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Abstract

As massively parallel computers proliferate, there is growing interest in finding ways by

which performance of massively parallel codes can be efficiently predicted. This problem arises

in diverse contexts such as parallelizing compilers, parallel performance monitoring, and parallel

algorithm development. In this paper we describe one solution where one directly executes

the application code, but uses a discrete-event simulator to model details of the presumed

parallel machine, such as operating system and communication network behavior. Because this

approach is computationally expensive, we are interested in its own parallelization, specifically

the parallelization of the discrete-event simulator. We describe methods suitable for parallelized

direct execution simulation of message-passing parallel programs, and report on tile performance

of such a system, LAPSE (Large Application Parallel Simulation Environment), we have built on

the |ntel Paragon. On all codes measured to date, LAPSE predicts performance well, typically

within 10% relative error. Depending on the nature of the application code, we have observed

low slowdowns (relative to natively executing code) and high relative speedups using up to 64

processors.
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1 Introduction

Performance prediction and/or analysis of parallel programs is currently an important area of

research, especially as parallel computers are coming to dominate the high performance computing

arena. Writers of parallel compilers would like to be able to predict performance as an aid towards

generating efficient highly parallel code. Users of performance instrumentation and tuning tools

are interested in predicting and observing parallel performance, but must deal with the fact that

instrumentation code may perturb their measurements. Developers of new parallel algorithms are

interested in predicting how well the performance of a new algorithm scales up with increasing

problem size and machine architecture. General users may be interested in performance tuning

their codes for large numbers of processors (which are only infrequently available) using fewer, more

readily available resources. Designers of new communication networks are interested in evaluating

their designs under realistic workloads.

The method of direct execution simulation[4, 5, 9, 11, 16] of application codes offers a solution

to each of these problems. Under a direct execution simulation all application code is directly

executed to obtain information about the application's execution behavior, but all references by

the application code to the simulated virtual machine are trapped by the simulator. From the point

of view of the application code, it is running on the virtual machine. Thus, when the application

executes temporal calls such as "what is the wallclock time now", or, "is there a message of type T

available now", the response depends on the state of the virtual machine simulator at the simulated

time of the call's placement. From the point of view of the simulator, the application code is a

driver, describing the activity to be simulated. A detailed direct execution simulator for parallel

programs offers the potential for accurate prediction of parallel program performance on large,

possibly as-yet-unbuilt systems. The approach does require a great deal of computation, but

is a good candidate for parallelization. Execution of the application processes is a clear source of

parallelism; one easily envisions a system where the discrete-event virtual machine simulator resides

on one processor while a pool of other processors host the directly executing application processes.

This solution will perform poorly though in situations where either the communication path to the

simulator becomes a bottleneck, or the simulator execution itself is a bottleneck. It is important

then to consider the problem of parallelizing the virtual machine simulator.

This paper considers the problem of parallelizing the virtual machine simulator for message-

passing parallel programs. The methods we describe have been implemented in a tool named

LAPSE (Large Application Parallel Simulation Environment), implemented on the Intel Paragon,

for Paragon codes. While pieces of LAPSE are specific to the Paragon, the synchronization algo-

rithm we describe in this paper is applicable to general message-passing systems. LAPSE accepts

as input only a "makefile" describing how to build the application, the application source code,

and a LAPSE initialization file describing the size and characteristics of the virtual machine and

the mapping of the virtual machine onto the physical machine. From these LAPSE automatically

builds, loads, and executes a direct execution simulation of the application code. LAPSE supports

applications written in C, or Fortran, or a mixture of the two. We describe LAPSE's performance



on fourparallelapplications:twolinearsystemsolvers(oneindirect,onedirect),a continuoustime

Markovchainsimulator,andagraphicslibrary driver. Measuringspeedups(relativeto simulations

usingonly oneprocessor)and slowdowns(relativeto nativelyexecutingcode)weobservea wide

rangeof performancecharacteristics,dependingin largepart on thenatureof the codebeingsimu-
late& LAPSEhasprovento accuratelypredictperformance,typically within 10%.While wehave

simulatedasmanyas512virtual processorsusingonly 64actualprocessors,the mainlimitation

we'veencounteredis limited physicalmemory.Thisproblemis specificto the Paragon,andshould

not bean issueonparallelarchitecturesthat bettersupportvirtual memory.

Severalotherprojectsusedirectexecutionsimulationof multiprocessorsystems.Amongthese

wefind twopertinentcharacteristics,(i) the typeof networkbeingsimulated,and(ii) whetherthe

simulationis itself parallelized.Table 1usestheseattributes to categorizerelevantexistingwork,
and LAPSE.

Tool communication simulator

HASE[121
LAPSE

MaxPar[3]

Proteus[2]

RPPT[4]

Simon[9]

Tango[7]

WWT[24]

message-passing network

message-passing network

shared memory (no cacheing)

cache-coherent shared memory

message-passing network

message-passing network

cache-coherent shared memory

cache-coherent shared memory

parallel

parallel

serial

serial

serial

serial

serial

parallel

Table 1: Direct Execution Simulation Tools.

Among most current simulators other than our own, simulation of cache-coherency protocols

are an important concern. LAPSE is implemented on the Intel Paragon[13], which does not support

virtual shared memory. Coherency protocols complicate the simulation problem considerably, but

are a facet LAPSE need not deal with. However, existing work has identified context-switching

overhead as a key performance consideration, and it is one that directly affects us. As much as

an order of magnitude improvement has been observed when a direct-execution simulator uses

its own light-weight thread constructs to accelerate context-switching (for small grain sizes). The

thread packages available to us do not support the appearance of independent virtual address spaces

necessary to our approach, nor are we able (in the context of a shared machine in a government lab)

to modify the operating system kernel to support this ourselves; LAPSE processes are by necessity

OSF-1 Unix threads, are subject to that operating system's mechanisms for scheduling, and are

subject to its costs for context switching.

The Wisconsin Wind Tunnel (WWT) is to our knowledge the only working multiprocessor sim-

ulator that uses a multiprocessor (the CM-5) to execute the simulation. (HASE was not operational

in parallel at the time [12] was published. The intent in HASE is to use a commercially available



simulatorbasedon the optimistic Time Warp synchronization protocol.) It is worthwhile to note

the differences between LAPSE and the WWT. The first is a matter of purpose. LAPSE's primary

goal is to support scalability and performance analysis of Paragon codes. The WWT is a tool for

cache-coherency protocol researchers, being designed to simulate a different type of machine than

its host. A second difference is a matter of lookahead, the ability of a conservative parallel simula-

tion to predict its future behavior. In a cache-coherent system, a processor may interact with the

communication network on any cache miss, or may have its cache affected by a write at any time by

another processor. The lookahead is apparently poor. The WWT deals with this by keeping things

in close synchrony. The WWT exploits an assumption that any communication between processors

requires at least B _ 100 number of cycles. Application object code is altered to cause WWT

application processes to synchronize every B cycles. Any communication is deferred until the next

barrier with the assurance that the barrier occurs before the communication can have affected its

recipient. (This method of synchronization is a special case of the YAWNS [19, 22] protocol.) The

WWT ignores any network contention by assuming that the latency of every message is fixed, and

known. By contrast, Paragon processors are less tightly coupled. In a cache-coherent setting any

memory reference might generate a network event; in a message-passing setting only an explicit call

to a message-passing subroutine can influence network behavior. This fact allows a less rigid ap-

proach to synchronization. In particular, many large numerical programs alternate between a long

computation phase where no communication occurs and a communication-intensive phase. Because

of better lookahead possibilities, LAPSE can avoid synchronization during long periods of network

idleness whereas the WWT cannot. The lookahead available in LAPSE comes from the observation

that, in many applications, |ong portions of the execution path are independent of time. In such

cases the application code can be executed well in advance of actually simulating the timing. Where

the execution path is not independent of time, lookahead can still be obtained provided there is a

lower bound on the operating system overhead required to send or receive a message. Finally, the

WWT uses a customized operating system that cleverly exploits CM-5 idiosyncrasies to recognize

misses in the simulated cache. LAPSE runs purely as an application.

Individual elements of LAPSE have been proposed before, e.g., parallelized direct execution,

and support for different network simulators. Our contributions are to show how to effectively

synchronize parallelized direct-execution simulations of distributed memory programs, to demon-

strate the feasibility of our approach by actual implementation and testing on non-trivial codes, and

to observe sometimes excellent performance. This combination of features makes LAPSE unique

among its peers.

Section 2 gives an overview of the LAPSE system. Section 3 describes how LAPSE transforms

a massively parallel code into a direct execution simulation and then Section 4 details our synchro-

nization strategy. Section 5 describes our experiments and their results with respect to validation,

slowdown, and speedups, while Section 6 presents our conclusions.
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2 An Overview

A parallel program for a distributed memory machine is comprised of N application processes,

distributed among n < N processors. Most parallel programs are constructed so that n = N,

an equivalence we presently assume. We assume the mapping is static. Application processes

communicate through message passing using explicit calls to system library routines. For example,

the esend call in the Intel nx library sends a message. The calling application passes arguments

defining the message type (a user-defined integer), the message base address and length, the process

id and processor id of the recipient. Control is returned to the application as soon as the memory

area occupied by the message is available for reuse, crecy is called to receive a message; arguments

are the message type, base address to place the message, and maximum message length. Control is

returned to the application process once the message is received, ireev is an asynchronous version

of ereev. If the receive routine is called before the anticipated message arrives, the incoming

message will transfer directly from the network into the location specified by the user. Otherwise

the message transfers from the network into a communications buffer; a subsequent receive call,

msgdone, copies the message into the user's buffer.

Figure l(a) iUustrates how an application process views time. It runs for a period, then calls a

system message-passing routine to send or receive a message. The message transaction is complete

upon return of control to the application. The time the system spends handling messages is invisible

to the application. An application process knows about execution durations, e.g., process 1 can

measure or predict durations a - 0, c - b, and e - d under the assumption that it is not interrupted;

these are analogous to service times in a queueing network. If we can assume that such durations

are independent of network activity (again assuming lack of interruptions, a facet we do deal with),

these durations give us information we can exploit in a parallel simulation synchronization protocol.

Interrupt durations and message-passing overheads are determined in part by the network state,

as illustrated in Figure l(b). In Figure l(b), a message is sent from process 1 to process 2 starting

at time a. At time a, control is passed to the operating system on processor 1. Because of the

operating system overhead required to prepare the message for transmission over the network,

control is not returned to application process 1 until time b. The message begins coming out of

the network on processor 2 at time f, thereby interrupting process 2, which was in the middle

of an execution block. At this point the operating system on processor 2 gains control to handle

the interrupt. After the message has been completely received by the operating system, control is

returned to application process 2 (at time g). When process 2 finally reaches the code (at time

h) that explicitly receives the message (in this case copying it from a system buffer to user space)

an additional overhead is incurred; this message receipt overhead is completed at time i at which

point process 2 begins executing again. By contrast, process 1 reaches its receive statement (at

time c) before the message from process 2 arrives. The arriving message moves directly into the

user buffer. Application process 1 continues execution after the receive has been completed (at

time d). The application processes are unaware of these timing details. It falls to the simulator

to assign virtual times to event times a, b, c, and so on, as a function of the execution durations
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Figure 1: Application and Network views of parallel application timings.

reported by the application processes, an evaluation of message-passing delays, assumed operating

system overheads for message-passing and interrupt handling, and a model of how message-passing

activity affects the execution of application processes. Indeed, an application simulator in LAPSE

maintains for each application process a data structure reflecting Figure 1(b), called a time-line, that

records observed application events and assigns simulation times to them. A time-line is essentially

a future-events list for an application process simulator, where the time-stamps on future-events

are modified as the simulation progresses, depending on the simulation activity. The simulator is

conceptually separated into an application simulator and network simulator, although the set of

future application and networks events is essentially a single event list.

Figure 2 gives an overview of LAPSE's communication structure. An application submitted

to LAPSE is recompiled with LAPSE macros that redirect application message-passing calls to

corresponding LAPSE routines. The set of all such routines is known as the LAPSE interface. The

interface code is linked to the application, becoming resident in the same address space. Application

calls to interface routines typically trigger some interaction between application processes, through

the interface routines. For instance, an application call to send a message is trapped by an interface

routine which sends the message--to be received by an interface routine corresponding to a matching

message receive in another application process. An interface routine also communicates with some
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Figure 2: The LAPSE communication structure.

LAPSE application simulator, notifying it of the activity it has performed (or that the apphcation

wishes to perform). A LAPSE application simulator is responsible for receiving descriptions of

application "events" from application interface routines, and for assigning simulation times to

events on time-lines like those illustrated in Figure 1. Each application simulator interacts with a

network simulator responsible for simulating activity in some portion of the virtual communication

network. An application simulator and the network simulator it interacts with form a single process

responsible for simulating a number of application processes that are typically (but not always)

resident on the same physical processor. The collection of all application and network simulators

cooperatively synchronize as a parallel discrete-event simulation.

The interface between an application simulator and its corresponding network simulator is

simple, supporting the integration of different network simulators. The performance data in this

paper is taken from a pure-delay simulator that ignores any contention. As will be seen, the

no-contention assumption is not deleterious to LAPSE's ability to predict performance.

3 Application/LAPSE Interaction

In this section we briefly describe how an application code is transformed into a LAPSE simulation

code.
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LAPSEpreprocessingis invokedby modifyinganapplication'smakefile(i.e. the input file for

the Unix make command).All referencesto the compileror linker arereplacedby referencesto
LAPSEscripts. The compilationscript prependsto eachsourcefile a list of macro definitions

that remap every message-passing routine call to a corresponding LAPSE routine. In this way all

interactions by the application code with the virtual machine environment are trapped (excepting

asynchronously triggered message handlers, whose use is discouraged on the Paragon). Next each

source file is compiled to assembly code, which is instrumented with code that increments (at

basic block boundaries) an accumulating count of the number of instructions executed so far. The

instrumented code is then compiled. The linker script causes the additional linkage of LAPSE

interface code that includes all routines to which message-passing calls have been remapped. The

instrumented code and attached LAPSE interface code become one OSF-1 Unix process, which

we call the application process. Each of these is represented by a time-line and attendant data

structures as a virtual processor (VP) in the simulation.

Every call to an interface routine is temporally sensitive, or insensitive. An insensitive call is

one whose result or effect does not depend on the state of the virtual machine at the point of the

call. Put another way, the application's execution path does not depend on insensitive calls, but

it may depend on the results of a sensitive call. Most calls are temporally insensitive, including

those corresponding to the transmission or receipt of messages (e.g., csend, crecy, isend, irecv

and their extended versions, on the Paragon), and those that cause the calling processor to block

until some condition is satisfied (msgwait, gsync, all global reductions). Sensitive calls include

those to real-time clocks (dclock), asynchronous probes for the existence of particular messages

(iprobe, iprobex) and queries after the status of anticipated messages (msgdone). To appreciate

the importance of this distinction, compare the two code fragments below.

Fragment 1

crecv(MSGTYPE, MsgAdrs, MsgSize);

ProcessMsg(MsgAdrs);

csend(MSGTYPE+ 1,MsgAdrs,l,10,0);

Fragment 2

MsgCode = irecv(MSGTYPE,MsgAdrs, MsgSize);

idx= 1;

while(msgdone(MsgCode)= =0) BusyWork(idx++);

csend (M SGTYP E+ 1 ,MsgAdrs, 1,10,0);

Both fragments wait for a message of type MSGTYPE to appear, process it, and then send a

message themselves. Fragment 1 simply blocks and waits for the message. It then processes the

message and then sends a message (of 1 byte to process 0 on node 10). Fragment 2 polls the Boolean

valued function msgdone to determine if the message is present. If not, a routine BusyWork is

called with a parameter that changes with every call. The number of times BusyWork is called,

and the parameters passed to it depend on the responses from msgdone. While none of the calls

in Fragment 1 are temporally sensitive, Fragment 2's call to msgdone is temporally sensitive. In

LAPSE, the answer to the msgdone query will come from the simulator, based on whether the

simulator observes the message of interest. After the simulated message arrives (in the simulator),

the simulator answers the msgdone affirmatively by tell the LAPSE interface that the message

is available. The interface then waits until the corresponding application message actually does

arrive (from another application process). In this way, the application calls the msgdone routine



exactlyasmany timesasit wouldon the simulatedvirtual machine. In this casethere is close

linkagebetweenthesimulatorandtheapplicationexecution.Fragment1needsnosuchinteraction

with the simulatorfor its execution,andthereforeFragment1 applicationcodecanbe run well in

advanceof whenthesimulatoreventuallysimulatesthetimingof eventscorrespondingto Fragment
1.

At runtime,LAPSEloadssimulatorand applicationprocessesonto the physicalmachineas

specifiedby an input file. Typically,eachphysicalprocessoris assignedonesimulatorprocessand

a numberof applicationprocesses,althougharrangementsseparatingsimulationand application

processesarealsopossible.In eithercase,eachapplicationprocessis notifiedof the identity of a

singlesimulatorprocesswith which it will interact. Likewise,eachsimulatorprocessis initialized
with the identity of all applicationprocesseswith whichit will interact. Theapplicationprocesses

arethenpermittedto execute.
Whenevera LAPSEinterfaceroutineis calledit recoversthenumberof applicationinstructions

that haveexecutedsincethe last call to a LAPSEroutine. This count is inflated by an input

parameter(effectiveclockticksperinstruction)obtainedfromtheinput file to produceanestimate

of the lengthof time theVP wouldhaverun without interruptionon the virtual machine,between

thelast twointeractionswith the machine.A mechanismfor determiningthat input parameteris

describedin Section5. Next, if the call is temporallyinsensitiveits parametersare transformed

from virtual machinecoordinatesinto physicalmachinecoordinates,and the requestedoperation

is performed.In thecaseof messagesendsandreceiveswetakeadvantageof theaddressspaceco-
residenceof the interfaceroutineandapplication,andleavememoryaddressparametersunaltered.

Temporallysensitivecallsdonot involveactualexecutionof the requestby the interface.In either

case,subjectto flow-controlconsiderationstheinterfaceroutinenextsendsamessageto its assigned

simulator,reportingthemeasuredexecutionburst,and therequestedoperation.At this point the

interfaceroutinefor a temporallyinsensitivecall completestheoperation(e.g.,blocksona crecy

call until the anticipatedmessagearrives),and then returnscontrol to the calling application

process.A temporallysensitivecall waitsfor a responsefrom thesimulator,and uponreceivingit

returnsthe responseto the application.

The Paragonlibrary nx includesarich collectionof globalreductionoperations.LAPSEmaps

theseto LAPSEroutinesthat implementthemusingmoreprimitive send/receivecalls,andinstru-

mentssuchroutinesasthoughtheywerepart of theapplication.To accountfor thecostof global

synchronization,for instance,the originalapplicationcall is redirectedto a LAPSEroutine that

implementsa barrier in thestandardtree-fashion,in virtual machinecoordinates.Sincethat code

is itself remappedand instrumentedexactlylike applicationcode,thecostof the synchronization

is obtainedby executinga LAPSE versionof what the Paragonlibrary function does. LAPSE

supportsalmostall nx callsconsistentwith theSingleProgramMultiple Data (SPMD)paradigm.

The principleomissionsarecallsfor asynchronousmessagehandling(hrecv), messagecancella-

tion calls,andmessagecallsinvolvingtype masks.Thesecallsare rarelyusedin our computing
environment.

To obtain accuratetiming of the application,the operatingsystemoverheadfor sendingand



receivingmessagesneedsto beproperlyaccountedfor. LAPSEcurrentlyestimatessuchoperating

systemoverheads.Forexample,the overhead(in clockticks) to executea csend canbemodeled

asa + b × L where a is a startup cost, L is the message length and b is the cost per byte. Estimates

of a and b can be obtained by measurements of the operating system. In principle, it would also be

possible to instrument the operating system itself with the instruction counting code and to run this

instrumented code as part of the simulator. This would eliminate the need for using estimated path

lengths, however, it requires access to the operating system source code as well as authorization to

run the modified kernel.

4 Synchronization

A strictly serial simulation executes events in monotone non-decreasing order of event times. We

view a parallel simulator as a collection of individual discrete-event simulators, each run on a

separate processor, each having the ability at any time of scheduling an event on a different simulator

than itself. We desire that events on each processor also be executed in monotone increasing order,

or at least compute the same state as though such monotonicity were achieved. If the earliest event

on a processor has time-stamp t, before the processor executes that event it must either be certain

that no other simulator can still schedule on it an event with smaller time-stamp s < t, or it must

be prepared to rollback and begin recomputing at time s if such an event is later scheduled.

There is a rich literature of solutions to this synchronization problem. Good introductory

surveys are found in [10, 25], and a survey of the state-of-the art is found in [20]. Conservative

synchronization protocols prohibit a simulator from executing an event if there is any possibility

of an earlier event being scheduled there later. Optimistic protocols allow out-of-sequence event

processing. Each style has its strengths and weaknesses, and each has been shown to perform well

on some applications, and poorly on others. Regardless of the method, good performance is always

dependent on a model's tendency towards relatively infrequent scheduling of events by one processor

onto another. Conservative methods frequently work well if that slackness can be identified ahead

of time by computation, i.e., if each simulator is able to continuously compute and distribute lower

bounds on the future times at which it may schedule events on other processors. The ability to

make such predictions (called lookahead) is very model dependent. Optimistic methods basically

work by assuming the slackness exists, and correcting errors made when the assumption proves

to be false. Optimistic methods have the potential for being more general, but carry with them

the overheads necessary for recovering from errors. Optimistic methods are also very much more

difficult to implement correctly.

LAPSE uses a new conservative synchronization protocol, Whoa, (Window-based halting on

appointments), tailored to the characteristics of the simulation problem. Suppose simulation time

t was previously chosen as a global synchronization point (initially t = 0). Once all simulators

have simulated up to t, they cooperatively establish a simulation time w(t) > t, and after doing

so simulate all events with time-stamps in [t, w(t)). Within the window simulators may still syn-

chronize with each other, but do so in a pairwise fashion; global synchronization occurs only at



the boundariesof the windows. Once every simulator has reached time t_ = w(t), another time

w(t') > t' is chosen, and the window [t', w(t')) is simulated. This process continues until the simula-

tion terminates. Given lower window edge t, the value w(t) is computed to ensure that all message

send events whose time-stamps will eventually fall in It, w(t)) exist already on their applications'

time-lines.

Synchronization within a window is governed by the dynamic computation and distribution of

lower bounds on future times at which one simulator may affect another. The only interaction be-

tween simulators is through remote send events, i.e., a message send call whose destination is a VP

managed by a simulator other than that of its source. These lower bounds are called appointments

[21]. There is an appointment associated with every remote send event, on every time-line; it is

initially computed when the event is received, and it is updated as the simulation progresses. The

appointment reflects the best known lower bound on when the associated message reaches the net-

work hardware. The application simulator passes these appointments to its corresponding network

simulator, which transforms it into an appointment between itself and the network simulator for

the message's destination. Depending on the network being simulated, appointments with other

network simulators may also be in order. A network simulator computes a halting time as the

minimum incoming appointment time. Neither application nor network simulator ever processes

an event whose time-stamp is larger than the simulator's current halting time. As the simulation

progresses, a simulator either sends the fore-warned messages, or increases the lower-bound on

network entry times. As these modifications occur the network appointment times either disappear

or increase, and each simulator's halting time must increase until it is at least as large as w(t). As

the halting time increases, the application and network simulators are free to execute events with

smaller time-stamps. The protocol will not deadlock--if h I < w(t) is the least halting time among

all simulators, then the simulator whose appointment defines h _ must have a simulation clock value

strictly less than h _, and must have an event with time-stamp strictly less than h I, which it can

safely execute.

We now elaborate on Whoa, in two steps. First we discuss how appointments are computed,

how they are used, and when they are updated. Secondly we discuss construction of windows.

4.1 Appointments

LAPSE exploits the tendency for message-passing codes' execution paths to be largely insensitive

to timing. The key observation is that one can execute the application processes largely as on-line

trace generators, and maintain on the time-lines a potentially long list of future-events. Whoa

builds appointments and windows around these lists. In this subsection we describe two types of

appointments, application appointments from application simulators to network simulators, and

network appointments between network simulators.

Consider Figure 3 illustrating a VP's time-line and a situation where simulation time (for the

simulator as a whole) has advanced to t. The time-line records execution bursts with lengths A,B,C,

D, and application events; we wish to compute a lower bound on the network entry time of the

remote message. An event's application appointment is a lower bound on the instant when it will

10



local
csend A crecv

tt °
s t

local remote
B crecv C csend D csend

i-3 [] D

Appointment = (A-( t-s ) )+B +C +D + 2( crecv startup )+ 2(csend startup )

Figure 3: Application appointment calculation on a VP's time-line.

be scheduled on the network simulator to model network entry. It is constructed as the sum of the

residual time in the current execution or startup block, plus all execution burst lengths, plus lower

bounds on startup costs of intervening application events, plus the lower bound on the startup cost

of the event itself. As application events are processed the appointment may increase.

An application appointment is made for a remote send shortly after that event is reported

to the application simulator. Whoa strives to keep appointments current as the simulator state

evolves. Appointments change specifically in two cases. First, it may happen that the duration of

an application event startup is larger than the lower bound assumed. This usually arises to include

some cost--like that of copying a message--that is not always suffered and hence is not included

in the lower bound. When the event is executed and the additional cost is included, appointments

for all remote send events on the affected VP are increased by the amount of the additional cost.

The appointments may change in the presence of blocking. For example, if simulation of an erecv

in Figure 3 fails to find the anticipated message, the VP becomes suspended. As simulation time

advances without the message appearing, the appointments computed by the suspended VP must

increase. Likewise, a VP that is interrupted by the arrival of a message becomes suspended until

the message is completely received, and its appointments must be updated during the period of its

suspension. At the point a VP becomes suspended, say at t, we find the VP's minimum outgoing

appointment time t_, compute the difference d = t_ -t, and then periodically schedule a "VP

appointments update" event every d units of time, until the VP becomes unsuspended. Execution

of this event advances all of the VP's appointments by d units. The update event is removed from

the event list when the VP is released from suspension, at which point updated appointments are

passed.

Individual simulators synchronize using network appointments. A network appointment at

time t' from simulator i to j, for message m, is a promise that the event reporting m's arrival at

the subnetwork managed by j will not be scheduled at j before time t'. Given m's application

appointment, simulator i's network simulator constructs the network appointment by adding the

network latency time (which depends on the distance the message travels). LAPSE currently sends

that network appointment every time the network simulator receives a new or updated application

appointment (this is overkill, we are developing a version that very much reduces the communication

volume associated with appointments). Because LAPSE presently uses a contention free network

model, no further updating of network appointments is needed. However, more sophisticated

ll



updating of network appointments will be required for network models that capture contention.

The transmission of a simulated message from one network simulator to another removes its

associated appointment. Upon receipt, the target VP is taken to be suspended for as long as it

takes the message to completely arrive (which depends on the number of packets into which it

has been decomposed). The target network simulator notes the time at which the message will be

completely received, data needed for the window computation to be described.

Every network simulator maintains a single "halting time" for both the application and network

simulators; at any instant the halting time is the time of the current minimum incoming network

appointment. Any event with a time-stamp less than the current halting time may be safely exe-

cuted. The halting time increases as appointments change, and messages are received. Eventually

the halting time increases past the upper edge of the current window, all remaining events in the

window are executed, and the simulator engages in computing the upper edge of the next window.

4.2 Window Construction

Suppose that time t is the upper edge of a window. A simulator engages in the window construction

protocol once its halting time is t or larger, and it has no remaining events with time-stamps less

than t. The upper edge w(t) of the next window is computed to ensure that it is a lower bound

on the time-stamp on the next unknown (i.e., not on the time-line) remote send event that any

simulator may execute, w(t) is thus a measure of how far into the future, globally, the application

processes have advanced ahead of the simulation processes. We desire that many events be found

on each VP's time-line between times t and w(t), to better amortize the cost of computing w(t).

Towards this end, a simulator's first action is walt until every one of its VP's time-lines has as

many events as is apparently possible (it will always wait until at least one event is present). For

reasons involving the Paragon's management of communication buffers, a user specified flow-control

parameter F is involved in the decision. The general rule is the simulator will wait for more events

until either the application processes reports that it is blocked, or at least F application events

exist on the time-line already. The application process reports its current blocked/unblocked state

with every event it reports; the state is also reported separately when it changes from blocked

to unblocked. There are three ways an application process may become blocked. First, it will

be blocked if the last call it made to an interface routine was temporally sensitive. To become

unblocked it must walt until the the simulator executes the temporally sensitive call and responds to

it. Secondly, the application process may be blocked at a temporally insensitive call, such as crecy

or msgwait which both wait until an application message is received from another application

process. At such time as the application process becomes runnable, the interface routine notifies

the simulator of the change. Finally, the application may become temporarily blocked for purposes

of message flow-control.

Once all of its time-lines are filled, a simulator enters a global vector (component-wise) min-

reduction, the results of which permit each simulator to compute w(t). Each simulator offers a

3-tuple to the reduction. The first element is L, a lower bound on the last time-line event of a

unsuspended VP; the second element S is a lower bound on the last time-line event of a suspended
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VP, computedunder the assumptionthat it will be releasedfrom suspensionimmediately.The

third componentR is a lower bound on the time at which a suspended VP will be released. R is

itself a minimum of three values--the minimum completion time of a message in the midst of being

received, the minimum incoming network appointment time for the simulator, and a lower bound

on the minimum time at which an unsuspended VP next sends a message to any other VP (this

includes local sends). Given the global minima Lmln, Smin, and Rmin, each simulator computes

w(t) = B + min{Lmin, Rmi, + Stain},

where B is a lower bound on the startup cost of a send event.

By construction we are assured that any remote send event whose time-stamp ultimately falls

in [t,w(t)) is resident on a time-line at the point the window is constructed. This property is

key to Whoa, for it ensures that an appointment for every remote send event in the window has

already been established, and that no synchronization other than appointment management is

needed. It allows us to use the appointments in [t, w(t)) to define a dynamically evolving pairwise

synchronization schedule that will not deadlock.

The effect of temporally sensitive calls on window construction deserves remark. Presence of a

temporally sensitive call on a time-line indicates that the application process is blocked--the call

will always be the last one on its VP's time-line. This means that the values L and R offered by its

simulator to the reduction will be small, so that the difference between w(t) and t will also be small.

In extreme cases where most calls are temporally sensitive and tend not to occur simultaneously

(between VPs), the net effect is to serialize the simulation of communication events.

5 Experiments

In this section, we report on experiments using LAPSE. After describing a set of four scientific ap-

plications that we used for experimentation, we first address the issue of validation, i.e., quantifying

the accuracy of LAPSE timing predictions. We next quantify overheads; these are captured by the

application slowdown, which is defined to be the time it takes LAPSE to execute an application

with N virtual processors on N physical processors divided by the time it takes the application,

running natively, to execute on N physical processors. We then characterize the simulation relative

speedup, which is defined to be the time it takes LAPSE to execute an application with N vir-

tual processors on n physical processors divided by the time it takes LAPSE to execute the same

application on one physical processor. This relative speedup is representative of absolute speedup,

the execution time of a hypothetical optimized serial simulator divided by that of LAPSE on n

processors. The justification for this belief is that LAPSE avoids most unnecessary overheads when

running serially. Essentially the only overhead that LAPSE does not avoid is maintenance of the

appointment data structures. However, this overhead is small compared to the actual execution of

the application (with its attendant instruction counting) which would have to be done on any serial

simulator. In fact for one of our applications (SOR with the high computation to communication

ratio), LAPSE runs a four VP problem on four processors only 1.8 times slower than the native
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applicationon four processors.Wewill see that the slowdowns and speedups are strongly affected

by the amount of lookahead present in the application, as well as by the application's computation

to communication ratio. In this context, application lookahead refers to how far in advance of the

timing simulator the application is able (or allowed) to run.

5.1 Applications

We experimented with four parallel applications that are representative of a variety of scientific

and engineering workloads (although no claim is made or intended that these comprehensively

span all such possible workloads). The applications arise in physics, computational fluid dynamics,

performance modeling of computer and communications systems, and graphics.

The first application, $OR, solves Poisson's boundary value equation in two dimensions (see

Chapter 17 in [23]). This is a partial differential equation (PDE) in two dimensions with a given

set of values on a boundary (in our case a rectangle). The PDE is discretized, resulting in a

large, sparse system of K 2 linear equations where K 2 is the number of discretized grid points.

The equations are solved using simultaneous over relaxation (SOR) with odd-even ordering; at

each iteration the solution at (an interior) grid point (i,j), x(i,j), requires x(i + 1,j), x(i - 1,/),

x(i,j - 1) and x(i,j + 1). If there are N processors arranged in a square grid, each processor is

assigned a sub-grid of size G × G where G = K/v'_. The computation thus results in a NEWS

(North East West South) communications pattern. The number of instructions executed between

the NEWS exchange is of order G 2 and the size of each pairwise exchange is of order G bytes. Thus

by varying G, we can adjust the computation to communications ratio of the application; we call

this ratio "very low" when G = 25, "low" when G = 50 and "high" when G = 250. This application

results in a highly regular communications pattern. The message passing calls are all synchronous,

csend or crecy. Thus the application execution path is timing independent, and thereby has good

application lookahead.

The second application, BPS, is a domain decomposition solver for finite difference or finite

element discretizations of two-dimensional elliptic partial differential equations [14]; this type of

problem arises frequently in computational fluid dynamics. The algorithm is of Bramble-Pasciak-

Schatz substructuring type consisting of a conjugate gradient method preconditioned by an approx-

imation to the inverse of the matrix operator obtained from discretizing the PDE [1]. The conjugate

gradient method applied to a sparse matrix is highly parallelizable, requiring at each iteration only

nearest neighbor communication in the formation of matrix-vector products, and a global reduction

operation in the formation of inner products. The domain of the PDE is partitioned into nonover-

lapping subdomains. The subdomains are separated by a "wire basket" consisting of edges and

vertices. Once values are specified for these edges and vertices, independent problems may be solved

for each subdomain interior. This is done in the final iteration of the algorithm. The objective of

the earlier iterations is to arrive at sufficiently accurate values for the unknowns on the wire-basket

itself. This process requires independent solutions on each edge at each iteration, as well as a small

global solution of a problem defined on the vertices only. The specific test case is Poisson's equa-

tion on a unit square with Dirichlet boundary conditions, and specific advantage is taken of the
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existenceof fastPoissonsolversfor thesubdomalninteriors. Thecodeusessynchronouscallssuch

asesend, eprobe, erecv, and globalreductionsand thus exhibitsgoodapplicationlookahead.

The coderunson numbersof processorsthat arepowersof 4 and two levelsof computationto

communicationratio wereobtainedby varyingthe sizeof the G × G subdomain assigned to each

processor; the "high" ratio has G = 256 while the "low" ratio has G = 64. This code, which is

written in a combination of C and Fortran, was provided to us by David Keyes and Ion Stoica of

ICASE and Old Dominion University.

The third application, APUCS, is a continuous time Markov Chain discrete event simulator

using the parallel algorithm described in [18]. The specific system simulated is the queueing network

model of a large distributed computing system described in [18]. This application has highly

irregular communications patterns involving any-to-any pairwise messages. This application also

uses synchronous message passing calls (csend, irecv and msgwaits) as well as global reductions.

The parameter settings were those of "Set I" of [18] with the "high" computation to communication

ratio achieved by setting #1 = 1 and the "low" computation to communication ratio achieved by

setting _l = 64.

The fourth application, PGL, is a parallel graphics library written to support visualization of

scientific data [6]. In the sample driver program for this library, each processor generates some

number of randomly spaced and colored triangles of a certain size. The processors then rotate and

shade the vertices of their triangles. Display scan lines are distributed in an interleaved fashion over

the processors. The endpoints of the scan lines of each triangle, called a span, are then sent to the

processor responsible for that scan line. For each scan line, the pixels are colored by interpolating

between the endpoints of the spans and a Z-buffer algorithm is used for hidden surface removal.

This process is repeated for each of F frames. This code uses any-to-any pairwise communications

and is highly asynchronous, frequently using irecvs and the temporally sensitive msgdone call.

Because of this the simulator has very little application lookahead. This code, which consists of

approximately 14,000 lines of C, was written and provided to us by Thomas Crockett of ICASE.

The "high" and "low'computation to communication ratios were achieved by assigning 1000 and

500 triangles per processor, respectively. However, for this application it is harder to adjust the

computation to communication ratio, and the designations "high" and "low" are used mainly to

distinguish between two different workloads.

5.2 Validation

In this section we describe the process by which we validated LAPSE timing predictions, and

describe the results of our validation experiments. In order for LAPSE to make reasonable predic-

tions, we must know the overhead of system message passing calls (e.g. csend) and interconnection

network transit times, as well as the time the application spends between each message passing

ca]].

We obtained estimates of the system overheads by measuring the system using test programs

that were written specifically to determine such overheads. Overheads for calls that depend on

the message length, e.g., csend were modeled as a + b × L where L is the message length and a
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and b are constants estimated by regression on the measurement data. Interconnection network

transit times can be similarly measured. We have found that, except for very long messages, the

software overheads for sending and receiving messages are far greater than the hardware transit

times. Thus predictions using our simple network simulator, which does not model link contention,

can be expected to be (and are) accurate.

To obtain the application time between message passing calls, we proceeded as follows. First, we

ran the application natively (i.e., without LAPSE) on a small number of nodes (typically 2 x 2) with

a certain data size per node (e.g., G in SOR or number of triangles per node for PGL). The Unix

time command gives us an estimate of the amount of user time U consumed by the application.

We next ran the same application (with the same data size) under LAPSE, which reports the total

number of user instructions I. From this, we compute a "conversion factor" c = U/I which is the

average time per (user) instruction. This conversion factor incorporates, in an average case sense,

the instruction mix, cache hit ratio, etc. of the application. The conversion factor is then used in

subsequent runs of the application under LAPSE for timing predictions. For example, if there are

J application instructions executed between two message passing calls, LAPSE computes the time

between these calls as J × c. For a given application and data size per processor, we use the same

conversion factor c measured on the small number of nodes to predict timings on a large number

of nodes. For example, in SOR with a fixed value of G, the number of instructions, the instruction

mix, and the data access patterns executed between message passing calls are approximately the

same on a 2 × 2 grid of processors as on an 8 × 8 grid of processors. Thus, for a fixed G, we expect

the conversion factor to be approximately independent of the number of processors. However, for

a different value of G, the conversion factor may be different and separate conversion factors were

computed for each G (or computation to communication ratios for the other applications). In

cases for which the application execution path is timing dependent, several iterations of computing

conversion factors may be required; in the results presented below at most two iterations were used.

The application was then run both natively and under LAPSE for a variety of numbers of nodes,

and the timings compared.

Table 2 presents the percentage differences between LAPSE predictions of execution times and

actual native execution times. As can be seen in the table, the maximum error is 6%. We have

observed larger prediction errors, but these have always occurred for very short runs in which

initialization effects may be present. For example, the PGL-High error on 64 nodes is -12% when

generating 10 frames; the +3% error reported in Table 2 is for 20 frames. These runs span a range

of application efficiencies. For example, LAPSE estimates that SOR on 16 processors spends 47%

of its time executing user instructions when G = 25 (as opposed to executing system instructions

or waiting for messages), while it spends 90% of its time executing user instructions when G = 250.

These results show that LAPSE can provide accurate timing estimates for a range of scientific and

engineering applications.
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5.3 Slowdowns

We next investigated the amount of overhead involved in running LAPSE. There are several types of

overheads. First, there is the overhead involved in counting application instructions. Second, there

is the overhead in actually doing the timing simulation (in parallel). Third, there is the operating

system overhead that arises from managing multiple processes per node; an SPMD application

running natively has only one process per node. All of these overheads can be captured in a single

measurement called the slowdown, which is defined to be the time it takes LAPSE to execute the

application on N nodes divided by the time it takes to execute the application natively on N nodes.

Our measurements have indicated that the instruction counting overhead generally ranges be-

tween 307o to 80%. These overheads were obtained by direct comparison of the time to natively

execute the application to that when the application is augmented with instruction counting, but

not timing simulation.

It is harder to separate simulation overhead from operating system overhead, nor shall we

attempt to do so here. However, some measurements are presented in [8] indicating that OSF-1

on the Paragon has process management overheads that increase superlinearly as the number of

processes per node increase. We do note that, parallel simulation overheads aside, LAPSE must

send at least twice as many messages as the natively executing application; each message sent in

the application results in both an application to application message as well as an application to

simulator message (although these may be between processes on the same node). We now consider

the overall slowdown of LAPSE. We begin by demonstrating the effect that application lookahead

has on simulation speed. LAPSE attempts to run the application well in advance of the simulator,

provided the application is able to do so. As explained earlier, this results in larger windows.

User-supplied flow-control parameter F determines how the maximum number of message passing

events the application is permitted to run in advance of the simulator. By running LAPSE on an

application that has good lookahead (i.e., one with only synchronous sends and receives), we can

study the effect of lookahead in a controlled manner by varying the parameter F. Table 3 presents

the results of such an experiment for APUCS running on 8 processors with one VP/processor.

This table reports the slowdowns as a function of F, as well as the average number of application

events executed per window per VP, A. (An application event is defined to be a call to the LAPSE

interface). For the low computation to communication ratio the slowdown decreases from 30.4

down to 9.3 as F increases from 2 to 16. At the same time A increases from only 0.3 to 8.0. For the

high ratio the slowdown decreases from 12.0 to 3.7 and A increases from 0.3 to 4.6 as F increases

from 2 to 16. This demonstrates that slowdown is strongly dependent upon application lookahead.

Table 3 also illustrates an effect of the flow-control algorithm used in LAPSE. For the low ratio,

as F increases past 16 the slowdown increases. A contributing factor to this behavior is as follows.

Each remote send event has an associated appointment time. As simulation time advances, these

appointments may be updated, resulting in additional communication. Thus if there are a large

number of events on the time-line, the appointments overhead increases. Increasing F increases

the maximum allowable number of events on a time-line, and also tends to increase A, the average

number of application events per window. However, there is not always an increase in slowdown for
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largeF; see APUCS-High. In this case, A levels off as F increases. (The reason for this leveling off

is not entirely clear; there are a number of factors interacting in a complex manner. These factors

include operating system process scheduling, algorithms, the computation to communication ratios

of the application and the simulator, the window construction algorithm, etc.)

We next consider slowdowns on the set of four applications described earlier. We compared

LAPSE to native application time for the codes running on 4, 16, 32, and 64 processors. For the

LAPSE runs, there are two processes per node; one application process and one simulator process.

F was set at moderate values so as to obtain good lookahead whenever the application so permitted.

The results of these experiments are reported in Table 4. Observe first that the slowdown increases

as the number of processors increases. This is an effect of using a global window. The cost of

computing a new window increases (logarithmically) as the number of processors increases, but

more importantly we have observed that the average size of the window decreases as the the

number of VPs increases. This occurs simply because w(t) is computed as a function of minimum

values taken over all VPs, and increasing the number of VPs increases the likelihood of low values

submitted to the reduction. Observe next that, for a given application and number of processors,

the slowdown typically increases as the application's computation to communication ratio decreases.

With a high ratio, most of the time is spent executing application code and thus the simulation

overheads are less important.

The slowdowns for SOR, BPS and APUCS are quite modest (between 1.8 and 28.0) and are

considerably at the low end of slowdowns reported by other execution-driven simulators [5, 24].

Recall that these codes all have good application lookahead since they do not make much use of

temporally sensitive message passing calls.

However, for PGL the slowdowns are significantly higher. As described earlier, this application

has little lookahead since by executing many msgdone calls it continually forces synchronization

between the application and simulation processes. In LAPSE, we deal with this type of temporal

question by blocking the application process until the simulator has advanced simulation time

up to the time at which the msgdone question was asked. This severely limits the size of the

windows constructed by the windowing algorithm, and thereby slows simulation speed. Thus

in PGL, application processes are frequently blocked and there are few application events per

simulation window. With only one simulation process per node, the window construction algorithm

becomes expensive relative to the amount of simulation work done in the window. These factors

can be counteracted (to some extent) by placing multiple application processes per node, simulating

multiple VPs per node, and separating the application processing nodes from the simulation nodes.

For example, consider the PGL-high slowdown of 139 on 64 nodes. By configuring LAPSE to run

on 48 nodes with 32 nodes for application processing and a different set of 16 nodes for simulation,

the slowdown decreases to 117. Similar reductions in slowdown are obtained for PGL-low.

We next measure (relative) speedups by running LAPSE on the Paragon using N virtual pro-

cessors on n physical processors where N >_ n. We again ran the applications for a variety of

combinations of N and n. For these applications, operating system and physical memory con-

straints typically limit the level of multiprogramming to at most 8 VPs/processor; in the case of
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Application

SOR

SOR

SOR

BPS

BPS

APUCS

APUCS

PGL

PGL

Comp./Comm.
Ratio

VeryLow

Low

High

Low

High

Low

High

Low

High

Number of Processors

4

-4%

o%

+1%

-6%

-1%

-1%

-2%

+1%

-1%

16

+3%

+4%

+1%

+1%

-2%

-2%

-2%

-2%

-2%

I 32 I 64

+2% +1%

+4% +4%

+1% +2%

-4%

-3%

-3% -1%

-1% 0%

+1% +5%

-1% +3%

Table 2: LAPSE validations: percentage errors in predicted execution times.

BPS-High at most 4 VPs/node could be handled. This effectively limits the size of N, especially

for LAPSE running on one processor.

We first consider the case of simulating a small number of VPs on a small number of nodes;

specifically simulating 8 VPs on from 1 to 8 nodes. (For BPS the number of nodes must be a

power of 4 so in this case we simulate 4 VPs on from 1 to 4 nodes.) Table 5 shows the relative

speedups for these experiments. Here relative speedup is defined to be the LAPSE time on one

node divided by the LAPSE time on n nodes. For the applications with good lookahead, SOR,

BPS, and APUCS, the speedups increase monotonically. For these applications, relative speedups

on 4 nodes are between 2.4 and 3.7 (relativo efficiencies between 0.60 and 0.92), while on 8 nodes

the relative speedups range between 3.5 and 4.7 (relative efficiencies between 0.43 and 0.60). For

PGL, the maximum relative speedup is 1.7, and most of that is obtained when increasing from 1

to 2 nodes.

We next consider simulating 64 VPs on from 8 to 64 nodes. Table 6 shows the relative speedups

for these experiments. Here relative speedup is defined to be the LAPSE time on 8 nodes, with 8

VPs per node, divided by the LAPSE time on n nodes. (For BPS-High the maximum number of

VPs per node was 4, so those speedups are stated relative to LAPSE time on 16 nodes with 4 VPs

per node.) Again, the speedups are higher for those applications with good lookahead; LAPSE

runs between 3.9 to 7.0 times faster on 64 nodes than on 16 nodes for SOR, BPS, and APUCS.

The maximum PGL speedup is 2.5.

We were also able to run a 512 VP case of SOR-Very Low on 64 nodes. Since we did not have

access to 512 nodes, an actual slowdown could not be computed. However, LAPSE ran only 100

times slower than the time LAPSE predicted it would take the application to run on 512 processors.

(Remember that each LAPSE processor has 8 VPs and hence at least 8 times as much work to do

as in the hypothetical larger system.)
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Comp./Comm.

Ratio

Low

High

Maximum

Application

Lookahead (F)

2

4

8

16

24

32

40

2

4

8

16

24

32

40

Slowdown

30.4

14.2

10.2

9.3

9.9

10.9

12.1

12.0

6.1

4.3

3.7

3.5

3.5

3.5

Avg. Application

Events per

Window per VP

0.3

1.1

3.3

8.0

12.8

17.5

21.6

0.3

1.3

2.8

4.6

5.5

6.0

6.2

Table 3: LAPSE slowdowns on APUCS as a function of application lookahead. LAPSE execution

time divided by native execution time using 8 processors.

Application

SOR

SOR

SOR

Comp./Comm.

Ratio

Very Low

Low

High

BPS Low

BPS High

APUCS Low

APUCS High

PGL

PGL

Low

High

Number of Processors

4

17.5

6.5

1.8

3.0

1.9

7.5

3.0

15.1

17.4

16 32 [ 64
l

28.4 24.0 28.0

11.5 13.2 16.7

4.0 4.1 6.1

7.5 - 11.9

2.4 3.0

11.1 13.5 18.8

5.9 7.6 12.9

61.6 99.2 148

70.2 116 139

Table 4: LAPSE slowdowns: LAPSE execution time divided by native execution time using the

same number of processors.
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Application

SOR

SOR

SOR

BPS

BPS

Comp./Comm.
Ratio

VeryLow

Low

High

Low

High

APUCS Low

APUCS High

PGL

PGL

Low

High

Number of Processors

1

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

2 4 I 8

1.8 3.1 4.7

1.8 3.0 4.5

2.0 3.4 4.6

1.7 2.4

2.0 3.7

1.7 2.5 3.8

1.6 2.4 3.5

1.5 1.6 1.7

1.4 1.4 1.6

Table 5: LAPSE speedups on an 8 VP problem (on a 4 VP problem for BPS).

Application Comp./Comm.

Ratio

SOR Very Low

SOR Low

SOR High

BPS Low

BPS High

APUCS Low

APUCS High

PGL Low

PGL High

Number VPs / Processor

8

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

4211
2.0 3.5 5.9

2.0 3.5 6.2

1.7 4.2 7.0

1.9 2.9 4.4

1.0 1.7 2.7

1.9 3.0 4.1

1.8 2.8 3.9

1.9 2.2 2.5

1.8 2.1 2.3

Table 6: LAPSE relative speedups on a 64 VP problem. Times are relative to 8 processors with 8

virtual processors per processor. (For BPS high, times are relative to 16 processors with 4 virtual

processors per processor.)

21



6 Conclusions

This paper describes a tool, LAPSE, that supports parallelized direct execution and simulation of

parallel message passing applications; we describe a synchronization protocol, Whoa, suitable for

the direct-execution simulation of general message-passing systems, and provide performance data

on LAPSE's implementation in the Intel Paragon multicomputer. The synchronization protocol

is conservative, and exploits the observation that message-passing codes frequently exhibit loDg

periods where their execution paths are insensitive to temporal considerations.

Using LAPSE, timing predictions of applications running on a large number of processors can be

made by executing the application on a smaller number of processors and simultaneously running a

timing simulation of the larger machine. LAPSE timing predictions were validated for four scientific

and engineering applications. Typically the predictions were within 10% of the actual execution

times; often they were within 5%.

The simulation speed was shown to depend on several factors: the computation to communica-

tion ratio of the application and the amount of application lookahead. For applications with good

lookahead, slowdowns are modest and good simulation speedups are obtained. For applications

without good lookahead, namely those whose execution paths depend on the answers to temporally

sensitive questions, the slowdowns can be quite high. However, there are a number of possibilities

for increasing lookahead and potentially increasing simulation speed for such applications. Con-

sider first an application that calls clock routines. The current approach in LAPSE is to block the

application until simulation time has advanced to the point at which the clock call is made, and

then report the simulation time. However, in many applications, clock values are not used until

well after they are set (e.g., in timing intervals). For such applications, it would be possible to

continue running the application beyond the clock call, accept the simulation clock returns asyn-

chronously, and only block the application when an unreturned clock value actually gets used (and

then, only if simulation time has not yet advanced to the calling time). Transparent support of this

mechanism would be costly since it would involve checking when certain storage locations change

values (namely those into which the clock values are stored). However, a simple set of routines

can be designed to read and subsequently use clock values. These would have to be inserted into

the application in place of clock calls; however this should not pose a problem in the context of an

automated instrumentation system that would most likely desire frequent clock calls. The second

type of temporally sensitive call that can be handled is a query about the status of messages. For

example, a probe asks "is there a message of a certain type here now?" LAPSE currently blocks

the application until simulation time has advanced until the time at which the probe call was

made, and then answers the probe. However, this approach is too conservative in certain cases.

Suppose an application probes at some (as yet potentially unknown) time, say 100, and suppose

that the simulator has advanced to time 50 at the time of the probe. If the probed for message is

already present at time 50 (and messages can't be canceled), then it is guaranteed to be there at

time 100. The simulator could so inform the application thereby unblocking the application. This

requires somewhat more elaborate data structures and application/simulation flow-control than are
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currently in LAPSE (since, e.g., message types may be reused and the simulator must keep track of

which message is destined for which probe). However, our experience with the PGL code indicates

that such an optimization (which is really a more sophisticated form of lookahead) is well worth

pursuing in order to accelerate the simulation.

There are a number of worthwhile extensions to LAPSE we are pursuing. First, LAPSE cur-

rently runs on the Paragon and provides Paragon timing estimates. We are porting LAPSE to work

in conjunction with a software package, nx-lib [15], that provides the Paragon message-passing li-

brary on networks of workstations, nx-lib provides the workstations with Paragon functionality,

our port will augment functionality with timing. Second, our model of the Paragon's operating

system and hardware is currently fairly crude. For example our current network model is a pure

delay network. We have implenlented a packet-by-packet parallel simulator of the Paragon's mesh

interconnection network and are in the process of integrating it with LAPSE. Our model of the

Paragon's operating system is also simple and does not include models of some of the Paragon's

internal algorithms, e.g., models of the way in which the Paragon manages communications buffers.

We are planning to investigate how to incorporate such features into our model, and especially how

lookahead calculations need to be changed for the resulting (more complex) models. In addition, we

plan to investigate how to port LAPSE to run under and model the newly emerging MPI (Message

Passing Interface [17]) standard on other parallel platforms besides the Paragon.
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