 27, 1996.

[CR97] Wen-Chyuan Chiang and Robert A. Russell. A reactive tabu
search metaheuristic for the vehicle routing problem with time
windows. INFORMS Journal of Computing, 9(4):417 – 430,
1997.

[CT96] Alan Chalmers and Jonathan Tidmus. Practical Parallel Pro-
cessing. International Thomson Computer Press, 1996.

[CW64] G. Clarke and W. Wright. Scheduling of vehicles from a central
depot to a number of delivery points. Operations Research,
12:568 – 581, 1964.

[DDS92] Martin Desrochers, Jacques Desrosiers, and Marius Solomon.
A new optimization algorithm for the vehicle routing prob-
lem with time windows. Operations Research, 40(2):342 – 354,
March-April 1992.

[DDSS93] Jacques Desrosiers, Yvan Dumas, Marius M. Solomon, and
F. Soumis. Time constrained routing and scheduling. Tech-
nical report, GERAD, September 1993.

[Des88] Martin Desrochers. An algortihm for the shortest path prob-
lem with resource constraints. Technical Report G-88-27,
GERAD, École des Hautes Études Commerciales, Université
de Montréal, September 1988.

BIBLIOGRAPHY 213

[DFvG83] Edsger W. Dijkstra, W. H. J. Feijen, and A. J. M. van Gasteren.
Derivation of a termination detection algorithm for distributed
computations. Information Processing Letters, 16:217 – 219,
June 1983.

[DLSS88] Martin Desrochers, Jan K. Lenstra, Martin W. P. Savelsbergh,
and François Soumis. Vehicle routing with time windows: Op-
timization and approximation. Vehicle Routing: Methods and
Studies, pages 65 – 84, 1988. Edited by Golden and Assad.

[dRT88] A. de Bruin, A. H. G. Rinnooy Kan, and H. Trienekens. A sim-
ulation tool for the performance of parallel branch and bound
algorithms. Mathematical Programming, 42:245 – 271, 1988.

[DS88a] Martin Desrochers and François Soumis. A generalized per-
manent labelling algorithm for the shortest path problem with
time windows. INFOR, 26(3):191 – 212, 1988.

[DS88b] Martin Desrochers and François Soumis. A reoptimization al-
gorithm for the shortest path problem with time windows. Eu-
ropean Journal of Operational Research, 35:242 – 254, 1988.

[DS96] Jack J. Dongarra and Horst D. Simon. High performance com-
puting in the u.s. in 1995 – an analysis on the basis of the top
500 list. Technical Report uk-cs-96-318, Department of Com-
puter Science, University of Tennessee, 1996. Available via
WWW at www.cs.utk.edu/~library/TechReports.html.

[DSD84] Jacques Desrosiers, François Soumis, and Martin Desrochers.
Routing with time windows by column generation. Networks,
14(4):545 – 565, 1984.

[DSDS85] Jacques Desrosiers, François Soumis, Martin Desrochers, and
Michel Sauvé. Routing and scheduling with time windows
solved by network relaxation and branch-and-bound on time
variables. Computer Scheduling of Public Transport 2, pages
451 – 469, 1985.

[Dun90] Ralph Duncan. A survey of parallel computer architectures.
IEEE Computer, pages 5 – 16, February 1990.

214 BIBLIOGRAPHY

[dVDH99] Olivier du Merle, Daniel Villeneuve, Jacques Desrosiers, and
Pierre Hansen. Stabilized column generation. Discrete Mathe-
matics, 194:229 – 237, 1999.

[FD96] Graham E. Fagg and Jack J. Dongarra. Pvmpi: An inte-
gration of the pvm and mpi systems. Technical report, De-
partment of Computer Science, University of Tennessee, April
1996. Available via WWW at www.cs.utk.edu/~library/-

TechReports.html.

[Fis94a] Marshall L. Fisher. Optimal solution of vehicle routing prob-
lems using minimum k-trees. Operations Research, 42(4):626 –
642, July-August 1994.

[Fis94b] Marshall L. Fisher. A polynomial algorithm for the degree-
constrained minimum k-tree problem. Operations Research,
42(4):775 – 779, July-August 1994.

[Fis97] Marshall Fisher. Vehicle routing. In M. O. Ball, T. L. Mag-
nanti, C. L. Monma, and G. L. Nemhauser, editors, Network
Routing, volume 8 of Handbooks in Operations Research and
Management Science, chapter 1, pages 1 – 79. North-Holland,
1997.

[FJM94] Marshall L. Fisher, Kurt O. Jörnsten, and Oli B. G. Mad-
sen. Vehicle routing with time windows - two optimization
algorithms. Technical Report IMM-REP-1994-28, Department
of Mathematical Modelling, Technical University of Denmark,
1994.

[FJM97] Marshall L. Fisher, Kurt O. Jörnsteen, and Oli B. G. Mad-
sen. Vehicle routing with time windows: Two optimization
algorithms. Operations Research, 45(3):488 – 492, May-June
1997.

[Fos94] Ian Foster. Designing and Building Parallel Programs. Addison
Wesley, 1994.

BIBLIOGRAPHY 215

[FP93] Christian Foisy and Jean-Yves Potvin. Implementing an inser-
tion heuristic for vehicle routing on parallel hardware. Com-
puters & Operations Research, 20(7):737 – 745, 1993.

[GBD+94] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang,
Robert Manchek, and Vaidy Sunderam. PVM: Parallel Vir-
tual Machine – A Users’ Guide and Turorial for Networked
Parallel Computing. MIT Press, 1994.

[GC94] Bernard Gendron and Teodor Gabriel Crainic. Parallel branch-
and-bound algorithms: Survey and synthesis. Operations Re-
search, 42(6):1042 – 1066, November-December 1994.

[GDDS95] Sylvie Gélinas, Martin Desrochers, Jacques Desrosiers, and
Marius M. Solomon. A new branching strategy for time con-
strained routing problems with application to backhauling. An-
nals of Operations Research, 61:91 – 109, 1995.

[GJ79] Michael R. Garey and David S. Johnson. Computers and In-
tractability – A Guide to the Theory of NP-Completeness. W.
H. Freeman and Company, 1979.

[GKP] Ananth Grama, Vipin Kumar, and Panos Pardalos. Paral-
lel processing of discrete optimization problems. Available via
WWW at www.cs.umn.edu/~ananth/work.html.

[GLS94] William Gropp, Ewing Lusk, and Anthony Skjellum. Using
MPI. MIT Press, 1994.

[Gol84] Bruce L. Golden. Introduction to and recent advances in ve-
hicle routing methods. In M. Florian, editor, Transportation
Planning Models, pages 383 – 418. Elsevier Science Publishers
B.V., 1984.

[GP88] Giorgio Gallo and Stefano Pallottino. Shortest path algorithms.
Annals of Operations Research, 13:3 – 79, 1988.

[GPR94] Bruno-Laurent Garcia, Jean-Yves Potvin, and Jean-Marc
Rousseau. A parallel implementation of the tabu search heuris-
tic for vehicle routing problems with time window constraints.
Computers & Operations Research, 21(9):1025 – 1033, 1994.

216 BIBLIOGRAPHY

[GTA99] Luca Maria Gambardella, Éric Taillard, and Giovanni Agazzi.
Macs-vrptw: A multiple ant colony system for vehicle routing
problems with time windows. Technical Report IDSIA-06-99,
IDSIA, 1999.

[Hal92] Karsten Halse. Modeling and Solving Complex Vehicle Routing
Problems. PhD thesis, Department for Mathematical Modeling,
Technical University of Denmark, 1992.

[HTd95] Alain Hertz, Eric Taillard, and Dominique de Werra. A tuto-
rial on tabu search. Technical report, EPFL, Département de
Mathématique, MA-Ecublens, 1995. Available via WWW on
www.idsia.ch/~eric/.

[JáJá92] Joseph JáJá. An Introduction to Parallel Algorithms. Addison-
Wesley Publishing Company, 1992.

[JMS86] Kurt O. Jörnsten, Oli B. G. Madsen, and Bo Sørensen. Ex-
act solution of the vehicle routing and scheduling problem with
time windows by variable splitting. Technical Report 5, De-
partment of Mathematical Modelling, Technical University of
Denmark, 1986.

[KB95] George Kontoravdis and Jonathan F. Bard. A grasp for the
vehicle routing problem with time windows. ORSA Journal on
Computing, 7(1):10 – 23, 1995.

[KDM+99] Niklas Kohl, Jacques Desrosiers, Oli B. G. Madsen, Marius M.
Solomon, and François Soumis. 2-path cuts for the vehicle
routing problem with time windows. Transportation Science,
33(1):101 – 116, 1999.

[KL86] G. A. P. Kindervater and J. K. Lenstra. An introduction to par-
allelism in combinatorial optimization. Discrete Applied Math-
ematics, 14:135 – 156, 1986.

[KLK89] G. A. P. Kindervater, J. K. Lenstra, and A. H. G. Rinnooy
Kan. Perspectives on parallel computing. Operations Research,
37(6):985 – 989, November-December 1989.

BIBLIOGRAPHY 217

[KM97] Niklas Kohl and Oli B. G. Madsen. An optimization algorithm
for the vehicle routing problem with time windows based on
lagrangean relaxation. Operations Research, 45(3):395 – 406,
May-June 1997.

[Koh95] Niklas Kohl. Exact methods for Time Constained Routing and
Related Scheduling Problems. PhD thesis, Department of Math-
ematical Modelling, Technical University of Denmark, 1995.

[Kon97] Georgios Athanassio Kontoravdis. The Vehicle Routing Prob-
lem with Time Windows. PhD thesis, The University of Texas
at Austin, August 1997.

[KPS97] Philip Kilby, Patrick Prosser, and Paul Shaw. Guided local
search for the vehicle routing problem. In MIC97, 2nd In-
ternational Conference on Metaheuristics. INRIA & PRiSM,
1997.

[Kri95] Jens Kanstrup Kristensen. Route planning and set partition-
ing. Master’s thesis, Department of Mathematical Modelling,
Technical University of Denmark, 1995. [in danish].

[KRT87] A. W. J. Kolen, A. H. G. Rinnooy Kaan, and H. W. J. M.
Trienekens. Vehicle routing with time windows. Operations
Research, 35(2):266 – 273, March-April 1987.

[Kwa93] Renata Krystyna Kwatera. Clustering heuristics for set cover-
ing. Annals of Operations Research, 43:295 – 308, 1993.

[Lap97] Gilbert Laporte. Recent advances in routing algorithms. Tech-
nical Report G-97-38, GERAD and École des Hautes Études
Commerciales, May 1997.

[Lau94a] Per S. Laursen. General optimizationheuristics – an introduc-
tion. Technical report, Department of Computer Science, Uni-
versity of Copenhagen, 1994. [in danish].

[Lau94b] Per S. Laursen. Parallel Optimization Algorithms - Efficiency
vs. Simplicity. PhD thesis, Department of Computer Science,
University of Copenhagen, 1994.

218 BIBLIOGRAPHY

[LK81] J. K. Lenstra and A. H. G. Rinnooy Kan. Complexity of vehicle
routing and scheduling problems. Networks, 11:221 – 227, 1981.

[LO95] Gilbert Laporte and Ibrahim H. Osman. Routing problems:
A bibliography. Annals of Operations Researcg, 61:227 – 262,
1995.

[LRT95] B. Le Cun, C. Roucairol, and The PNN Team. Bob: a unified
platform for implementing branch-and-bound like algorithms.
Technical report, Laboratoire PRiSM, Université de Versaille,
1995.

[Mad88] Oli B. G. Madsen. Variable splitting and vehicle routing prob-
lems with time windows. Technical Report 1A/1988, Depart-
ment of Mathematical Modelling, Technical University of Den-
mark, 1988.

[Mad90] Oli B. G. Madsen. Lagrangean relaxation and vehicle rout-
ing. Technical report, Department of Mathematical Modelling,
Technical University of Denmark, 1990.

[Mal96] Joël Malard. Mpi: A message-passing interface standard.
Technical report, Edinburgh Parallel Computing Center, The
University of Edinburgh, 1996. Available via WWW at
www.epcc.ed.ac.uk/.

[MDF+95] Burkhard Monien, Ralf Dieckmann, Rainer Feldmann, Ralf
Klasing, Reinhard Lüling, Knut Menzel, Thomas Römke, and
Ulf-Peter Schroeder. Efficient use of parallel & distributed
systems: From theory to practice. Available via WWW at
www.uni-paderborn.de/pc2/services/public/, 1995.

[MJ] Oli B. G. Madsen and Søren Kruse Jacobsen. Notes to math-
matical programming 2 – large systems. Department of Math-
ematical Modelling, Technical University of Denmark. [in dan-
ish].

[MMHB] Neil MacDonald, Elspeth Minty, Tim Harding, and Simon
Brown. Writing message-passing parallel programs with mpi

BIBLIOGRAPHY 219

– a two day course. Available via WWW at http://-

www.epcc.ed.ac.uk/.

[NW88] George L. Nemhauser and Laurence A. Wolsey. Integer and
Combinatorial Optimization. Discrete Mathematics and Opti-
mization. Wiley Interscience, 1988.

[Ols88] Brian Olsen. Route-planning with time restrictions. Technical
Report 2/88, Department of Mathematical Modelling, Techni-
cal University of Denmark, 1988. [in danish].

[Pac95] Peter S. Pacheco. A user’s guide to mpi. Available via WWW
at www.usfca.edu/mpi/, March 1995.

[Pan96] Cherri M. Pancake. Is parallelism for you? IEEE Computa-
tional Science & Engineering, 3(2):18 – 37, 1996.

[PB96] Jean-Yves Potvin and Sam Bengio. The vehicle routing prob-
lem with time windows – part ii : Genetic search. INFORMS
Journal of Computing, 8(2):165 – 172, Spring 1996.

[PC98] Michael Perregaard and Jens Clausen. Parallel branch-and-
bound methods for the job-shop scheduling problem. Annals
of Operations Research, 83:137 – 160, 1998.

[PDR96] Jean-Yves Potvin, Danny Dubé, and Christian Robillard. A
hybrid approach to vehicle routin using neural networks and
genetic algorithms. Applied Intelligence, 6:241 – 252, 1996.

[PKGR96] Jean-Yves Potvin, Tanguy Kervahut, Bruno-Laurent Garcia,
and Jean-Marc Rousseau. The vehicle routing problem with
time windows – part i : Tabu search. INFORMS Journal of
Computing, 8(2):158 – 164, Spring 1996.

[PL90] Panos Pardalos and Xiaoye Li. Parallel branch-and-bound algo-
rithms for combinatorial optimization. Supercomputer, 39(VII-
5):23 – 30, September 1990.

220 BIBLIOGRAPHY

[PR93] Jean-Yves Potvin and Jean-Marc Rousseau. A parallel route
building algorithm for the vehicle routing and scheduling prob-
lem with time windows. European Journal of Operational Re-
search, 66:331 – 340, 1993.

[PR95] Jean-Yves Potvin and Jean-Marc Rousseau. An exchange
heuristic for routering problems with time windows. Journal of
the Operational Research Society, 46(12):1433 – 1446, 1995.

[PR99] Jean-Yves Potvin and Christian Robillard. Clustering for vehi-
cle routing with a competitive neural network. Neurocomputing,
8:125 – 139, 1999.

[RF81] D. M. Ryan and B. A. Foster. An integer programming ap-
proach to scheduling. In A. Wren, editor, Computer Scheduling
of Public Transport, pages 269 – 280. North-Holland Publishing
Company, 1981.

[RF88] D. M. Ryan and J. C. Falkner. On the integer properties of
scheduling set partitioning models. European Journal of Oper-
ational Research, 35:442 – 456, 1988.

[Roc] Yves Rochat. Solomon’s vrptw instances. Available on the
WWW at http://dmawww.epfl.ch/~rochat/rochat data/-

solomon.html.

[Rou96] Catherine Roucairol. Parallel processing for difficult combina-
torial optimization problems. European Journal of Operational
Research, 92:573 – 590, 1996.

[RT95] Yves Rochar and Éric D. Taillard. Probalistic diversification
and intensification in local search for vehicle routing. Journal
of Heuristics, 1:147 – 167, 1995.

[Rus95] Robert A. Russell. Hybrid heuristics for the vehicle routing
problem with time windows. Transportation Science, 29(2):156
– 166, May 1995.

[Rya92] David M. Ryan. The solution of massive generalized set par-
titioning problems in aircrew rostering. Journal of the Opera-
tional Research Society, 43(5):459 – 467, 1992.

BIBLIOGRAPHY 221

[Sal75] Harvey M. Salkin. Integer Programming. Addison-Wesley Pub-
lishing Company, 1975.

[Sav90] Martin W. P. Savelsbergh. An efficient implementation of local
search algorithms for constrained routing. European Journal of
Operational Research, 47:75 – 85, 1990.

[Sav56] Martin W. P. Savelsbergh. Local search in routing problems
with time windows. Annals of Operations Research, 4:285 –
305, 1985/6.

[SD88] Marius M. Solomon and Jacques Desrosiers. Time window con-
strained routing and scheduling problems. Transportation Sci-
ence, 22(1):1 – 13, February 1988.

[SF96] Jürgen Schulze and Torsten Fahle. A parallel algorithm for the
vehicle routing problem with time window constraints. Working
paper, March 1996.

[SF99] Jürgen Schulze and Torsten Fahle. A parallel algorithm for the
vehicle routing problem with time window constraints. Annals
of Operations Research, 86:585 – 607, 1999.

[Sha97] Paul Shaw. A new local search algorithm providing high quality
solutions to vehicle routing problems. Available on the web,
July 1997.

[Sol86] Marius M. Solomon. On the worst-case performance of some
heuristics for the vehicle routing and scheduling problem with
time window constraints. Networks, 16:161 – 174, 1986.

[Sol87] Marius M. Solomon. Algorithms for the vehicle routing and
scheduling problems with time window constraints. Operations
Research, 35(2):254 – 265, March-April 1987.

[Tai96] Éric Taillard. A heuristic column generation method for the
heterogeneous fleet vrp. Technical report, CRT, 1996.

[TBG+95] Éric Taillard, Phillipe Badeau, Michel Gendreau, François
Guertin, and Jean-Yves Potvin. A tabu search heristic for the

222 BIBLIOGRAPHY

vehicle routing problem with soft time windows. Technical Re-
port CRT-95-66, CRT, 1995.

[Tel94] Gerard Tel. Introduction to Distributed Algorithms. Cambridge
University Press, 1994.

[Tha] Sam R. Thangiah. Vehicle routing with time windows using
genetic algorithms. Available from the authors homepage.

[The97] The GreenTrip Consortium. Efficient logistics via intelligent
vehicle routing systems. Presented at the European Confer-
ence on Integration in Manufacturing (IiM), Dresden, Germany,
September 24-26, 1997, 1997.

[The98] The Danish Ministry of Transport. Trafikredegørelse 1997, Jan-
uary 1998. [in danish].

[TO89] J. M. Troya and M. Ortega. A study of parallel branch-and-
bound algorithms with best-bound-first search. Parallel Com-
puting, 11:121 – 126, 1989.

[TOS] Sam R. Thangiah, Ibrahim H. Osman, and Tong Sun.
Metaheuristics for vehicle routing problems with time win-
dows. Available via WWW at www.aiai.ed.ac.uk/~timd/-

vehicle/.

[TOS94] Sam R. Thangiah, Ibrahim H. Osman, and Tong Sun. Hybrid
genetic algorithm, simulated annealing and tabu search meth-
ods for vehicle routing problems with time windows. Technical
Report SRU-CpSc-TR-94-27, Computer Science Department,
Slippery Rock University, 1994.

[TP96] Stefan Tschöke and Thomas Polzer. Portabel parallel branch-
and-bound library. Technical report, Department of Computer
Science, University of Paderborn, June 1996.

[vD96] Aad J. van der Steen and Jack J. Dongarra. Overview of recent
supercomputers. Technical report, Department of Computer
Science, University of Tennessee, 1996. 6. edition. Available via
WWW at www.cs.utk.edu/~library/TechReports.html.

BIBLIOGRAPHY 223

[vL88] H. R. G. van Landeghem. A bi-criteria heuristic for the vehi-
cle routing problem with time windows. European Journal of
Operational Research, 36:217 – 226, 1988.

[Wed95] Dag Wedelin. An algorithm for large scale 0-1 integer pro-
gramming with application to airline crew scheduling. Annals
of Operations Research, 57:283 – 301, 1995.

224 BIBLIOGRAPHY

Appendix A

The solutions to the R1,
C1 and RC1 problems

Usually the LP and IP values are reported for the solutions to the Solomon
test-sets in the exact papers (in the papers on heuristics it is often worse
as the numbers reported are accumulated for each test-set) and nothing
more. This appendix contains the LP and IP values of all R1, C1 and RC1
problems that have been solved together with the routes of the optimal
solution.

225

226 Appendix A. The R1, C1 and RC1 problems

R101 25 IP opt 617.0
LP opt 617.0

Routes
5 16 6
7 8 17
11 19 10
18
23 22 4 25
14 15 13
12 9 20 1

R101 50 IP opt 1044.0
LP opt 1043.367

Routes
2 21 40 50 1
33 29 9 34 35
42 15 41 26
36 47 7 10
14 44 38 43 13
39 23 22 4
31 30 20 32
5 16 37
11 19 49 48
45 8 46 17
28 12 3 24 25
27 18 6

R101 100 IP opt 1637.7
LP opt 1631.15

Routes
39 23 67 55 25
31 88 7
63 64 49 48
62 11 90 10
40 53 26
52 6
36 47 19 8 46 17
27 69 30 51 20 32 70
92 42 15 87 57 97
65 71 9 66 1
14 44 38 43 13
33 81 50 68
2 21 73 41 56 4
45 82 18 84 60 89
72 75 22 74 58
12 76 79 3 54 24 80
28 29 78 34 35 77
59 98 16 86 91 100
5 83 61 85 37 93
95 99 94 96

227

R102 25 IP opt 547.1
LP opt 546.333

Routes
14 16 6 13
3 9 20 1
18
8 17 5
2 15 22 4 25
7 11 19 10

R102 50 IP opt 909.0
LP opt 909.0

Routes
45 16 6
40
18 10 31
37 42 15 41 2
14 44 38 43 13
28 29 24 12
27 1 30 20 32
50 33 9 35 34 3
36 47 8 46 17 5
11 19 49 48 7
21 39 23 22 4 25 26

R102 100 IP opt 1466.6
LP opt 1466.6

Routes
40 53
50 33 29 78 34 35 77
18
28 76 79 54 24 80 12
39 23 67 55 25 26
73 22 74 72 21
27 69 88 10 31
36 47 19 8 46 17 93 59
65 71 81 3 68
87 57 2 58
94 96 99 6
42 15 41 75 56 4
95 14 44 38 43 100 37
30 51 9 66 1
83 45 61 84 5 60 89
62 11 90 20 32 70
92 98 85 16 86 91 97 13
63 64 49 48 82 7 52

228 Appendix A. The R1, C1 and RC1 problems

R103 25 IP opt 454.6
LP opt 454.6

Routes
6 13
7 19 11 8 18
21 23 22 4 25
2 15 14 16 17 5
12 24 3 9 10 20 1

R103 50 IP opt 772.9
LP opt 765.95

Routes
27 6
40
36 11 19 49 47 48 7
42 43 15 41 2 13
45 46 8 18
50 33 20 30 32 10 31 1
21 39 23 22 4 25 26
37 14 44 38 16 17 5
28 12 24 29 9 35 34 3

R103 100 IP opt 1208.7
LP opt 1206.38

Routes
40 53
51 65 71 9 66 20 32 70
94 95 97 87 13
96 99 6
21 39 23 67 55 25 54
52 7 62 11 63 90 10 31
2 22 74 72 73 58
36 64 49 19 47 48 82 18
42 43 15 57 41 75 56 4 26
50 33 3 76 79 29 24 68 80 12
83 45 84 61 85 93 59
27 69 88 8 46 17 5 60 89
92 98 14 44 38 86 16 91 100 37
1 30 78 34 35 81 77 28

229

R104 25 IP opt 416.9
LP opt 416.9

Routes
7 19 11 8 18 6 13
2 15 14 16 17 5
12 24 3 9 20 10 1
21 22 23 4 25

R104 50 IP opt 625.4
LP opt 616.5

Routes
21 22 41 23 39 4 25 26
40 2 15 43 42 13
6 16 44 38 14 37
7 48 19 11 10 32 20 30 31 27
28 1 50 3 33 9 35 34 29 24 12
18 5 17 45 8 46 36 49 47

230 Appendix A. The R1, C1 and RC1 problems

R105 25 IP opt 530.5
LP opt 530.5

Routes
7 18 8 17
2 15 13
21 23 22 4
19 11 10 20 1
12 9 3 24 25
5 14 16 6

R105 50 IP opt 899.3
LP opt 892.12

Routes
28 12 29 3 50 1
33 30 9 34 35 24
21 40 26
39 23 41 22 4 25
47 36 11 10 20 32
42 14 44 16 6
2 15 38 43 37 13
27 31 7 19 49 48
5 45 18 8 46 17

R105 100 IP opt 1355.3
LP opt 1346.142

Routes
28 12 29 79 78 34 35 77
63 64 11 90 10
62 88 7 18
31 30 51 9 81 3 68 24 80
72 39 23 67 55 54 4 25
27 69 76 50 1
52 82 8 84 17 60 89
21 73 75 22 41 56 74 58
53 40 26
33 65 71 66 20 32 70
47 36 19 49 46 48
2 15 57 87 97 13
42 14 44 38 86 43 100 91 93
59 95 92 98 16 61 85 37 96
5 45 83 99 94 6

231

R106 25 IP opt 465.4
LP opt 457.3

Routes
18 8 17 5
2 15 23 22 4 25 21
7 19 11 10
14 16 6 13
1 9 20 3 24 12
21 23 24 12

R106 50 IP opt 793.0
LP opt 791.367

Routes
50 33 29 24 12
45 8 18
48 47 36 49 46 17 5
2 15 40 6
27 28 1 30 9 35 34 3
21 39 23 41 22 4 25 26
7 19 11 10 20 32 31
42 14 44 16 38 43 37 13

R106 100 IP opt 1234.6
LP opt 1226.44

Routes
50 33 65 71 66 20 32 70 1
28 76 40 53
63 64 11 90 10 31
69 30 51 81 9 35 34 3 77
96 85 91 16 61 99 6
73 41 22 75 56 74 2 58
48 47 36 19 49 46 82 7 52
94 92 42 15 57 87 97 95 13
83 45 8 84 17 5 60
27 62 88 18 89
59 37 14 44 38 86 43 100 98 93
12 29 78 79 68 54 24 80
21 72 39 23 67 55 4 25 26

232 Appendix A. The R1, C1 and RC1 problems

R107 25 IP opt 424.3
LP opt 422.925

Routes
2 15 14 6 13
21 23 22 4 25 24
12 3 9 20 10 1
18 7 11 19 8 17 16 5

R107 50 IP opt 711.1
LP opt 704.438

Routes
26 21 39 23 41 22 4 25 24
18 45 8 6 13
42 43 15 2 40
46 36 11 19 49 47 48 7
37 14 44 38 16 17 5
50 3 33 9 35 34 29 12

R107 100 IP opt 1064.6
LP opt 1051.844

Routes
40 53
33 81 65 71 9 35 34 3 77
21 72 39 23 67 55 25 54 26
2 57 15 41 22 75 56 4 74 73 58
42 43 14 44 38 86 16 91 100 37 98
28 76 79 78 29 24 68 80 12
94 96 92 59 99 6 87 97 95 13
52 7 62 11 63 90 32 66 20 51 50
60 83 45 46 8 84 5 17 61 85 93
48 47 36 64 49 19 82 18 89
27 69 30 88 31 10 70 1

R108 25 IP opt 397.3
LP opt 396.139

Routes
2 15 14 16 17 5 6 13
21 22 23 4 25 24
1 20 9 3 12
7 10 11 19 8 18

233

R109 25 IP opt 465.4
LP opt 457.3

Routes
5 8 18 6
7 19 11 10
12 3 9 20 1
21 22 23 4 25 24
2 15 14 16 17 13

R109 50 IP opt 786.8
LP opt 775.096

Routes
27 30 33 9 35 34 24
5 45 8 18 6
28 12 29 3 50
21 23 39 25 4
2 15 41 22 40 26
7 11 10 32 20 1
42 16 44 38 14 43 37 13
31 19 47 49 36 46 48 17

R110 25 IP opt 465.4
LP opt 457.3

Routes
2 15 14 16 17 8
12 3 9
7 19 11 10 20 1
21 22 23 4 25 24
18 5 6 13

R110 50 IP opt 697.0
LP opt 692.577

Routes
31 11 19 47 49 36 46 48
5 16 44 38 14 43 15 42 13
6 18 8 45 17 37
28 12 29 24 26
33 9 35 34 3 50
27 7 10 30 20 32 1
2 40 21 22 41 23 39 25 4

234 Appendix A. The R1, C1 and RC1 problems

R111 25 IP opt 465.4
LP opt 457.3

Routes
12 3 9 20 10 1
21 23 22 4 25 24
2 15 14 16 6 13
7 11 19 8 18 17 5

R111 50 IP opt 707.2
LP opt 691.812

Routes
42 15 23 39 4 25 24
37 16 44 38 14 43 13
27 1 30 20 32 10 31
40 2 41 22 21 26
28 12 29 3 33 9 35 34 50
7 45 8 18 6
48 19 11 49 36 47 46 17 5

R112 25 IP opt 465.4
LP opt 457.3

Routes
21 22 23 4 25 24
18 8 7 19 11 10
2 15 14 16 17 5 6 13
12 3 9 20 1

R112 50 IP opt 630.2
LP opt 607.219

Routes
6 5 17 16 44 38 14 37
18 8 45 46 36 49 47 48
12 29 24 34 35 9 33 3 50
28 21 22 41 23 39 25 4 26
27 31 7 19 11 10 30 32 20 1
40 2 15 43 42 13

235

C101 25 IP opt 191.3
LP opt 191.3

Routes
5 3 7 8 10 11 9 4 6 2 1
13 17 18 19 15 16 14 12
20 24 25 23 22 21

C101 50 IP opt 362.4
LP opt 362.4

Routes
20 24 25 27 29 30 28 26 23 22 21
5 3 7 8 10 11 9 6 4 2 1
43 42 41 40 44 46 45 48 50 49 47
32 33 31 35 37 38 39 36 34

C101 100 IP opt 827.3
LP opt 827.3

Routes
43 42 41 40 44 46 45 48 51 50
52 49 47
5 3 7 8 10 11 9 6 4 2 1 75
20 24 25 27 29 30 28 26 23 22 21
67 65 63 62 74 72 61 64 68 66 69
90 87 86 83 82 84 85 88 89 91
81 78 76 71 70 73 77 79 80
98 96 95 94 92 93 97 100 99
32 33 31 35 37 38 39 36 34
13 17 18 19 15 16 14 12
57 55 54 53 56 58 60 59

236 Appendix A. The R1, C1 and RC1 problems

C102 25 IP opt 190.3
LP opt 190.3

Routes
5 3 7 8 10 11 9 6 4 2 1
13 17 18 19 15 16 14 12
20 24 25 23 22 21

C102 50 IP opt 361.4
LP opt 361.4

Routes
20 24 25 27 29 30 28 26 23 22 21
32 33 31 35 37 38 39 36 34
43 42 41 40 44 46 45 48 50 49 47
13 17 18 19 15 16 14 12
7 8 10 11 9 6 4 2 1 3 5

C102 100 IP opt 827.3
LP opt 827.3

Routes
43 42 41 40 44 46 45 48 51 50
52 49 47
5 3 7 8 10 11 9 6 4 2 1 75
20 24 25 27 29 30 28 26 23 22 21
67 65 63 62 74 72 61 64 68 66 69
90 87 86 83 82 84 85 88 89 91
81 78 76 71 70 73 77 79 80
98 96 95 94 92 93 97 100 99
32 33 31 35 37 38 39 36 34
13 17 18 19 15 16 14 12
57 55 54 53 56 58 60 59

237

C103 25 IP opt 190.3
LP opt 190.3

Routes
20 24 25 23 22 21
13 17 18 19 15 16 14 12
7 8 10 11 9 6 4 2 1 3 5

C103 50 IP opt 361.4
LP opt 361.4

Routes
32 33 31 35 37 38 39 36 34
13 17 18 19 15 16 14 12
7 8 10 11 9 6 4 2 1 3 5
20 24 25 27 29 30 28 26 23 22 21
43 42 41 40 44 46 45 48 50 49 47

C103 100 IP opt 826.3
LP opt 826.3

Routes
43 42 41 40 44 46 45 48 51 50
52 49 47
5 3 7 8 10 11 9 6 4 2 1 75
20 24 25 27 29 30 28 26 23 22 21
67 65 62 74 72 61 64 68 66 69
90 87 86 83 82 84 85 88 89 91
81 78 76 71 70 73 77 79 80 63
98 96 95 94 92 93 97 100 99
32 33 31 35 37 38 39 36 34
13 17 18 19 15 16 14 12
57 55 54 53 56 58 60 59

238 Appendix A. The R1, C1 and RC1 problems

C104 25 IP opt 186.9
LP opt 186.9

Routes
20 24 25 23 22 21
7 8 11 9 6 4 2 1 3 5
13 17 18 19 15 16 14 12 10

C104 50 IP opt 358.0
LP opt 357.25

Routes
32 33 31 35 37 38 39 36 34
13 17 18 19 15 16 14 12
5 3 7 8 10 11 9 6 4 2 1
20 24 25 27 29 30 28 26 23 22 21
43 42 41 40 44 46 45 48 50 49 47

C104 100 IP opt 822.9
LP opt 822.9

Routes
43 42 41 40 44 45 46 48 51 50
52 49 47
5 3 7 8 11 9 6 4 2 1 75
20 24 25 27 29 30 28 26 23 22 21
67 65 62 74 72 61 64 68 66 69
90 87 86 83 82 84 85 88 89 91
81 78 76 71 70 73 77 79 80 63
98 96 95 94 92 93 97 100 99
32 33 31 35 37 38 39 36 34
13 17 18 19 15 16 14 12 10
57 55 54 53 56 58 60 59

239

C105 25 IP opt 191.3
LP opt 191.3

Routes
20 24 25 23 22 21
5 3 7 8 10 11 9 6 4 2 1
13 17 18 19 15 16 14 12

C105 50 IP opt 362.4
LP opt 362.4

Routes
32 33 31 35 37 38 39 36 34
13 17 18 19 15 16 14 12
5 3 7 8 10 11 9 6 4 2 1
20 24 25 27 29 30 28 26 23 22 21
43 42 41 40 44 46 45 48 50 49 47

C105 100 IP opt 827.3
LP opt 827.3

Routes
43 42 41 40 44 46 45 48 51 50
52 49 47
5 3 7 8 10 11 9 6 4 2 1 75
20 24 25 27 29 30 28 26 23 22 21
67 65 63 62 74 72 61 64 68 66 69
90 87 86 83 82 84 85 88 89 91
81 78 76 71 70 73 77 79 80
98 96 95 94 92 93 97 100 99
32 33 31 35 37 38 39 36 34
13 17 18 19 15 16 14 12 10
57 55 54 53 56 58 60 59

240 Appendix A. The R1, C1 and RC1 problems

C106 25 IP opt 191.3
LP opt 191.3

Routes
20 24 25 23 22 21
5 3 7 8 10 11 9 6 4 2 1
13 17 18 19 15 16 14 12

C106 50 IP opt 362.4
LP opt 362.4

Routes
32 33 31 35 37 38 39 36 34
13 17 18 19 15 16 14 12
5 3 7 8 10 11 9 6 4 2 1
20 24 25 27 29 30 28 26 23 22 21
43 42 41 40 44 46 45 48 50 49 47

C106 100 IP opt 827.3
LP opt 827.3

Routes
43 42 41 40 44 46 45 48 51 50
52 49 47
5 3 7 8 10 11 9 6 4 2 1 75
20 24 25 27 29 30 28 26 23 22 21
67 65 63 62 74 72 61 64 68 66 69
90 87 86 83 82 84 85 88 89 91
81 78 76 71 70 73 77 79 80
98 96 95 94 92 93 97 100 99
32 33 31 35 37 38 39 36 34
13 17 18 19 15 16 14 12 10
57 55 54 53 56 58 60 59

241

C107 25 IP opt 191.3
LP opt 191.3

Routes
20 24 25 23 22 21
5 3 7 8 10 11 9 6 4 2 1
13 17 18 19 15 16 14 12

C107 50 IP opt 362.4
LP opt 362.4

Routes
32 33 31 35 37 38 39 36 34
13 17 18 19 15 16 14 12
5 3 7 8 10 11 9 6 4 2 1
20 24 25 27 29 30 28 26 23 22 21
43 42 41 40 44 46 45 48 50 49 47

C107 100 IP opt 827.3
LP opt 827.3

Routes
43 42 41 40 44 46 45 48 51 50
52 49 47
5 3 7 8 10 11 9 6 4 2 1 75
20 24 25 27 29 30 28 26 23 22 21
67 65 63 62 74 72 61 64 68 66 69
90 87 86 83 82 84 85 88 89 91
81 78 76 71 70 73 77 79 80
98 96 95 94 92 93 97 100 99
32 33 31 35 37 38 39 36 34
13 17 18 19 15 16 14 12 10
57 55 54 53 56 58 60 59

242 Appendix A. The R1, C1 and RC1 problems

C108 25 IP opt 191.3
LP opt 191.3

Routes
20 24 25 23 22 21
5 3 7 8 10 11 9 6 4 2 1
13 17 18 19 15 16 14 12

C108 50 IP opt 362.4
LP opt 362.4

Routes
32 33 31 35 37 38 39 36 34
13 17 18 19 15 16 14 12
5 3 7 8 10 11 9 6 4 2 1
20 24 25 27 29 30 28 26 23 22 21
43 42 41 40 44 46 45 48 50 49 47

C108 100 IP opt 827.3
LP opt 827.3

Routes
43 42 41 40 44 46 45 48 51 50
52 49 47
5 3 7 8 10 11 9 6 4 2 1 75
20 24 25 27 29 30 28 26 23 22 21
67 65 63 62 74 72 61 64 68 66 69
90 87 86 83 82 84 85 88 89 91
81 78 76 71 70 73 77 79 80
98 96 95 94 92 93 97 100 99
32 33 31 35 37 38 39 36 34
13 17 18 19 15 16 14 12 10
57 55 54 53 56 58 60 59

243

C109 25 IP opt 191.3
LP opt 189.333

Routes
20 24 25 23 22 21
7 8 10 11 9 6 4 2 1 5 3
13 17 18 19 15 16 14 12

C109 50 IP opt 362.4
LP opt 361.61

Routes
32 33 31 35 37 38 39 36 34
13 17 18 19 15 16 14 12
5 3 7 8 10 11 9 6 4 2 1
20 24 25 27 29 30 28 26 23 22 21
43 42 41 40 44 46 45 48 50 49 47

C109 100 IP opt 827.3
LP opt 822.861

Routes
43 42 41 40 44 46 45 48 51 50
52 49 47
5 3 7 8 10 11 9 6 4 2 1 75
20 24 25 27 29 30 28 26 23 22 21
67 65 63 62 74 72 61 64 68 66 69
90 87 86 83 82 84 85 88 89 91
81 78 76 71 70 73 77 79 80
98 96 95 94 92 93 97 100 99
32 33 31 35 37 38 39 36 34
13 17 18 19 15 16 14 12 10
57 55 54 53 56 58 60 59

244 Appendix A. The R1, C1 and RC1 problems

RC101 25 IP opt 461.1
LP opt 406.625

Routes
2 5 7 6 8 3 1 4
14 12 15 16 9 10 13 17
23 21 19 18 25 24
11 22 20

RC101 50 IP opt 944.0
LP opt 850.021

Routes
14 47 12 15 16 9 10 13 17
5 45 2 7 6 8 46 4
27 29 31 34 50
23 21 19 18 48 25
33 30 28 26 32
39 36 38 41 40 43 37 35
11 22 49 20 24
42 44 3 1

RC101 100 IP opt 1619.8
LP opt 1584.094

Routes
82 11 15 16 9 10 13 17
90
64 51 85 84 56 66
69 98 88 53 78 60
63 33 28 30 34 50 91 80
95 62 67 71 94 96 54
23 21 18 49 22 20 25 24
5 45 2 7 6 8 3 1 70
92 31 29 27 26 32 93
59 75 87 97 58 77
65 52 99 57 86 74
72 36 38 41 40 43 37 35
83 19 76 89 48
39 42 44 61 81 68 55
47 14 12 73 79 46 4 100

245

RC102 25 IP opt 351.8
LP opt 351.8

Routes
21 23 19 18 22 20 25 24
12 14 11 15 16 9 10 13 17
7 6 8 5 3 1 4 2

RC102 50 IP opt 822.5
LP opt 719.902

Routes
14 47 11 15 16 9 10 13 17 12
42 44 43 35 37
39 36 40 38 41
34 31 29 27 26 32 50
23 19 18 22 49 48 21 25
1 3 45 5 8 7 6 46 4 2
33 28 30 20 24

RC103 25 IP opt 332.8
LP opt 332.05

Routes
20 19 18 21 23 22 25 24
7 6 8 5 3 1 4 2
12 15 11 9 10 13 16 17 14

RC103 50 IP opt 710.9
LP opt 643.133

Routes
12 14 15 11 9 10 13 16 17 47
33 27 30 32 28 26 29 31 34
20 18 48 21 23 22 49 19 25 24
42 43 44 40 38 41 50
39 36 35 37
2 45 46 8 7 6 4 5 3 1

RC104 25 IP opt 306.6
LP opt 305.825

Routes
20 19 18 21 23 25 24 22
2 6 7 8 4 5 3 1
10 11 15 16 9 13 17 14 12

RC104 50 IP opt 545.8
LP opt 541.8

Routes
12 14 15 11 10 9 13 16 17 47
2 6 7 8 46 4 45 5 3 1
42 44 43 38 37 35 36 40 39 41
20 49 19 23 48 18 21 25 24 22
34 31 29 27 26 28 30 32 33 50

246 Appendix A. The R1, C1 and RC1 problems

RC105 25 IP opt 411.3
LP opt 410.95

Routes
11 9 10
19 23 18 22 20 21 25 24
12 14 15 16 13 17
2 5 3 1 8 6 7 4

RC105 50 IP opt 855.3
LP opt 754.443

Routes
2 45 5 8 6 7 46 4 3 1
42 44 40 35 43
39 36 37 38 41
33 22 49 20
11 9 10
12 14 47 15 16 13 17
31 29 27 30 28 26 32 34 50
19 23 21 48 18 25 24

RC105 100 IP opt 1513.7
LP opt 1495.28

Routes
64 86 87 59 97 75 58
81 61 68
51 76 89 48 21 25 24
92 95 62 67 71 93 96
2 45 5 3 1 8 6 55
12 14 47 15 16 9 10 13 17
83 19 23 18 22 49 20 77
39 36 37 38 41 72 54 94 80
42 44 40 35 43
31 29 27 30 28 26 32 34 50 91
69 88 79 7 46 4 70 100
33 63 85 84 56 66
90 53 98
65 99 52 57 74
82 11 73 78 60

247

RC106 25 IP opt 345.5
LP opt 339.242

Routes
11 15 16 14 12 10 9 13 17
23 21 18 19 20 22 25 24
2 5 8 7 6 4 3 1

RC106 50 IP opt 732.2
LP opt 664.433

Routes
11 12 14 47 15 16 9 10 13 17
42 44 39 40 36 38 41 43 37 35
31 29 27 26 28 34
2 45 5 8 7 6 46 4 3 1
33 30 32 50
23 21 18 19 49 20 22 48 25 24

RC107 25 IP opt 298.3
LP opt 293.550

Routes
12 14 17 16 15 13 9 11 10
25 23 21 18 19 20 22 24
2 6 7 8 5 3 1 4

RC107 50 IP opt 642.7
LP opt 591.476

Routes
2 6 7 8 5 3 1 45 46 4
50
11 12 14 47 17 16 15 13 9 10
23 25 21 49 19 18 48 22 20 24
31 29 27 28 26 34 32 30 33
41 38 39 42 44 43 40 37 35 36

RC108 25 IP opt 294.5
LP opt 280.385

Routes
12 14 17 16 15 13 9 11 10
22 20 19 18 21 23 25 24
2 6 7 8 4 5 3 1

RC108 50 IP opt 598.1
LP opt 538.957

Routes
12 14 47 17 16 15 13 9 11 10
25 23 21 48 18 19 49 20 22 24
2 6 7 8 46 4 45 5 3 1
33 32 30 28 26 27 29 31 34
50
41 42 44 43 40 38 37 35 36 39

248 Appendix A. The R1, C1 and RC1 problems

Appendix B

The solutions to the R2,
C2 and RC2 problems

This appendix lists the solutions to the problems in the Solomon test sets
R2, C2 and RC2, that the algorithm was able to find.

249

250 Appendix B. The R2, C2 and RC2 problems

1

2

3

4

5
6

7

8

910

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

IP opt 463.3
LP opt 460.1

Routes Length

12 9 3 20 10 1 124.2
2 15 14 16 17 13 105.5
5 19 11 7 8 18 6 117.4
21 23 22 4 25 24 116.2

Figure B.1: Optimal solution of R201 with 25 customers.

251

1

2

3

4

5 6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27 28 29

30

31

32

33
34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

IP opt 791.9
LP opt 788.425

Routes Length

27 31 30 11 19 7 8 18 6 113.1
33 9 34 35 24 4 25 145.6
5 45 47 36 49 46 48 17 152.6
28 12 29 3 50 20 10 32 1 128.8
39 23 21 41 22 40 26 111.9
2 42 15 14 44 16 38 43 37 13 139.9

Figure B.2: Optimal solution of R201 with 50 customers.

252 Appendix B. The R2, C2 and RC2 problems

1

2

3

4

5 6

7

8

910

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

IP opt 410.5
LP opt 406.35

Routes Length

3 9 20 10 1 949
21 23 22 4 25 24 12 116.2
2 15 14 16 17 5 13 105.9
7 11 19 8 18 6 93.5

Figure B.3: Optimal solution of R202 with 25 customers.

253

1

2

3

4

5 6

7

8

910

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27
28

29

30

31

32

33
34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

IP opt 698.5
LP opt 692.738

Routes Length

26 21 39 23 41 22 40 90.9
31 7 48 47 36 45 8 18 6 110.4
27 1 30 11 19 49 46 17 5 135.5
28 50 33 3 29 9 20 10 32 35 34
24 4 25 12 222.0
37 42 15 14 44 16 38 43 2 13 139.5

Figure B.4: Optimal solution of R202 with 50 customers.

254 Appendix B. The R2, C2 and RC2 problems

1

2

3

4

5

6

7

8

910

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

IP opt 391.4
LP opt 379.882

Routes Length

6 5 8 17 16 14 13 104.1
2 15 23 22 21 4 25 24 3 12 153.3
18 7 19 11 20 9 10 1 136.5

Figure B.5: Optimal solution of R203 with 25 customers.

255

1

2

3

4

5 6

7

8

910

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

IP opt 393.0
LP opt 381.283

Routes Length

6 17 13 67.9
12 21 22 23 4 25 24 122.6
2 15 14 16 5 18 8 7 19 11 10 2 0 9 3 1 205.0

Figure B.6: Optimal solution of R205 with 25 customers.

256 Appendix B. The R2, C2 and RC2 problems

1

2
3

4
5

6

7

8

9

10

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

IP opt 214.7
LP opt 214.7

Routes Length

5 2 1 7 3 4 71.2
20 22 24 6 23 18 19 16 14 12 15
17 13 25 9 11 10 8 21 146.0

Figure B.7: Optimal solution of C201 with 25 customers.

257

1

2 3
45

6

7

8

9

10

11

12

13

14

15

16

17
18

19

20

21

22

23

24

2526

27
28

29

30

31

32

3334

35

36

37

38

39

40

41
42

43

44

45

46

47

48

49

50

IP opt 360.2
LP opt 360.2

Routes Length

5 2 1 7 3 4 71.2
49 40 44 46 45 50 47 43 42 41 48 96.4
20 22 24 27 30 29 6 32 33 31 35
37 38 39 36 34 28 26 23 18 19 16
14 12 15 17 13 25 9 11 10 8 21 197.6

Figure B.8: Optimal solution of C201 with 50 customers.

258 Appendix B. The R2, C2 and RC2 problems

1

2
3

4
5

6

7

8

9

10

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

IP opt 214.7
LP opt 214.7

Routes Length

5 2 1 7 3 4 71.2
20 22 24 6 23 18 19 16 14 12 15
17 13 25 9 11 10 8 21 146.0

Figure B.9: Optimal solution of C202 with 25 customers.

259

1

2
3

4
5

6

7

8

9

10

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

IP opt 214.7
LP opt 214.7

Routes Length

5 2 1 7 3 4 71.2
20 22 24 6 23 18 19 16 14 12 15
17 13 25 9 11 10 8 21 146.0

Figure B.10: Optimal solution of C203 with 25 customers.

260 Appendix B. The R2, C2 and RC2 problems

1

2
3

4
5

6

7

8

9

10

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

IP opt 214.7
LP opt 214.7

Routes Length

5 2 1 7 3 4 71.2
20 22 24 6 23 18 19 16 14 12 15
17 13 25 9 11 10 8 21 146.0

Figure B.11: Optimal solution of C205 with 25 customers.

261

1

2
3

4
5

6

7

8

9

10

11

12

13

14

15

16

17
18

19

20

21

22

23

24

25

IP opt 214.7
LP opt 197.7

Routes Length

5 2 1 7 3 4 71.2
20 22 24 6 23 18 19 16 14 12 15
17 13 25 9 11 10 8 21 146.0

Figure B.12: Optimal solution of C206 with 25 customers.

262 Appendix B. The R2, C2 and RC2 problems

1

2
3

4
5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

IP opt 214.5
LP opt 207.981

Routes Length

5 2 1 7 3 4 71.2
20 22 24 6 23 18 17 19 16 14 12 15
13 25 9 11 10 8 21 145.8

Figure B.13: Optimal solution of C207 with 25 customers.

263

1

2
3

4
5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

IP opt 214.5
LP opt 193.28

Routes Length

5 2 1 7 3 4 71.2
20 22 24 6 23 18 17 19 16 14 12 15
13 25 9 11 10 8 21 145.8

Figure B.14: Optimal solution of C208 with 25 customers.

264 Appendix B. The R2, C2 and RC2 problems

1

2

3

4

5

6

7

8

9

1011

12

13

14

15

16

17

18

19

20

21

22

23

24

25

IP opt 360.2
LP opt 356.65

Routes Length

23 21 18 19 22 20 24 25 124.0
2 5 8 7 6 3 1 4 113.4
14 12 16 15 11 9 10 13 17 125.3

Figure B.15: Optimal solution of RC201 with 25 customers.

265

1

2

3

4

5

6

7

8

9

10
11

12

13

14

15
16

17

18

19

20

21

22

23

24

25

26

27

28

2930

31

32

33

34

35
36

37
38

39

40

41

42

43

444546

47

48

49

50

IP opt 684.4
LP opt 670.15

Routes Length

14 47 16 15 12 11 9 10 13 17 128.1
5 45 2 6 7 8 46 3 1 4 118.9
23 21 18 19 49 22 20 24 25 48 131.3
42 39 36 44 41 38 40 35 37 43 135.2
33 31 29 27 30 28 26 34 50 32 176.3

Figure B.16: Optimal solution of RC201 with 50 customers.

266 Appendix B. The R2, C2 and RC2 problems

1

2

3

4

5

6

7

8

9

1011

12

13

14

15

16

17

18

19

20

21

22

23

24

25

IP opt 338.0
LP opt 307.6

Routes Length

12 14 16 15 11 9 10 13 17 338.0
23 21 18 19 22 20 25 24
2 6 7 8 5 3 1 4 307.6

Figure B.17: Optimal solution of RC205 with 25 customers.

Appendix C

Ph. D. theses from IMM

1. Larsen, Rasmus. (1994). Estimation of visual motion in image
sequences. xiv + 143 pp.

2. Rygard, Jens Moberg. (1994). Design and optimization of flexible
manufacturing systems. xiii + 232 pp.

3. Lassen, Niels Christian Krieger. (1994). Automated determina-
tion of crystal orientations from electron backscattering patterns. xv
+ 136 pp.

4. Melgaard, Henrik. (1994). Identification of physical models. xvii
+ 246 pp.

5. Wang, Chunyan. (1994). Stochastic differential equations and a
biological system. xxii + 153 pp.

6. Nielsen, Allan Aasbjerg. (1994). Analysis of regularly and irreg-
ularly sampled spatial, multivariate, and multi-temporal data. xxiv +
213 pp.

7. Ersbøll, Annette Kjær. (1994). On the spatial and temporal cor-
relations in experimentation with agricultural applications. xviii +
345 pp.

267

268 Appendix C. Ph. D. theses from IMM

8. Møller, Dorte. (1994). Methods for analysis and design of hetero-
geneous telecommunication networks. Volume 1-2, xxxviii + 282 pp.,
283-569 pp.

9. Jensen, Jens Christian. (1995). Teoretiske og eksperimentelle
dynamiske undersøgelser af jernbanekøretøjer. ATV Erhvervsforsker-
projekt EF 435. viii + 174 pp.

10. Kuhlmann, Lionel. (1995). On automatic visual inspection of re-
flective surfaces. ATV Erhvervsforskerprojekt EF 385. Volume 1,
xviii + 220 pp., (Volume 2, vi + 54 pp., fortrolig).

11. Lazarides, Nikolaos. (1995). Nonlinearity in superconductivity and
Josephson Junctions. iv + 154 pp.

12. Rostgaard, Morten. (1995). Modelling, estimation and control of
fast sampled dynamical systems. xiv + 348 pp.

13. Schultz, Nette. (1995). Segmentation and classification of biologi-
cal objects. xiv + 194 pp.

14. Jørgensen, Michael Finn. (1995). Nonlinear Hamiltonian sys-
tems. xiv + 120 pp.

15. Balle, Susanne M. (1995). Distributed-memory matrix computa-
tions. iii + 101 pp.

16. Kohl, Niklas. (1995). Exact methods for time constrained routing
and related scheduling problems. xviii + 234 pp.

17. Rogon, Thomas. (1995). Porous media: Analysis, reconstruction
and percolation. xiv + 165 pp.

18. Andersen, Allan Theodor. (1995). Modelling of packet traffic
with matrix analytic methods. xvi + 242 pp.

19. Hesthaven, Jan. (1995). Numerical studies of unsteady coherent
structures and transport in two-dimensional flows. Risø-R-835(EN)
203 pp.

269

20. Slivsgaard, Eva Charlotte. (l995). On the interaction between
wheels and rails in railway dynamics. viii + 196 pp.

21. Hartelius, Karsten. (1996). Analysis of irregularly distributed
points. xvi + 260 pp.

22. Hansen, Anca Daniela. (1996). Predictive control and identifica-
tion - Applications to steering dynamics. xviii + 307 pp.

23. Sadegh, Payman. (1996). Experiment design and optimization in
complex systems. xiv + 162 pp.

24. Skands, Ulrik. (1996). Quantitative methods for the analysis of
electron microscope images. xvi + 198 pp.

25. Bro-Nielsen, Morten. (1996). Medical image registration and
surgery simulation. xxvii + 274 pp.

26. Bendtsen, Claus. (1996). Parallel numerical algorithms for the
solution of systems of ordinary differential equations. viii + 79 pp.

27. Lauritsen, Morten Bach. (1997). Delta-domain predictive control
and identification for control. xxii + 292 pp.

28. Bischoff, Svend. (1997). Modelling colliding-pulse mode-locked
semiconductor lasers. xxii + 217 pp.

29. Arnbjerg-Nielsen, Karsten. (1997). Statistical analysis of urban
hydrology with special emphasis on rainfall modelling. Institut for
Miljøteknik, DTU. xiv + 161 pp.

30. Jacobsen, Judith L. (1997). Dynamic modelling of processes in
rivers affected by precipitation runoff. xix + 213 pp.

31. Sommer, Helle Mølgaard. (1997). Variability in microbiological
degradation experiments - Analysis and case study. xiv + 211 pp.

32. Ma, Xin. (1997). Adaptive extremum control and wind turbine
control. xix + 293 pp.

33. Rasmussen, Kim Ørskov. (1997). Nonlinear and stochastic dy-
namics of coherent structures. x + 215 pp.

270 Appendix C. Ph. D. theses from IMM

34. Hansen, Lars Henrik. (1997). Stochastic modelling of central heat-
ing systems. xxii + 301 pp.

35. Jørgensen, Claus. (1997). Driftsoptimering p̊a kraftvarmesyste-
mer. 290 pp.

271

36. Stauning, Ole. (1997). Automatic validation of numerical solu-
tions. viii + 116 pp.

37. Pedersen, Morten With. (1997). Optimization of recurrent neural
networks for time series modeling. x + 322 pp.

38. Thorsen, Rune. (1997). Restoration of hand function in tetraplegics
using myoelectrically controlled functional electrical stimulation of the
controlling muscle. x + 154 pp. + Appendix.

39. Rosholm, Anders. (1997). Statistical methods for segmentation
and classification of images. xvi + 183 pp.

40. Petersen, Kim Tilgaard. (1997). Estimation of speech quality in
telecommunication systems. x + 259 pp.

41. Jensen, Carsten Nordstrøm. (1997). Nonlinear systems with
discrete and continuous elements. 195 pp.

42. Hansen, Peter S.K. (1997). Signal subspace methods for speech
enhancement. x + 214 pp.

43. Nielsen, Ole Møller. (1998). Wavelets in scientific computing. xiv
+ 232 pp.

44. Kjems, Ulrik. (1998). Bayesian signal processing and interpreta-
tion of brain scans. iv + 129 pp.

45. Hansen, Michael Pilegaard. (1998). Metaheuristics for multiple
objective combinatorial optimization. x + 163 pp.

46. Riis, Søren Kamaric. (1998). Hidden markov models and neural
networks for speech recognition. x + 223 pp.

47. Mørch, Niels Jacob Sand. (1998). A multivariate approach to
functional neuro modeling. xvi + 147 pp.

48. Frydendal, Ib. (1998.) Quality inspection of sugar beets using vi-
sion. iv + 97 pp. + app.

49. Lundin, Lars Kristian. (1998). Parallel computation of rotating
flows. viii + 106 pp.

272 Appendix C. Ph. D. theses from IMM

50. Borges, Pedro. (1998). Multicriteria planning and optimization. -
Heuristic approaches. xiv + 219 pp.

51. Nielsen, Jakob Birkedal. (1998). New developments in the theory
of wheel/rail contact mechanics. xviii + 223 pp.

52. Fog, Torben. (1998). Condition monitoring and fault diagnosis in
marine diesel engines. xii + 178 pp.

53. Knudsen, Ole. (1998). Industrial vision. xii + 129 pp.

54. Andersen, Jens Strodl. (1998). Statistical analysis of biotests. -
Applied to complex polluted samples. xx + 207 pp.

55. Philipsen, Peter Alshede. (1998). Reconstruction and restoration
of PET images. vi + 134 pp.

56. Thygesen, Uffe Høgsbro. (1998). Robust performance and dissi-
pation of stochastic control systems. 185 pp.

57. Hintz-Madsen, Mads. (1998). A probabilistic framework for clas-
sification of dermatoscopic images. xi + 153 pp.

58. Schramm-Nielsen, Karina. (1998). Environmental reference ma-
terials methods and case studies. xxvi + 261 pp.

59. Skyggebjerg, Ole. (1999). Acquisition and analysis of complex
dynamic intra- and intercellular signaling events. 83 pp.

60. Jensen, Kaare Jean. (1990). Signal processing for distribution
network monitoring. x + 140 pp.

61. Folm-Hansen, Jørgen. (1999). On chromatic and geometrical cal-
ibration. xiv + 241 pp.

62. Larsen, Jesper. (1999). Parallelization of the vehicle routing prob-
lem with time windows. viii + 241 pp.

63. Clausen, Carl Balslev. (1999). Spatial solitons in quasi-phase
matched struktures. vi + (flere pag.)

273

64. Kvist, Trine. (1999). Statistical modelling of fish stocks. xiv + 175
pp.

65. Andresen, Per Rønsholt. (1999). Surface-bounded growth model-
ing applied to human mandibles. xxii + 116 pp.

