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Abstract—With Moore’s law supplying billions of transistors
on-chip, embedded systems are undergoing a transition from
single-core to multi-core to exploit this high transistor density for
high performance. However, there exists a plethora of multi-core
architectures and the suitability of these multi-core architectures
for different embedded domains (e.g., distributed, real-time,
reliability-constrained) requires investigation. Despite the diver-
sity of embedded domains, one of the critical applications in many
embedded domains (especially distributed embedded domains)
is information fusion. Furthermore, many other applications
consist of various kernels, such as Gaussian elimination (used
in network coding), that dominate the execution time. In this
paper, we evaluate two embedded systems multi-core architec-
tural paradigms: symmetric multiprocessors (SMPs) and tiled
multi-core architectures (TMAs). We base our evaluation on a
parallelized information fusion application and benchmarks that
are used as building blocks in applications for SMPs and TMAs.
We compare and analyze the performance of an Intel-based
SMP and Tilera’s TILEPro64 TMA based on our parallelized
benchmarks for the following performance metrics: runtime,
speedup, efficiency, cost, scalability, and performance per watt.
Results reveal that TMAs are more suitable for applications
requiring integer manipulation of data with little communication
between the parallelized tasks (e.g., information fusion) whereas
SMPs are more suitable for applications with floating point
computations and a large amount of communication between
processor cores.

Keywords-multi-core, embedded systems, performance evalua-
tion

I. INTRODUCTION

As chip transistor counts increase, embedded system
design has shifted from single-core to multi- and many-
core architectures. A primary reason for this architecture
reformation is that performance speedups are becoming
more difficult to achieve by simply increasing the clock
frequency of traditional single-core architectures because of
limitations in power dissipation. This single-core to multi-core
paradigm shift in embedded systems has introduced parallel
computing to the embedded domain, which was previously
predominantly used in supercomputing only. Furthermore,
with respect to the computing industry, this paradigm has led
to the proliferation of diverse multi-core architectures, which

necessitates comparison and evaluation of these disparate
architectures for different embedded domains (e.g., distributed,
real-time, reliability-constrained).

Contemporary multi-core architectures are not designed
to deliver high performance for all embedded domains,
but are instead designed to provide high performance for
a subset of these domains. The precise evaluation of
multi-core architectures for a particular embedded domain
requires executing complete applications prevalent in that
domain. Despite the diversity of embedded domains, the
critical application for many embedded domains (especially
distributed embedded domains of which embedded wireless
sensor networks (EWSNs) are a prominent example) is
information fusion, which fuses/condenses the information
from multiple sources. Furthermore, many other applications
consist of various kernels, such as Gaussian elimination
(GE), which is used in network coding, that dominate the
computation time [1]. An embedded domain’s parallelized
applications and kernels provide an effective way of evaluating
multi-core architectures for that embedded domain.

In this paper, we evaluate two multi-core architectures for
embedded systems: symmetric multiprocessors (SMPs) and
Tilera’s tiled multi-core architectures (TMAs). We consider
SMPs because SMPs are ubiquitous and pervasive, which
provides a standard/fair basis for comparing with other novel
architectures, such as TMAs. We consider Tilera’s TILEPro64
TMAs because of this architecture’s innovative architectural
features such as three-way issue superscalar tiles, on-chip
mesh interconnect, and dynamic distributed cache (DDC)
technology.

In some cases, such as with Tilera’s TILEPro64, the
multi-core architecture directly dictates the high-level parallel
language used as some multi-core architectures support
proprietary parallel languages whose benchmarks are not
available open source. Tilera provides a proprietary multi-
core development environment (MDE) ilib API [2]. Many
SMPs are more flexible, such as the Intel-based SMP, which
supports OpenMP (Open Multi-processing). These differences
in supported languages makes cross-architectural evaluation



challenging since the results may be affected by the parallel
language’s efficiency. However, our analysis provides insights
into the attainable performance per watt from these two multi-
core architectures.

To the best of our knowledge, this paper is the first to
evaluate SMPs and TMAs for multi-core parallel embedded
systems. We parallelize an information fusion application, a
GE kernel, and an embarrassingly parallel (EP) benchmark for
SMPs and TMAs to compare and analyze the architectures’
performance and performance per watt. This parallelized
benchmark-driven evaluation provides deeper insights as
compared to a theoretical quantitative approach.

Our cross-architectural evaluation results reveal that TMAs
outperform SMPs with respect to scalability and performance
per watt for applications involving integer operations on
data with little communication between processor cores
(processor cores are also referred as tiles in TMAs).
For applications requiring floating point (FP) operations
and frequent dependencies between computations, SMPs
outperform TMAs with respect to scalability and performance
per watt.

II. RELATED WORK

In the area of parallelization of algorithms and performance
analysis of SMPs, Brown et al. [3] compared the performance
and programmability of the Born calculation (a model used
to study the interactions between a protein and surrounding
water molecules) using both OpenMP and Message Passing
Interface (MPI). The authors observed that the OpenMP
version’s programmability and performance outperformed
the MPI version, however, the scalability of the MPI
version was superior to the OpenMP version. Our work
differs from previous parallel programming work in that we
compare parallel implementations of different benchmarks
using OpenMP and Tilera’s ilib proprietary API for two multi-
core architectures as opposed to comparing OpenMP with
MPI, both of which are not proprietary, as in many previous
works.

Bikshandi et al. [4] investigated the performance of
TMAs and demonstrated that hierarchical tiled arrays
yielded increased performance on parallelized benchmarks,
such as matrix multiplication (MM) and NASA advanced
supercomputing (NAS) benchmarks, by improving the data
locality. Zhu et al. [5] presented a performance study of
OpenMP language constructs on the IBM Cyclops-64 (C64)
architecture that integrated 160 processing cores on a single
chip. The authors observed that the overhead of the OpenMP
language constructs on the C64 architecture was at least one
order of magnitude lower as compared to the previous work
on conventional SMP systems.

Some previous work investigated multi-core architectures
for distributed embedded systems. Dogan et al. [6] evaluated
a single- and multi-core architecture for biomedical signal
processing in wireless body sensor networks (WBSNs)
where both energy-efficiency and real-time processing are

crucial design objectives. Results revealed that the multi-
core architecture consumed 66% less power than the single-
core architecture for high biosignal computation workloads
that averaged 50.1 Mega operations per seconds (MOPS).
However, the multi-core architecture consumed 10.4% more
power than the single-core architecture for relatively light
computation workloads that averaged 681 Kilo operations
per second (KOPS). Kwok et al. [7] proposed FPGA-based
multi-core computing for batch processing of image data in
distributed EWSNs. Results revealed that the speedup obtained
by FPGA-based acceleration at 20 MHz for edge detection,
an image processing technique, was 22x as compared to a 48
MHz MicroBlaze microprocessor. Our work differs from the
Kwok’s work in that we study the feasibility of two fixed logic
multi-core architecture paradigms, SMPs and TMAs, instead
of reconfigurable logic.

Although there exists work for independent performance
evaluation of SMPs and TMAs, to the best of our
knowledge there is no previous work that cross-evaluates these
architectures, which is the focus of our work.

III. MULTI-CORE ARCHITECTURES AND BENCHMARKS

Many applications require embedded systems to perform
various compute-intensive tasks that often exceed the
computing capability of traditional single-core embedded
systems. In this section, we describe the multi-core
architectures along with the applications and/or kernels that
we leverage to evaluate these architectures.

A. Multi-Core Architectures

1) Symmetric Multiprocessors: SMPs are the most
pervasive and prevalent type of parallel architecture that
provides a global physical address space and symmetric access
to all of main memory from any processor core. Every
processor has a private cache and all of the processors and
memory modules attach to a shared interconnect, typically
a shared bus [1]. In our evaluations, we study an Intel-
based SMP, which is an 8-core SMP consisting of two chips
containing 45 nm Intel Xeon E5430 quad-core processors [8]
(henceforth we denote the Intel-based SMP as SMP2xQuadXeon).
The Xeon E5430 quad-core processor chip offers a maximum
clock frequency of 2.66 GHz, integrates a 32 KB level one
instruction (L1-I) and a 32 KB level one data (L1-D) cache
per core, a 12 MB level two (L2) unified cache (a dual core
option with a 6 MB L2 cache is also available), and a 1333
MHz front side bus (FSB). The Xeon E5430 leverages Intel’s
enhanced front-side bus running at 1333 MHz, which enables
enhanced throughput between each of the processor cores [9].

2) Tiled Multi-Core Architectures: TMAs exploit massive
on-chip resources by combining each processor core with a
switch to create a modular element called a tile, which can be
replicated to create a multi-core architecture with any number
of tiles. TMAs contain a high-performance interconnection
network that constrains interconnection wire length to be
no longer than the tile width and a switch (communication
router) interconnects neighboring switches. Examples of
TMAs include the Raw processor, Intel’s Tera-Scale research



Fig. 1: Tilera TILEPro64 processor [10].

processor, and Tilera’s TILE64, TILEPro64, and TILE-Gx
processor family [11][12][13]. In our evaluations, we study
the TILEPro64 processor depicted in Fig. 1. The TILEPro64
processor features an 8 x 8 grid of 64 90nm tiles (cores) where
each tile consists of a three-way very long instruction word
(VLIW) pipelined processor capable of delivering up to three
instructions per cycle, integrated L1 and L2 caches, and a non-
blocking switch that integrates the tile into a power-efficient
31 Tbps on-chip interconnect mesh. Each tile has a 16 KB L1
cache (8 KB instruction cache and 8 KB data cache) and a 64
KB L2 cache, resulting in a total of 5 MB of on-chip cache
with Tilera’s dynamic distributed cache (DDC) technology.
Each tile can independently run a complete operating system
or multiple tiles can be grouped together to run a multi-
processing operating system, such as SMP Linux [14].

B. Benchmark Applications and Kernels

1) Information Fusion: A crucial processing task
in distributed embedded systems is information fusion.
Distributed embedded systems, such as EWSNs, produce
a large amount of data that must be processed, delivered,
and assessed according to application objectives. Since the
transmission bandwidth is oftentimes limited, information
fusion condenses the sensed data and transmits only the
selected, fused information to a base station node for further
processing and/or evaluation by an operator. Information
fusion is also used to reduce redundancy in the received data
since the data gathered from neighboring sources/embedded
nodes is typically highly correlated or redundant.

For our evaluations, we parallelize an information fusion
application both for SMPs and TMAs to investigate the
suitability of the two architectures for distributed embedded
systems. We consider a hierarchical distributed embedded
system consisting of embedded sensor nodes where each
cluster head receives sensing measurements from ten single-
core embedded sensor nodes equipped with temperature,
pressure, humidity, acoustic, magnetometer, accelerometer,
gyroscope, proximity, and orientation sensors [15]. The cluster
head implements a moving average filter, which computes
the arithmetic mean of a number of input measurements to
produce each output measurement, to reduce random white
noise from sensor measurements. Given an input sensor
measurement vector 𝒙 = (𝑥(1), 𝑥(2), . . .), the moving average

filter estimates the true senor measurement vector after noise
removal 𝒚 = (𝑦(1), 𝑦(2), . . .) as:

𝑦(𝑘) =
1

𝑀

𝑀−1∑

𝑖=0

𝑥(𝑘 − 𝑖), ∀ 𝑘 ≥ 𝑀 (1)

where 𝑀 is the filter’s window, which dictates the number
of input sensor measurements to fuse for noise reduction.
When the sensor measurements have random white noise, the
moving average filter reduces the noise variance by a factor of√
𝑀 . For practical distributed embedded systems, 𝑀 can be

chosen as the smallest value that can reduce the noise to meet
the application requirements. For each of the filtered sensor
measurements for each of the embedded sensor nodes in the
cluster, the cluster head calculates the minimum, maximum,
and average of the sensed measurements. This information
fusion application requires 100 ⋅ 𝑁(3 + 𝑀) operations with
complexity 𝒪(𝑁𝑀) where 𝑁 denotes the number of sensor
samples.

2) Gaussian Elimination: The GE kernel solves a
system of linear equations and is used in many scientific
applications, including the Linpack benchmark used for
ranking supercomputers in the TOP500 list of the world’s
fastest computers [16][17], and in distributed embedded
systems. For example, the decoding algorithm for network
coding uses a variant of GE (network coding is a coding
technique to enhance network throughput in distributed
embedded systems) [18]. The sequential runtime of the GE
algorithm is 𝒪(𝑛3). Our GE kernel computes an upper-
triangularization of matrices and requires (2/3) ⋅ 𝑛3 + (7/4) ⋅
𝑛2 + (7/2) ⋅ 𝑛 FP operations, which includes the extra
operations required to make the GE algorithm numerically
stable.

3) Embarrassingly Parallel Benchmark: The EP
benchmark is typically used to quantify the peak attainable
performance of a parallel computer architecture. Our EP
benchmark generates normally distributed random variates
that are used in simulation of stochastic applications [19].
We leverage Box-Muller’s algorithm, which requires 99𝑛
FP operations assuming that square root requires 15 FP
operations and logarithm, cosine, and sine each require 20
FP operations [20].

IV. PARALLEL COMPUTING DEVICE METRICS

Parallel computing device metrics provide a means
to compare different parallel architectures, and the most
appropriate device metrics depends upon the targeted
application domain. For example, runtime (performance) may
be an appropriate metric for comparing high-performance data
servers whereas performance per watt is a more appropriate
metric for embedded systems that have a limited power budget.
In this section, we characterize the metrics that we leverage
in our study to compare parallel architectures.

Run Time: The serial run time 𝑇𝑠 of a program is the
time elapsed between the beginning and end of the program
on a sequential computer. The parallel run time 𝑇𝑝 is the time



elapsed from the beginning of a program to the moment the
last processor finishes execution.

Speedup: Speedup measures the performance gain achieved
by parallelizing a given application/algorithm over the
best sequential implementation of that application/algorithm.
Speedup 𝑆 is defined as 𝑇𝑠/𝑇𝑝, which is the ratio of the serial
run time 𝑇𝑠 of the best sequential algorithm for solving a
problem to the time taken by the parallel algorithm 𝑇𝑝 to
solve the same problem on p processors. The speedup is ideal
when the speedup is proportional to the number of processors
used to solve a problem in parallel (i.e., 𝑆 = 𝑝).

Efficiency: Efficiency measures the fraction of the time that
a processor is usefully employed. Efficiency 𝐸 is defined as
𝑆/𝑝, which is the ratio of the speedup 𝑆 to the number of
processors 𝑝. An efficiency of one corresponds to the ideal
speedup and implies good scalability.

Cost: Cost measures the sum of the time that each processor
spends solving the problem. The cost 𝐶 of solving a problem
on a parallel system is defined as 𝑇𝑝 ⋅ 𝑝, which is the product
of the parallel run time 𝑇𝑝 and the number of processors 𝑝
used. A parallel computing system is cost optimal if the cost
of solving a problem on a parallel computer is proportional to
the execution time of the best known sequential algorithm on
a single processor [21].

Scalability: Scalability of a parallel system measures the
performance gain achieved by parallelizing as the problem size
and the number of processors varies. Formally, scalability of
a parallel system is a measure of the system’s capacity to
increase speedup in proportion to the number of processors.
A scalable parallel system maintains a fixed efficiency as the
number of processors and the problem size increases [21].

Computational Density: The computational density (CD)
metric measures the computational performance of a device
(parallel system). The CD for double precision FP (DPFP)
operations can be given as [22]:

CDDPFP = 𝑓 ×
∑

𝑖

𝑁𝑖

CPI𝑖
(2)

where 𝑓 denotes the operating frequency of the device, 𝑁𝑖

denotes the number of instructions of type 𝑖 requiring FP
computations that can be issued simultaneously, and CPI𝑖
denotes the average number of cycles per instruction of type
𝑖.

Computational Density per Watt: The computational
density per watt (CD/W) metric takes into account the power
consumption of a device while quantifying performance. We
propose a system-level power model to estimate the power
consumption of multi-core architectures that can be used in
estimating the CD/W. Our power model considers both the
active and idle modes’ power consumptions. Given a multi-
core architecture with a total of 𝑁 processor cores, the power
consumption of the system with 𝑝 active processor cores can

be given as:

𝑃 𝑝 = 𝑝 ⋅ 𝑃
𝑎𝑐𝑡𝑖𝑣𝑒
𝑚𝑎𝑥

𝑁
+ (𝑁 − 𝑝) ⋅ 𝑃

𝑖𝑑𝑙𝑒
𝑚𝑎𝑥

𝑁
(3)

where 𝑃 𝑎𝑐𝑡𝑖𝑣𝑒
𝑚𝑎𝑥 and 𝑃 𝑖𝑑𝑙𝑒

𝑚𝑎𝑥 denote the maximum active and
idle modes’ power consumptions, respectively. 𝑃 𝑎𝑐𝑡𝑖𝑣𝑒

𝑚𝑎𝑥 /𝑁
and 𝑃 𝑖𝑑𝑙𝑒

𝑚𝑎𝑥/𝑁 give the active and idle modes’ power,
respectively, per processor core and associated switching
and interconnection network circuitry. Our power model
incorporates the power saving features of state-of-art multi-
core architectures. Contemporary multi-core architectures
provide instructions to switch the processor cores and
associated circuitry (switches, clock, interconnection network)
not used in a computation to a low-power idle state. For
example, a software-usable NAP instruction can be executed
on a tile in the Tilera’s TMAs to put the tile into a low-
power IDLE mode [10][23]. Similarly, Xeon 5400 processors
provide an extended HALT state and Opteron processors
provide a HALT mode, which are entered by executing the
HLT instruction, to reduce power consumption by stopping
the clock to internal sections of the processor. Other low-
power processor modes are also available [9]. Investigation
of a comprehensive power model for TMAs is the focus of
our future work.

V. RESULTS

The cross-architectural evaluation of SMPs and TMAs in
terms of performance and performance per watt requires
parallelization of benchmarks in two parallel languages:
OpenMP for SMP and Tilera’s MDE ilib API for TILEPro64
TMA. Performance per watt calculations leverage our power
model (3) and we obtain the power consumption values for the
SMPs and TMAs from the devices’ respective datasheets. For
example, the TILEPro64 has a maximum active and idle mode
power consumption of 28 W and 5 W, respectively [22][24].
Intel’s Xeon E5430 has a maximum power consumption of 80
W and a minimum power consumption of 16 W in an extended
HALT state [8][9].

In this section, we present device metrics for the
SMP2xQuadXeon and the TILEPro64 and compare these
architectures’ metrics for our parallelized benchmarks. All
results are obtained with the compiler optimization flag -
O3 since our experiments showed that this optimization flag
resulted in shorter execution times as compared to lower
compiler optimization levels, such as -O2.

A. Benchmark-Driven Results for SMPs

Table I depicts the increase in performance (throughput)
in MOPS and performance per watt in MOPS/W for multi-
core SMP processors as compared to a single-core processor
for the information fusion application for SMP2xQuadXeon

when the number of fused samples 𝑁 = 3,000,000, and
the moving average filter’s window 𝑀 = 40. For example,
an eight-core processor increases the information fusion
application’s throughput by 4.85x as compared to a single-
core processor. The performance per watt results reveal that



TABLE I: Performance results for the information fusion application for SMP2xQuadXeon when 𝑀 = 40.

Problem Size # of Cores Execution Time (s) Speedup Efficiency Cost Perf. Perf. per watt

N 𝒑 𝑻𝒑 𝑺 = 𝑻𝒔/𝑻𝒑 𝑬 = 𝑺/𝒑 𝑪 = 𝑻𝒑 ⋅ 𝒑 (MOPS) (MOPS/W)

3,000,000 1 12.02 1 1 12.02 1073.2 22.36

3,000,000 2 7.87 1.53 0.76 15.74 1639.14 25.61

3,000,000 4 4.03 2.98 0.74 16.12 3201 33.34

3,000,000 6 2.89 4.2 0.7 17.34 4463.67 34.87

3,000,000 8 2.48 4.85 0.61 19.84 5201.6 32.51

TABLE II: Performance results for the Gaussian elimination benchmark for SMP2xQuadXeon.

Problem Size # of Cores Execution Time (s) Speedup Efficiency Cost Perf. Perf. per watt

(m, n) 𝒑 𝑻𝒑 𝑺 = 𝑻𝒔/𝑻𝒑 𝑬 = 𝑺/𝒑 𝑪 = 𝑻𝒑 ⋅ 𝒑 (MFLOPS) (MFLOPS/W)

(2000, 2000) 1 8.05 1 1 8.05 663.35 13.82

(2000, 2000) 2 3.76 2.14 1.07 7.52 1420.21 22.2

(2000, 2000) 4 2.08 3.87 0.97 8.32 2567.31 26.74

(2000, 2000) 6 1.42 5.67 0.94 8.52 3760.56 29.38

(2000, 2000) 8 1.08 7.45 0.93 8.64 4944.44 30.9

multiple cores execute the information fusion application more
power efficiently as compared to a single-core processor.
For example, a four-core processor attains a 49% better
performance per watt than a single-core processor.

Table II depicts the performance and performance per watt
results in MFLOPS and MFLOPS/W, respectively, for the GE
benchmark for SMP2xQuadXeon when (𝑚,𝑛) = (2000, 2000)
where 𝑚 is the number of linear equations and 𝑛 is the
number of variables in the linear equation. Results show that
the multi-core processor speedups, as compared to the single-
core processor, are proportional to the number of cores. For
example, an eight-core processor increases the performance
and performance per watt by 7.45x and 2.2x, respectively, as
compared to a single-core processor.

Finally, the performance results for the EP benchmark for
SMP2xQuadXeon when the number of random variates generated
𝑛 is equal to 100,000,000 (the result details are omitted
for brevity) reveals that the SMP architecture delivers higher
MFLOPS/W as the number of cores increases and the attained
speedups are close to the ideal speedup.

These results verify that embedded systems using an SMP-
based multi-core processor are more performance- and power-
efficient as compared to embedded systems using a single-core
processor.

B. Benchmark-Driven Results for TMAs

Table III depicts the performance results for TMA-based
multi-core processors (TILEPro64) as compared to a single-
core processor for the information fusion application when 𝑁
= 3,000,000 and 𝑀 = 40. Results indicate that the TMA-based
multi-core processor achieves ideal speedups, an efficiency of
close to one, and nearly constant cost as the number of tiles
increases indicating ideal scalability. For example, a TMA-
based multi-core processor with 50 tiles increases performance

and performance per watt by 48.4x and 11.3x, respectively, as
compared to a single TMA tile.

Table IV depicts the performance results for the GE
benchmark for the TILEPro64 when (𝑚,𝑛) = (2000, 2000).
Results show that the TMA-based multi-core processor
achieves less than ideal speedups and that the efficiency
decreases and the cost increases as 𝑝 increases indicating
poor scalability for the GE benchmark. The main reasons for
poor scalability are excessive memory operations, dependency
between the computations, and the core synchronization
operations required by the GE benchmark. However, the TMA-
based multi-core processor still attains better performance
and performance per watt than a single-core processor. For
example, a TMA-based multi-core processor with 56 tiles
increases performance and performance per watt by 14x and
3x, respectively, as compared to a single TMA tile.

Finally, the performance results for the EP benchmark
running on the TILEPro64 when 𝑛 = 100,000,000 indicate
that the TMA-based multi-core processor delivers higher
performance and performance per watt as the number of tiles
increases. For example, a TMA-based multi-core processor
with eight tiles increases performance and performance per
watt by 7.9x and 5.4x, respectively, and with 56 tiles increases
performance and performance per watt by 42.6x and 9.1x,
respectively, as compared to a single TMA tile.

Comparing the performance and performance per watt
results for the information fusion application and EP
benchmark reveals that TMAs deliver higher performance and
performance per watt for benchmarks with integer operations
as compared to the benchmarks with FP operations. For
example, the increase in performance and performance per
watt for integer operations as compared to FP operations is 13x
on average for a TMA with eight tiles. This better performance
and performance per watt for integer operations is because
Tilera’s TMAs do not contain dedicated FP units.



TABLE III: Performance results for the information fusion application for the TILEPro64 when 𝑀 = 40.

Problem Size # of Tiles Execution Time (s) Speedup Efficiency Cost Perf. Perf. per watt

N 𝒑 𝑻𝒑 𝑺 = 𝑻𝒔/𝑻𝒑 𝑬 = 𝑺/𝒑 𝑪 = 𝑻𝒑 ⋅ 𝒑 (MOPS) (MOPS/W)

3,000,000 1 70.65 1 1 70.65 182.6 34.07

3,000,000 2 35.05 2 1 70.1 368 64.33

3,000,000 4 17.18 4.1 1.02 68.72 750.87 116.6

3,000,000 6 11.48 6.2 1.03 68.9 1123.69 156.94

3,000,000 8 8.9 7.94 0.99 71.2 1449.44 183.94

3,000,000 10 6.79 10.4 1.04 67.9 1899.85 221.17

3,000,000 50 1.46 48.4 0.97 73 8835.62 384.66

TABLE IV: Performance results for the Gaussian elimination benchmark for TILEPro64.

Problem Size # of Tiles Execution Time (s) Speedup Efficiency Cost Perf. Perf. per watt

(m, n) 𝒑 𝑻𝒑 𝑺 = 𝑻𝒔/𝑻𝒑 𝑬 = 𝑺/𝒑 𝑪 = 𝑻𝒑 ⋅ 𝒑 (MFLOPS) (MFLOPS/W)

(2000, 2000) 1 416.71 1 1 416.71 12.81 2.39

(2000, 2000) 2 372.35 1.12 0.56 744.7 14.34 2.51

(2000, 2000) 4 234.11 1.8 0.45 936.44 22.81 3.54

(2000, 2000) 6 181.23 2.3 0.38 1087.38 29.46 4.11

(2000, 2000) 8 145.51 2.86 0.36 1164.08 36.7 4.66

(2000, 2000) 16 84.45 4.9 0.31 1351.2 63.23 5.88

(2000, 2000) 28 52.25 7.98 0.28 1463 102.2 6.79

(2000, 2000) 44 36.26 11.49 0.26 1595.44 147.27 7.08

(2000, 2000) 56 29.72 14 0.25 1664.32 179.68 7.15
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Fig. 2: Performance per watt (MOPS/W) comparison
between SMP2xQuadXeon and the TILEPro64 for the

information fusion application when 𝑁 = 3000,000.

These results verify that an embedded system using TMAs
as processing units is more performance- and power-efficient
as compared to an embedded system using a single tile.

C. Comparison of SMPs and TMAs

To provide cross-architectural evaluation insights for SMPs
and TMAs, we compare the performance per watt results based
on our parallelized benchmarks for these architectures. These
results indicate which of the two architectures is more suitable
for particular type of embedded applications.

Fig. 2 compares the performance per watt for the
SMP2xQuadXeon and the TILEPro64 for a varying number of
cores/tiles for the information fusion application and reveals

that the TILEPro64 delivers higher performance per watt
as compared to the SMP2xQuadXeon. For example, when the
number of cores/tiles is eight, the TILEPro64’s performance
per watt is 465.8% better than the SMP’s. The reason for
this better performance per watt for the TILEPro64 is that
the information fusion application operates on the private data
obtained from various sources, which is easily parallelized
on the TILEPro64 using ilib API. This parallelization exploits
data locality for enhanced performance for computing moving
averages, minimum, maximum, and average of the sensed data.
The exploitation of data locality enables fast access to private
data, which leads to higher internal memory bandwidth (on-
chip bandwidth between tiles and caches) and consequently
higher MFLOPS and MFLOPS/W.

The SMP2xQuadXeon attains comparatively lower performance
than the TILEPro64 for the information fusion application
due to two reasons: the SMP architecture is more suited
for shared memory applications and the information fusion
application is well suited for architectures that can better
exploit data locality; and OpenMP-based parallel programming
uses sections and parallel constructs, which requires sensed
data to be shared by operating threads even if the data requires
independent processing by each thread. While parallelizing the
information fusion application for the SMP2xQuadXeon, we first
tried using an independent copy of the sensed data (as with
the TILEPro64) for each thread to maximize performance.
This parallelization resulted in segmentation faults due to the
extremely large memory requirements and required us to use



shared memory for the sensed data since the current version
of OpenMP provides no way of specifying private data for
particular threads (although data can be declared private for
all of the threads participating in a parallel computation).
Therefore, the SMP’s comparatively lower performance is
partially due to the limitation of OpenMP, which does not
allow the declaration of thread-specific private data (i.e.,
received data from the first source is private to the first thread
only whereas other threads have no information of this data,
received data from the second source is private to the second
thread only, and so on).

Fig. 3 shows that the SMP2xQuadXeon achieves higher
MFLOPS/W than the TILEPro64 for the GE benchmark.
For example, the SMP2xQuadXeon achieves a 563% better
performance per watt than the TILEPro64 when the number
of cores/tiles is eight. The results also indicate that the
SMP2xQuadXeon exhibits better scalability and cost-efficiency
than the TILEPro64. For example, the SMP2xQuadXeon’s
cost-efficiency is 0.93 and the TILEPro64’s cost-efficiency
is 0.36 when the number of cores/tiles is eight. The
GE benchmark requires excessive memory operations and
communication and synchronization between processing cores,
which favors the SMP-based shared memory architecture since
the communication transforms to read and write operations in
shared memory, and hence better performance per watt for
the SMP2xQuadXeon as compared to the TILEPro64. In TMAs,
communication operations burden the on-chip interconnection
network, especially when communicating large amounts of
data. Furthermore, the higher memory bandwidth (both on-
chip and external memory) for the SMP2xQuadXeon as compared
to the TILEPro64 leads to higher memory-sustainable CD
and thus enhanced performance for the GE benchmark, which
requires frequent memory accesses.

For the EP benchmark, the SMP2xQuadXeon delivers higher
MFLOPS/W than the TILEPro64 because the EP benchmark’s
execution time on the SMP2xQuadXeon is significantly less than
the execution time on the TILEPro64 (detailed results are
omitted for brevity). For example, the SMP2xQuadXeon achieves
4.4x better performance per watt than the TILEPro64 when
the number of cores/tiles is equal to eight. The comparatively
larger execution time on the TILEPro64 is due to the
complex FP operations (e.g., square root, logarithm) in the
EP benchmark, which require many cycles to execute on the
integer execution units in the TILEPro64.

We also compare the overall execution time for the
benchmarks (detailed results are omitted for brevity) for SMPs
and TMAs to provide insights into the computing capability
of the processor cores in the two architectures regardless
of the power consumption. Results show that the execution
time of the benchmarks on a single core of the SMP is
significantly less than the execution time of the benchmarks
on a single tile of the TMA. For example, for the information
fusion application, the execution time on a single core of the
SMP2xQuadXeon is 6x less than the execution time on a single tile
of the TILEPro64. This execution time difference is primarily
due to the lower computing power and operating frequency
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Fig. 3: Performance per watt (MFLOPS/W) comparison
between SMP2xQuadXeon and the TILEPro64 for the Gaussian

elimination benchmark when (𝑚,𝑛) = (2000, 2000).

of each tile and the TILEPro64’s lack of FP execution units.
Each tile on the TMA has a maximum clock frequency of
866 MHz as compared to the SMP2xQuadXeon’s maximum clock
frequency of 2.66 GHz. The better performance of a single
core of the SMP2xQuadXeon as compared to a single tile of
the TILEPro64 confirms the corollary of Amdahl’s law that
emphasizes the performance advantage of a powerful single
core over multiple less powerful cores [25]. We point out
that this execution time difference may be exacerbated for
memory-intensive benchmarks because of the larger L2 cache
on the SMP2xQuadXeon (12 MB) as compared to the TILEPro64
(5 MB on-chip cache with Tilera’s DDC technology).

VI. CONCLUSIONS

In this paper, we compared the performance of symmetric
multiprocessors (SMPs) and tiled multi-core architectures
(TMAs) (focusing on the TILEPro64) based on a parallelized
information fusion application, a Gaussian elimination (GE)
kernel, and an embarrassingly parallel (EP) benchmark. Our
results revealed that the SMPs outperform the TMAs in
terms of overall execution time, however, TMAs can deliver
comparable or better performance per watt. Specifically, results
indicated that the TILEPro64 exhibited better scalability
and attained better performance per watt than the SMPs
for applications involving integer operations and for the
applications that operate primarily on private data with little
communication between operating cores by exploiting the
data locality, such as in the information fusion application.
The SMPs depicted better scalability and performance
for benchmarks requiring excessive communication and
synchronization operations between operating cores, such as in
the GE benchmark. Results from the EP benchmark revealed
that the SMPs provided higher peak floating point performance
per watt than the TMAs primarily because the studied TMAs
did not have a dedicated floating point unit.

Our future work includes further evaluation of SMPs and
TMAs for other benchmarks, such as a block matching
kernel for image processing, video encoding and decoding,
convolution, and fast Fourier transform (FFT) because these
benchmarks would provide insights into the architectures’
suitability for other domains, such as signal processing.



We also plan to develop a robust energy model for the
SMPs and TMAs as well as expand our evaluation to
include field-programmable gate array (FPGA)-based multi-
core architectures.
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