

Parallelized Architecture of Multiple Classifiers for Face Detection

Junguk Cho† , Bridget Benson† , Shahnam Mirzaei‡ , Ryan Kastner†

Abstract—This paper presents a parallelized architecture of
multiple classifiers for face detection based on the Viola and
Jones object detection method. This method makes use of the
AdaBoost algorithm which identifies a sequence of Haar
classifiers that indicate the presence of a face. We describe the
hardware design techniques including image scaling, integral
image generation, pipelined processing of classifiers, and
parallel processing of multiple classifiers to accelerate the
processing speed of the face detection system. Also we discuss
the parallelized architecture which can be scalable for
configurable device with variable resources. We implement the
proposed architecture in Verilog HDL on a Xilinx Virtex-5
FPGA and show the parallelized architecture of multiple
classifiers can have 3.3× performance gain over the
architecture of a single classifier and an 84× performance gain
over an equivalent software solution.

I. INTRODUCTION

Face detection is the act of determining the location and
sizes of faces in an image. It is an active area of research in
the image processing field over the past years due to its
potential applications in monitoring and surveillance [1],
human computer interfaces [2], smart rooms [3], intelligent
robots [4], and biomedical image analysis [5]. Numerous
approaches have been proposed for face detection in images.
Simple features such as color, motion, and texture are used
for the face detection in early researches. However, these
methods typically break down easily in real world situations
due to the complexity of the image background.

The Viola and Jones method for object detection [6] is
the first and one of the most popular techniques for real-time
face detection. Their approach utilizes pattern classification
to determine the existence of a face. More specifically they
search for a sequence of Haar features that indicate the
presence of a face. This algorithm requires considerable
computational power due to the sheer number of Haar
features that must be identified to detect a face. One face is
comprised of a substantial amount of features, which
typically computed over a window of 24×24 pixels. Even a
small window can generate a substantial number of features,
e.g. a 24×24 window contains over 180,000 Haar features.
Therefore, fast and accurate detection requires careful
selection of the features to search for, which is performed
using the AdaBoost algorithm [7]. And while every window

does not typically require the computation of all features –
the detection is performed in stages and the absence of
something that looks similar to a face is designed to
terminate quickly – this is still a substantial amount of
computation. Therefore, this constitutes a bottleneck to the
application of object detection in real time.

In this paper, we present a parallelized architecture of
multiple classifiers for real-time face detection. We propose
hardware design techniques to accelerate the processing
speed of face detection. The face detection system generates
an integral image window during one clock cycle. Then it
performs classification operations in parallel using multiple
classifiers to detect a face in the image sequence. The main
contribution of our work is design and implementation of a
physically feasible hardware system to accelerate the
processing speed of the operations required for real-time face
detection. Therefore, this work has resulted in the
development of a complete real-time face detection system
employing an FPGA implemented system designed by
Verilog HDL. Its performance has been measured and
compared with an equivalent software implementation. The
system is fully-functional; it can interface with a variety of
cameras and output the results to a display.

This paper is organized as follows: In Section 2, we
explain the face detection algorithm and review the related
work found in literature in hardware implementations of face
detection. In Section 3, we describe the hardware
architecture, designed with Verilog HDL, of a face detection
system using block diagrams. We also present the
implementation of the real-time face detection system in an
FPGA. In Section 4, we show the corresponding
performance. Finally, we conclude in Section 5.

II. FACE DETECTION

A. Face Detection Algorithm
The Viola and Jones [6] face detection algorithm is used

as the basis of our design. The face detection algorithm looks
for specific Haar features of a human face. When one of
these features is found, the algorithm allows the face
candidate to pass to the next stage of detection. A face
candidate is a rectangular section of the original image called
a sub-window. Generally these sub-windows have a fixed
size (typically 24×24 pixels). This sub-window is often
scaled in order to obtain a variety of different size faces. The

algorithm scans the entire image with this window and
denotes each respective section a face candidate [6].

The algorithm uses an integral image in order to process
Haar features of a face candidate in constant time. It uses a
cascade of stages which is used to eliminate non-face
candidates quickly. Each stage consists of many different
Haar features. Each feature is classified by a Haar classifier.
The Haar classifiers generate an output which can then be
provided to the stage comparator. The stage accumulator
sums the outputs of the Haar classifiers and compares this
value with a stage threshold to determine if the stage should
be passed. If all stages are passed the face candidate is
concluded to be a face. These terms will be discussed in
more detail in the following sections.

1) Integral Image: The integral image is defined as the
summation of the pixel values of the original image. The
value at any location (x,y) of the integral image is the sum of
the image’s pixels above and to the left of location (x,y).
Figure 1 illustrates the integral image generation. The
shaded region represents the sum of the pixels up to position
(x,y) of the image. A 3×3 image with unit values for pixels
and its corresponding integral image representation are
shown on the right.

Integral image generation. Figure 1.

2) Haar Feature: Haar features are composed of either
two or three rectangles. Face candidates are searched for
Haar features of the current stage. The weight and size of
each feature and the features themselves are generated using
a machine learning algorithm from AdaBoost [6][7]. The
weights are constants generated by the learning algorithm.
There are a variety of forms of features as seen below in Fig.
2. Each Haar feature has a value that is calculated by taking
the area of each rectangle, multiplying each by their
respective weights, and then summing the results. The area
of each rectangle is easily found using the integral image.
By using each corner of a rectangle, the area can be
computed quickly as denoted by Fig. 3. Since L1 is
subtracted off twice it must be added back on to get the
correct area of the rectangle. The area of the rectangle R,
denoted as the rectangle integral, can be computed as
follows using the locations of the integral image: L4-L3
L2+L1, as shown in Fig. 3.

3) Classifier: A Haar classifier uses the rectangle
integral to calculate the value of a Haar feature. The Haar
classifier multiplies the weight of each rectangle by its area
and this result is compared with the threshold. The value of
a Haar feature is added together. Several Haar classifiers
compose a stage. A stage accumulator sums all the Haar
classifier results in a stage and a stage comparator compares
this summation with a stage threshold. The threshold is also
a constant obtained from the AdaBoost algorithm. Each

stage does not have a set number of Haar features.
Depending on the parameters of the training data individual
stages can have a varying number of Haar features. For
example, Viola and Jones’ data set used 2 features in the
first stage and 10 in the second. All together they used a
total of 38 stages and 6060 features [6]. Our data set is
based on the OpenCV data set which used 22 stages and
2135 features in total [8][9].

Figure 2. Two examples of Haar features.

Figure 3. Calculating the area of a rectangle R.

4) Cascade: The Viola and Jones face detection
algorithm eliminates face candidates quickly using a
cascade of stages. The cascade eliminates candidates by
making stricter requirements in each stage with later stages
being much more difficult for a candidate to pass.
Candidates exit the cascade if they pass all stages or fail any
stage. A face is detected if a candidate passes all stages.
This process is shown in Fig. 4.

Figure 4. Cascade of stages.

B. Related Work
Viola and Jones [6] proposed a rapid and robust face

detection method. This method utilized the AdaBoost
algorithm [7], which identifies a sequence of Haar classifiers
that indicate the presence of a face. Mita el al. [10] also
proposed such Haar classifier face detection algorithm with
more Haar features in each classifier stage to improve the
detection rate and to lower false alarm rate at the same time.
Lienhart et al. [11] were the first to introduce the face
detection algorithm into Intel Integrated Performance
Primitives, which was later included in OpenCV.

Almost all of the available literatures on real-time face
detection are theoretical or describe a software
implementation. Only a few papers have addressed a
hardware design and implementation of real-time face
detection. Theocharides et al. [12] presented the

implementation of a neural network based face detection in
an ASIC to accelerate processing speed. However, VLSI
technology requires a large amount of development time and
cost. Also it is difficult to change design. McCready [13]
designed and implemented face detection for the
Transmogrifier-2 configurable hardware system. This
implementation utilized nine FPGA boards. Sadri et al. [14]
implemented neural network based face detection on the
Virtex-II Pro FPGA. Skin color filtering and edge detection
are used to reduce the processing time. However, some
operations are implemented on hardcore PowerPC processor
with embedded software. Wei et al. [15] presented FPGA
implementation for face detection using scaling input images
and fixed-point expressions. However, the image size is too
small (120×120 pixels) to be practical and only some parts of
classifier cascade are actually implemented. A low-cost
detection system was implemented using a Cyclone II FPGA
by Yang et al. [16]. The frame rate of this system is 13 fps
with low detection rate of about 75%. Nair et al. [17]
implemented an embedded system for human detection on an
FPGA. It can process the images at speeds of 2.5 fps with
about 300 pixels images. Gao et al. [18] presented an
approach to use an FPGA to accelerate Haar feature
classifier based face detection. They re-trained the Haar
classifier with 16 classifiers per stage. However, only
classifiers are implemented in the FPGA. The integral image
generation and detected face display are processed in a host
microprocessor. Also the largest Virtex-5 FPGA was used
for the implementation because the design size was too large.
Hiromoto et al. [19] implemented real-time object detection
based on the AdaBoost algorithm. They proposed a hybrid
architecture of a parallel processing module for the former
stages and a sequential processing module for the subsequent
stages in the cascade. Since the parallel processing module
and the sequential processing module are divided after
evaluating a processing time with fixed Haar feature data, it
should be designed and implemented again in order to apply
new Haar feature data. Also the experimental result and
analysis of the implemented system are not discussed. Lai et
al. [20] presented a hardware architecture design on an
FPGA based on the AdaBoost algorithm for face detection. It
can achieve theoretical 143 fps detection for 640×480
images. However, they implemented only 52 classifiers in
single stages. Because of the small number of classifiers, its
results show lower detection rate and higher false alarm rate
than OpenCV’s 3125 classifier implementation.

III. HARDWARE ARCHITECTURE

A. System Overview
We proposed a parallelized architecture of multiple

classifiers for a real-time face detection system. Figure 5
shows the overview of the proposed architecture for face
detection. It consists of seven modules: image interface,
frame grabber, image store, image scaler, Haar classifier,
display, and DVI interface. The image interface and DVI
interface are implemented using ASIC custom chips with the
FPGA board. The others are designed using Verilog HDL

and implemented in an FPGA in order to perform face
detection in real-time.

Frame Grabber
Controller

Image Cropper

Frame Grabber Image(8)

Image Frame
Buffer

Address
Generator

Image Store

Sync(3)

Coord(19) Scale(23)

DVI Transmitter

DVI Interface

DVI Analog Image

Image Display
Controller

Detected Face
Data

Display

Image Window
Buffer

Image Line
Buffers

Haar Classifier

Integral Image
Window Buffer

Classifiers

Stage Comparator

Training Data

Coord(19)

RGB(24)

Sync Separator

A/D Converter

Image Interface

Control(2)

Sync(3)

Request(20)

Scale(23)

Scale Factor

Scale Calculator

Image Scaler

Sync(3)
Enable(1)

Camera

Sync(3)

Image(24)

Monitor

Detect(27)

Image(8)

Figure 5. Block diagram of proposed face detection system.

B. FPGA Architecture
1) Frame Grabber: In the frame grabber module, the

frame grabber controller generates the control signals for
controlling the A/D converter which converts the analog
image signals into digital image data, and the sync separator
which generates the image sync signals in the image
interface module. The color image data and sync signals are
transferred from the image interface module to the frame
grabber module. The image cropper crops the images based
on the sync signals. These image data and sync signals are
used in all of the modules of the face detection system.

2) Image Store: The image store module stores the
image data arriving from the frame grabber module frame
by frame. This module transfers the image data to the Haar
classifier module based on the scale information from the
image scaler module. The image store module uses BRAMs
of FPGA. It can store the image of a frame. The size of
BRAMs can be scaled for the source image resolution.

3) Image Scaler: The images are scaled down based on
a scale factor by the image scaler module. The image scaler
module generates and transfers the address of the BRAMs
containing a frame image in the image store module to
request image data according to a scale factor. The image
store module transfers a pixel data to the Haar classifier
module based on the address of BRAMs required from the
image scaler module.

4) Haar Classifier: The Haar classifier module performs
the classification for the face detection. It is the critical
module of the whole face detection system. This module
consists of the image line buffers, image window buffer,
integral image window buffer, line buffer controller, and
window buffer controller to generate the integral image
window, classifiers, training data, feature counter, stage
accumulator, stage comparator, and stage training data to
perform the classification as shown in Fig. 6.

The face detection is performed by Haar classification
using an integral image. The integral image generation
requires substantial computation. A general purpose
computer of Von Neumann architecture has to access image
memory at least width×height times to get the value of each

pixel when it processes an image with width×height pixels. It
may take a long latency delay every frame. In order to reduce
memory access and processing time, we propose a specific
architecture for the integral image generation. This
architecture stores the necessary pixels for processing each
pixel and its neighboring pixels together. The image line
buffers store some parts of the image. The image line buffers
use dual port BRAMs where the number of BRAMs is the
same as that of the row-1 in the image window buffer. Each
dual port BRAM can store one line of an image. Thus, the x-
coordinates of the pixels can be used as the address for the
dual port BRAM. For the incoming pixel where the
coordinate is (x,y), the image line buffers controller performs
operations such as in (1), where n is the image window row
size, p(x,y) is the incoming pixel value, and L(x,y) represents
each pixel in the image line buffer.

(, �) L x y (, (k 1)) k n 2 (1) L x y k � � , where 1 d d �
L x y k (, �) p x y k(,) , where 0 .

With these operations, the pixel values in the lines of an
image are stored in dual port BRAMs. Since each dual port
BRAM stores one line of an image, it is possible to get one
pixel value from every line simultaneously.

Figure 6. Block diagram of proposed face detection system.

The image window buffer stores pixel values moving
from the image line buffer. It has two n×n windows, actually
n×2n window. The first n×n window calculates the
accumulated values of each column of the image window
buffer. Each column except the right-most column has only
one adder as shown in Fig. 7. The adder of the most second
right column calculates the summation of first row and
second row pixel values in the right-most column. The adder
of the third right column calculates the summation of the first,
second, and third row pixel values in the second right
column. Finally, the adder of n-th column calculates the
summation of all pixel values in the (n-1)-th column. The
pipeline scheme is applied in this part, so the latency of first
summation of all pixel values in the column is n clock cycles.
The second n×n window latches and moves the accumulated
values of the column to the adjacent column. The
accumulated values are used to generate the integral image
window. Since pixels of an image window buffer are stored
in registers, it is possible to access all pixels in the image

window buffer simultaneously to generate the integral image
window. For the incoming pixel with coordinate (x,y), the
image window buffer controller performs operation as in (2)
where n and 2n are the row and column size of the image
window buffer, respectively. p(i,j) is the incoming pixel
value in the image window buffer; p(x,y) is the incoming
pixel value; I(i,j) represents each of the pixels in the image
window buffer; and L(x,y) represents each of the pixels in the
image line buffer.

(� , I i (� � 1), j) , where 1 k 2n 1,1 l n 1I i k j) (k d d � d d �
(, �) L x y (, (l 1)) k 0,1 d d � l nI i j l � � , where 1 (2)
(� � ,) p i k (,) p x y , where k l 0 .I i k j l (,)

The accumulation of pixels in one column is calculated in
the image window buffer as in (3). when � n 1,k l �

(, 1) ((k 1), j 1) ((k 1), j l 1)) I i k j I i I i (� � � � � � � � � � , (3)
where 1 k n 1,0 l n 2d d � d d � .

The integral image window buffer calculates the integral
image value of n×n window using the accumulated value of
the column in the image window buffer. Every cell of the
integral image window has one adder and one subtractor as
shown in Fig. 7. Each cell of the integral image window adds
the previous integral values to the accumulated values from
the image window buffer, and subtracts the accumulated
values from the left-most column of the image window
buffer. Using this mechanism and architecture, we can
generate the integral image of current n×n window during
one clock cycle. Since pixels of an integral image window
buffer are stored in registers, it is possible to access all
integral pixels in the integral image window buffer
simultaneously to perform the Haar classification. For
incoming pixel with coordinate (i,j), the integral image
window buffer controller performs operation as in (4) where
n is the row and column size of the integral image window
buffer. II(s,t) represents each of the integral pixels in the
integral image window buffer; and I(i,j) represents each of
the pixels in the image window buffer.

II s u t v (,) I (� � � � � � � � �) (,) (n 1), j l) ,� � I s u t v I i k j l I i
where 0 u n 1, 0 d d � , 0 d d �

, (2 (4)
d d � v n 1 l n 1

n 1 k 2n 2� d d � .

Figure 7 shows all of the actions in the proposed
architecture to generate the integral image. The contents of
the image line buffers, image window buffer, and integral
image window buffer are updated according to any stage fail
signal or the all stages pass signal from the stage comparator.
So while the Haar classification is processing, they maintain
their value corresponding the current window. For every
image from the frame grabber module, the integral image of
the current window is calculated to perform the Haar
classification using the integral image.

n-1

Image Line Buffer

Image Window Buffer

n

2n

Current Pixel Input at (x,y) : p(x,y)

Integral Image Window Buffer

n

n n n

)

Figure 7. Architecture for generating integral image window.

Figure 8. Haar feature calculation of Haar classifier.

I(i-1,j-(n-1))

I(i-(2n-2),j-(n-2)) I(i-1,j-(n-2)) +

I(i- ,j-) I(i-
+

1,j-) I(i,j-

I(i-n,j-1)
+ I(i-1,j-1) I(i,j-1)

I(i-(n-1)
+

,j) I(i-1,j) I(i,j)

+ - + - + - + - + -
II(s-(n

+ -
-2),t-
+ -

(n-2))
+ - + - + -

+ -
II(s-

+ -
,t-

+ -
)
+ - + -

+ - + -
II(

+ -
s-1,t-

+ -
1)

+ -

+ - + - + - + -
II(s,t)

+ -

A Haar classifier has a Haar feature which consists of
two or three rectangles and their weight, threshold, and left
and right values. Each rectangle presents four points, x, y,
x+width, y+height, using the coordinates (x,y) of most left
and up point, width, width, and height, height, as shown in
Fig. 8. The integral image value of each rectangle can be
calculated using these points from the integral image
window buffer as shown in Fig. 9. Since integral pixel values
in an integral image window buffer are stored in registers, it
is possible to access all integral pixel values in the integral
image window buffer simultaneously to calculate the integral
image value of the rectangles of the Haar classifier. It
enables us to save the memory access time.

Haar feature are calculated by the method as shown in Fig. 8.
The integral image values of Haar classifier are obtained
from the integral image window buffer as shown in Fig. 9.
Integral image value of each rectangle of Haar feature
multiplies with its weight, weight. The summation of all
integral image values multiplied by their weight is the result
of one Haar classifier. This result is compared with the
threshold, threshold. If the result is smaller than the
threshold, the final resultant value of this Haar classifier is
the left value, left. Otherwise, the final resultant value is the
right value, right. This final resultant value is accumulated
during the same stage. The accumulated value of the stage is
compared with the stage threshold, stage threshold, when
each stage is done. If the accumulated value is larger than the
stage threshold, it goes to the next stage and so on to decide
if this image window could pass all stages. Otherwise, this
image window is not a face if it fails in any stage. The
proposed architecture of the Haar classifier is implemented
based on a pipeline scheme as shown in Fig. 10. During each
clock cycle, the integral image values of Haar classifier from
the integral image window buffer and the training data of
Haar classifier from the training data BRAMs are fed to
calculate the result of classification continuously. The
latency for the first Haar classifier is five clock cycles.

width

L(x,y-(n-2))

...... L(x,y-)

L(x,y-1)

II(s-(n-1),t-(n-1)) I(i-(2n-1),j-(n-1))

L(x,y)

I(i,j-(n-2))

I(i,j-(n-1))

Figure 9. Simultaneous access to integral image window in order to
calculate integral image of Haar classifiers.

Figure 10 shows the architecture of a Haar classifier for
face detection. All training data are stored in the BRAMs.

Figure 10. Architecture for performing Haar classification.

5) Display: The display module stores the information
of the detected faces which are transferred from the
classifier module. It displays the white squares on the faces
in the image sequence by converting pixel value to white
color according to the information of the detected faces. In
the display module, the Digital Visual Interface (DVI)
specification is applied to display the processed image
sequence to the LCD monitor through a DVI transmitter in
the DVI interface module. This module generates the sync
signals and image data for the DVI transmitter using the

Four points, x, y, x+width, y+height, of one rectangle of the image data and sync signals from the frame grabber module.

C. FPGA Implementation
The proposed parallelized architecture of multiple

classifiers for face detection has been designed using Verilog
HDL and implemented in an FPGA. We use the Haar
training data from OpenCV to detect the frontal human faces
based on the Viola and Jones algorithm [8][9]. This cascade
of Haar training data were trained by frontal faces of size
20×20. This cascade includes a total of 22 stages, 2135 Haar
classifiers, and 4630 Haar features. Table 1 shows the
number of Haar classifiers in each stage.

TABLE I. NUMBER OF HAAR CLASSIFIERS IN EACH STAGE

Stage Number of
Classifier Stage Number of

Classifier Stage Number of
Classifier

0 3 8 56 16 140
1 16 9 71 17 160
2 21 10 80 18 177
3 39 11 103 19 182
4 33 12 111 20 211
5 44 13 102 21 213
6 50 14 135 Total 2135

The proposed face detection is performed in two major
parts. The first part is grabbing and scaling. This part
consists of the frame grabber, image store, and image scaler
modules. These modules are for grabbing images and
generating scaled images. Sub-windows for the Haar
classifier are expanded to detect large objects in Viola and
Jones object detection algorithm. Since the Haar feature
classifier consists of simple rectangles, scaling a sub-window
is not hard. Therefore, this method is widely used for
software object detection implementation. However, the
larger cache memory of the integral image is required
according to the larger size of a sub-window to achieve fast
memory access, which is difficult to implement in hardware.
A scaling image technique is used in hardware instead of the
scaling sub-window because it does not need a huge cache
memory for fast memory access and it is easy to implement
in hardware. Since our architecture has a 20×20 fixed
integral image window, it needs to scale input images down
to detect large faces. To make scaled images, we use a
nearest neighbor interpolation algorithm with a factor of 1.2.
A pixel value in the scaled images is set to the value of the
nearest pixel in the original images. This is the simplest
interpolation algorithm that requires a lower computation
cost. The number of the scaled images depends on the input
image resolution. Our scaler module performs the down-
scaling of input images until the height of the scaled image is
similar with the size of the integral image window. The
scaler module for 320×240 pixels images has 14 scale factors
(1.20~1.213), the scaler module for 640×480 pixels images
has 18 scale factors (1.20~1.217). The more scale factors need
more processing time because of the increase of the
candidate windows.

The second part of the face detection system is
performing Haar classification using the integral image. This
part consists of a Haar classifier module which has the image
line buffers, image window buffer, integral image window
buffer, classifiers, stage comparator, and training data

blocks. Since generating the integral image of the whole
scaled image requires substantial computation power and
time, we generate the integral image of only the current
image window. The image line buffer (19 lines), image
window buffer (20×40 cells), and integral image window
buffer (20×20 cells) are implemented to generate the integral
image of the current window during one clock cycle. The
pixel data are stored and moved in the image line buffer
according to the mechanism of the architecture explained in
the previous section.

We design and implement scalable multiple classifiers (1,
2, 4, 6, 8 classifiers). These classifiers have multiple
classifiers which process in parallel. The integral image
window buffer can be accessed simultaneously by each
classifier because the integral image window stores the
integral pixel values in registers. The training data are stored
in the BRAMs of an FPGA. The BRAMs for the training
data consist of 7 BRAMs: 3 BRAMs for 3 rectangles of Haar
feature (x, y, width, height, weight), 3 BRAMs for the
threshold, left and right, respectively, and 1 BRAM for the
stage threshold. Although Haar classifiers are composed of
either two or three rectangles, all Haar classifiers are
uniformed as having only 3 rectangles for hardware
implementation. If the Haar classifier has 2 rectangles, the
third rectangle has 0 values. These values are called
according to the stage and feature numbers. The classifiers
module calculates the stage and feature numbers, and then
generates the address of the training data BRAMs to read the
Haar feature values. In order to implement parallel
processing of multiple classifiers, training data should be
accessed simultaneously. Since BRAM allows only access to
one address, the contents of training data BRAMs are
divided and stored in several BRAMs to allow multiple
accesses of the training data. We divided the contents of each
BRAM into 1, 2, 4, 6, 8 sets of BRAMs for the 1, 2, 4, 6, 8
classifiers, respectively. For example, for 4 classifiers, the
first content of training data BRAM is for the first classifier,
the second content is for the second classifier, the third
content is for the third classifier, and the forth content is for
the fourth classifier. Again, the fifth content is for the first
classifier, the sixth content is for the second classifier, the
seventh content is for the third classifier, and the eighth
content is for the fourth classifier. This routine continues
until the end of BRAM contents. Therefore, 7 BRAMs are
used for each single classifier and total 28 BRAMs are used
for the 4 classifiers. Since the quantity of the training data is
fixed, the allocated resource for training data BRAMs of the
multiple classifiers is the same regardless of the number of
the multiple classifiers.

Table 2 shows a comparison of the device utilization
characteristics for the parallelized architecture of multiple
classifiers for face detection. There are 10 implementations:
1, 2, 4, 6, 8 classifiers for both 320×240 (QVGA) resolution
images and 640×480 (VGA) resolution images. The face
detection systems of the multiple classifiers are designed
using Verilog HDL, synthesized using Synplify Pro, and
implemented in Virtex-5 LX330 FPGA using ISE design
suite [16].

TABLE II. DEVICE UTILIZATION CHARACTERISTICS FOR THE FACE
DETECTION SYSTEMS

320×240 Resolution Images
Number of
Classifiers Registers LUTs BRAMs DSP48s

1 17906 32438 40 7
2 18453 37423 44 10
4 19397 50765 47 16
6 20371 62144 50 22
8 21270 73741 53 28

640×480 Resolution Images
Number of
Classifiers Registers LUTs BRAMs DSP48s

1 18544 33790 96 7
2 19034 38843 100 10
4 20013 51050 103 16
6 20944 63643 106 22
8 21819 74734 109 28

IV. EXPERIMENT/RESULT

We measure the performance of the proposed parallelized
architecture of multiple classifiers for face detection. Since
the system performance of face detection depends on the
number of faces in the images, the implemented face
detection systems are tested on 5 images, which contain 1, 3,
6, 9, 12 faces, respectively. Table 3 shows the average
performance of the face detection systems which have 1, 2,
4, 6, 8 classifiers, respectively, when they are applied to
images consisting of both 320×240 and 640×480 pixels.
When applying to the 320×240 resolution images, The 1
classifier face detection system is capable of processing the
images at speeds of an average of 18.26 fps. The 2 classifiers
face detection system is capable of processing the image at
speed of an average of 25.64 fps. The 2 classifiers face
detection system has the performance improvement of 1.4
times over the 1 classifier one. The 8 classifiers face
detection system is capable of processing the image at speed
of an average of 61.02 fps. The 8 classifiers face detection
system has the performance improvement of 3.34 times over
the 1 classifier one. When applying to 640×480 resolution
images, The 1 classifier face detection system is capable of
processing the images at speeds of an average of 5.24 fps.
The 2 classifiers face detection system is capable of
processing the image at speed of an average of 6.84 fps. The
2 classifiers face detection system has the performance
improvement of 1.3 times over the 1 classifier one. The 8
classifiers face detection system is capable of processing the
image at speed of an average of 16.08 fps. The 8 classifiers
face detection system has the performance improvement of
3.06 times over the 1 classifier one. This is due to the
concurrent operations of multiple classifiers by the
parallelized architecture for face detection. Although the
usage of the system resource increases, the system
performance increases dramatically.

The performance of the equivalent software
implementation is determined by measuring the computation
time required for performing face detection on the PC; in this
case using a Intel Core 2 Quad CPU (2.4 GHz), 8 GB DDR2

SDRAM (800 MHz), Microsoft Windows Vista Business
(64-bit), and Microsoft Visual Studio. All of the software
programs are developed using Microsoft Visual C++. The
algorithm and parameters used in software face detection are
exactly the same as the one of hardware face detection.
When the face detection system, using the software program,
is applied to the same conditions as the hardware face
detection, it is capable of processing the images at speeds of
an average of 0.72 fps when applied to the 320×240
resolution images and 0.43 fps when applied to the 640×480
resolution images. In order to make a fair comparison, any
techniques such as detecting skin color or motion, down-
sampling images, and decreasing scale factors, are not
applied to the software implementation. The hardware face
detection systems has the performance improvement up to
84.75 times the software face detection system with the
320×240 resolution images and up to 37.39 times the
software face detection system with the 640×480 resolution
images.

Figure 11 shows the experimental result of the proposed
face detection system. The white squares present the detected
face on the image. It shows that the face can be detected
successfully.

TABLE III. PERFORMANCE OF PROPOSED FACE DETECTION SYSTEMS

Number of
Classifiers

320×240
Pixels Images

Improv
ement

640×480
Pixels Images

Improv
ement

S/W 1 1,373ms
(0.72 fps) 1.00 2,319 ms

(0.43 fps) 1.00

H/W 1 54.735 ms
(18.26 fps) 25.36 190.541 ms

(5.24 fps) 12.18

H/W 2 38.997 ms
(25.64 fps) 35.61 146.033 ms

(6.84 fps) 15.90

H/W 4 24.405 ms
(40.97 fps) 56.90 81.499 ms

(12.27 fps) 25.20

H/W 6 21.053 ms
(47.49 fps) 65.95 62.154 ms

(16.08 fps) 28.53

H/W 8 16.387 ms
(61.02 fps) 84.75 62.154 ms

(16.08 fps) 37.39

Figure 11. Experimental result of face detection systems.

V. CONCLUSION

We present a parallelized architecture of multiple
classifiers for face detection based on the Viola and Jones
object detection method. This method makes use of the
AdaBoost algorithm, which identifies a sequence of Haar
classifiers that indicate the presence of a face. In our
architecture, the scaling image technique is used instead of
the scaling sub-window, and the integral image window is
generated per window instead of per image during one clock
cycle. The Haar classifier is designed using a pipelined
scheme, and the multiple classifiers which have 1, 2, 4, 6, 8
classifiers processed in parallel is adopted to accelerate the
processing speed of the face detection system. Also we
discuss the parallelized architecture which can be scalable
for configurable devices with variable resources. We
implement the proposed architecture in Verilog HDL on a
Xilinx Virtex-5 FPGA and show the parallelized architecture
of multiple classifiers can have 3.3× performance gain over
the architecture of a single classifier and an 84× performance
gain over an equivalent software solution. This enables real-
time operation (>60 frames/sec on QVGA video, >15
frames/sec on VGA video).

REFERENCES

[1]	 Z. Guo, H. Liu, Q. Wang, and J. Yang, “A Fast Algorithm of Face
Detection for Driver Monitoring,” In Proceedings of the International
Conference on Intelligent Systems Design and Applications, vol.2,
pp.267 - 271, 2006.

[2]	 M. Yang, N. Ahuja, “Face Detection and Gesture Recognition for
Human-Computer Interaction,” The International Series in Video
Computing, vol.1, Springer, 2001.

[3]	 Z. Zhang, G. Potamianos, M. Liu, T. Huang, “Robust Multi-View
Multi-Camera Face Detection inside Smart Rooms Using Spatio-
Temporal Dynamic Programming,” In Proceedings of the
International Conference on Automatic Face and Gesture
Recognition, pp.407-412, 2006.

[4]	 W. Yun; D. Kim; H. Yoon, “Fast Group Verification System for
Intelligent Robot Service,” IEEE Transactions on Consumer
Electronics, vol.53, no.4, pp.1731-1735, 2007.

[5]	 V. Ayala-Ramirez, R. E. Sanchez-Yanez and F. J. Montecillo-Puente
“On the Application of Robotic Vision Methods to Biomedical Image
Analysis,” In IFMBE Proceedings of Latin American Congress on
Biomedical Engineering, pp.1160-1162, 2007.

[6]	 P. Viola and M. Jones, “Robust Real-Time Face Detection,”
International Journal of Computer Vision, vol. 57, no. 2, pp. 137-154,
2004.

[7]	 Y. Freund and R. E. Schapire, “A Decision-Theoretic Generaliztion
of On-Line Learning and an Application to Boosting,” Journal of
Computer and System Sciences, no. 55, pp. 119-139, 1997.

[8]	 Open Computer Vision Library, , March. 2009.
DOI:http://sourceforge.net/projects/opencvlibrary/.

[9]	 G. Bradski and A. Kaehler, “Learning OpenCV: Computer Vision
with the OpenCV Library,” O'Reilly Media, Inc., 2008.

[10] T. Mita, T. Kaneko, O. Hori, “Joint Haar-like Features for Face
Detection,” In Proceedings of the IEEE Conference on Computer
Vision, pp. 1619-1626, vol. 2, 2005.

[11] R. Lienhart and J. Maydt, “An Extended Set of Haar-like Features for
Rapid Object Detection,” In Proceedings of the International
Conference on Image Processing, pp. I-900-I-903, vol.1, 2002.

[12] T. Theocharides, N. Vijaykrishnam, and M. J.	 Irwin, “A Parallel
Architecture for Hardware Face Detection,” In Proceedings of the
IEEE Computer Society Annual Symposium Emerging VLSI
Technologies and Architectures, pp. 452-453, 2006.

[13] R. McCready	 “Real-Time Face Detection on a Configurable
Hardware System,” In Proceedings of the Roadmap to
Reconfigurable Computing, International Workshop on Field-
Programmable Logic and Applications, pp.157-162, 2000.

[14] M. S.	 Sadri, N. Shams, M. Rahmaty, I. Hosseini, R. Changiz, S.
Mortazavian, S. Kheradmand, and R. Jafari, “An FPGA Based Fast
Face Detector,” In Global Signal Processing Expo and Conference,
2004.

[15] Y. Wei, X. Bing, and C. Chareonsak, “FPGA Implementation of
AdaBoost Algorithm for Detection of Face Biometrics,” In
Proceedings of the IEEE Workshop Biomedical Circuits and Systems,
page S1, 2004.

[16] M. Yang, Y. Wu, J. Crenshaw, B. Augustine, and R. Mareachen,
“Face Detection for Automatic Exposure Control in Handheld
Camera,” In Proceedings of the IEEE Conference on Computer
Vision System, pp.17, 206.

[17] V. Nair, P. Laprise, and J. Clark, “An FPGA-Based People Detection
System,” EURASIP Journal of Applied Signal Processing, 2005(7),
pp. 1047-1061, 2005.

[18] C. Gao and S. Lu, “Novel FPGA Based Haar Classifier Face
Detection Algorithm Acceleration,” In Proceedings of the
International Conference on Field Programmable Logic and
Applications, 2008.

[19] M. Hiromoto, K. Nakahara, H. Sugano, “A Specialized Processor
Suitable for AdaBoost-Based Detection with Haar-like Features,” In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp.1-8, 2007.

[20] H. Lai, 	M. Savvides, T. Chen, “Proposed FPGA Hardware
Architecture for High Frame Rate (>100 fps) Face Detection Using
Feature Cascade Classifiers,” In Proceedings of the IEEE Conference
Biometrics: Theory, Applications, and System, pp. 1-6, 2007.

[21]	 Xilinx Inc., “Virtex-5 Family Overview,” February 2009.
DOI:http://www.xilinx.com/.

