
Parallelized Stochastic Gradient Descent

Martin A. Zinkevich
Yahoo! Labs

Sunnyvale, CA 94089
maz@yahoo-inc.com

Markus Weimer
Yahoo! Labs

Sunnyvale, CA 94089
weimer@yahoo-inc.com

Alex Smola
Yahoo! Labs

Sunnyvale, CA 94089
smola@yahoo-inc.com

Lihong Li
Yahoo! Labs

Sunnyvale, CA 94089
lihong@yahoo-inc.com

Abstract

With the increase in available data parallel machine learning has become an in-
creasingly pressing problem. In this paper we present the first parallel stochastic
gradient descent algorithm including a detailed analysis and experimental evi-
dence. Unlike prior work on parallel optimization algorithms [5, 7] our variant
comes with parallel acceleration guarantees and it poses no overly tight latency
constraints, which might only be available in the multicore setting. Our analy-
sis introduces a novel proof technique — contractive mappings to quantify the
speed of convergence of parameter distributions to their asymptotic limits. As a
side effect this answers the question of how quickly stochastic gradient descent
algorithms reach the asymptotically normal regime [1, 8].

1 Introduction

Over the past decade the amount of available data has increased steadily. By now some industrial
scale datasets are approaching Petabytes. Given that the bandwidth of storage and network per
computer has not been able to keep up with the increase in data, the need to design data analysis
algorithms which are able to perform most steps in a distributed fashion without tight constraints
on communication has become ever more pressing. A simple example illustrates the dilemma. At
current disk bandwidth and capacity (2TB at 100MB/s throughput) it takes at least 6 hours to read
the content of a single harddisk. For a decade, the move from batch to online learning algorithms
was able to deal with increasing data set sizes, since it reduced the runtime behavior of inference
algorithms from cubic or quadratic to linear in the sample size. However, whenever we have more
than a single disk of data, it becomes computationally infeasible to process all data by stochastic
gradient descent which is an inherently sequential algorithm, at least if we want the result within a
matter of hours rather than days.

Three recent papers attempted to break this parallelization barrier, each of them with mixed suc-
cess. [5] show that parallelization is easily possible for the multicore setting where we have a tight
coupling of the processing units, thus ensuring extremely low latency between the processors. In
particular, for non-adversarial settings it is possible to obtain algorithms which scale perfectly in
the number of processors, both in the case of bounded gradients and in the strongly convex case.
Unfortunately, these algorithms are not applicable to a MapReduce setting since the latter is fraught
with considerable latency and bandwidth constraints between the computers.

A more MapReduce friendly set of algorithms was proposed by [3, 9]. In a nutshell, they rely on
distributed computation of gradients locally on each computer which holds parts of the data and
subsequent aggregation of gradients to perform a global update step. This algorithm scales linearly

1

in the amount of data and log-linearly in the number of computers. That said, the overall cost in
terms of computation and network is very high: it requires many passes through the dataset for
convergence. Moreover, it requires many synchronization sweeps (i.e. MapReduce iterations). In
other words, this algorithm is computationally very wasteful when compared to online algorithms.

[7] attempted to deal with this issue by a rather ingenious strategy: solve the sub-problems exactly on
each processor and in the end average these solutions to obtain a joint solution. The key advantage
of this strategy is that only a single MapReduce pass is required, thus dramatically reducing the
amount of communication. Unfortunately their proposed algorithm has a number of drawbacks:
the theoretical guarantees they are able to obtain imply a significant variance reduction relative
to the single processor solution [7, Theorem 3, equation 13] but no bias reduction whatsoever [7,
Theorem 2, equation 9] relative to a single processor approach. Furthermore, their approach requires
a relatively expensive algorithm (a full batch solver) to run on each processor. A further drawback
of the analysis in [7] is that the convergence guarantees are very much dependent on the degree of
strong convexity as endowed by regularization. However, since regularization tends to decrease with
increasing sample size the guarantees become increasingly loose in practice as we see more data.

We attempt to combine the benefits of a single-average strategy as proposed by [7] with asymptotic
analysis [8] of online learning. Our proposed algorithm is strikingly simple: denote by ci(w) a loss
function indexed by i and with parameter w. Then each processor carries out stochastic gradient
descent on the set of ci(w) with a fixed learning rate η for T steps as described in Algorithm 1.

Algorithm 1 SGD({c1, . . . , cm}, T, η, w0)

for t = 1 to T do
Draw j ∈ {1 . . .m} uniformly at random.
wt ← wt−1 − η∂wcj(wt−1).

end for
return wT .

On top of the SGD routine which is carried out on each computer we have a master-routine which
aggregates the solution in the same fashion as [7].

Algorithm 2 ParallelSGD({c1, . . . cm}, T, η, w0, k)

for all i ∈ {1, . . . k} parallel do
vi = SGD({c1, . . . cm}, T, η, w0) on client

end for
Aggregate from all computers v = 1

k

∑k
i=1 vi and return v

The key algorithmic difference to [7] is that the batch solver of the inner loop is replaced by a
stochastic gradient descent algorithm which digests not a fixed fraction of data but rather a random
fixed subset of data. This means that if we process T instances per machine, each processor ends up
seeing T

m of the data which is likely to exceed 1
k .

Algorithm Latency tolerance MapReduce Network IO Scalability
Distributed subgradient [3, 9] moderate yes high linear
Distributed convex solver [7] high yes low unclear
Multicore stochastic gradient [5] low no n.a. linear
This paper high yes low linear

A direct implementation of the algorithms above would place every example on every machine:
however, if T is much less than m, then it is only necessary for a machine to have access to the
data it actually touches. Large scale learning, as defined in [2], is when an algorithm is bounded
by the time available instead of by the amount of data available. Practically speaking, that means
that one can consider the actual data in the real dataset to be a subset of a virtually infinite set,
and drawing with replacement (as the theory here implies) and drawing without replacement on the

2

Algorithm 3 SimuParallelSGD(Examples {c1, . . . cm},Learning Rate η,Machines k)

Define T = bm/kc
Randomly partition the examples, giving T examples to each machine.
for all i ∈ {1, . . . k} parallel do

Randomly shuffle the data on machine i.
Initialize wi,0 = 0.
for all t ∈ {1, . . . T}: do

Get the tth example on the ith machine (this machine), ci,t
wi,t ← wi,t−1 − η∂wci(wi,t−1)

end for
end for
Aggregate from all computers v = 1

k

∑k
i=1 wi,t and return v.

infinite data set can both be simulated by shuffling the real data and accessing it sequentially. The
initial distribution and shuffling can be a part of how the data is saved. SimuParallelSGD fits very
well with the large scale learning paradigm as well as the MapReduce framework. Our paper applies
an anytime algorithm via stochastic gradient descent. The algorithm requires no communication
between machines until the end. This is perfectly suited to MapReduce settings. Asymptotically,
the error approaches zero. The amount of time required is independent of the number of examples,
only depending upon the regularization parameter and the desired error at the end.

2 Formalism

In stark contrast to the simplicity of Algorithm 2, its convergence analysis is highly technical. Hence
we limit ourselves to presenting the main results in this extended abstract. Detailed proofs are given
in the appendix. Before delving into details we briefly outline the proof strategy:

• When performing stochastic gradient descent with fixed (and sufficiently small) learning
rate η the distribution of the parameter vector is asymptotically normal [1, 8]. Since all
computers are drawing from the same data distribution they all converge to the same limit.

• Averaging between the parameter vectors of k computers reduces variance by O(k−
1
2)

similar to the result of [7]. However, it does not reduce bias (this is where [7] falls short).
• To show that the bias due to joint initialization decreases we need to show that the distri-

bution of parameters per machine converges sufficiently quickly to the limit distribution.
• Finally, we also need to show that the mean of the limit distribution for fixed learning rate

is sufficiently close to the risk minimizer. That is, we need to take finite-size learning rate
effects into account relative to the asymptotically normal regime.

2.1 Loss and Contractions

In this paper we consider estimation with convex loss functions ci : `2 → [0,∞). While our
analysis extends to other Hilbert Spaces such as RKHSs we limit ourselves to this class of functions
for convenience. For instance, in the case of regularized risk minimization we have

ci(w) =
λ

2
‖w‖2 + L(xi, yi, w · xi) (1)

whereL is a convex function inw·xi, such as 1
2 (yi−w·xi)2 for regression or log[1+exp(−yiw·xi)]

for binary classification. The goal is to find an approximate minimizer of the overall risk

c(w) =
1

m

m∑
i=1

ci(w). (2)

To deal with stochastic gradient descent we need tools for quantifying distributions over w.

Lipschitz continuity: A function f : X→ R is Lipschitz continuous with constant L with respect
to a distance d if |f(x)− f(y)| ≤ Ld(x, y) for all x, y ∈ X.

3

Hölder continuity: A function f is Hölder continous with constant L and exponent α if |f(x) −
f(y)| ≤ Ldα(x, y) for all x, y ∈ X.

Lipschitz seminorm: [10] introduce a seminorm. With minor modification we use

‖f‖Lip := inf {l where |f(x)− f(y)| ≤ ld(x, y) for all x, y ∈ X} . (3)

That is, ‖f‖Lip is the smallest constant for which Lipschitz continuity holds.
Hölder seminorm: Extending the Lipschitz norm for α ≥ 1:

‖f‖Lipα
:= inf {l where |f(x)− f(y)| ≤ ldα(x, y) for all x, y ∈ X} . (4)

Contraction: For a metric space (M,d), f : M →M is a contraction mapping if ‖f‖Lip < 1.

In the following we assume that ‖L(x, y, y′)‖Lip ≤ G as a function of y′ for all occurring data
(x, y) ∈ X× Y and for all values of w within a suitably chosen (often compact) domain.

Theorem 1 (Banach’s Fixed Point Theorem) If (M,d) is a non-empty complete metric space,
then any contraction mapping f on (M,d) has a unique fixed point x∗ = f(x∗).

Corollary 2 The sequence xt = f(xt−1) converges linearly with d(x∗, xt) ≤ ‖f‖tLip d(x0, x
∗).

Our strategy is to show that the stochastic gradient descent mapping

w ← φi(w) := w − η∇ci(w) (5)

is a contraction, where i is selected uniformly at random from {1, . . .m}. This would allow us
to demonstrate exponentially fast convergence. Note that since the algorithm selects i at random,
different runs with the same initial settings can produce different results. A key tool is the following:

Lemma 3 Let c∗ ≥
∥∥∂ŷL(xi, yi, ŷ)

∥∥
Lip

be a Lipschitz bound on the loss gradient. Then if η ≤
(
∥∥xi∥∥2

c∗+ λ)−1 the update rule (5) is a contraction mapping in `2 with Lipschitz constant 1− ηλ.

We prove this in Appendix B. If we choose η “low enough”, gradient descent uniformly becomes a
contraction. We define

η∗ := min
i

(∥∥xi∥∥2
c∗ + λ

)−1

. (6)

2.2 Contraction for Distributions

For fixed learning rate η stochastic gradient descent is a Markov process with state vector w. While
there is considerable research regarding the asymptotic properties of this process [1, 8], not much is
known regarding the number of iterations required until the asymptotic regime is assumed. We now
address the latter by extending the notion of contractions from mappings of points to mappings of
distributions. For this we introduce the Monge-Kantorovich-Wasserstein earth mover’s distance.

Definition 4 (Wasserstein metric) For a Radon space (M,d) let P (M,d) be the set of all distri-
butions over the space. The Wasserstein distance between two distributions X,Y ∈ P (M,d) is

Wz(X,Y) =

[
inf

γ∈Γ(X,Y)

∫
x,y

dz(x, y)dγ(x, y)

] 1
z

(7)

where Γ(X,Y) is the set of probability distributions on (M,d)× (M,d) with marginals X and Y .

This metric has two very important properties: it is complete and a contraction in (M,d) induces a
contraction in (P (M,d),Wz). Given a mapping φ : M → M , we can construct p : P (M,d) →
P (M,d) by applying φ pointwise to M . Let X ∈ P (M,d) and let X ′ := p(X). Denote for any
measurable event E its pre-image by φ−1(E). Then we have that X ′(E) = X(φ−1(E)).

4

Lemma 5 Given a metric space (M,d) and a contraction mapping φ on (M,d) with constant c, p
is a contraction mapping on (P (M,d),Wz) with constant c.

This is proven in Appendix C. This shows that any single mapping is a contraction. However, since
we draw ci at random we need to show that a mixture of such mappings is a contraction, too. Here
the fact that we operate on distributions comes handy since the mixture of mappings on distribution
is a mapping on distributions.

Lemma 6 Given a Radon space (M,d), if p1 . . .pk are contraction mappings with constants
c1 . . . ck with respect to Wz , and

∑
i ai = 1 where ai ≥ 0, then p =

∑k
i=1 aipi is a contrac-

tion mapping with a constant of no more than [
∑
i ai(ci)

z]
1
z .

Corollary 7 If for all i, ci ≤ c, then p is a contraction mapping with a constant of no more than c.

This is proven in Appendix C. We apply this to SGD as follows: Define p∗ = 1
m

∑m
i=1 p

i to be the
stochastic operation in one step. Denote by D0

η the initial parameter distribution from which w0 is
drawn and by Dt

η the parameter distribution after t steps, which is obtained via Dt
η = p∗(Dt−1

η).
Then the following holds:

Theorem 8 For any z ∈ N, if η ≤ η∗, then p∗ is a contraction mapping on (M,Wz) with contrac-
tion rate (1− ηλ). Moreover, there exists a unique fixed point D∗η such that p∗(D∗η) = D∗η . Finally,
if w0 = 0 with probability 1, then Wz(D

0
η, D

∗
η) = G

λ , and Wz(D
T
η , D

∗
η) ≤ G

λ (1− ηλ)T .

This is proven in Appendix F. The contraction rate (1 − ηλ) can be proven by applying Lemma 3,
Lemma 5, and Corollary 6. As we show later, wt ≤ G/λ with probability 1, so Prw∈D∗η [d(0, w) ≤
G/λ] = 1, and since w0 = 0, this implies Wz(D

0
η, D

∗
η) = G/λ. From this, Corollary 2 establishes

Wz(D
T
η , D

∗
η) ≤ G

λ (1− ηλ)T .

This means that for a suitable choice of η we achieve exponentially fast convergence in T to some
stationary distribution D∗η . Note that this distribution need not be centered at the risk minimizer
of c(w). What the result does, though, is establish a guarantee that each computer carrying out
Algorithm 1 will converge rapidly to the same distribution over w, which will allow us to obtain
good bounds if we can bound the ’bias’ and ’variance’ of D∗η .

2.3 Guarantees for the Stationary Distribution

At this point, we know there exists a stationary distribution, and our algorithms are converging to
that distribution exponentially fast. However, unlike in traditional gradient descent, the stationary
distribution is not necessarily just the optimal point. In particular, the harder parts of understanding
this algorithm involve understanding the properties of the stationary distribution. First, we show that
the mean of the stationary distribution has low error. Therefore, if we ran for a really long time and
averaged over many samples, the error would be low.

Theorem 9 c(Ew∈D∗η [w])−minw∈Rn c(w) ≤ 2ηG2.

Proven in Appendix G using techniques from regret minimization. Secondly, we show that the
squared distance from the optimal point, and therefore the variance, is low.

Theorem 10 The average squared distance of D∗η from the optimal point is bounded by:

Ew∈D∗η [(w − w∗)2] ≤ 4ηG2

(2− ηλ)λ
.

In other words, the squared distance is bounded by O(ηG2/λ).

5

Proven in Appendix I using techniques from reinforcement learning. In what follows, if x ∈ M ,
Y ∈ P (M,d), we define Wz(x, Y) to be the Wz distance between Y and a distribution with a
probability of 1 at x. Throughout the appendix, we develop tools to show that the distribution
over the output vector of the algorithm is “near” µD∗η , the mean of the stationary distribution. In
particular, if DT,k

η is the distribution over the final vector of ParallelSGD after T iterations on each

of k machines with a learning rate η, then W2(µD∗η , D
T,k
η) =

√
Ex∈DT,kη

[(x− µD∗η)2] becomes

small. Then, we need to connect the error of the mean of the stationary distribution to a distribution
that is near to this mean.

Theorem 11 Given a cost function c such that ‖c‖L and ‖∇c‖L are bounded, a distributionD such
that σD and is bounded, then, for any v:

Ew∈D[c(w)]−min
w
c(w) ≤(W2(v,D))

√
2 ‖∇c‖L (c(v)−min

w
c(w)) +

‖∇c‖L
2

(W2(v,D))2 + (c(v)−min
w
c(w))

(8)

This is proven in Appendix K. The proof is related to the Kantorovich-Rubinstein theorem, and
bounds on the Lipschitz of c near v based on c(v) −minw c(w). At this point, we are ready to get
the main theorem:

Theorem 12 If η ≤ η∗ and T = ln k−(ln η+lnλ)
2ηλ :

Ew∈DT,kη
[c(w)]−min

w
c(w) ≤8ηG2

√
kλ

√
‖∇c‖L +

8ηG2 ‖∇c‖L
kλ

+ (2ηG2). (9)

This is proven in Appendix K.

2.4 Discussion of the Bound

The guarantee obtained in (9) appears rather unusual insofar as it does not have an explicit depen-
dency on the sample size. This is to be expected since we obtained a bound in terms of risk min-
imization of the given corpus rather than a learning bound. Instead the runtime required depends
only on the accuracy of the solution itself.

In comparison to [2], we look at the number of iterations to reach ρ for SGD in Table 2. Ignoring
the effect of the dimensions (such as ν and d), setting these parameters to 1, and assuming that the
conditioning number κ = 1

λ , and ρ = η. In terms of our bound, we assume G = 1 and ‖∇c‖L = 1.
In order to make our error order η, we must set k = 1

λ . So, the Bottou paper claims a bound of νκ
2

ρ

iterations, which we interpret as 1
ηλ2 . Modulo logarithmic factors, we require 1

λ machines to run 1
ηλ

time, which is the same order of computation, but a dramatic speedup of a factor of 1
λ in wall clock

time.

Another important aspect of the algorithm is that it can be arbitrarily precise. By halving η and
roughly doubling T , you can halve the error. Also, the bound captures how much paralllelization
can help. If k > ‖∇c‖L

λ , then the last term ηG2 will start to dominate.

3 Experiments

Data: We performed experiments on a proprietary dataset drawn from a major email system with
labels y ∈ ±1 and binary, sparse features. The dataset contains 3, 189, 235 time-stamped instances
out of which the last 68, 1015 instances are used to form the test set, leaving 2, 508, 220 training
points. We used hashing to compress the features into a 218 dimensional space. In total, the dataset
contained 785, 751, 531 features after hashing, which means that each instance has about 313 fea-
tures on average. Thus, the average sparsity of each data point is 0.0012. All instance have been
normalized to unit length for the experiments.

6

0 200 400 600 800 1000 1200 1400
Number of trainining instances per machine (thousands)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
e
la

ti
v
e
 o

b
je

ct
iv

e
 f

u
n
ct

io
n
 v

a
lu

e

1 Machines
10 Machines
100 Machines

0 200 400 600 800 1000 1200 1400
Number of trainining instances per machine (thousands)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
e
la

ti
v
e
 o

b
je

ct
iv

e
 f

u
n
ct

io
n
 v

a
lu

e

1 Machines
10 Machines
100 Machines

Figure 1: Relative training error with λ = 1e−3: Huber loss (left) and squared error (right)

Approach: In order to evaluate the parallelization ability of the proposed algorithm, we followed
the following procedure: For each configuration (see below), we trained up to 100 models, each on
an independent, random permutation of the full training data. During training, the model is stored on
disk after k = 10, 000 ∗ 2i updates. We then averaged the models obtained for each i and evaluated
the resulting model. That way, we obtained the performance for the algorithm after each machine
has seen k samples. This approach is geared towards the estimation of the parallelization ability of
our optimization algorithm and its application to machine learning equally. This is in contrast to
the evaluation approach taken in [7] which focussed solely on the machine learning aspect without
studying the performance of the optimization approach.

Evaluation measures: We report both the normalized root mean squared error (RMSE) on the test
set and the normalized value of the objective function during training. We normalize the RMSE
such that 1.0 is the RMSE obtained by training a model in one single, sequential pass over the data.
The objective function values are normalized in much the same way such that the objective function
value of a single, full sequential pass over the data reaches the value 1.0.

Configurations: We studied both the Huber and the squared error loss. While the latter does not
satisfy all the assumptions of our proofs (its gradient is unbounded), it is included due to its popu-
larity. We choose to evaluate using two different regularization constants, λ = 1e−3 and λ = 1e−6

in order to estimate the performance characteristics both on smooth, “easy” problems (1e−3) and on
high-variance, “hard” problems (1e−6). In all experiments, we fixed the learning rate to η = 1e−3.

3.1 Results and Discussion

Optimization: Figure 1 shows the relative objective function values for training using 1, 10 and
100 machines with λ = 1e−3. In terms of wall clock time, the models obtained on 100 machines
clearly outperform the ones obtained on 10 machines, which in turn outperform the model trained
on a single machine. There is no significant difference in behavior between the squared error and
the Huber loss in these experiments, despite the fact that the squared error is effectively unbounded.
Thus, the parallelization works in the sense that many machines obtain a better objective function
value after each machine has seen k instances. Additionally, the results also show that data-local
parallelized training is feasible and beneficial with the proposed algorithm in practice. Note that
the parallel training needs slightly more machine time to obtain the same objective function value,
which is to be expected. Also unsurprising, yet noteworthy, is the trade-off between the number of
machines and the quality of the solution: The solution obtained by 10 machines is much more of an
improvement over using one machine than using 100 machines is over 10.

Predictive Performance: Figure 2 shows the relative test RMSE for 1, 10 and 100 machines with
λ = 1e−3. As expected, the results are very similar to the objective function comparison: The
parallel training decreases wall clock time at the price of slightly higher machine time. Again, the
gain in performance between 1 and 10 machines is much higher than the one between 10 and 100.

7

0 200 400 600 800 1000 1200 1400
Number of training instances per machine (thousands)

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

R
e
la

ti
v
e
 R

M
S
E
 o

n
 t

h
e
 t

e
st

 s
e
t

1 Machines
10 Machines
100 Machines

0 200 400 600 800 1000 1200 1400
Number of training instances per machine (thousands)

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

R
e
la

ti
v
e
 R

M
S
E
 o

n
 t

h
e
 t

e
st

 s
e
t

1 Machines
10 Machines
100 Machines

Figure 2: Relative Test-RMSE with λ = 1e−3: Huber loss (left) and squared error (right)

0 200 400 600 800 1000 1200 1400
Number of trainining instances per machine (thousands)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
e
la

ti
v
e
 o

b
je

ct
iv

e
 f

u
n
ct

io
n
 v

a
lu

e

1 Machines
10 Machines
100 Machines

0 200 400 600 800 1000 1200 1400
Number of trainining instances per machine (thousands)

0.5

1.0

1.5

2.0

2.5

3.0

R
e
la

ti
v
e
 o

b
je

ct
iv

e
 f

u
n
ct

io
n
 v

a
lu

e

1 Machines
10 Machines
100 Machines

Figure 3: Relative train-error using Huber loss: λ = 1e−3 (left), λ = 1e−6 (right)

Performance using different λ: The last experiment is conducted to study the effect of the regu-
larization constant λ on the parallelization ability: Figure 3 shows the objective function plot using
the Huber loss and λ = 1e−3 and λ = 1e−6. The lower regularization constant leads to more
variance in the problem which in turn should increase the benefit of the averaging algorithm. The
plots exhibit exactly this characteristic: For λ = 1e−6, the loss for 10 and 100 machines not only
drops faster, but the final solution for both beats the solution found by a single pass, adding further
empirical evidence for the behaviour predicted by our theory.

4 Conclusion

In this paper, we propose a novel data-parallel stochastic gradient descent algorithm that enjoys a
number of key properties that make it highly suitable for parallel, large-scale machine learning: It
imposes very little I/O overhead: Training data is accessed locally and only the model is communi-
cated at the very end. This also means that the algorithm is indifferent to I/O latency. These aspects
make the algorithm an ideal candidate for a MapReduce implementation. Thereby, it inherits the lat-
ter’s superb data locality and fault tolerance properties. Our analysis of the algorithm’s performance
is based on a novel technique that uses contraction theory to quantify finite-sample convergence
rate of stochastic gradient descent. We show worst-case bounds that are comparable to stochastic
gradient descent in terms of wall clock time, and vastly faster in terms of overall time. Lastly, our
experiments on a large-scale real world dataset show that the parallelization reduces the wall-clock
time needed to obtain a set solution quality. Unsurprisingly, we also see diminishing marginal util-
ity of adding more machines. Finally, solving problems with more variance (smaller regularization
constant) benefits more from the parallelization.

8

References

[1] Shun-ichi Amari. A theory of adaptive pattern classifiers. IEEE Transactions on Electronic
Computers, 16:299–307, 1967.

[2] L. Bottou and O. Bosquet. The tradeoffs of large scale learning. In Advances in Neural
Information Processing Systems, 2008.

[3] C.T. Chu, S.K. Kim, Y. A. Lin, Y. Y. Yu, G. Bradski, A. Ng, and K. Olukotun. Map-reduce for
machine learning on multicore. In B. Schölkopf, J. Platt, and T. Hofmann, editors, Advances
in Neural Information Processing Systems 19, 2007.

[4] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. In Conference on Computational Learning Theory, 2010.

[5] J. Langford, A.J. Smola, and M. Zinkevich. Slow learners are fast. In Neural Information
Processing Systems, 2009.

[6] J. Langford, A.J. Smola, and M. Zinkevich. Slow learners are fast. arXiv:0911.0491, 2009.
[7] G. Mann, R. McDonald, M. Mohri, N. Silberman, and D. Walker. Efficient large-scale dis-

tributed training of conditional maximum entropy models. In Y. Bengio, D. Schuurmans,
J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Pro-
cessing Systems 22, pages 1231–1239. 2009.

[8] N. Murata, S. Yoshizawa, and S. Amari. Network information criterion — determining the
number of hidden units for artificial neural network models. IEEE Transactions on Neural
Networks, 5:865–872, 1994.

[9] Choon Hui Teo, S. V. N. Vishwanthan, Alex J. Smola, and Quoc V. Le. Bundle methods for
regularized risk minimization. J. Mach. Learn. Res., 11:311–365, January 2010.

[10] U. von Luxburg and O. Bousquet. Distance-based classification with lipschitz functions. Jour-
nal of Machine Learning Research, 5:669–695, 2004.

[11] M. Zinkevich. Online convex programming and generalised infinitesimal gradient ascent. In
Proc. Intl. Conf. Machine Learning, pages 928–936, 2003.

9

A Contraction Proof for Strongly Convex Functions

Lemma 13 (Lemma 7, [6]) Assume that f is convex and moreover that ∇f(x) is Lipschitz contin-
uous with constant H . Finally, denote by x∗ the minimizer of f . In this case

‖∇f(x)‖2 ≤ 2H[f(x)− f(x∗)]. (10)

c is λ-strongly convex if for all x, y ∈M :

λ

2
(y − x)2 +∇c(x) · (y − x) + c(x) ≤ c(y) (11)

Lemma 14 If c is λ-strongly convex, x∗ is the minimizer of c, then f(x) = c(x) − λ
2 (x − x∗)2 is

convex and x∗ minimizes f .

Proof Note that for x, y ∈M :

λ

2
(y − x)2 +∇c(x) · (y − x) + c(x) ≤ c(y) (12)

∇f(x) = ∇c(x)− λ(x− x∗) (13)

We can write∇c and c as functions of f :

∇c(x) = ∇f(x) + λ(x− x∗) (14)

c(x) = f(x) +
λ

2
(x− x∗)2 (15)

Plugging f and ∇f into Equation 12 yields:

λ

2
(y − x)2 +∇f(x) · (y − x) + λ(x− x∗) · (y − x) + f(x) +

λ

2
(x− x∗)2 ≤ f(y) +

λ

2
(y − x∗)2

(16)
−λy · x+∇f(x) · (y − x) + λx · y − λx∗ · y + λx · x∗ + f(x)− λx · x∗ ≤ f(y)− λy · x∗

(17)
∇f(x) · (y − x) + f(x) ≤ f(y) (18)

Thus, f is convex. Moreover, since ∇f(x∗) = ∇c(x∗) − λ(x∗ − x∗) = ∇c(x∗) = 0, then x∗ is
optimal for f as well as c.

Lemma 15 If c is λ-strongly convex, x∗ is the minimizer of c, ∇c is Lipschitz continuous f(x) =

c(x)− λ
2 (x− x∗)2, η <

(
λ+ ‖∇f‖Lip

)−1

, and η < 1, then for all x ∈M :

d(x− η∇c(x), x∗) ≤ (1− ηλ)d(x, x∗) (19)

Proof

To keep things terse, define H := ‖∇c‖Lip.

First observe that λ+ ‖∇f‖Lip ≥ ‖∇c‖Lip, so η < H−1.

Without loss of generality, assume x∗ = 0. By the definition of Lipschitz continuous,
‖∇c(x)−∇c(x∗)‖ ≤ H ‖x− x∗‖ and therefore ‖∇c(x)‖ ≤ H ‖x‖. Therefore, ∇c(x) · x ≤
H ‖x‖2. In other words:

(x− η∇c(x)) · x = x · x− η∇c(x) · x (20)

(x− η∇c(x)) · x ≥ ‖x‖2 (1− ηH) (21)

10

Therefore, at least in the direction of x, if η < H−1, then (x − η∇c(x)) · x ≥ 0. Define H ′ =
‖∇f‖Lip. Since f is convex and x∗ is optimal:

∇f(x) · (0− x) + f(x) ≤ f(x∗) (22)
f(x)− f(x∗) ≤ ∇f(x) · x (23)

(24)

By Lemma 13:

‖∇f(x)‖2

2H ′
≤ ∇f(x) · x (25)

We break down ∇f(x) into g‖ and g⊥, such that g‖ = ∇f(x)·x
‖x‖2 x, and g⊥ = x − g‖. Therefore,

g⊥ · g‖ = 0, and ‖∇f(x)‖2 =
∥∥g‖∥∥2

+ ‖g⊥‖2, and∇c(x) ·x = (λx+ g‖) ·x. Thus, since we know
(x− η∇c(x)) · x is positive, we can write:

‖x− η∇c(x)‖2 =
∥∥x− ηλx− ηg‖∥∥2

+ ‖ηg⊥‖2 (26)

Thus, looking at
∥∥(1− ηλ)x− ηg‖

∥∥2
:∥∥(1− ηλ)x− ηg‖

∥∥2
= ((1− ηλ)x− ηg‖) · ((1− ηλ)x− ηg‖) (27)∥∥(1− ηλ)x− ηg‖

∥∥2
= (1− ηλ)2 ‖x‖2 − 2(1− ηλ)ηg‖ · x+ η2

∥∥g‖∥∥2
(28)∥∥(1− ηλ)x− ηg‖

∥∥2 ≤ (1− ηλ)2 ‖x‖2 − 2(1− ηλ)
‖∇f(x)‖2

2H ′
+ η2

∥∥g‖∥∥2
(29)

∥∥(1− ηλ)x− ηg‖
∥∥2 ≤ (1− ηλ)2 ‖x‖2 − 2(1− ηλ)

∥∥g‖∥∥2
+ ‖g⊥‖2

2H ′
+ η2

∥∥g‖∥∥2
(30)

‖x− η∇c‖2 ≤ (1− ηλ)2 ‖x‖2 − 2(1− ηλ)

∥∥g‖∥∥2
+ ‖g⊥‖2

2H ′
+ η2

∥∥g‖∥∥2
+ ‖ηg⊥‖2 (31)

‖x− η∇c‖2 ≤ (1− ηλ)2 ‖x‖2 +
H ′η2 + ηλ− 1

H ′

(∥∥g‖∥∥2
+ ‖g⊥‖2

)
(32)

Since η < 1, H ′η2 + ηλ− 1 < H ′η + ηλ− 1 < 0. The result follows directly.

Lemma 16 Given a convex function L where ∇L is Lipschitz continuous, define c(x) = λ
2x

2 +

L(x). If η <
(
λ+ ‖∇L‖Lip

)−1

, then for all x ∈M :

d(x− η∇c(x), x∗) ≤ (1− ηλ)d(x, x∗) (33)

Proof Define x∗ to be the optimal point, and f(x) = c(x)− λ
2 (x− x∗)2. Then:

f(x) = c(x)− λ

2
x2 + λx · x∗ − λ

2
(x∗)2 (34)

f(x) = L(x) + λx · x∗ − λ

2
(x∗)2 (35)

For any x, y ∈M :

∇f(x)−∇f(y) = (∇L(x) + λx∗)− (∇L(y) + λx∗) (36)
∇f(x)−∇f(y) = (∇L(x)−∇L(y)) (37)
‖∇f(x)−∇f(y)‖ = ‖∇L(x)−∇L(y)‖ (38)

Thus, ‖∇f‖Lip = ‖∇L‖Lip. Thus we can apply Lemma 15.

11

Theorem 17 Given a convex function L where ∇L is Lipschitz continuous, define c(x) = λ
2x

2 +

L(x). If η <
(
λ+ ‖∇L‖Lip

)−1

, then for all x, y ∈M :

d(x− η∇c(x), y − η∇c(y)) ≤ (1− ηλ)d(x, y) (39)

Proof We prove this by using Lemma 16. In particular, we use a trick insipired by Classical
mechanics: instead of studying the dynamics of the update function directly, we change the frame
of reference such that one point is constant. This constant point not only does not move, it is also an
optimal point in the new frame of reference, so we can use Lemma 16.

Define g(w) = c(w)−∇c(x) · (w − x). Note that, for any y, z ∈M :
d(y − η∇g(y), z − η∇g(z)) = d(y − η∇c(y) + η∇c(x), z − η∇c(z) + η∇c(x)) (40)
d(y − η∇g(y), z − η∇g(z)) = ‖y − η∇c(y) + η∇c(x)− (z − η∇c(z) + η∇c(x))‖ (41)
d(y − η∇g(y), z − η∇g(z)) = ‖y − η∇c(y)− (z − η∇c(z))‖ (42)
d(y − η∇g(y), z − η∇g(z)) = d(y − η∇c(y), z − η∇c(z)) (43)

Therefore, g provides a frame of reference where the relative distances between where everything is
will be the same as it would be with c. Moreover, note that g is convex, and∇g(x) = 0. Thus x is the
minimizer of g. Moreover, since g(w) = c(w)−∇c(x) · (w−x) = λ

2w
2 +L(w)−∇c(x) · (w−x).

If we define C(w) = L(w) − ∇c(x) · (w − x), then C is convex and ‖∇C‖Lip = ‖∇L‖Lip.
Therefore we can apply Lemma 16 with C instead of L, and then we find that d(y − η∇g(y), x) ≤
(1− ηλ)d(y, x). From Equation (43), d(y− η∇c(y), x− η∇c(x)) ≤ (1− ηλ)d(y, x), establishing
the theorem.

B Proof of Lemma 3

Lemma 3 If c∗ =
∥∥∥∂L(y,ŷ)

∂ŷ

∥∥∥
Lip

then, for a fixed i, if η ≤ (
∥∥xi∥∥2

c∗ + λ)−1, the update rule in

Equation 271 is a contraction mapping for the Euclidean distance with Lipschitz constant 1− ηλ.

Proof First, let us break down Equation 271. By gathering terms:

φi(w) = (1− ηλ)w − ηxi ∂
∂ŷ
L(yi, ŷ)|w·xi (44)

Define u : R → R to be equal to u(z) = ∂
∂zL(yi, z). Because L(y, ŷ) is convex in ŷ, u(z) is

increasing, and u(z) is Lipschitz continuous with constant c∗.

φi(w) = (1− ηλ)w − ηu(w · xi)xi (45)

We break down w into w‖ and w⊥, where w⊥ · xi = 0 and w‖ + w⊥ = w. Thus:

φi(w)⊥ = (1− ηλ)w⊥ (46)

φi(w)‖ = (1− ηλ)w‖ − ηu(w‖ · xi)xi (47)

Finally, note that d(w, v) =
√
d2(w‖, v‖) + d2(w⊥, v⊥).

Note that given any w⊥, v⊥, d(φi(w)⊥, φ
i(v)⊥) = (1 − ηλ)d(w⊥, v⊥). For convergence in the

final, “interesting” dimension parallel to xi, first we observe that if we define α(w) = xi ·w, we can
represent the update as:

α(φi(w)) = (1− ηλ)α(w) + ηyiu(α(w))(xi · xi) (48)

Define β =
√
xi · xi. Note that:

α(φi(w)) = (1− ηλ)α(w) + ηu(α(w))β2 (49)

d(w‖, v‖) =
1

β
|α(w)− α(v)| (50)

d(φi(w)‖, φ
i(v)‖) =

1

β

∣∣((1− ηλ)α(w)− ηu(α(w))β2)− ((1− ηλ)α(v)− ηu(α(v))β2)
∣∣ (51)

12

Without loss of generality, assume that α(w) ≥ α(v). Since α(w) ≥ α(v), u(α(w)) ≥ u(α(v)).
By Lipschitz continuity:

|u(α(w))− u(α(v))| ≤ c∗|α(w)− α(v)| (52)
u(α(w))− u(α(v)) ≤ c∗(α(w)− α(v)) (53)

Rearranging the terms yields:

((1− ηλ)α(w)− ηu(α(w))β2)− ((1− ηλ)α(v)− ηu(α(v))β2) =

((1− ηλ)(α(w)− α(v))− ηβ2(u(α(w))− u(α(v)) (54)

Note that u(α(w)) ≥ u(α(v)), so ηβ2(u(α(w))− u(α(v)) ≥ 0, so:

((1− ηλ)α(w)− ηu(α(w))β2)− ((1− ηλ)α(v)− ηu(α(v))β2) ≤ (1− ηλ)(α(w)−α(v)) (55)

Finally, since u(α(w))− u(α(v)) ≤ c∗(α(w)− α(v)):

((1− ηλ)α(w)− ηu(α(w))β2)− ((1− ηλ)α(v)− ηu(α(v))β2) ≥
((1− ηλ)(α(w)− α(v))− ηβ2c∗(α(w))− α(v)) =

((1− ηλ− ηβ2c∗)(α(w)− α(v)) (56)

Since we assume in the state of the theorem, η ≤ (β2c∗+λ)−1, it is the case that (1−ηλ−ηβ2c∗) ≥
0, and:

((1− ηλ)α(w)− ηu(α(w))β2)− ((1− ηλ)α(v)− ηu(α(v))β2) ≥ 0 (57)
By Equation (55) and Equation (57), it is the case that:

|((1−ηλ)α(w)−ηu(α(w))β2)− ((1−ηλ)α(v)−ηu(α(v))β2)| ≤ (1−ηλ)(α(w)−α(v)) (58)

This implies:

d(φi(w)‖, φ
i(v)‖) ≤

1

β
(1− ηλ)(α(w)− α(v)) (59)

≤ (1− ηλ)
1

β
|α(w)− α(v)| (60)

≤ (1− ηλ)
1

β
d(w‖, v‖) (61)

This establishes that d(φi(w), φi(v)) ≤ (1− ηλ)d(w, v).

C Wasserstein Metrics and Contraction Mappings

In this section, we prove Lemma 5, Lemma 6, and Corollary 7 from Section 2.2.

Fact 18 x∗ = infx∈X x if and only if:

1. for all x ∈ X , x∗ ≤ x, and

2. for any ε > 0, there exits an x ∈ X such that x∗ + ε > x.

Fact 19 If for all ε > 0, a+ ε ≥ b, then a ≥ b.

Lemma 5 For all i, Given a metric space (M,d) and a contraction mapping φ on (M,d) with
constant c, p is a contraction mapping on (P (M,d),Wi) with constant c.

Proof A contraction mapping is continuous and therefore it is a measurable function on the Radon
space (which is a Borel space).

13

Given two distributions X and Y , define z = Wi(X,Y). By Fact 18, for any ε > 0, there exists
a γ ∈ Γ(X,Y) such that (Wi(X,Y))i + ε >

∫
x,y

d(x, y)diγ(x, y). Define γ′ such that for all
E,E′ ∈M , γ′(E,E′) = γ(φ−1(E), φ−1(E′)).

Note that γ′(E,M)=γ(φ−1(E),M) = X(φ−1(E)) = p(X)(E), Thus, the marginal distribution
of γ is p(X), and analogously the other marginal distribution of γ is p(Y). Since φ is a contraction
with constant c, it is the case that cd(φ(x), φ(y)) ≤ d(x, y), and

(Wi(X,Y))i + ε >

∫
x,y

1

ci
di(φ(x), φ(y))dγ(x, y) (62)

(Wi(X,Y))i + ε >
1

ci

∫
x,y

di(φ(x), φ(y))dγ(x, y) (63)

By change of variables:

(Wi(X,Y))i + ε >
1

ci

∫
x,y

di(x, y)dγ′(x, y) (64)

(Wi(X,Y))i + ε >
1

ci
(Wi(p(X),p(Y)))i (65)

By Fact 19:

(Wi(X,Y))i ≥ 1

ci
(Wi(p(X),p(Y)))i (66)

Wi(X,Y) ≥ 1

c
(Wi(p(X),p(Y))) (67)

Since X and Y are arbitrary, p is a contraction mapping with metric Wi.

Lemma 20 Given X1 . . . Xm, Y 1 . . . Y m that are probability measures over (M,d), a1 . . . am ∈
R, where

∑
i ai = 1 and if for all i, ai ≥ 0, and for all i, Wk(Xi, Y i) is well-defined, then:

Wk

(∑
i

aiX
i,
∑
i

aiY
i

)
≤

(∑
i

ai(Wk(Xi, Y i))k

)1/k

(68)

Corollary 21 If for all i, Wk(Xi, Y i) ≤ d,then:

Wk

(∑
i

aiX
i,
∑
i

aiY
i

)
≤ d (69)

Proof

By Fact 18, for any ε > 0, there exists a γi ∈ Γ(Xi, Y i) such that:

(Wk(Xi, Y i))k + ε >

∫
dk(x, y)dγk(x, y) (70)

Note that
∑
i aiγ

i ∈ Γ(
∑
i aiX

i,
∑
i aiY

i), where we consider addition on functions over mea-
sureable sets in (M,d)× (M,d). If we define γ∗ =

∑
i aiγ

i, then:∑
i

ai

∫
dk(x, y)dγi(x, y) =

∫
dk(x, y)dγ∗(x, y) (71)

14

Therefore: ∑
ai((Wk(Xi, Y i))k + ε) >

∫
dk(x, y)dγ∗(x, y) (72)

ε+
∑

ai(Wk(Xi, Y i))k >

∫
dk(x, y)dγ∗(x, y) (73)

(74)

Because γ∗ ∈ Γ(
∑
i aiX

i,
∑
i aiY

i):

ε+
∑

ai(Wk(Xi, Y i))k > inf
γ∈Γ(

∑
i aiX

i,
∑
i aiY

i)

∫
dk(x, y)dγ(x, y) (75)

ε+
∑

ai(Wk(Xi, Y i))k > (Wk(
∑
i

aiX
i,
∑
i

aiY
i))k (76)

By Fact 19: ∑
ai(Wk(Xi, Y i))k ≥ (Wk(

∑
i

aiX
i,
∑
i

aiY
i))k (77)

(∑
ai(Wk(Xi, Y i))k

)1/k

≥Wk(
∑
i

aiX
i,
∑
i

aiY
i) (78)

Lemma 6 Given a Radon space (M,d), if p1 . . .pk are contraction mappings with constants
c1 . . . ck with respect to Wz , and

∑
i ai = 1 where ai ≥ 0, then p =

∑k
i=1 aipi is a contraction

mapping with a constant of no more than (
∑
i ai(ci)

z)
1/z .

Corollary 7 If for all i, ci ≤ c, then p is a contraction mapping with a constant of no more than c.

Proof Given an initial measures X,Y , for any i,

Wz(pi(X),pi(Y)) < ciWz(X,Y) (79)

. Thus, p(X) =
∑k
i=1 aipi(X) and p(Y) =

∑k
i=1 aipi(Y), by Lemma 20 it is the case that:

Wz(p(X),p(Y) ≤

(
k∑
i=1

ai (Wz(pi(X),pi(Y)))
z

)1/z

(80)

By Equation 79:

Wz(p(X),p(Y)) ≤

(
k∑
i=1

ai (ciWz(X,Y))
z

)1/z

(81)

≤

(
k∑
i=1

ai (ciWz(X,Y))
z

)1/z

(82)

≤Wz(X,Y)

(
k∑
i=1

ai (ci)
z

)1/z

(83)

15

D More Properties of Wasserstein Metrics

D.1 Kantorovich-Rubinstein Theorem

Define β(P,Q) to be:

β(P,Q) = sup
f,‖f‖Lip≤1

∣∣∣∣∫ fdP −
∫
fdQ

∣∣∣∣ (84)

Where ‖◦‖Lip is the Lipschitz constant of the function.

Theorem 22 (Kantorovich-Rubinstein) If (M,d) is a separable metric space then for any two dis-
tributions P ,Q, we have W1(P,Q) = β(P,Q).

Corollary 23 If d is Euclidean distance, d(µP , µQ) ≤W1(P,Q).

The following extends one half of Kantorovich-Rubinstein beyond W1.

Theorem 24 For any i ≥ 1, for any f where ‖f‖Lipi
is bounded, for distributions X,Y :

Ex∈X [f(x)]−Ey∈Y [f(y)] ≤ ‖f‖Lipi
(Wi(X,Y))

i
. (85)

Corollary 25 Given two distributions X,Y , given any Lipschitz continuous function c : M → R:

|Ex∈X [c(x)]−Ex∈Y [c(x)]| ≤ ‖c‖LipW1(X,Y) (86)

Proof Choose an arbitrary i ≥ 1. Choose an f where ‖f‖Lipi
is bounded, and arbitrary distributions

X,Y . Choose a joint distribution γ ∈ (M,d) × (M,d) such that the first marginal of γ is X , and
the second marginal of γ is Y . Therefore:

Ex∈X [f(x)] =

∫
f(x)dγ(x, y) (87)

Ey∈Y [f(y)] =

∫
f(y)dγ(x, y) (88)

Ex∈X [f(x)]−Ey∈Y [f(y)] =

∫
f(x)dγ(x, y)−

∫
f(y)dγ(x, y) (89)

Ex∈X [f(x)]−Ey∈Y [f(y)] =

∫
(f(x)− f(y))dγ(x, y) (90)

By the definition of ‖f‖Lipi
, f(x)− f(y) ≤ ‖f‖Lipi

di(x, y):

Ex∈X [f(x)]−Ey∈Y [f(y)] ≤
∫
‖f‖Lipi

di(x, y)dγ(x, y) (91)

Ex∈X [f(x)]−Ey∈Y [f(y)] ≤ ‖f‖Lipi

∫
di(x, y)dγ(x, y) (92)

For any ε > 0, there exists a γ such that (Wi(x, y))i + ε >
∫
di(x, y)dγ(x, y). Therefore, for any

ε > 0:

Ex∈X [f(x)]−Ey∈Y [f(y)] ≤ ‖f‖Lipi
(Wi(x, y))i + ε (93)

Therefore, if we allow ε to approach zero, we prove the theorem.

16

D.2 Wasserstein Distance and Relative Standard Deviation

Before we introduce relative standard deviation, we want to make a few observations about Wasser-
stein distances and point masses. Given x ∈ M , define Ix ∈ P (M,d) such that Ix(E) = 1 if
x ∈ E, and Ix(E) = 0 if x /∈ E. Given x ∈M and Y ∈ P (M,d), define Wz(x, Y) = Wz(Ix, Y).
It is the case that:

Wz(x, Y) = (Ey∈Y [dz(x, y)])
1/i (94)

Lemma 26 Given Y ∈ (M,d), x ∈M , if Pr[d(x, y) ≤ L] = 1, then Wz(x, Y) ≤ L.

Corollary 27 For x, y ∈M , Wz(x, y) = d(x, y).

Proof Since Γ(Ix, Y) is a singleton:

Wz(x, Y) =

(∫
dz(x, y)dY (y)

)1/z

. (95)

Therefore, we can bound dz(x, y) by Lz , so:

Wz(x, Y) ≤
(∫

LzdY (y)

)1/z

(96)

Wz(x, Y) ≤ (Lz)
1/z (97)

Wz(x, Y) ≤ L (98)

Let us define the relative standard deviation ofX with respect to c to be:

σcX =
√

E[(X − c)2]. (99)

Define µX to be the mean of X . Observe that σX = σµXX .

Fact 28 If σcX is finite, then σcX = W2(Ic, X).

Lemma 29
|σcX − σc

′

X | ≤ d(c, c′) (100)

Proof By the triangle inequality, W2(Ic, X) ≤ W2(Ic′ , X) + W2(Ic, Ic′). By Fact 28,
σcX ≤ σc

′

X + W2(Ic, Ic′). By Corollary 27, σcX ≤ σc
′

X + d(c, c′). Similarly, one can show
σc
′

X ≤ σcX + d(c, c′).

Lemma 30
σcY ≤ σcX +W2(X,Y) (101)

Proof By the triangle inequality, W2(Ic, Y) ≤ W2(Ic, X) + W2(X,Y). The result follows from
Fact 28.

Theorem 31

σX ≤ σcX (102)

Proof We prove this by considering σcX a function of c, and finding the minimum by checking
where the gradient is zero.

17

Theorem 32
σY ≤ σX +W2(X,Y) (103)

Proof Note that σX = σµXX . By Lemma 30:

σµXY ≤ σµXX +W2(X,Y) (104)

By Theorem 31, σµYY ≤ σµXY , proving the result.

Theorem 33 For any d, for any P,Q, if Wi exists, then:

Wi(P,Q) ≥W1(P,Q) (105)

Proof For any ε > 0, there exists a γ ∈ Γ(P,Q) such that:

(Wi(P,Q))i + ε ≥
∫
di(x, y)dγ(x, y) (106)

By Jensen’s inequality: ∫
di(x, y)dγ(x, y) ≥

(∫
d(x, y)dγ(x, y)

)i
(107)

Therefore:

(Wi(P,Q))i + ε ≥
(∫

d(x, y)dγ(x, y)

)i
(108)

By definition, W1(P,Q) ≤
∫
d(x, y)dγ(x, y), so:

(Wi(P,Q))i + ε ≥ (W1(P,Q))
i (109)

Since for any ε > 0, this holds, by Fact 19:

(Wi(P,Q))i ≥ (W1(P,Q))
i (110)

Since i ≥ 1, the result follows.

Theorem 34 Suppose thatX1 . . . Xk are independent and identically distributed random variables
over Rn. Then, if A = 1

k

∑k
i=1X

i, it is the case that:1

µA = µX1 (111)

σA ≤
σX1√
k
. (112)

Proof

The first is a well known theorem; µA = µX1 by linearity of expectation. The second part is one of
many direct results of the fact that the variance of two independent variables X and Y is the sum of
the variance of the independent variables.

1Here we mean to indicate the average of the random variables, not the average of their distributions.

18

D.3 Wasserstein Distance and Cesaro Summability

Theorem 35 For any Lipschitz continuous function c, for any sequence of distributions
{D1, D2 . . .} in the Wasserstein metric, if limt→∞Dt = D∗, then:

lim
t→∞

Ex∈Dt [c(x)] = Ex∈D∗ [c(x)] (113)

Proof Assume that the Lipschitz constant for c is c∗. By Corollary 25, it is the case that:

|Ex∈Dt [c(x)]−Ex∈D∗ [c(x)]| ≤ c∗W1(Dt, D
∗) (114)

We can prove that:

lim
t→∞

|Ex∈Dt [c(x)]−Ex∈D∗ [c(x)]| ≤ lim
t→∞

c∗W1(Dt, D
∗) (115)

≤ c∗ lim
t→∞

W1(Dt, D
∗) (116)

≤ c∗ × 0 = 0 (117)

So, if the distance between the sequence {Ex∈Dt [c(x)]}t and the point Ex∈D∗ [c(x)] approaches
zero, the limit of the sequence is Ex∈D∗ [c(x)].

Theorem 36 (Cesàro Sum) Given a sequence {a1, a2 . . .} where limt→∞ at = a∗, it is the case
that:

lim
T→∞

1

T

T∑
t=1

at = a∗ (118)

Proof

For a given ε > 0, there exists an t such that for all t′ > t, |at′ − a∗| < ε
2 . Define abegin =∑t

t′=1 at′ . Then, we know that, for T > t:

1

T

T∑
t′=1

at =
1

T

(
t∑

t′=1

at′ +

T∑
t′=t+1

at′

)
(119)

1

T

T∑
t′=1

at =
1

T

(
abegin +

T∑
t′=t+1

at′

)
(120)

1

T

T∑
t′=1

at ≤
1

T

(
abegin +

T∑
t′=t+1

(
a∗ +

ε

2

))
(121)

1

T

T∑
t′=1

at ≤
1

T

(
abegin + (T − t)

(
a∗ +

ε

2

))
(122)

Note that as T →∞:

lim
T→∞

1

T

(
abegin + (T − t)

(
a∗ +

ε

2

))
= lim
T→∞

t

T
abegin +

T − t
T

(
a∗ +

ε

2

)
(123)

= 0× abegin + 1×
(
a∗ +

ε

2

)
(124)

= a∗ +
ε

2
(125)

Therefore, since the upper bound on the limit approaches a∗ + ε
2 , there must exist a T such that for

all T ′ > T :

1

T ′ + 1

T ′∑
t=1

at < a∗ + ε (126)

19

Similarly, one can prove that there exists a T ′′ such that for all T ′ > T ′′, 1
T ′+1

∑T ′

t=1 at > a∗ − ε.
Therefore, the series converges.

Theorem 37 For any Lipschitz continuous function c, for any sequence of distributions
{D1, D2 . . .} in the Wasserstein metric, if limt→∞Dt = D∗, then:

lim
T→∞

1

T

T∑
t=1

Ex∈Dt [c(x)] = Ex∈D∗ [c(x)] (127)

Proof This is a direct result of Theorem 35 and Theorem 36.

E Basic Properties of Stochastic Gradient Descent on SVMs

∇ci(w) = λw +
∂

∂ŷ
L(yi, ŷ)|wi·xixi (128)

Define f such that:

f i(w) = L(yi, wi · xi) (129)

We assume that for all i, for all w,
∥∥∇f i(w)

∥∥ ≤ G. Also, define:

f(w) =
1

m

m∑
i=1

f i(w) (130)

In order to understand the stochastic process, we need to understand the batch update. The expected
stochastic update is the batch update. Define gw to be the expected gradient at w, and c(w) to be the
expected cost at w.

c(w) =
λ

2
w2 + f(w) (131)

Theorem 38 The expected gradient is the gradient of the expected cost.

Proof This follows directly from the linearity of the gradient operator and the linearity of
expectation.

The following well-known theorem establishes that c is a strongly convex function.

Theorem 39 For any w,w′:

c(w′) ≥ λ

2
(w′ − w)2 + gw · (w′ − w) + c(w) (132)

Proof
λ
2w

2 is a λ- strongly convex function, and f i(w) is a convex function, so therefore c(w) is a λ-
strongly convex function. Or, to be more thorough, because f is convex:

f(w′)− f(w) ≥ ∇f(w) · (w′ − w). (133)

20

Define h(w) = λ
2w

2. Observe that:

h(w′)− h(w) =
λ

2
(w′)2 − λ

2
w2 (134)

h(w′)− h(w) =
λ

2
(w′)2 − λ

2
w2 − λw · (w′ − w) + λw · (w′ − w) (135)

h(w′)− h(w) =
λ

2
(w′)2 − λ

2
w2 − λw · w′ + λw2 + λw · (w′ − w) (136)

h(w′)− h(w) =
λ

2
(w′)2 +

λ

2
w2 − λw · w′ + λw · (w′ − w) (137)

h(w′)− h(w) =
λ

2
(w′)2 +

λ

2
w2 − λw · w′ +∇h(w) · (w′ − w) (138)

h(w′)− h(w) =
λ

2
(w′ − w)2 +∇h(w) · (w′ − w) (139)

Since c(w) = h(w) + f(w):

c(w′)− c(w) ≥ λ

2
(w′ − w)2 +∇h(w) · (w′ − w) +∇f(w) · (w′ − w) (140)

c(w′)− c(w) ≥ λ

2
(w′ − w)2 +∇c(w) · (w′ − w) (141)

Theorem 40
‖w∗‖ ≤ G

λ
.

Proof Note that∇c(w∗) = 0. So:

0 = ∇c(w∗) (142)

0 = ∇
(
λ

2
(w∗)2 + f(w∗)

)
(143)

0 = λw∗ +∇f(w∗)− λw∗ (144)
= ∇f(w∗) (145)

Since ‖∇f(w∗)‖ ≤ G, it is the case that:

‖−λw∗‖ ≤ G (146)
λ ‖w∗‖ ≤ G (147)

‖w∗‖ ≤ G

λ
(148)

Theorem 41 For any w, if w∗ is the optimal point:

λ(w∗ − w)2 ≤ gw · (w − w∗) (149)

Proof By Theorem 39:

c(w∗) ≥ λ

2
(w∗ − w)2 + gw · (w∗ − w) + c(w) (150)

c(w∗)− c(w) ≥ λ

2
(w∗ − w)2 + gw · (w∗ − w) (151)

c(w)− c(w∗) ≤ −λ
2

(w∗ − w)2 + gw · (w − w∗) (152)

21

Since w∗ is optimal,∇c(w∗) = 0, implying:

c(w) ≥ λ

2
(w∗ − w)2 + 0 · (w − w∗) + c(w∗) (153)

c(w)− c(w∗) ≥ λ

2
(w∗ − w)2 (154)

Combining Equation 152 and Equation 154:

λ

2
(w∗ − w)2 ≤ −λ

2
(w∗ − w)2 + gw · (w − w∗) (155)

λ(w∗ − w)2 ≤ gw · (w − w∗) (156)

Theorem 42 For any w: ∥∥∇ci − λ(w − w∗)
∥∥ ≤ 2G (157)

Proof First, observe that:

∇ci(w) = λw +∇f i(w) (158)

∇ci(w)− λw ≤ ∇f i(w) (159)∥∥∇ci(w)− λw
∥∥ ≤ G (160)

Also, ‖w∗‖ ≤ G
λ , implying ‖λw∗‖ ≤ G. Thus, the triangle inequality yields:∥∥(∇ci(w)− λw) + (λw∗)

∥∥ ≤ 2G (161)∥∥∇ci(w)− λ(w − w∗)
∥∥ ≤ 2G (162)

Thus, minus a contraction ratio, the magnitude of the gradient is bounded. Moreover, in expectation
it is not moving away from the optimal point. These two facts will help us to bound the expected
mean and expected squared distance from optimal.

Theorem 43 For any w, if w∗ is the optimal point, and η ∈ (0, 1):

((w − ηgw)− w∗) · (w − w∗) ≤ (1− ηλ)(w − w∗)2 (163)

Proof

From Theorem 41,

λ(w∗ − w)2 ≤ gw · (w − w∗). (164)

Multiplying both sides by η:

ηλ(w∗ − w)2 ≤ ηgw · (w − w∗) (165)

−ηgw · (w − w∗) ≤ −ηλ(w∗ − w)2 (166)

Adding (w − w∗) · (w − w∗) to both sides yields the result.

Theorem 44 If wt is a state of the stochastic gradient descent algorithm, w0 = 0, λ ≤ 1, and
0 ≤ η ≤ 1

λ , then:

‖wt‖ ≤
G

λ
(167)

22

Corollary 45 ∥∥∇ci(wt)∥∥ ≤ 2G (168)

Proof First, observe that ‖w0‖ ≤ G
λ . We prove the theorem via induction on t. Assume that the

condition holds for t− 1, i.e.that ‖wt−1‖ ≤ G
λ . Then, wt is, for some i:

wt ≤ wt−1(1− ηλ)− η∇f i(wt) (169)

‖wt‖ ≤ |1− ηλ| ‖wt−1‖+ |η|
∥∥∇f i(wt)∥∥ (170)

Since ‖wt−1‖ ≤ G
λ and

∥∥∇f i(wt)∥∥ ≤ G, then:

‖wt‖ ≤ |1− ηλ|
G

λ
+ |η|G (171)

Since η ≥ 0 and 1− ηλ ≥ 0:

‖wt‖ ≤ (1− ηλ)
G

λ
+ ηG (172)

‖wt‖ ≤
G

λ
(173)

F Proof of Theorem 8: SGD is a Contraction Mapping

Theorem 8 For any positive integer z, if η ≤ η∗, then p∗ is a contraction mapping on (M,Wz)
with contraction rate (1 − ηλ). Therefore, there exists a unique D∗η such that p∗(D∗η) = D∗η .
Moreover, if w0 = 0 with probability 1, then Wz(D

0
η, D

∗
η) = G

λ , and Wz(D
T
η , D

∗
η) ≤ G

λ (1− ηλ)T .

Proof The contraction rate (1 − ηλ) can be proven by applying Lemma 3, Lemma 5, and
Corollary 6. By Theorem 44, ‖wt‖ ≤ G

λ . Therefore, for any w ∈ D∗η , ‖w‖ ≤ G
λ . Since D0

η = Iw0
,

it is the case that Wz(D
0
η, D

∗
η) = Wz(0, D

∗
η). By Lemma 26, Wz(D

0
η, D

∗
η) ≤ G

λ . By applying the
first half of the theorem and Corollary 2, Wz(D

T
η , D

∗
η) ≤ G

λ (1− ηλ)T .

G Proof of Theorem 9: Bounding the Error of the Mean

Define D
2 to be a bound on the distance the gradient descent algorithm can be from the origin.

Therefore, we can use the algorithm and analysis from [11], where we say D is the diameter of the
space, and M is the maximum gradient in that space. However, we will use a constant learning rate.

Theorem 46 Given a sequence {ct} of convex cost functions, a domain F that contains all vectors
of the stochastic gradient descent algorithm, a bound M on the norm of the gradients of ct in F .
The regret of stochastic gradient descent algorithm after T time steps is:

RT = argmax
w∗∈F

T∑
t=1

(ct(wt)− ct(w∗)) ≤
TηM2

2
+
D2

2η
(174)

Proof

We prove this via a potential Φt = 1
2η (wt+1 − w∗)2. First observe that, because ct is convex:

ct(w
∗) ≥ (w∗ − wt)∇ct(wt) + ct(wt) (175)

ct(wt)− ct(w∗) ≤ (wt − w∗)∇ct(wt) (176)
Rt −Rt−1 ≤ (wt − w∗)∇ct(wt) (177)

23

Also, note that:

Φt − Φt−1 =
1

2η
(wt − η∇ct(wt)− w∗)2 − 1

2η
(wt − w∗)2 (178)

Φt − Φt−1 = −(wt − w∗)∇ct(wt) +
η

2
(∇ct(wt))2 (179)

Adding Equation (177) and Equation (179) then cancelling the (wt − w∗)∇ct(wt) terms yields:

(Rt −Rt−1) + (Φt − Φt−1) ≤ η

2
(∇ct(wt))2 (180)

Summing over all t:
T∑
t=1

((Rt −Rt−1) + (Φt − Φt−1)) ≤
T∑
t=1

η

2
(∇ct(wt))2 (181)

RT −R0 ≤
T∑
t=1

η

2
(∇ct(wt))2 + Φ0 − ΦT (182)

By definition, R0 = 0, and ΦT > 0, so:

RT ≤
T∑
t=1

η

2
(∇ct(wt))2 + Φ0 (183)

RT ≤
T∑
t=1

η

2
(∇ct(wt))2 +

1

2η
(w1 − w∗)2 (184)

The distance is bounded by D, and the gradient is bounded by M , so:

RT ≤
TηM2

2
+
D2

2η
(185)

Theorem 47 Given c1 . . . cm, if for every t ∈ {1 . . . T}, it is chosen uniformly at random from 1 to
m, then:

min
w∈F

E

[
T∑
t=1

cit(w)

]
≥ E

[
min
w∈F

T∑
t=1

cit(w)

]
(186)

Proof Observe that, by definition:

E

[
min
w∈F

T∑
t=1

cit(w)

]
=

1

mT

∑
i1...iT∈{1...m}

min
w∈F

T∑
t=1

cit(w) (187)

≤ min
w∈F

1

mT

∑
i1...iT∈{1...m}

T∑
t=1

cit(w) (188)

≤ min
w∈F

E

[
T∑
t=1

cit(w)

]
(189)

Theorem 48

lim
T→∞

1

T
E[RT] ≥ Ew∈D∗η [c(w)]− min

w∈F
c(w). (190)

24

Proof

This proof follows the technique of many reductions establishing that batch learning can be reduced
to online learning [5, 4], but taken to the asymptotic limit. First, observe that

min
w∈F

E

[
T∑
t=1

cit(w)

]
≥ E

[
min
w∈F

T∑
t=1

cit(w)

]
, (191)

because it is easier to minimize the utility after the costs are selected. Applying this, the linearity of
expectation, and the definitions of c and Dt

η one obtains:

E[RT] ≥
T∑
t=1

Ew∈Dtη [c(w)]− T min
w∈F

c(w). (192)

Taking the Cesàro limit of both sides yields:

lim
T→∞

1

T
E[RT] ≥ lim

T→∞

1

T

(
T∑
t=1

Ew∈Dtη [c(w)]− T min
w∈F

c(w)

)
. (193)

The result follows from Theorem 8 and Theorem 37:

Theorem 49 If D∗η is the stationary distribution of the stochastic update with learning rate η, then:

ηM2

2
≥ Ew∈D∗η [c(w)]− min

w∈F
c(w) (194)

Proof From Theorem 48, we know:

lim
T→∞

1

T
E[RT] ≥ Ew∈D∗η [c(w)]− min

w∈F
c(w). (195)

Applying Theorem 46:

lim
T→∞

1

T

(
TηM2

2
+
D2

2η

)
≥ Ew∈D∗η [c(w)]− min

w∈F
c(w). (196)

Taking the limit on the left-hand side yields the result.

Theorem 50 c(Ew∈D∗η [w])−minw∈F c(w) ≤ ηM2

2 .

Proof By Theorem 49, ηM2

2 ≥ Ew∈D∗η [c(w)] − minw∈F c(w). Since c is convex, by
Jensen’s inequality, the cost of the mean is less than or equal to the mean of the cost, formally
Ew∈D∗η [c(w)] ≥ c(Ew∈D∗η [w]), and the result follows by substitution.

Theorem 9 c(Ew∈D∗η [w])−minw∈Rn c(w) ≤ 2ηG2.

This is obtained by applying Theorem 45, and substituting 2G for M .

25

H Generalizing Reinforcement Learning

In order to make this theorem work, we have to push the limits of reinforcement learning. In par-
ticular, we have to show that some (but not all) of reinforcement learning works if actions can be
any subset of the discrete distributions over the next state. In general, the distribution over the next
action is rarely restricted in reinforcement learning. In particular, the theory of discounted reinforce-
ment learning works well on almost any space of policies, but we only show infinite horizon average
reward reinforcement learning works when the function is a contraction.

If (M,d) is a Radon space, a probability measure ρ ∈ P (M,d) is discrete if there exists a countable
set C ⊆ S such that ρ(C) = 1. Importantly, if a function R : M → R is a bounded (not
necessarily continuous) function, then Ex∈ρ[R(x)] is well-defined. We will denote the set of discrete
distributions as D(M,d) ⊆ P (M,d).

Given a Radon space (S, d), define S to be the set of states. Define the actions A = D(S, d) to
be the set of discrete distributions over S. For every w ∈ S, define A(w) ⊆ A to be the actions
available in state w.

We define a policy as a function σ : S → A where σ(w) ∈ A(w). Then, we can write a transforma-
tion Tσ : D(S, d)→ D(S, d) such that for any measureable set E, Tσ(ρ)(E) is the probability that
w′ ∈ E, given w′ is drawn from σ(w) where w is drawn from ρ. Therefore:

Tσ(ρ)(E) = Ew∈ρ[σ(w)(E)] (197)

Define r0(w, σ) = R(w), and for t ≥ 1:

rt(w, σ) = Ew′∈T tσ(w)[R(w′)] (198)

Importantly, rt(w, σ) ∈ [a, b]. Now, we can define the discounted utility:

V Tσ,γ(w) =

T∑
t=0

γtrt(w, σ) (199)

Theorem 51 The sequence V 1
σ,γ(w), V 2

σ,γ(w), V 3
σ,γ(w) converges.

Proof Since rt ∈ [a, b], then for any t, γtrt(w, σ) ≤ γtb. For any T, T ′ where T ′ > T :

V T
′

σ,γ(w)− V Tσ,γ(w) =

T ′∑
t=T+1

γtrt(w, σ) (200)

≤ bγ
T+1 − γT ′+1

1− γ
(201)

≤ b γ
T+1

1− γ
(202)

Similarly, V Tσ,γ(w)− V T ′σ,γ(w) ≤ −aγ
T+1

1−γ

Thus, for a given T , for all T ′, T ′′ > T , |V T ′′σ,γ (w)− V T ′σ,γ(w)| < max(−a, b)γ
T+1

1−γ .

Therefore, for any ε > 0, there exists a T such that for all T ′, T ′′ > T where
|V T ′′σ,γ (w) − V T

′

σ,γ(w)| < ε. Therefore, the sequence is a Cauchy sequence, and has a limit
since the real numbers are complete.

Therefore, we can define:

Vσ,γ(w) =

∞∑
t=0

γtrt(w, σ) (203)

26

Note that the limit is well-defined, because R is bounded over S. Also, we can define:

V̄σ,T (w) =
1

T + 1

T∑
t=0

rt(σ,w) (204)

Consider W1 to be the Wasserstein metric on P (S, d).

Theorem 52 If Tσ is a contraction operator on (P (S, d),W1), and R is Lipshitz continuous on S,
then r0(σ,w), r1(σ,w), r2(σ,w) . . . converges.

Proof By Theorem 1, there exists a D∗ such that for all w, limt→∞ T tσ(w) = D∗. Since
rt(σ,w) = Ew′∈T tσ(w)[R(w)], by Theorem 35, this sequence must have a limit.

Theorem 53 If Tσ is a contraction operator, and R is Lipschitz continuous, then
V̄σ,1(w), V̄σ,2(w), . . . converges to limt→∞ rt(σ,w).

Proof From Theorem 52, we know there exists an r∗ such that limt→∞ rt(σ,w) = r∗. The result
follows from Theorem 36.

If Tσ is a contraction mapping, and R is Lipschitz continuous, we can define:

V̄σ(w) = lim
T→∞

V̄σ,T (w) (205)

Theorem 54 If Tσ is a contraction mapping, and R is Lipschitz continuous, then:

V̄σ(w) = lim
γ→1−

(1− γ)Vσ,γ(w) (206)

Proof From Theorem 52, we know there exists an r∗ such that V̄σ(w) = limt→∞ rt(σ,w) = r∗.
We can also show that limγ→1−(1− γ)Vσ,γ(w) = r∗.

We will prove that for a given ε > 0, there exists a γ such that |(1 − γ)Vσ,γ(w) − r∗| < ε. For ε
2 ,

there exists a t such that for all t′ > t, |rt′(σ,w)− r∗| < ε
2 . Thus,

(1− γ)Vσ,γ(w) = (1− γ)

∞∑
t′=0

γt
′
rt′(σ,w) (207)

(1− γ)Vσ,γ(w) = (1− γ)

t∑
t′=0

γt
′
rt′(σ,w) + (1− γ)

∞∑
t′=t+1

γt
′
rt′(σ,w) (208)

(1− γ)Vσ,γ(w) ≥ (1− γ)

t∑
t′=0

γt
′
a+ (1− γ)

∞∑
t′=t+1

(r∗ − ε

2
) (209)

(210)

Since r∗ = (1− γ)
∑∞
t′=0 γ

t′r∗:

r∗ − (1− γ)Vσ,γ(w) ≤ (1− γ)

t∑
t′=0

γt
′
(r∗ − a) + (1− γ)

∞∑
t′=t+1

ε

2
(211)

r∗ − (1− γ)Vσ,γ(w) ≤ (1− γ)
1− γt+1

1− γ
(r∗ − a) + (1− γ)

γt+1

1− γ
ε

2
(212)

r∗ − (1− γ)Vσ,γ(w)(1− γt+1)(r∗ − a) + γt+1 ε

2
(213)

(214)

27

Note that limγ→1−(1− γt+1) = 0, and limγ→1− γ
t+1 = 1, so:

lim
γ→1−

(1− γt+1)(r∗ − a) + γt+1 ε

2
=
ε

2
(215)

Therefore, there exists a γ < 1 such that for all γ′ ∈ (γ, 1), r∗ − (1 − γ′)Vσ,γ′(w) < ε. Similarly,
one can prove there exists a γ′′ < 1 such that for all γ′ ∈ (γ′′, 1), (1 − γ′)Vσ,γ′(w) − r∗ < ε.
Thus,limγ→1−(1− γ)Vσ,γ(w) = r∗.

So, the general view is that for σ which result in T being a contraction mapping andR being a reward
function, all the natural aspects of value functions hold. However, for any σ and for any bounded
reward R, the discounted reward is well-defined. What we will do is now bound the discounted
reward using an equation very similar to the Bellman equation.

Theorem 55 For all w ∈ S:
Vσ,γ(w) = R(w) + γEw′∈Tσ(w) [Vσ,γ(w′)] (216)

Proof By definition,

Vσ,γ(w) =

∞∑
t=0

γtEw′∈T tσ(w)[R(w′)] (217)

Vσ,γ(w) = R(w) +

∞∑
t=1

γtEw′∈T tσ(w)[R(w′)] (218)

Note that for any t ≥ 1, T tσ(w) = T t−1
σ (Tσ(w)), so:

Ew′∈T tσ(w)[R(w′)] = Ew′∈Tσ(w)[Ew′′∈T t−1(w′)[R(w′′)]] (219)

Ew′∈T tσ(w)[R(w′)] = Ew′∈Tσ(w)[rt−1(σ,w′)] (220)

Applying this to the equation above:

Vσ,γ(w) = R(w) +

∞∑
t=1

γtEw′∈Tσ(w)[rt−1(σ,w′)] (221)

Vσ,γ(w) = R(w) + γ

∞∑
t=1

γt−1Ew′∈Tσ(w)[rt−1(σ,w′)] (222)

Vσ,γ(w) = R(w) + γ

∞∑
t=0

γtEw′∈Tσ(w)[rt(σ,w
′)] (223)

By linearity of expectation:

Vσ,γ(w) = R(w) + γEw′∈Tσ(w)[

∞∑
t=0

γtrt(σ,w
′)] (224)

Vσ,γ(w) = R(w) + γEw′∈Tσ(w)[Vσ,γ(w)] (225)

The space of value functions for the discount factor γ is V = [a
1−γ ,

b
1−γ]S . For V ∈ V, for a ∈ A,

we define V (a) = Ex∈a[V (a)]. We define the supremum Bellman operator Vsup : V → V such
that for all V ∈ V, for all w ∈ S:

Vsup(V)(w) = R(w) + γ sup
a∈A(w)

V (a) (226)

28

Define Vt
sup to be t operations of Vsup.

Define the metric dV : V× V→ R such that dV(V, V ′) = supw∈S |V (w)− V ′(w)|.

Fact 56 For any discrete distribution X ∈ D(S, d), for any V, V ′ ∈ V, Ex∈X [V ′(x)] ≥
Ex∈X [V (x)]− dV(V, V ′).

Theorem 57 Vsup is a contraction mapping under the metric dV.

Proof Given any V, V ′ ∈ V, for a particularw ∈ S, since Vsup(V)(w) = R(w)+supa∈A(w) V (a):

|Vsup(V)(w)−Vsup(V ′)(w)| =

∣∣∣∣∣ sup
a∈A(w)

V (a)− sup
a′∈A(w)

V ′(a′)

∣∣∣∣∣ (227)

Without loss of generality, supa∈A(w) V (a) ≥ supa∈A(w) V
′(a). Therefore, for any ε > 0, there

exists a a′ ∈ A(w) such that V (a′) > supa∈A(w) V (a)−ε. By Fact 56,V ′(a′) ≥ V (a′)−dV(V, V ′),
and V (a′) − dV(V, V ′) > supa∈A(w) V (a) − ε − dV(V, V ′). This implies supa∈A(w) V

′(a) ≥
V (a) − dV(V, V ′). Therefore, Vsup(V)(w) − V′sup(V)(w) ≤ γdV(V, V ′), and Vsup(V)(w) −
Vsup(V ′)(w) ≥ 0. Therefore, for all w:

|Vsup(V)(w)−Vsup(V ′)(w)| ≤ γdV(V, V ′), (228)

which establishes that Vsup is a contraction mapping.

Under the supremum norm, V is a complete space, implying that Vsup as a contraction mapping has
a unique fixed point by Banach’s fixed point theorem. We call the fixed point V ∗.

For V, V ′ ∈ V, we say V � V ′ if for all w ∈ S, V (w) ≥ V ′(w).

Theorem 58 If V � V ′, then Vsup(V) � Vsup(V ′).

Proof We prove this by contradiction. In particular we assume that there exists a w ∈ S where
Vsup(V)(w) < Vsup(V ′)(w). This would imply:

sup
a∈A(w)

Ex∈a[V (x)] < sup
a∈A(w)

Ex∈a[V ′(x)] (229)

This would imply that there exists an a such that Ex∈a[V ′(x)] > supa′∈A(w) Ex∈a′ [V (x)] ≥
Ex∈a[V (x)]. However, since a ∈ A(w) is a discrete distribution, if V (a) < V ′(a), there must be a
point where V (w′) < V ′(w′), a contradiction.

Lemma 59 If Vsup(V) � V , then for all t, Vt
sup(V) � Vt−1

sup (V).

Proof We prove this by induction on t. It holds for t = 1, based on the assumptions in the
lemma. If we assume it holds for t, then we need to prove it holds for t + 1. By Theorem 58,
since Vt−1

sup (V) � Vt−2
sup (V), then Vsup(Vt−1

sup (V)) � Vsup(Vt−2
sup (V)). Of course, this proves our

inductive hypothesis.

Lemma 60 If Vsup(V) � V , then for all t, Vt
sup(V) � V , and therefore V ∗ � V .

Proof Again we prove this by induction on t, and the base case where t = 1 is given in the
lemma. Assume that this holds for t − 1, in other words, Vt−1

sup (V) � V . By Lemma 59,
Vt

sup(V) � Vt−1
sup (V), so by transitivity, Vt

sup(V) � V .

29

Theorem 61 For any σ: For any V such that, for all w ∈ S:

V ∗ � Vσ,γ . (230)

Proof

We know that for all w ∈ S:

Vσ,γ(w) = R(w) + γEw′∈Tσ(w)[Vσ,γ(w′)] (231)

Applying Vsup yields:

Vsup(Vσ,γ)(w) = R(w) + γ sup
a∈A(w)

Ew′∈a[R(w′)] (232)

Because Tσ(w) is a particular a ∈ A(w):

Vsup(Vσ,γ)(w) ≥ R(w) + γEw′∈Tσ(w)[Vσ,γ(w′)] (233)

Vsup(Vσ,γ)(w) ≥ Vσ,γ(w) (234)

Thus, Vsup(Vσ,γ) � Vσ,γ . By Lemma 60, V ∗ � Vσ,γ .

Theorem 62 If V ∗γ is the fixed point of Vsup for γ, R is Lipschitz continuous, then for any σ where
Tσ is a contraction mapping, if limγ→1−(1− γ)V ∗γ exists, then

lim
γ→1−

(1− γ)V ∗γ � V̄σ. (235)

Proof By Theorem 54, for all w, limγ→1−(1− γ)Vσ,γ(w) = V̄σ(w). By Theorem 61, V ∗γ � Vσ,γ .
Finally, we use the fact that if, for all x, f(x) ≥ g(x), then limx→c− f(x) ≥ limx→c− g(x).

Theorem 63 If V ∗γ is the fixed point of Vsup for γ, R is Lipschitz continuous, if limγ→1−(1−γ)V ∗γ
exists, then for any σ where Tσ is a contraction mapping, if f : P (S, d)→ P (M,d) is an extension
of Tσ which is a contraction mapping, then there exists a D∗ ∈ P (S, d) where f(D∗) = D∗, and:

lim
γ→1−

(1− γ)V ∗γ (w) ≥ Ew∈D∗ [R(w)] (236)

Proof By Theorem 62:

lim
γ→1−

(1− γ)V ∗γ � V̄σ. (237)

Also by Theorem 53, V̄σ = limt→∞ rt(σ,w). By definition, limt→∞Ew∈T tσ [R(w)]. By Theo-
rem 35, limt→∞Ew∈T tσ [R(w)] = Ew∈D∗ [R(w)]. The result follows by combining these bounds.

I Limiting the Squared Difference From Optimal

We want to bound the expected squared distance of the stationary distribution D∗η from the optimal
point. Without loss of generality, assume w∗ = 0. If we define R(w) = w2, then Ew∈D∗η [R(w)] is
the value we want to bound. Next, we define A(w) such that p(w) ∈ A(w).

Instead of tying the proof too tightly to gradient descent, we consider arbitrary real-valued parame-
ters M , K, r ∈ [0, 1). We define S = {w ∈ Rn : ‖w‖ ≤ K}. For all w, define A(w) to be the set
of all discrete distributions X ∈ D(S, d) such that:

30

1. E[X · w] ≤ (1− r)w · w, and
2. ‖X − (1− r)w‖ ≤M .

We wish to calculate the maximum expected squared value of this process. In particular, this can be
represented as an infinite horizon average reward MDP, where the reward at a state is w2. We know
that zero is a state reached in the optimal solution. Thus, we are concerned with bounding V ∗(0).

Define A(w) to be the set of random variables such that for all random variables a ∈ A(w):

|a| ≤M (238)
Ex∈a[x · w] ≤ 0 (239)

The Bellman equation, given a discount factor γ, is:

V ∗γ (w) = w2 + γ sup
a∈A(w)

E[V ∗γ (a)] (240)

We can relate this bound on the value to any stationary distribution.

Theorem 64 If p : P (S, d)→ P (S, d) is a contraction mapping such that for all w ∈ S, p(Iw) ∈
A(w),

then there exists a unique D∗ ∈ P (S, d) where p(D∗) = D∗, and:

lim
γ→1−

(1− γ)V ∗γ (w) ≥ Ew∈D∗ [w
2] (241)

This follows directly from Theorem 63.

Theorem 65 The solution to the Bellman equation (Equation 240) is:

V ∗γ (w) =
1

1− γ(1− r)2

(
w2 +

γ

1− γ
M2

)
(242)

Proof In order to distinguish between the question and the answer, we write the candidate from
Equation 242:

Vγ =
1

1− γ(1− r)2

(
w2 +

γ

1− γ
M2

)
(243)

Therefore, we are interested in discovering what the Bellman operator does to Vγ . First of all, define
B(w) to be the set of random variables such that for all random variables b ∈ B(w):

|b| ≤M (244)
Ex∈b[x · w] ≤ 0 (245)

Thus, for every a ∈ A(w), there exists a b ∈ B(w) such that a = (1 − r)w + b, and for every
b ∈ B(w), there exists an a ∈ A(w) such that a = (1− r)w + b. Therefore,

sup
a∈A(w)

E[Vγ(a)] = sup
a∈B(w)

E[Vγ((1− r)w + a)] (246)

=
1

1− γ(1− r)2

γ

1− γ
M2 +

1

1− γ(1− r)2
sup

a∈B(w)

E[((1− r)w + a)2] (247)

Expanding the last part:

sup
a∈B(w)

E[((1− r)w + a)2] = sup
a∈B(w)

(1− r)2w2 + 2(1− r)E[w · a] + E[a2] (248)

By Equation (238):

sup
a∈B(w)

E[((1− r)w + a)2] ≤ sup
a∈B(w)

(1− r)2w2 + 2(1− r)E[w · a] +M2 (249)

31

By Equation (239):

sup
a∈B(w)

E[((1− r)w + a)2] ≤ sup
a∈B(w)

(1− r)2w2 +M2 (250)

sup
a∈B(w)

E[((1− r)w + a)2] ≤ (1− r)2w2 +M2 (251)

Also, note that if Pr[a = M
‖w‖w] = Pr[a = − M

‖w‖w] = 0.5, then

E[((1− r)w + a)2] = ((1− r)w +M)2 + ((1− r)w −M)2 (252)

= (1− r)2w2 +M2. (253)

Thus, supa∈A(w) E[((1− r)w + a)2] = (1− r)2w2 +M2. Plugging this into Equation (247):

sup
a∈A(w)

E[Vγ(a)] =
1

1− γ(1− r)2

γ

1− γ
M2 +

1

1− γ(1− r)2

(
(1− r)2w2 +M2

)
(254)

=
1

1− γ(1− r)2

1

1− γ
M2 +

1

1− γ(1− r)2
(1− r)2w2 (255)

Plugging this into the recursion yields:

w2 + γ sup
a∈A(w)

E[Vγ(a)] = w2 + γ

(
1

1− γ(1− r)2

1

1− γ
M2 +

1

1− γ(1− r)2
(1− r)2w2

)
(256)

w2 + γ sup
a∈A(w)

E[Vγ(a)] =
1

1− γ(1− r)2
w2 +

1

1− γ(1− r)2

γ

1− γ
M2 (257)

w2 + γ sup
a∈A(w)

E[Vγ(a)] = Vγ(w) (258)

Therefore, Vγ satisfies the supremum Bellman equation.

Theorem 66 If p : P (S, d)→ P (S, d) is a contraction mapping such that for all w ∈ S, p(Iw) ∈
A(w),

then there exists a unique D∗ ∈ P (S, d) where p(D∗) = D∗, and:

Ew∈D∗ [w
2] ≤ M2

(2− r)r
(259)

Proof By Theorem 64:

Ew∈D∗ [w
2] ≤ lim

γ→1−
(1− γ)V ∗γ (w) (260)

By Theorem 65, for any w:

Ew∈D∗ [w
2] ≤ lim

γ→1−
(1− γ)

1

1− γ(1− r)2

(
w2 +

γ

1− γ
M2

)
(261)

Ew∈D∗ [w
2] ≤ lim

γ→1−

1

1− γ(1− r)2

(
(1− γ)w2 + γM2

)
(262)

Ew∈D∗ [w
2] ≤ 1

1− (1)(1− r)2

(
0(w2) + 1(M2)

)
(263)

Ew∈D∗ [w
2] ≤ M2

1− (1− r)2
(264)

Ew∈D∗ [w
2] ≤ M2

(2− r)r
(265)

32

Theorem 10 The average squared distance of the stationary distance from the optimal point is
bounded by:

4ηG2

(2− ηλ)λ
.

In other words, the squared distance is bounded by O(ηG2/λ).

Proof

By Theorem 42 and Theorem 43, the stationary distribution of the stochastic process satisfies the
constraints of Theorem 66 with r = ηλ and M = 2ηG. Thus, substituting into Theorem 66 yields
the result.

J Application to Stochastic Gradient Descent

An SVM has a cost function consisting of regularization and loss:

c(w) =
λ

2
w2 +

1

m

m∑
i=1

L(yi, wi · xi) (266)

In this section, we assume that we are trying to find the optimal weight vector given an SVM:

argmin
w

c(w) (267)

In the following, we assume yi ∈ {−1,+1}, xi · xi = 1, and L(y, ŷ) = 1
2 (max(1 − yŷ, 0))2 is

convex in ŷ, and ∂L(y,ŷ)
∂ŷ is Lipschitz continuous. At each time step, we select an i uniformly at

random between 1 and m and take a gradient step with respect to:

ci(w) =
λ

2
w2 + L(yi, w · xi) (268)

Define f i(w) = L(yi, w · xi). In other words:

∇ci(w) = λw +∇f i(w) (269)

This results in the update:
wt+1 = wt − η(λwt +∇f i(w)) (270)

In our case,∇f i(w) = xi ∂∂ŷL(yi, ŷ). Define φi such that:

φi(w) = w − η(λw +∇f i(w)) (271)

In what will follow, we assume that
∥∥∇f i(w)

∥∥ and
∥∥∇f i(w)

∥∥
Lip

are both bounded. This will
require bounds on

∥∥xi∥∥.

In the first section, we analyze how stochastic gradient descent is a contraction mapping. In the
second section, we analyze the implications of this result.

K Putting it all Together

Theorem 67

σD∗η ≤
2
√
ηG√

(2− ηλ)λ
(272)

33

Corollary 68 If η ≤ η∗, then (1− ηλ) ≥ 0, and:

σD∗η ≤
2
√
ηG
√
λ

(273)

Proof By Theorem 31, σw
∗

D∗η
≥ σD∗η . The result follows from Theorem 10.

Define Dt
η to be the distribution of the stochastic gradient descent update after t iterations, and D0

η
to be the initial distribution.

Theorem 69 If w0 = 0, then W2(D0
η, D

∗
η) ≤ G

λ , and W1(D0
η, D

∗
η) ≤ G

λ .

Proof By Theorem 44, ‖wt‖ ≤ G
λ . Therefore, for any w ∈ D∗η , ‖w‖ ≤ G

λ . The result follows
directly.

Theorem 70 If Dt
η is the distribution of the stochastic gradient descent update after t iterations,

and η ≤ η∗, then:

d(µDtη , µD∗η) ≤ G

λ
(1− ηλ)t (274)

σDtη ≤ σD∗η +
G

λ
(1− ηλ)t (275)

Corollary 71 If w0 = 0, then by Theorem 69 and Corollary 68:

d(µDtη , µD∗η) ≤ G

λ
(1− ηλ)t (276)

σDtη ≤
2
√
ηG
√
λ

+
G

λ
(1− ηλ)t (277)

Proof

Note that by Theorem 8:

W1(Dt
η, D

∗
η) ≤ G

λ
(1− ηλ)t. (278)

Equation 274 follows from Corollary 23.

Similarly by Theorem 8:

W2(Dt
η, D

∗
η) ≤W2(D0

η, D
∗
η)(1− ηλ)t. (279)

Equation 275 follows from Theorem 32.

Theorem 11 Given a cost function c such that ‖c‖Lip and ‖∇c‖Lip are bounded, a distribution D
such that σD and is bounded, then, for any v:

Ew∈D[c(w)]−min
w
c(w) ≤(σvD)

√
2 ‖∇c‖Lip (c(v)−min

w
c(w))

+
‖∇c‖Lip

2
(σvD)2 + (c(v)−min

w
c(w)) (280)

Proof First, we observe that, for any w′, since∇c is Lipschitz continuous:

c(w′)− c(v) =

∫
a∈[0,1]

∇c(a(w′ − v)) + v) · (w′ − v)da (281)

34

For any w′′, by definition of Lipschitz continuity ‖∇c(w′′)−∇c(v)‖ ≤ ‖∇c‖Lip ‖w′′ − v‖, so by
the triangle inequality:

‖∇c(w′′)‖ − ‖∇c(v)‖ ≤ ‖∇c‖Lip ‖w
′′ − v‖ (282)

Applying this to a(w′ − v) + v for a ∈ [0, 1] yields:

‖∇c(a(w′ − v) + v)‖ − ‖∇c(v)‖ ≤ ‖∇c‖Lip ‖a(w′ − v)‖ (283)

‖∇c(a(w′ − v) + v)‖ − ‖∇c(v)‖ ≤ ‖∇c‖Lip a ‖(w
′ − v)‖ (284)

Thus, by the Cauchy-Schwartz inequality:

∇c(a(w′ − v) + v) · (w′ − v) ≤ (‖∇c‖Lip a ‖w
′ − v‖+ ‖∇c(v)‖) ‖w′ − v‖ . (285)

If f, g are integrable, real valued functions, and if f(x) ≤ g(x) for all x ∈ [a, b], then
∫ b
a
f(x)dx ≤∫ b

a
g(x)dx. Therefore:

c(w′)− c(v) ≤
∫
a∈[0,1]

(‖∇c‖Lip a ‖w
′ − v‖+ ‖∇c(v)‖) ‖w′ − v‖ da (286)

c(w′)− c(v) ≤ (
1

2
‖∇c‖Lip ‖w

′ − v‖+ ‖∇c(v)‖) ‖w′ − v‖ (287)

c(w′)− c(v) ≤ 1

2
‖∇c‖Lip (‖w′ − v‖)2 + ‖∇c(v)‖) ‖w′ − v‖ (288)

We break this down into three pieces: c2(w′) = 1
2 ‖∇c‖Lip (‖w′ − v‖)2, c1(w′) =

‖∇c(v)‖ ‖w′ − v‖, and c0(w′) = c(v) (i.e.c0 is constant). Therefore:

c(w′) ≤ c0(w′) + c1(w′) + c2(w′) (289)

By Corollary 25 and ‖c1‖Lip = ‖∇c(v)‖:

Ew′∈D[c1(w′)]− c1(v) ≤ ‖c1‖LipW1(D, v) (290)

Note that ‖c2‖L2
= 1

2 ‖∇c‖Lip Using the extension of Kantorovich-Rubinstein:

Ew′∈D[c2(w′)]− c2(v) ≤ ‖c2‖L2
(W2(D, v))2 (291)

Because c0 is a constant function:

Ew′∈D[c0(w′)]− c0(v) = 0 (292)

Thus, putting it together:

Ew′∈D[c(w′)]− c(v) ≤ ‖c2‖L2
(W2(D, v))2 + ‖c1‖LipW1(D, v) (293)

Ew′∈D[c(w′)]− c(v) ≤ 1

2
‖∇c‖Lip (W2(D, v))2 + ‖∇c(v)‖W1(D, v) (294)

Since by Fact 28, W2(D, v) = σvD, and by Theorem 33, W2(D, v) ≥W1(D, v), so:

Ew′∈D[c(w′)]− c(v) ≤ 1

2
‖∇c‖Lip (σvD)2 + ‖∇c(v)‖σvD (295)

By Theorem 13:

‖∇c(v)‖ ≤
√

2 ‖∇c‖Lip [c(v)−min
w
c(w)]. (296)

Ew′∈D[c(w′)]− c(v) ≤ 1

2
‖∇c‖Lip (σvD)2 + σvD

√
2 ‖∇c‖Lip [c(v)−min

w
c(w)] (297)

Adding c(v)−minw c(w) to both sides yields the result.

35

Theorem 72 If η ≤ η∗ and T = ln k−(ln η+lnλ)
2ηλ :

Ew∈DT,kη
[c(w)]−min

w
c(w) ≤8ηG2

√
kλ

√
‖∇c‖Lip

+
8ηG2 ‖∇c‖Lip

kλ
+ (2ηG2). (298)

Proof Define DT,k
η to be the average of k draws from DT

η . By Theorem 34:

µDT,kη
= µDTη (299)

σDT,kη
=

1√
k
σDTη (300)

Applying Corollary 71:

d(µDT,kη
, µD∗η) ≤ G

λ
(1− ηλ)T (301)

σDT,kη
≤ 1√

k

(
2
√
ηG
√
λ

+
G

λ
(1− ηλ)T

)
(302)

Since 1− ηλ ∈ [0, 1], exp(−ηλ) ≤ 1− ηλ, so:

d(µDT,kη
, µD∗η) ≤ G

λ
exp(−ηλT) (303)

σDT,kη
≤ 1√

k

(
2
√
ηG
√
λ

+
G

λ
exp(−ηλT)

)
(304)

Note that σ
µD∗η

DT,kη
≤ σDT,kη

+ d(µDT,kη ,µD∗η). So:

σ
µD∗η

DT,kη
≤ 1√

k

(
2
√
ηG
√
λ

+
G

λ
exp(−ηλT)

)
+
G

λ
exp(−ηλT) (305)

σ
µD∗η

DT,kη
≤

2
√
ηG
√
kλ

+
2G

λ
exp(−ηλT) (306)

Setting T = ln k−(ln η+lnλ)
2ηλ yields:

σ
µD∗η

DT,kη
≤

4
√
ηG
√
kλ

(307)

By Theorem 11:

Ew∈DT,kη
[c(w)]−min

w
c(w) ≤(σ

µD∗η

DT,kη
)
√

2 ‖∇c‖Lip (c(µD∗η)−min
w
c(w))

+
‖∇c‖Lip

2
(σ
µD∗η

DT,kη
)2 + (c(µD∗η)−min

w
c(w)) (308)

≤
4
√
ηG
√
kλ

√
2 ‖∇c‖Lip (c(µD∗η)−min

w
c(w))

+
‖∇c‖Lip

2

16ηG2

kλ
+ (c(µD∗η)−min

w
c(w)). (309)

By Theorem 9, c(µD∗η)−minw c(w) ≤ 2ηG2:

Ew∈DT,kη
[c(w)]−min

w
c(w) ≤

4
√
ηG
√
kλ

√
2 ‖∇c‖Lip (2ηG2)

+
‖∇c‖Lip

2

16ηG2

kλ
+ (2ηG2) (310)

≤8ηG2

√
kλ

√
‖∇c‖Lip

+
8ηG2 ‖∇c‖Lip

kλ
+ (2ηG2). (311)

36

37

	Introduction
	Formalism
	Loss and Contractions
	Contraction for Distributions
	Guarantees for the Stationary Distribution
	Discussion of the Bound

	Experiments
	Results and Discussion

	Conclusion
	Contraction Proof for Strongly Convex Functions
	Proof of Lemma 3
	Wasserstein Metrics and Contraction Mappings
	More Properties of Wasserstein Metrics
	Kantorovich-Rubinstein Theorem
	Wasserstein Distance and Relative Standard Deviation
	Wasserstein Distance and Cesaro Summability

	Basic Properties of Stochastic Gradient Descent on SVMs
	Proof of Theorem 8: SGD is a Contraction Mapping
	Proof of Theorem 9: Bounding the Error of the Mean
	Generalizing Reinforcement Learning
	Limiting the Squared Difference From Optimal
	Application to Stochastic Gradient Descent
	Putting it all Together

