
                    
 

 

 
 

 

 
 

 
 

 

 

 

 
 

 

 
 

 
 
 

 

 
 

 
 

 

 

 

 

 
 

 

 

 

 

 

 

Parallelized Architecture of Multiple Classifiers for Face Detection 

Junguk Cho† , Bridget Benson† , Shahnam Mirzaei‡ ,        Ryan Kastner† 

Abstract—This paper presents a parallelized architecture of 
multiple classifiers for face detection based on the Viola and 
Jones object detection method. This method makes use of the 
AdaBoost algorithm which identifies a sequence of Haar 
classifiers that indicate the presence of a face. We describe the 
hardware design techniques including image scaling, integral 
image generation, pipelined processing of classifiers, and 
parallel processing of multiple classifiers to accelerate the 
processing speed of the face detection system. Also we discuss 
the parallelized architecture which can be scalable for 
configurable device with variable resources. We implement the 
proposed architecture in Verilog HDL on a Xilinx Virtex-5 
FPGA and show the parallelized architecture of multiple 
classifiers can have 3.3× performance gain over the 
architecture of a single classifier and an 84× performance gain 
over an equivalent software solution. 

I. INTRODUCTION 

Face detection is the act of determining the location and 
sizes of faces in an image. It is an active area of research in 
the image processing field over the past years due to its 
potential applications in monitoring and surveillance [1], 
human computer interfaces [2], smart rooms [3], intelligent 
robots [4], and biomedical image analysis [5]. Numerous 
approaches have been proposed for face detection in images. 
Simple features such as color, motion, and texture are used 
for the face detection in early researches. However, these 
methods typically break down easily in real world situations 
due to the complexity of the image background. 

The Viola and Jones method for object detection [6] is 
the first and one of the most popular techniques for real-time 
face detection. Their approach utilizes pattern classification 
to determine the existence of a face.  More specifically they 
search for a sequence of Haar features that indicate the 
presence of a face. This algorithm requires considerable 
computational power due to the sheer number of Haar 
features that must be identified to detect a face. One face is 
comprised of a substantial amount of features, which 
typically computed over a window of 24×24 pixels. Even a 
small window can generate a substantial number of features, 
e.g. a 24×24 window contains over 180,000 Haar features. 
Therefore, fast and accurate detection requires careful 
selection of the features to search for, which is performed 
using the AdaBoost algorithm [7].  And while every window 

does not typically require the computation of all features – 
the detection is performed in stages and the absence of 
something that looks similar to a face is designed to 
terminate quickly – this is still a substantial amount of 
computation. Therefore, this constitutes a bottleneck to the 
application of object detection in real time. 

In this paper, we present a parallelized architecture of 
multiple classifiers for real-time face detection. We propose 
hardware design techniques to accelerate the processing 
speed of face detection. The face detection system generates 
an integral image window during one clock cycle. Then it 
performs classification operations in parallel using multiple 
classifiers to detect a face in the image sequence. The main 
contribution of our work is design and implementation of a 
physically feasible hardware system to accelerate the 
processing speed of the operations required for real-time face 
detection. Therefore, this work has resulted in the 
development of a complete real-time face detection system 
employing an FPGA implemented system designed by 
Verilog HDL. Its performance has been measured and 
compared with an equivalent software implementation. The 
system is fully-functional; it can interface with a variety of 
cameras and output the results to a display. 

This paper is organized as follows: In Section 2, we 
explain the face detection algorithm and review the related 
work found in literature in hardware implementations of face 
detection. In Section 3, we describe the hardware 
architecture, designed with Verilog HDL, of a face detection 
system using block diagrams. We also present the 
implementation of the real-time face detection system in an 
FPGA. In Section 4, we show the corresponding 
performance. Finally, we conclude in Section 5. 

II. FACE DETECTION 

A. Face Detection Algorithm 
The Viola and Jones [6] face detection algorithm is used 

as the basis of our design. The face detection algorithm looks 
for specific Haar features of a human face. When one of 
these features is found, the algorithm allows the face 
candidate to pass to the next stage of detection. A face 
candidate is a rectangular section of the original image called 
a sub-window. Generally these sub-windows have a fixed 
size (typically 24×24 pixels).  This sub-window is often 
scaled in order to obtain a variety of different size faces. The 



 

 

  

 

 
 

 
 

 
 

  

 
 

  
 

 
 

  
 

 
 

 
  

   

  

 
 

 

       
 

 
 

 

  

 

 

 

 

 

algorithm scans the entire image with this window and 
denotes each respective section a face candidate [6]. 

The algorithm uses an integral image in order to process 
Haar features of a face candidate in constant time. It uses a 
cascade of stages which is used to eliminate non-face 
candidates quickly. Each stage consists of many different 
Haar features. Each feature is classified by a Haar classifier. 
The Haar classifiers generate an output which can then be 
provided to the stage comparator. The stage accumulator 
sums the outputs of the Haar classifiers and compares this 
value with a stage threshold to determine if the stage should 
be passed. If all stages are passed the face candidate is 
concluded to be a face.  These terms will be discussed in 
more detail in the following sections. 

1) Integral Image: The integral image is defined as the 
summation of the pixel values of the original image. The 
value at any location (x,y) of the integral image is the sum of 
the image’s pixels above and to the left of location (x,y). 
Figure 1 illustrates the integral image generation. The 
shaded region represents the sum of the pixels up to position 
(x,y) of the image. A 3×3 image with unit values for pixels 
and its corresponding integral image representation are 
shown on the right. 

Integral image generation. Figure 1. 

2) Haar Feature: Haar features are composed of either 
two or three rectangles.  Face candidates are searched for 
Haar features of the current stage. The weight and size of 
each feature and the features themselves are generated using 
a machine learning algorithm from AdaBoost [6][7]. The 
weights are constants generated by the learning algorithm. 
There are a variety of forms of features as seen below in Fig. 
2. Each Haar feature has a value that is calculated by taking 
the area of each rectangle, multiplying each by their 
respective weights, and then summing the results. The area 
of each rectangle is easily found using the integral image. 
By using each corner of a rectangle, the area can be 
computed quickly as denoted by Fig. 3. Since L1 is 
subtracted off twice it must be added back on to get the 
correct area of the rectangle. The area of the rectangle R, 
denoted as the rectangle integral, can be computed as 
follows using the locations of the integral image: L4-L3 
L2+L1, as shown in Fig. 3. 

3) Classifier: A Haar classifier uses the rectangle 
integral to calculate the value of a Haar feature. The Haar 
classifier multiplies the weight of each rectangle by its area 
and this result is compared with the threshold. The value of 
a Haar feature is added together. Several Haar classifiers 
compose a stage. A stage accumulator sums all the Haar 
classifier results in a stage and a stage comparator compares 
this summation with a stage threshold. The threshold is also 
a constant obtained from the AdaBoost algorithm.  Each 

stage does not have a set number of Haar features. 
Depending on the parameters of the training data individual 
stages can have a varying number of Haar features.  For 
example, Viola and Jones’ data set used 2 features in the 
first stage and 10 in the second. All together they used a 
total of 38 stages and 6060 features [6]. Our data set is 
based on the OpenCV data set which used 22 stages and 
2135 features in total [8][9]. 

Figure 2. Two examples of Haar features. 

Figure 3. Calculating the area of a rectangle R. 

4) Cascade: The Viola and Jones face detection 
algorithm eliminates face candidates quickly using a 
cascade of stages. The cascade eliminates candidates by 
making stricter requirements in each stage with later stages 
being much more difficult for a candidate to pass. 
Candidates exit the cascade if they pass all stages or fail any 
stage. A face is detected if a candidate passes all stages. 
This process is shown in Fig. 4. 

Figure 4. Cascade of stages. 

B. Related Work 
Viola and Jones [6] proposed a rapid and robust face 

detection method. This method utilized the AdaBoost 
algorithm [7], which identifies a sequence of Haar classifiers 
that indicate the presence of a face. Mita el al. [10] also 
proposed such Haar classifier face detection algorithm with 
more Haar features in each classifier stage to improve the 
detection rate and to lower false alarm rate at the same time. 
Lienhart et al. [11] were the first to introduce the face 
detection algorithm into Intel Integrated Performance 
Primitives, which was later included in OpenCV. 

Almost all of the available literatures on real-time face 
detection are theoretical or describe a software 
implementation. Only a few papers have addressed a 
hardware design and implementation of real-time face 
detection. Theocharides et al. [12] presented the 



 

  
 

 
 

 

 

 

 

 

  

 
 

 

 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 

 

 

implementation of a neural network based face detection in 
an ASIC to accelerate processing speed. However, VLSI 
technology requires a large amount of development time and 
cost. Also it is difficult to change design. McCready [13] 
designed and implemented face detection for the 
Transmogrifier-2 configurable hardware system. This 
implementation utilized nine FPGA boards. Sadri et al. [14] 
implemented neural network based face detection on the 
Virtex-II Pro FPGA. Skin color filtering and edge detection 
are used to reduce the processing time. However, some 
operations are implemented on hardcore PowerPC processor 
with embedded software. Wei et al. [15] presented FPGA 
implementation for face detection using scaling input images 
and fixed-point expressions. However, the image size is too 
small (120×120 pixels) to be practical and only some parts of 
classifier cascade are actually implemented. A low-cost 
detection system was implemented using a Cyclone II FPGA 
by Yang et al. [16]. The frame rate of this system is 13 fps 
with low detection rate of about 75%. Nair et al. [17] 
implemented an embedded system for human detection on an 
FPGA. It can process the images at speeds of 2.5 fps with 
about 300 pixels images. Gao et al. [18] presented an 
approach to use an FPGA to accelerate Haar feature 
classifier based face detection. They re-trained the Haar 
classifier with 16 classifiers per stage. However, only 
classifiers are implemented in the FPGA. The integral image 
generation and detected face display are processed in a host 
microprocessor. Also the largest Virtex-5 FPGA was used 
for the implementation because the design size was too large. 
Hiromoto et al. [19] implemented real-time object detection 
based on the AdaBoost algorithm. They proposed a hybrid 
architecture of a parallel processing module for the former 
stages and a sequential processing module for the subsequent 
stages in the cascade. Since the parallel processing module 
and the sequential processing module are divided after 
evaluating a processing time with fixed Haar feature data, it 
should be designed and implemented again in order to apply 
new Haar feature data. Also the experimental result and 
analysis of the implemented system are not discussed. Lai et 
al. [20] presented a hardware architecture design on an 
FPGA based on the AdaBoost algorithm for face detection. It 
can achieve theoretical 143 fps detection for 640×480 
images. However, they implemented only 52 classifiers in 
single stages. Because of the small number of classifiers, its 
results show lower detection rate and higher false alarm rate 
than OpenCV’s 3125 classifier implementation. 

III. HARDWARE ARCHITECTURE 

A. System Overview 
We proposed a parallelized architecture of multiple 

classifiers for a real-time face detection system. Figure 5 
shows the overview of the proposed architecture for face 
detection. It consists of seven modules: image interface, 
frame grabber, image store, image scaler, Haar classifier, 
display, and DVI interface. The image interface and DVI 
interface are implemented using ASIC custom chips with the 
FPGA board. The others are designed using Verilog HDL 

and implemented in an FPGA in order to perform face 
detection in real-time. 
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Figure 5. Block diagram of proposed face detection system. 

B. FPGA Architecture 
1) Frame Grabber: In the frame grabber module, the 

frame grabber controller generates the control signals for 
controlling the A/D converter which converts the analog 
image signals into digital image data, and the sync separator 
which generates the image sync signals in the image 
interface module. The color image data and sync signals are 
transferred from the image interface module to the frame 
grabber module. The image cropper crops the images based 
on the sync signals. These image data and sync signals are 
used in all of the modules of the face detection system. 

2) Image Store: The image store module stores the 
image data arriving from the frame grabber module frame 
by frame. This module transfers the image data to the Haar 
classifier module based on the scale information from the 
image scaler module. The image store module uses BRAMs 
of FPGA. It can store the image of a frame. The size of 
BRAMs can be scaled for the source image resolution. 

3) Image Scaler: The images are scaled down based on 
a scale factor by the image scaler module. The image scaler 
module generates and transfers the address of the BRAMs 
containing a frame image in the image store module to 
request image data according to a scale factor. The image 
store module transfers a pixel data to the Haar classifier 
module based on the address of BRAMs required from the 
image scaler module. 

4) Haar Classifier: The Haar classifier module performs 
the classification for the face detection. It is the critical 
module of the whole face detection system. This module 
consists of the image line buffers, image window buffer, 
integral image window buffer, line buffer controller, and 
window buffer controller to generate the integral image 
window, classifiers, training data, feature counter, stage 
accumulator, stage comparator, and stage training data to 
perform the classification as shown in Fig. 6. 

The face detection is performed by Haar classification 
using an integral image. The integral image generation 
requires substantial computation. A general purpose 
computer of Von Neumann architecture has to access image 
memory at least width×height times to get the value of each 



 

 

            
 

 
 

 

  

 

 

 

 

 

          
    

  

 

 

 
  

  

pixel when it processes an image with width×height pixels. It 
may take a long latency delay every frame. In order to reduce 
memory access and processing time, we propose a specific 
architecture for the integral image generation. This 
architecture stores the necessary pixels for processing each 
pixel and its neighboring pixels together. The image line 
buffers store some parts of the image. The image line buffers 
use dual port BRAMs where the number of BRAMs is the 
same as that of the row-1 in the image window buffer. Each 
dual port BRAM can store one line of an image. Thus, the x-
coordinates of the pixels can be used as the address for the 
dual port BRAM. For the incoming pixel where the 
coordinate is (x,y), the image line buffers controller performs 
operations such as in (1), where n is the image window row 
size, p(x,y) is the incoming pixel value, and L(x,y) represents 
each pixel in the image line buffer. 

( ,  � ) L x y  ( ,  (k 1))  k n  2  (1) L x y  k  � �  , where 1 d d �
L x y  k  ( ,  � ) p x y  k( ,  )  , where 0 . 

With these operations, the pixel values in the lines of an 
image are stored in dual port BRAMs. Since each dual port 
BRAM stores one line of an image, it is possible to get one 
pixel value from every line simultaneously. 

Figure 6. Block diagram of proposed face detection system. 

The image window buffer stores pixel values moving 
from the image line buffer. It has two n×n windows, actually 
n×2n window. The first n×n window calculates the 
accumulated values of each column of the image window 
buffer. Each column except the right-most column has only 
one adder as shown in Fig. 7. The adder of the most second 
right column calculates the summation of first row and 
second row pixel values in the right-most column. The adder 
of the third right column calculates the summation of the first, 
second, and third row pixel values in the second right 
column. Finally, the adder of n-th column calculates the 
summation of all pixel values in the (n-1)-th column. The 
pipeline scheme is applied in this part, so the latency of first 
summation of all pixel values in the column is n clock cycles. 
The second n×n window latches and moves the accumulated 
values of the column to the adjacent column. The 
accumulated values are used to generate the integral image 
window. Since pixels of an image window buffer are stored 
in registers, it is possible to access all pixels in the image 

window buffer simultaneously to generate the integral image 
window. For the incoming pixel with coordinate (x,y), the 
image window buffer controller performs operation as in (2) 
where n and 2n are the row and column size of the image 
window buffer, respectively. p(i,j) is the incoming pixel 
value in the image window buffer; p(x,y) is the incoming 
pixel value; I(i,j) represents each of the pixels in the image 
window buffer; and L(x,y) represents each of the pixels in the 
image line buffer. 

( � , I i  ( � �  1),  j) , where 1 k 2n 1,1  l n 1I i k j  ) (k d d  �  d d �  
( ,  � ) L x y  ( ,  (l 1))  k 0,1  d d �  l nI i j  l  � �  , where 1 (2) 
( � �  , ) p i k  ( ,  )  p x y  , where k l  0 .I i  k j  l  ( ,  )  

The accumulation of pixels in one column is calculated in 
the image window buffer as in (3). when � n 1,k l �

( , 1) ( (k 1), j 1) ( (k 1), j l 1)) I i k j  I i  I i  (�  �  � �  � � � �  � � ,        (3) 
where 1  k n  1,0  l n 2d d �  d d � . 

The integral image window buffer calculates the integral 
image value of n×n window using the accumulated value of 
the column in the image window buffer. Every cell of the 
integral image window has one adder and one subtractor as 
shown in Fig. 7. Each cell of the integral image window adds 
the previous integral values to the accumulated values from 
the image window buffer, and subtracts the accumulated 
values from the left-most column of the image window 
buffer. Using this mechanism and architecture, we can 
generate the integral image of current n×n window during 
one clock cycle. Since pixels of an integral image window 
buffer are stored in registers, it is possible to access all 
integral pixels in the integral image window buffer 
simultaneously to perform the Haar classification. For 
incoming pixel with coordinate (i,j), the integral image 
window buffer controller performs operation as in (4) where 
n is the row and column size of the integral image window 
buffer. II(s,t) represents each of the integral pixels in the 
integral image window buffer; and I(i,j) represents each of 
the pixels in the image window buffer. 

II s u t  v  ( , ) I ( � � � � � � � �  �) ( , ) ( n 1),  j l  ) ,� �  I s u t v  I i k j l  I i  
where 0 u n  1, 0 d d � , 0 d d �  

,  (2           (4) 
d d � v n  1 l n  1 

n 1 k 2n 2� d d  � . 

Figure 7 shows all of the actions in the proposed 
architecture to generate the integral image. The contents of 
the image line buffers, image window buffer, and integral 
image window buffer are updated according to any stage fail 
signal or the all stages pass signal from the stage comparator. 
So while the Haar classification is processing, they maintain 
their value corresponding the current window. For every 
image from the frame grabber module, the integral image of 
the current window is calculated to perform the Haar 
classification using the integral image. 



 

 

 

 

   

n-1 

 
 

 
 

 

 

 

 

 
 

 
 

 
 

Image Line Buffer 

Image Window Buffer 

n 

2n 

Current Pixel Input at (x,y) : p(x,y) 

Integral Image Window Buffer 

n 

n n n 

) 

Figure 7. Architecture for generating integral image window. 

Figure 8. Haar feature calculation of Haar classifier. 
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A Haar classifier has a Haar feature which consists of 
two or three rectangles and their weight, threshold, and left 
and right values. Each rectangle presents four points, x, y, 
x+width, y+height, using the coordinates (x,y) of most left 
and up point, width, width, and height, height, as shown in 
Fig. 8. The integral image value of each rectangle can be 
calculated using these points from the integral image 
window buffer as shown in Fig. 9. Since integral pixel values 
in an integral image window buffer are stored in registers, it 
is possible to access all integral pixel values in the integral 
image window buffer simultaneously to calculate the integral 
image value of the rectangles of the Haar classifier. It 
enables us to save the memory access time. 

Haar feature are calculated by the method as shown in Fig. 8. 
The integral image values of Haar classifier are obtained 
from the integral image window buffer as shown in Fig. 9. 
Integral image value of each rectangle of Haar feature 
multiplies with its weight, weight. The summation of all 
integral image values multiplied by their weight is the result 
of one Haar classifier. This result is compared with the 
threshold, threshold. If the result is smaller than the 
threshold, the final resultant value of this Haar classifier is 
the left value, left. Otherwise, the final resultant value is the 
right value, right. This final resultant value is accumulated 
during the same stage. The accumulated value of the stage is 
compared with the stage threshold, stage threshold, when 
each stage is done. If the accumulated value is larger than the 
stage threshold, it goes to the next stage and so on to decide 
if this image window could pass all stages. Otherwise, this 
image window is not a face if it fails in any stage. The 
proposed architecture of the Haar classifier is implemented 
based on a pipeline scheme as shown in Fig. 10. During each 
clock cycle, the integral image values of Haar classifier from 
the integral image window buffer and the training data of 
Haar classifier from the training data BRAMs are fed to 
calculate the result of classification continuously. The 
latency for the first Haar classifier is five clock cycles. 

width 

L(x,y-(n-2)) 

...... ...... L(x,y- ) 

L(x,y-1) 

II(s-(n-1),t-(n-1)) I(i-(2n-1),j-(n-1)) 

L(x,y) 

I(i,j-(n-2)) 

I(i,j-(n-1)) 

Figure 9. Simultaneous access to integral image window in order to 
calculate integral image of Haar classifiers. 

Figure 10 shows the architecture of a Haar classifier for 
face detection. All training data are stored in the BRAMs. 

Figure 10. Architecture for performing Haar classification. 

5) Display: The display module stores the information 
of the detected faces which are transferred from the 
classifier module. It displays the white squares on the faces 
in the image sequence by converting pixel value to white 
color according to the information of the detected faces. In 
the display module, the Digital Visual Interface (DVI) 
specification is applied to display the processed image 
sequence to the LCD monitor through a DVI transmitter in 
the DVI interface module. This module generates the sync 
signals and image data for the DVI transmitter using the 

Four points, x, y, x+width, y+height, of one rectangle of the image data and sync signals from the frame grabber module. 



 

  

   
   

    
   
     
     
     
    

 

 

 

 

 

 

 

  

 

 

 

 

 

 
 

 

 

 

 
 

C. FPGA Implementation 
The proposed parallelized architecture of multiple 

classifiers for face detection has been designed using Verilog 
HDL and implemented in an FPGA. We use the Haar 
training data from OpenCV to detect the frontal human faces 
based on the Viola and Jones algorithm [8][9]. This cascade 
of Haar training data were trained by frontal faces of size 
20×20. This cascade includes a total of 22 stages, 2135 Haar 
classifiers, and 4630 Haar features. Table 1 shows the 
number of Haar classifiers in each stage. 

TABLE I. NUMBER OF HAAR CLASSIFIERS IN EACH STAGE 

Stage Number of 
Classifier Stage Number of 

Classifier Stage Number of 
Classifier 

0 3 8 56 16 140 
1 16 9 71 17 160 
2 21 10 80 18 177 
3 39 11 103 19 182 
4 33 12 111 20 211 
5 44 13 102 21 213 
6 50 14 135 Total 2135 

The proposed face detection is performed in two major 
parts. The first part is grabbing and scaling. This part 
consists of the frame grabber, image store, and image scaler 
modules. These modules are for grabbing images and 
generating scaled images. Sub-windows for the Haar 
classifier are expanded to detect large objects in Viola and 
Jones object detection algorithm. Since the Haar feature 
classifier consists of simple rectangles, scaling a sub-window 
is not hard. Therefore, this method is widely used for 
software object detection implementation. However, the 
larger cache memory of the integral image is required 
according to the larger size of a sub-window to achieve fast 
memory access, which is difficult to implement in hardware. 
A scaling image technique is used in hardware instead of the 
scaling sub-window because it does not need a huge cache 
memory for fast memory access and it is easy to implement 
in hardware. Since our architecture has a 20×20 fixed 
integral image window, it needs to scale input images down 
to detect large faces. To make scaled images, we use a 
nearest neighbor interpolation algorithm with a factor of 1.2. 
A pixel value in the scaled images is set to the value of the 
nearest pixel in the original images. This is the simplest 
interpolation algorithm that requires a lower computation 
cost. The number of the scaled images depends on the input 
image resolution. Our scaler module performs the down-
scaling of input images until the height of the scaled image is 
similar with the size of the integral image window. The 
scaler module for 320×240 pixels images has 14 scale factors 
(1.20~1.213), the scaler module for 640×480 pixels images 
has 18 scale factors (1.20~1.217). The more scale factors need 
more processing time because of the increase of the 
candidate windows. 

The second part of the face detection system is 
performing Haar classification using the integral image. This 
part consists of a Haar classifier module which has the image 
line buffers, image window buffer, integral image window 
buffer, classifiers, stage comparator, and training data 

blocks. Since generating the integral image of the whole 
scaled image requires substantial computation power and 
time, we generate the integral image of only the current 
image window. The image line buffer (19 lines), image 
window buffer (20×40 cells), and integral image window 
buffer (20×20 cells) are implemented to generate the integral 
image of the current window during one clock cycle. The 
pixel data are stored and moved in the image line buffer 
according to the mechanism of the architecture explained in 
the previous section. 

We design and implement scalable multiple classifiers (1, 
2, 4, 6, 8 classifiers). These classifiers have multiple 
classifiers which process in parallel. The integral image 
window buffer can be accessed simultaneously by each 
classifier because the integral image window stores the 
integral pixel values in registers. The training data are stored 
in the BRAMs of an FPGA. The BRAMs for the training 
data consist of 7 BRAMs: 3 BRAMs for 3 rectangles of Haar 
feature (x, y, width, height, weight), 3 BRAMs for the 
threshold, left and right, respectively, and 1 BRAM for the 
stage threshold. Although Haar classifiers are composed of 
either two or three rectangles, all Haar classifiers are 
uniformed as having only 3 rectangles for hardware 
implementation. If the Haar classifier has 2 rectangles, the 
third rectangle has 0 values. These values are called 
according to the stage and feature numbers. The classifiers 
module calculates the stage and feature numbers, and then 
generates the address of the training data BRAMs to read the 
Haar feature values. In order to implement parallel 
processing of multiple classifiers, training data should be 
accessed simultaneously. Since BRAM allows only access to 
one address, the contents of training data BRAMs are 
divided and stored in several BRAMs to allow multiple 
accesses of the training data. We divided the contents of each 
BRAM into 1, 2, 4, 6, 8 sets of BRAMs for the 1, 2, 4, 6, 8 
classifiers, respectively. For example, for 4 classifiers, the 
first content of training data BRAM is for the first classifier, 
the second content is for the second classifier, the third 
content is for the third classifier, and the forth content is for 
the fourth classifier. Again, the fifth content is for the first 
classifier, the sixth content is for the second classifier, the 
seventh content is for the third classifier, and the eighth 
content is for the fourth classifier. This routine continues 
until the end of BRAM contents. Therefore, 7 BRAMs are 
used for each single classifier and total 28 BRAMs are used 
for the 4 classifiers. Since the quantity of the training data is 
fixed, the allocated resource for training data BRAMs of the 
multiple classifiers is the same regardless of the number of 
the multiple classifiers. 

Table 2 shows a comparison of the device utilization 
characteristics for the parallelized architecture of multiple 
classifiers for face detection. There are 10 implementations: 
1, 2, 4, 6, 8 classifiers for both 320×240 (QVGA) resolution 
images and 640×480 (VGA) resolution images. The face 
detection systems of the multiple classifiers are designed 
using Verilog HDL, synthesized using Synplify Pro, and 
implemented in Virtex-5 LX330 FPGA using ISE design 
suite [16]. 



 

   
    
    
    
    

 

   
    
    
    
    

 

 

 

 

 

  
 

  

 
 

 
 

 

 

 
 

  

 

  
   

  

 
   

  

 
   

  

 
   

  

 
   

  

 
   

  

 

TABLE II. DEVICE UTILIZATION CHARACTERISTICS FOR THE FACE 
DETECTION SYSTEMS 

320×240 Resolution Images 
Number of 
Classifiers Registers LUTs BRAMs DSP48s 

1 17906 32438 40 7 
2 18453 37423 44 10 
4 19397 50765 47 16 
6 20371 62144 50 22 
8 21270 73741 53 28 

640×480 Resolution Images 
Number of 
Classifiers Registers LUTs BRAMs DSP48s 

1 18544 33790 96 7 
2 19034 38843 100 10 
4 20013 51050 103 16 
6 20944 63643 106 22 
8 21819 74734 109 28 

IV. EXPERIMENT/RESULT 

We measure the performance of the proposed parallelized 
architecture of multiple classifiers for face detection. Since 
the system performance of face detection depends on the 
number of faces in the images, the implemented face 
detection systems are tested on 5 images, which contain 1, 3, 
6, 9, 12 faces, respectively. Table 3 shows the average 
performance of the face detection systems which have 1, 2, 
4, 6, 8 classifiers, respectively, when they are applied to 
images consisting of both 320×240 and 640×480 pixels. 
When applying to the 320×240 resolution images, The 1 
classifier face detection system is capable of processing the 
images at speeds of an average of 18.26 fps. The 2 classifiers 
face detection system is capable of processing the image at 
speed of an average of 25.64 fps. The 2 classifiers face 
detection system has the performance improvement of 1.4 
times over the 1 classifier one. The 8 classifiers face 
detection system is capable of processing the image at speed 
of an average of 61.02 fps. The 8 classifiers face detection 
system has the performance improvement of 3.34 times over 
the 1 classifier one. When applying to 640×480 resolution 
images, The 1 classifier face detection system is capable of 
processing the images at speeds of an average of 5.24 fps. 
The 2 classifiers face detection system is capable of 
processing the image at speed of an average of 6.84 fps. The 
2 classifiers face detection system has the performance 
improvement of 1.3 times over the 1 classifier one. The 8 
classifiers face detection system is capable of processing the 
image at speed of an average of 16.08 fps. The 8 classifiers 
face detection system has the performance improvement of 
3.06 times over the 1 classifier one. This is due to the 
concurrent operations of multiple classifiers by the 
parallelized architecture for face detection. Although the 
usage of the system resource increases, the system 
performance increases dramatically. 

The performance of the equivalent software 
implementation is determined by measuring the computation 
time required for performing face detection on the PC; in this 
case using a Intel Core 2 Quad CPU (2.4 GHz), 8 GB DDR2 

SDRAM (800 MHz), Microsoft Windows Vista Business 
(64-bit), and Microsoft Visual Studio. All of the software 
programs are developed using Microsoft Visual C++. The 
algorithm and parameters used in software face detection are 
exactly the same as the one of hardware face detection. 
When the face detection system, using the software program, 
is applied to the same conditions as the hardware face 
detection, it is capable of processing the images at speeds of 
an average of 0.72 fps when applied to the 320×240 
resolution images and 0.43 fps when applied to the 640×480 
resolution images. In order to make a fair comparison, any 
techniques such as detecting skin color or motion, down-
sampling images, and decreasing scale factors, are not 
applied to the software implementation. The hardware face 
detection systems has the performance improvement up to 
84.75 times the software face detection system with the 
320×240 resolution images and up to 37.39 times the 
software face detection system with the 640×480 resolution 
images. 

Figure 11 shows the experimental result of the proposed 
face detection system. The white squares present the detected 
face on the image. It shows that the face can be detected 
successfully. 

TABLE III. PERFORMANCE OF PROPOSED FACE DETECTION SYSTEMS 

Number of 
Classifiers 

320×240 
Pixels Images 

Improv 
ement 

640×480 
Pixels Images 

Improv 
ement 

S/W 1 1,373ms 
(0.72 fps) 1.00 2,319 ms 

(0.43 fps) 1.00 

H/W 1 54.735 ms 
(18.26 fps) 25.36 190.541 ms 

(5.24 fps) 12.18 

H/W 2 38.997 ms 
(25.64 fps) 35.61 146.033 ms 

(6.84 fps) 15.90 

H/W 4 24.405 ms 
(40.97 fps) 56.90 81.499 ms 

(12.27 fps) 25.20 

H/W 6 21.053 ms 
(47.49 fps) 65.95 62.154 ms 

(16.08 fps) 28.53 

H/W 8 16.387 ms 
(61.02 fps) 84.75 62.154 ms 

(16.08 fps) 37.39 

Figure 11. Experimental result of face detection systems. 



 
 

 
 
 
 
 
 

 

  
 
 

 

 
 

 

 

 
 

 

  
 

 

 
 

 

 

 
 

 
 

  

  

 
 

 
 

 
 

 
 

 
 

 
 

  

 
 

 

 

  

 

V. CONCLUSION 

We present a parallelized architecture of multiple 
classifiers for face detection based on the Viola and Jones 
object detection method. This method makes use of the 
AdaBoost algorithm, which identifies a sequence of Haar 
classifiers that indicate the presence of a face. In our 
architecture, the scaling image technique is used instead of 
the scaling sub-window, and the integral image window is 
generated per window instead of per image during one clock 
cycle. The Haar classifier is designed using a pipelined 
scheme, and the multiple classifiers which have 1, 2, 4, 6, 8 
classifiers processed in parallel is adopted to accelerate the 
processing speed of the face detection system. Also we 
discuss the parallelized architecture which can be scalable 
for configurable devices with variable resources. We 
implement the proposed architecture in Verilog HDL on a 
Xilinx Virtex-5 FPGA and show the parallelized architecture 
of multiple classifiers can have 3.3× performance gain over 
the architecture of a single classifier and an 84× performance 
gain over an equivalent software solution. This enables real-
time operation (>60 frames/sec on QVGA video, >15 
frames/sec on VGA video). 
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