Parallelizing a Real-Time Physics Engine Using
Transactional Memory

Jaswanth Sreeram and Santosh Pande

College of Computing, Georgia Institute of Technology
jaswanth@gatech.edu, santosh@cc.gatech.edu

Abstract. The simulation of the dynamics and kinematics of solid bod-
ies is an important problem in a wide variety of fields in computing
ranging from animation and interactive environments to scientific simu-
lations. While rigid body simulation has a significant amount of poten-
tial parallelism, efficiently synchronizing irregular accesses to the large
amount of mutable shared data in such programs remains a hurdle. There
has been a significant amount of interest in transactional memory sys-
tems for their potential to alleviate some of the problems associated with
fine-grained locking and more broadly for writing correct and efficient
parallel programs. While results so far are promising, the effectiveness
of TM systems has so far been predominantly evaluated on small bench-
marks and kernels.

In this paper we present our experiences in parallelizing ODE, a real-
time physics engine that is widely used in commercial and open source
games. Rigid body simulation in ODE consists of two main phases that
are amenable to effective coarse-grained parallelization and which are
also suitable for using transactions to orchestrate shared data synchro-
nization. We found ODE to be a good candidate for applying parallelism
and transactions to - it is a large real world application, there is a large
amount of potential parallelism, it exhibits irregular access patterns and
the amount of contention may vary at runtime. We present an exper-
imental evaluation of our implementation of the parallel transactional
ODE engine that shows speedups of up to 1.27x relative to the sequen-
tial version.

1 Introduction

The trend towards multi-core and many core processors is pushing more and
more applications towards parallelism and is spurring extensive research in con-
current programming models and languages. The potential performance benefits
of extracting parallelism and the complexity of specifying efficient concurrent
programs are both significant.

Applications that simulate the dynamics and kinematics of rigid bodies or
physics engines are examples of applications that are known to have significant
amount of parallelism but it this parallelism is often difficult to exploit owing to
their complexity. Physics engines that support real-time interactive applications
such as games are growing rapidly in sophistication both in their feature-set as
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well as their design. The popular Unreal 3 game engine is known to consist of
over 300,000 lines of code and as described in [12], parallelizing parts of it was
a challenging endeavour. Traditional approaches to efficient shared data syn-
chronization such as fine-grained locking are often impractical owing to the size
and complexity of the application and the large amounts of hierarchical muta-
ble shared state. On the other hand coarse-grained locking has been found to
be too inefficient for maintaining the highly interactive nature of these applica-
tions. Further, using fine-grained locks in such applications extracts a significant
price in terms of programmer productivity - a factor that deeply affects their
commercial development cycle.

Researchers have suggested developing parallel programs in this domain us-
ing transactional memory to manage accesses to shared state [12]. Software or
Hardware Transactional memory has been proposed as a relatively programmer-
friendly way to achieve atomicity and orchestrate concurrent accesses to shared
data. In this model programmers annotate their programs by demarcating atomic
sections (using a keyword such as “atomic” in a language-based TM implemen-
tation or specific function calls to a library based TM). The programmer also an-
notates accesses to shared data within these sections. At run time, these atomic
sections are executed speculatively and the TM system continuously keeps track
of the set of memory locations each transaction accesses and detects conflicts.
This conflict detection step involves checking if a value speculatively read or
written has been updated by another concurrent transaction. If so then one of
the two speculatively executed transactions is aborted.

Software Transactional Memory systems reduce the burden of writing correct
parallel programs by allowing the programmer to focus simply on specifying
where atomicity is needed instead of how it is achieved. Further, the benefits of
TMs are most apparent when a) the rate of real data sharing conflicts at run time
is quite low i.e., most of the concurrent accesses to shared data are disjoint and
b) using fine grain locking is difficult either due to the irregularity of the access
patterns or the data structures. There has been a substantial amount of interest
in hardware and software transactional memory systems recently. However in
spite of this recent interest and the significant amount of research most of the
studies investigating the use and optimization of these systems have been limited
to smaller benchmarks and suites containing small to moderate sized programs
[3I4I8I9I6]. Previous studies [I8|7] have noted the lack of large real-world appli-
cations that use transactional memory without which an effective evaluation of
the effectiveness of TM systems in realistic settings becomes difficult.

In this paper we present our experiences in parallelizing and using transactions
in the Open Dynamics Engine (ODE), a single-threaded real-time rigid body
physics engine [2]. It consists of roughly 71000 lines of C/C++ code with an
additional 3000 lines of code for drawing/rendering. In [7] the authors outline a
set of characteristics that are desirable in an application using TM. Briefly they
are:
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1. Large amounts of potential parallelism: As we show in the Section B} there
is a significant amount of data parallelism in the two principal stages in an
ODE simulation.

2. Difficult to fine-grain parallelize: ODE exhibits irregular access patterns
many structures that can be accessed concurrently.

3. Based on a real-world application: ODE is used in hundreds of open-source
and commercial games [2].

4. Several types of transactions: The parallel version of ODE we describe in the
rest of this paper has critical sections that access varying amount of shared
data, have sizes that vary widely and the amount of contention between
them changes during execution.

We started with the single-threaded implementation of ODE and found that the
two longest running stages in a time step could be parallelized effectively. While
we found many opportunities for fine-grained parallelization at the level of loops
in constraint solvers, we choose to focus on a coarser-grained work offloading in
order to amortize the runtime overheads. We then modified this parallel program
by annotating critical sections and accesses to shared data with calls to an STM
library. Our modifications added roughly 4000 lines of code in the ODE.

The rest of this paper is organized as follows: Section [ presents an overview
of collision detection and dynamics simulation in ODE. Section [3] describes the
parallelization scheme for ODE and the usage of transactions for atomicity. Sec-
tion [4 briefly discusses a few issues pertaining to the parallelization. Section
presents our experimental evaluation of the application. Related work is pre-
sented in Section [G] and Section [ concludes the paper.

Algorithm 1. Overview of a time step in ODE

: Create world; add bodies
: Add joints; set parameters
Create collision geometry objects
Create joint group for contact points
// Simloop
while (lpause &% time < MAX TIME) do
Detect collisions; create joints
Step world
Clear joint group
time++
: end while
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2 ODE Overview

At a high level ODE consists of two main components: a collision detection
engine and a dynamics simulation engine. Any simulation involving multiple
bodies typically uses both these engines. The sequence of events in a typical time
step is shown in Algorithm [l The goal is typically to simulate the movement
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of one or more bodies in a world. Before simulation begins the world and the
bodies in it are created and any initial joints are attached. A contact group is
created for storing the contact joints produced during each collision. During each
time step in the simulation loop in line 6, collision detection is first carried out
which creates contact points/joints which are used in “stepping” or dynamics
simulation for each body in the world (line 8). After this step all the contact
joints are removed from the contact group and the simulation proceeds to the
next time step.

2.1 Collision Detection

The collision detection (CD) engine is responsible for finding which bodies in
the simulation touch each other and computing the contact points for them
given the shape and the current orientation of each body in the scene. A simple
algorithm would simply test whether each of the “n” bodies collides with any
other body in the scene but for large scenes this O(n?) algorithm does not scale.
One solution to this problem is to divide the scene into a number of spaces and
assign each body to a space. Additionally, the spaces may be hierarchical - a
space may contain other spaces. Now, collision detection proceeds in two phases
called broadphase and narrowphase which are as follows:

1. Broadphase: In this phase each space Si(€ S) is tested for collision with
each of the other spaces. If .57 is found to be potentially colliding with space
Sy € S then S is tested for collision with each of the spaces or bodies inside
So.

2. Narrowphase: In this phase individual bodies that have found to be po-
tentially colliding in the broadphase are tested to check if they are actually
colliding.

This approach is similar to the hierarchical bounding box approach used for fast
ray tracing and many other problems. If a pair of bodies are found to be colliding
the collision detection algorithm finds the points where these bodies touch each
other. Each of these contact points specifies a position in space, a surface normal
vector and a penetration depth. The contact points are then used to create a
joint between these two bodies which imposes constraints on how the bodies
may move with respect to each other. In addition to links to the bodies each of
these contact joints connect, they also have attributes like surface friction and
softness which are used in simulating motion in the next step.

By the end of the collision detection step all the contact points in the scene
have been identified and the appropriate joints between bodies made. In the
dynamics simulation step below, the new positions and orientations of all the
bodies in the scene are computed.

2.2 Dynamics Simulation

The joint information computed in the CD step above represents constraints
on the movement of the bodies in the scene (for example due to another body
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in way or due to a hinge). The Dynamics Simulation (DS) engine takes this
joint information and the force vectors and computes the new orientation and
position for all the active bodies in the scene. It does this by solving a Linear
Complementarity Problem (LCP) using a successive over-relaxation (SOR) form
of the Gauss-Seidel method. The main output produced in the DS stage are the
linear and angular velocities of each body in the scene. These velocities are then
used to update the position and orientation of the bodies.
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Fig. 1. ODE overview

3 Parallel Transactional ODE

The broad approach to parallelizing ODE is illustrated in Figure[Ial At a high-
level parallelism is achieved by offloading coarse-grained tasks in the CD and DS
stages on the main thread onto concurrent worker threads that use transactions
to synchronize shared data accesses.

3.1 Global Thread Pool

In order to avoid the overheads of creating and destroying threads, before the
simulation begins the main thread creates a global thread pool consisting of ¢
POSIX threads that are initialized to be in a conditional wait state. Additionally
the pool contains a t-wide status vector that describes each thread’s status, a
set CM of ¢t mutexes and a set CV of ¢ condition variables. During the course
of the simulation the main thread offloads work to a worker thread by scanning
the pool for an idle thread, marshalling the arguments and setting the condition
variable for the thread to start execution.

3.2 Parallel Collision Detection Using Spatial Decomposition

Detecting collisions between bodies in the world is inherently parallel and in-
deed the naive O(n?) algorithm described above can be parallelized by simply
performing collision detection for each pair of bodies in a separate thread. How-
ever a better scheme would involve a more coarse-grained distribution of work
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in which a space or a pair of spaces in the world is handled by a separate thread.
Before the parallel CD stage starts each of the bodies in the world is assigned to a
space S;. Let S represent the set of spaces in the world i.e., S = | J; S;. Detecting
collisions among bodies contained in the same space can be done independently
of (and in parallel with) other spaces. Additionally, detecting collisions between
each distinct pair of spaces can be done in parallel. The broadphase stage of
parallel CD proceeds as follows.

1. The main thread picks an unprocessed pair of spaces S; and S5 and sig-
nals an idle thread ¢; 2 in the thread pool to perform collision detection on
them. Additionally the main thread signals idle threads t; and t5 to perform
collision detection on bodies contained withing S; and Ss respectively.

2. Thread t; » first checks if spaces S; and S can potentially be touching.
It does this by checking if there is an overlap between their axis aligned
bounding boxes (AABBs). As described above, the AABB for a space infor-
mally is simply the smallest axis aligned box that can completely contain
all the bodies in that space. If there is overlap between the AABBs of the
two spaces then ¢; 2 has to check if there exist bodies b; and by such that
b1 € S1, ba € Sy and the AABBs of b; and by overlap. If they do, b; and
bo are potentially colliding and the narrowphase later on checks if they are
actually colliding. After this step thread ¢; o marks the space pair (1, 2) as
processed.

3. Thread t; finds bodies in S; that are potentially colliding. This is done again
by analyzing the AABBs of bodies in S;. Thread t; does the same for bodies
in Sy. Spaces 57 and Ss are then marked as processed by their respective
threads.

4. All the potentially colliding bodies found above are checked to find actual
collisions in the narrowphase. If a pair of bodies do actually collide the appro-
priate thread computes contact points for the collision (using the positions
and orientations of the bodies). These contact points are used by the thread
to create contact joints between the pair of bodies.

This approach to assigning collision spaces to threads makes ((g) + n) thread
offloads where n is the number of spaces. An alternate approach is to assign a
single thread ¢; to each space ;. This thread computes the collisions for objects
within .S; and then performs broadphase and narrowphase collision checking be-
tween S; and all S; such that ¢ < j < n. This approach activates only n threads
but is likely to be more efficient than the former only if the spaces are well bal-
anced. That is all the spaces at each level in the containment-hierarchy contain
approximately the same number of subspaces or bodies. Consider a deep space
hierarchy with space S;,0¢ as the root space that contains all other spaces S; and
bodies. In the alternate approach the thread t,,,+ has to process collisions be-
tween Syo0t and all other spaces/bodies. By definition, Sy40¢ would collide with
every other contained body or space. Thus in general this approach would result
in a schedule where threads processing spaces that are high-up in the hierarchy
are heavily loaded while threads assigned to spaces that are lower are lightly
loaded. However in the former approach, each space-space pair can be processed
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in parallel - each pair {Syo0, Sj} for 1 < j < m can be processed in parallel
thereby reducing the overall imbalance.

Shared data
Although the collision detection stage described above is quite parallel the par-
ticipating threads make concurrent accesses to several shared data structures
that must be synchronized. The important data structures that are accessed
concurrently are the Global Memory buffer that is used to satifsy allocation re-
quests, the joint, contacts and body lists and attributes pertaining to the state
of the world and its parameters including the number of active bodies and joints.
We use an STM library to orchestrate calls to these shared data. STM enables
efficient disjoint access parallelism - two concurrent threads that do not access
the same memory word can execute in parallel. This is in contrast to using more
pessimistic coarse-grained locking in which a thread that could access/modify
shared data (being accessed by some other thread) has to wait to acquire the
appropriate lock regardless of whether an actual access takes place or not. The
STM library we used is based on the well-known TL2 system described in [1].
In other works such as [I8] the authors used an automated compiler-based STM
system in which the programmer simply annotates atomic sections and the com-
piler automatically annotates accesses occurring inside them with calls to the
TM runtime. Instead we used the TL2 library based system which means the
programmer has to manually identify atomic sections and accesses occurring
within them. This choice is because of two reasons. Firstly the TL2 STM has
been shown to have lower overheads than other comparable STM systems in
several studies [I]. This is especially important since we are using it in the con-
text of a real-time interactive application. Secondly using a library STM offers
better flexibility and we are in some cases able to reduce TM overheads by using
domain knowledge to elide TM tracking of specific shared data.

3.3 Parallel Island Processing

Island Formation

After the joints in the world have been determined in the CD step the next stage
is dynamics simulation or simulating the motion of the bodies under the con-
straints specified by their shapes and the joints found. This uses the SOR-LCP
formulation mentioned above and finding solutions to this problem involves sev-
eral nested loops that are compute-intensive. However, parallelizing these loops
with the work-loading model would result in a very fine-grained parallel system
(which is unlikely to scale well [I1] and the overheads of synchronization and
thread control would likely eliminate any speedups gained. Therefore we choose
a more coarse-grained approach in which several connected bodies are processed
independently and in parallel with other bodies. All the bodies in the world
are assigned to "islands”. An island is simply a group of bodies in which each
body is connected to one or more bodies in the same island through one or more
joints. These islands therefore represent sets of connected bodies that can be
processed separately since simulating a body (with some number of joints) does
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not require accesses to bodies in other islands. In parallel dynamics simulation
the main thread first forms islands. The algorithm iterates over all the bodies
in the world adding bodies to islands if they haven not already been added. A
body is said to be tagged when it has been added to some island. Given a body
b, the algorithm first finds the untagged neighbors of b and adds adds them to
a stack. The algorithm then pops and examines each body in this stack, adding
their untagged neighbors. The joints between all these neighbors are collected
in a joint list. When the stack is empty, the joint and body lists represent an
island of connected bodies that can be processed. The main thread then moves
on to the next untagged body in the world in the outermost loop.

Island Processing

While island formation is sequential, processing the bodies in each island can be
performed independently of other islands. Immediately after an island is formed,
the main thread uses heuristics to check whether the island is suitable to be of-
floaded to a worker thread. If so, the main thread marshals pointers to body
and joint lists for that island, finds an idle thread in the global thread pool and
signals it to start processing that island. The main thread then resumes with
finding the next island. If the island formed is deemed to be not suitable for
offloading, the main thread can process that island itself before continuing with
further island formation. A variety of heuristics can be used to decide whether
a particular island should be processed in a worker thread or if it should be
processed in the main thread. Our system uses a threshold on the number of
bodies and number of joints in the island. Because of the overhead of offloading
computation to worker threads, if there are very few bodies or joints in the is-
lands then it may be more efficient to process them in the main thread instead.
Additionally, if an island is found to have fewer bodies than needed to offload
processing to a worker thread, the main thread checks whether the next island
in combination with the previous one meets the threshold. If so both these is-
lands are offloaded together to a single worker thread. The main thread chooses
and signals a thread from the global thread pool to start island processing. The
worker thread uses the body and joint lists and the force vectors to set up a
system of equations representing the constraints on the set of bodies and finds.
We refer the reader to [2] for details of the constraint solver that is used for find-
ing solutions. The island processing step finishes after computing new values for
linear and angular velocity, position and orientation quaternion for each body
in the island and atomically updating body with these values.

3.4 Phase Separation

During body simulation in ODE, all the contact joints are typically computed
first before dynamics simulation can start since the latter needs these joints to
be able to solve the constraint satisfaction problem. In the sequential case this
was guaranteed since the dynamics simulation is always preceded by collision
detection in each time step. However in the parallel case, the main thread can
simply offload the collision detection to worker threads and enter the dynamics
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simulation step while some of the worker threads are still computing the joints.
Therefore there needs to be a thread barrier between the collision detection and
dynamics simulation in simulating each time step. The control flow for the main
thread is very different from that of the worker threads in our parallelization
scheme. Therefore instead of a normal thread barrier that is released when all
threads reach a certain program point, in our scheme we use a thread join point in
the main thread. A join point is simply a program point at which the main thread
waits for all the active worker threads to finish executing. When the main thread
enters the join point, it repeatedly polls the status vector and yields its processor
if there is at least one worker thread performing collision detection. Note that no
lock acquisition is necessary for this polling as the worker thread only ever writes
one type of value into its slot in the status vector - the value representing its IDLFE
state. After all worker threads have finished collision detection and have entered
the IDLE state, the join point is met and the main thread is released. Although
it limits parallelism, this join is necessary due to the producer-consumer relation
between the stages for joints - the island formation algorithm requires contact
joints for all bodies in the world to have been computed.

After island processing has generated new positions and orientations for all
the bodies in the world, these new values are used in the collision detection step
in the next stage. But after the main thread offloads island processing to worker
threads, it could enter the collision detection stage in the next time step while
the new body attributes are being computed. This could result in the collision
detection stage reading stale position/orientation values for some bodies - the
bodies which island processing has not yet updated. Therefore in addition to the
dependence between the collision and dynamics simulation steps within a time
step there is also a dependence between the dynamics simulation in one time
step and the collision detection in the next. We therefore enforce a join point
at the end of each time step to make sure that all bodies have been updated.
This join point is implemented like the one described above - the main thread
simply polls the status vector until all the island processing worker threads have
finished.

To see why this join point is needed consider the case of a worker thread with
transaction T'x; updating the position quaternion R of a body b during island
processing in time step n. Assume the main thread is allowed to enter the next
time step where it offloads collision detection to a worker thread and transaction
Tz isreading Ry. If T'x1 commits after T'xo starts but before it finishes then T'zo
is aborted when the conflict for Ry is detected and the join point would not have
been necessary. However if Txy commits before Tx1 does, then Tz is aborted
and retried. Thus T'z; eventually produces the new value for R, but Tz, ends
up using the older value and this phenomenon can adversely affect simulation
integrity. Now lets say add a “last updated” field to each body which is updated
in Txy. So if Txy finds this field for b to be n then Tz is guaranteed to have
committed and Tzy can read the latest R,. However if this value is n — 1 then
Tz can be forced to abort to until T'z; commit. It may therefore be possible
to eliminate the join point at the end of each time step by forcing transactions
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reading stale values in the next time step to abort. This could potentially allow
more parallelism by allowing the threads with transactions that only read already
updated bodies to proceed instead of waiting for the other threads.

3.5 Feedback between Phases

A critical factor influencing the amount of effective parallelism achieved during
the CD phase is the assignment of bodies to spaces. Spatial (in the geometric
sense) assignment methods are popularly used in many dynamics simulation
algorithms. In such methods, objects that are geometrically proximal to each
other are assigned to the same space in the containment hierarchy. An important
concern with this approach is that the scene being modelled may evolve to a state
where most of the objects are contained in one or a few spaces. This may in
turn result in the thread imbalance problem discussed in Section To address
this such methods usually propose a space reassignment step that is invoked
occasionally and reassigns objects such that the threads are once again balanced.
We use a novel method to perform space assignment that reduces imbalance.
Our method is based in the observation that the DS phase in a timestep already
computes entities (islands) of geometrically close bodies - in fact the bodies in
each of these islands are touching each other! After the dynamics simulation
step, the bodies in these islands have been moved so they may not be touching
anymore. However if the simulation timestep is small then in the CD phase in
next iteration these bodies are either still touching each other or are close to
each other. Hence the CD phase bootstraps spaces with clusters of such islands
before performing broadphase checks on these spaces with the result that there
are fewer narrowphase checks to be performed on the contained bodies.

4 Issues

In this section we will discuss a few issues pertaining to using transactions for
synchronization in parallel ODE.

4.1 Conditional Synchronization

Our implementation of parallel ODE makes extensive use of conditional
synchronization for signalling between threads. Indeed constructs such as
pthread cond wait and pthread cond signal enable efficient waiting, signalling
and other communication between threads. However these constructs require the
communicating threads to acquire/release locks during doing so. Moreover there
is no direct way to transform these critical sections into transactional atomic
sections. Consider the case of a worker thread t¢,, waiting for the main thread
tas to offload work. The thread t,, first acquires a lock on the waiting mutex [
and calls pthread cond wait(..,l). This call atomically unlocks the mutex and
starts the conditional wait. To signal thread t,, to start execution, the thread t,
in turn acquires a lock on [, calls pthread cond signal() and releases the lock
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on [. If the critical section protected by the lock acquisition/release in tp; were to
be transformed into an atomic section using transactions, then if there is a con-
flict in the transaction in ¢, the transaction cannot roll back since the signal has
been set and it is irrevocable. Most STM systems including the TL2 system we
used and the compiler-based STM in [I0] do no provide transactional methods
for conditional synchronization and signalling. Consequently our implementation
uses traditional mutex based methods for conditional synchronization.

4.2 Memory Management and Application Controlled
alloc/de-alloc.

Dynamic memory allocation is another important programmatic concern for
STMs. Most STM systems provide methods for allocating and deallocating mem-
ory efficiently from within transactions. Additionally they often implement a
large memory buffer from which allocations are made and of course memory
that is allocated in a failed transaction is restored back to the buffer. Many of
the important classes of objects in ODE are allocated dynamically on the heap.
This includes bodies, joints, joint lists, and other shared data. However, ODE
implements its own memory allocation/deallocation algorithms that purport to
improve locality and to allow objects to be be efficiently garbage collected in
addition to implementing its own large stack-shaped buffer from which allo-
cation requests are met. Requests for memory allocations are made using the
ODE Alloc() which simply returns a pointer to the first location in memory
that has not previously been allocated. If concurrent transactions in two dif-
ferent threads call ODE Alloc at the same time, both may receive the address
of the same location in memory. And as with all transactional writes to shared
data, the modifications they make to this newly allocated memory region will be
buffered in their respective private write-buffers. Suppose one of them finishes
and commits successfully. At this point its modifications to the heap will actually
be written to memory. When a conflict is detected when the second transaction
tries to commit it will be aborted. As the TM runtime rolls this transaction back,
the memory allocated within it will be freed thereby freeing memory that the
first transaction is using. Therefore the memory allocation/deallocation library
should be modified to be aware of the revocable nature of allocations. For pro-
grams that may make use of such routines from one or more of several external
libraries this is a significant problem.

5 Experimental Evaluation

We used the parallel ODE library in to drive an application simulating a scene
with approximately 200 colliding rigid bodies (a modified version of the crash
program in the ODE distribution). The maximum number of worker threads in
the global thread pool was varied from t = 1 to 32 in powers of 2. The number of



Parallelizing a Real-Time Physics Engine Using Transactional Memory 217
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Fig. 2. Scene used in evaluating parallel ODE

threads in the results below therefore represents the maximum number of worker
threads available to for offloading and the maximum number of active threads
at any instant is (t+1) including the main thread.

We used the TL2 (v0.9.6) STM [I] API and library to provide support for
transactions in the ODE library as well as in the driver application program.
This version of TL2 is a word-based write-buffering STM that uses lazy version
checking for detecting conflicts and commit-time locking. All experiments were
carried out on a machine with an Intel Xeon dual processor with two cores per
processor and with hyperthreading turned on on all cores (for a total of 8 thread
contexts). This in our opinion represents an average platform that may be used
to run interactive simulations in ODE. Machines with higher core counts such
as (8 or 16) are less common (although they are available) and servers with core
counts of 32 and more are less frequently used in running these predominantly
desktop oriented simulations. Each core on this machine had a private 32K L1-D
cache, 32K L1-I cache, a shared 256KB L2 per processor and a shared 8MB L3
cache and the machine was equipped with 6GB of physical memory. Each thread
in our experiments was bound to exactly one core. We compiled all libraries and
the driver application with g+4-4.3.3 using the default flags and all experiments
were run on Ubuntu Linux 2.6.28. All running times were gathered using the
gettimeofday () call.

Normalized FPS

Speedup
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#Threads # Threads
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to single-threaded ODE Second

Fig. 3. Scalability
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5.1 Execution Time

The graph in Figure [Bal shows the improvement in execution time as speedup
over the single-threaded execution time. The X-axis is the mazimum number
of threads available for offloading. The speedup scales until 8 threads at which
point it is roughly 1.27x. At 16 and 32 threads it drops to roughly 1.22x and
1.18x approximately. This means that the heuristics may be too aggressive in
offloading work when idle threads are available. This hurts performance since
there may not be enough work for a worker thread (not enough joints or bodies
in island processing for example) to justify the overhead of offloading. Moreover,
at 16 and 32 threads each core is utilized by 2 and 4 threads respectively which
means increased contention may also be responsible.
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#Offloads
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to worker threads per
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Fig. 4. Aborts and Offloads

5.2 Frame Rate

Figure shows the number of frames processed per second (FPS) against the
number of threads in the thread pool. In our experiments each time step corre-
sponds to one frame. The frame rate scales in a trend similar to that of execution
time speedup. The improvement in frame rate peaks at 1.36x and drops to 1.27x
for 32 threads. At more than 8 threads more than one thread is mapped to a
processor and contention for shared data also increases reducing the per frame
completion time.

5.3 Abort Rate

The abort rate for different number of threads is shown in Figure@al The abort
rate is defined as the ratio of the number of aborts to the total number of
transactions started. Therefore if a, ¢ represent number of aborts and commits,
the abort ratio is given by a/(a + ¢). The abort ratio increases steeply up to 4
threads and continues to rise beyond. The average amount of contention between
threads increases as the number of threads increases and the amount of shared
data being accessed by these threads remains the same. The abort rate does not
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Table 1. Read/Write set sizes
Reads (bytes) Writes(bytes)

Threads Min Max Avg Total Min Max Avg Total
1 4 112 112 3094332 4 96 48 1325062

2 4 224 211 5886756 0 192 90 2520386
4 4 2536 596 16620560 0 2036 240 6791206
8 4 2868 1300 36245344 0 2328 530 14775982
16 4 3552 1393 38823380 0 2936 570 15868776
32 4 5184 1504 41912768 0 4196 614 17133684

rise as significantly going from 16 to 32 threads. This is because the average
number of concurrent threads does not necessarily rise proportionally to the
number of threads in the thread pool and therefore the number of aborts increase
less steeply.

5.4 Thread Utilization

In contrast to parallelization techniques that purely depend on static decompo-
sition of work, in the scheme for parallel dynamics simulation (DS) described
above, only the maximum number of threads in the thread pool is fixed and
heuristics are used to dynamically gauge whether to offload island(s) processing
to worker threads. The amount of parallelism in the collision detection (CD)
stage however remains relatively uniform. The plot in Figure shows the av-
erage number of computation offloads occurring in each time-step (or frame)
when there are a maximum of 32 threads in the global thread pool. Specifically,
the plot shows the number of offloads to worker threads for the first 100 frames
of simulation for the scene shown in Figure 2l The number of offloads in the
CD stage remain stable and in this stage, a worker thread can be invoked on
average roughly 2 times until the point in the simulation noted as (a) in the
plot. Also, the number of offloads in the DS stage remains low and is also sta-
ble until point (a). This is the time step where the stack of bodies in Figure
begins to disintegrate as shown in Figure 2(b). While in earlier time steps there
was only one island to process, after point a there are many smaller islands and
therefore there is more parallelism. This is reflected in Figure by the sharp
increase in number of offloads in the DS stage after point (a). As mentioned
above, the heuristics we used have a relatively low threshold on island count for
offloading the work of processing an island to a worker thread. This results in
the main thread aggressively offloading work which explains the high number
of DS offloads after point (a). The number of offloads in the CD stage remain
relatively stable since there the data distribution is based on abstract spaces and
not physical artifacts such as joints and islands. Additionally, after point (a) the
number of offloads in the CD stage are reduced due to contention with the DS
stage for worker threads.
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5.5 Transaction Read/Write Sets

There are three main types of transactions during execution. The first is the
transaction to add a contact joint to the system for a pair of colliding bodies.
The second transaction executed during island processing for atomically updat-
ing a body’s attributes. The third type consists of short transactions to access
various shared values such as the number of joints. Table [I] summarizes the
characteristics of the read/write sets of all the transactions executed. The av-
erage read set sizes are significantly larger than the sizes of the write sets in
all cases. This is in line with the average mix of read/write operations in many
other transactional programs. Many of the transactions in parallel ODE per-
form several reads before performing their first write. One commonly occurring
transaction for example is atomic insertion into a sorted object list. Here the list
is traversed and each element examined to find the right position for insertion
before pointer values for the neighboring list elements are updated. The aver-
age read and write set sizes remain relatively small for most transactions which
shows that hardware transactional memory implementations may also be able
to support parallel ODE.

5.6 Scalability Optimizations

Based on the results of the experiments described above, the following observa-
tions can be made pertaining to improving scalablity.

1. DS phase offloading: The work offloading algorithm in the island processing
phase may be too aggressive in our experimental system. This stems partly
from the static threshold used to decide whether processing for a particular
island is to be offloaded, inlined or whether it should be combined with an-
other island and then offloaded. The size of the islands changes substantially
over the course of the simulation (for example, the one shown in Figure
2al), which results in the threshold becoming too low at several points. A
low threshold results in aggressive offloading which in turn results in poor
scalability. The processing step for a single island cannot be offloaded to
more than one thread in our system. This is because the forces and torques
acting on a body are determined by the joints connecting the body to its
neighboring bodies and if these bodies were being processed by two sepa-
rate threads the system of constraints imposed by these joints would have to
be communicated between them which we believe would increase the level
of synchronization drastically. During the early timesteps of simulating the
scene shown above, there are only two islands with one of them containing
all the bodies in the world and this large island is then offloaded to a single
thread. This restriction therefore has the effect of severely serializing island
processing until more islands are formed as a result of collisions.

2. Speculative island formation: The algorithm for discovering islands discussed
earlier is sequential - the main thread discovers an island and offloads (or
inlines) it before proceeding to discover the next island. This substantially
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limits the amount of effective parallelism especially for very large scenes.
An algorithm for speculatively discovering islands in parallel and processing
them in the worker threads after the speculation has been verified would im-
prove parallel performance greatly (in spite of the additional synchronization
costs which are relatively small). Briefly, in this algorithm worker threads
speculate on a “seed” body for an island and then “grow” the island. This
seed body is picked from a cache of likely candidates built during the island
discovery phase in the previous timestep. The worker threads then attempt
to verify if the island is valid and was previously undiscovered and if so,
continue to the island processing step.

3. Performance of Locks: Coarse-grained locking can be used instead of transac-
tions to protect accesses to shared state and we believe that the performance
in both cases would be comparable. Fine-grained locking would be harder to
implement given the diversity of both the data structures and the accesses to
them. Nevertheless we are in the process of implementing our parallel ODE
system with support both coarse-grained and fine-grained locking.

6 Related Work

Several researchers have studied various aspects of parallelizing physics computa-
tions for applications from domains ranging from robotics, virtual environments
and scientific simulations, to animation [T6/T3IT9IT4]. In [19] the authors describe
a voxel based parallel collision detection algorithm for distributed memory ma-
chines. This algorithm is similar to the abstract space based collision detection
scheme discussed in this paper. ParFUM [I5] is a framework based on Charm++
for developing parallel applications that manipulate unstructured meshes and
supports efficient collision detection. In [6] the authors study the performance
of a parallel implementation of the Barnes-Hut algorithm for n-body simula-
tion that uses octree based subdivision for computing particle interactions. In
[1I7] the authors present an algorithm for continuous collision detection between
deformable bodies that can be executed at interactive rates on present day multi-
core machines.

Lee-TM [7] is an implementation of Lee’s routing algorithm using transac-
tional memory. While the algorithm exhibits large amount potential parallelism
the transactional implementation has been shown to have modest scalability.
AtomicQuake [I8] is an implementation of a parallel Quake game server using
transactions. The parallelization is at the level of clients connected to the server
- operations for a client are performed on the server by the worker thread that
the client is mapped to. Support for transactions is provided by the compiler [10]
instead of a library based TM. The programs in STAMP [3] consist of a variety
of parallel transactional workloads that represent pieces of larger applications
and which can be executed with one of several STM or HTM systems. TMunit
[9] is a framework for developing unit tests for evaluating STM systems. RMS-
TM [§] is a TM benchmark suite consisting of programs and application kernels.
STMBench [5] is a synthetic benchmark that that contains transactions with
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widely varying characteristics and which operate on non-trivial data structures.
Thus while it is very useful for finding problems with specific implementations
and stretching the limits of TM designs, it is not representative of any real-world
program.

7 Conclusion

In this paper we presented a parallel transactional physics engine for rigid body
simulation based on the popular Open Dynamics Engine (ODE). We were able to
parallelize the two principal components of ODE - the collision detection engine
and the dynamics simulation engine to make use of worker threads from a global
thread pool for executing work offloaded from the main thread. We used a soft-
ware transactional memory for orchestrating concurrent accesses to all shared
data. Our approach of coarse-grained parallelization was not only relatively pro-
grammer friendly but also helped amortize the cost of the work-offloading. The
parallel version of ODE showed speedups of up to 1.27x (for 8 threads) compared
to the sequential version. As a continuation of this work we plan to investigate
better cost heuristics for making offloading decisions and to investigate tech-
niques for incorporating domain knowledge in optimizing memory transactions
in addition to comparing the performance of the transactional implementation
with that of versions that use fine-grained and coarse-grained locking.
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