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Abstract For the synthesis of correct-by-construction control policies from tempo-
ral logic specifications the scalability of the synthesis algorithms is often a bottle-
neck. In this paper, we parallelize synthesis from specifications in the GR(1) frag-
ment of linear temporal logic by introducing a hierarchical procedure that allows
decoupling of the fixpoint computations. The state space is partitioned into equicon-
trollable sets using solutions to parametrized games that arise from decomposing
the original GR(1) game into smaller reachability-persistence games. Following the
partitioning, another synthesis problem is formulated for composing the strategies
from the decomposed reachability games. The formulation guarantees that com-
posing the synthesized controllers ensures satisfaction of the given GR(1) property.
Experiments with robot planning problems demonstrate good performance of the
approach.

1 Introduction

As robotic systems get more complex, logic specifications assist in precisely speci-
fying desired behavior for a system and constructing controllers that provably guar-
antee satisfaction of the specification. In our work, we focus on reactive synthe-
sis from temporal logic specifications. This involves reasoning about all admissible
behaviors for the environment and synthesizing a policy for the controlled agent.
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This makes the algorithms for synthesis difficult to scale and synthesis can be pro-
hibitively expensive when applied to problems with large state spaces.

In this paper, we focus on reactive planning for specifications in linear temporal
logic (LTL) and, in particular, the Generalized Reactivity (1) (GR(1)) fragment. The
complexity for synthesis for general LTL specifications is doubly exponential in the
length of the formula [25]. For LTL formulas in the GR(1) fragment, synthesis can
be performed in time polynomial in the size of the state space, which is typically
exponential in the number of variables that describe the problem. The complexity of
synthesis for the GR(1) fragment scales as cubic or quadratic depending on the al-
gorithms used for synthesis [2] . Tractability has enabled use of the GR(1) fragment
for robotics applications [7, 11, 18, 22].

Scalability of synthesis aids in application of formal techniques to more chal-
lenging rotics applications [21]. Symbolic model checking based on local invariants
has been parallelized with substantial speed-ups [9, 8]. Performing computations
directly on the original system can accelerate policy synthesis for a fragment of
LTL more restricted than GR(1) [28]. In [1], a compositional approach is taken
where first a parametrized controller is synthesized, and then a controller is synthe-
sized over the parameters to compose the parametric controllers for reachability and
safety specifications. In [10], an approach to parallelize synthesis is presented for
the case when the liveness guarantees correspond to singleton sets. The work here
presents an approach for parallelizing synthesis in a more general setting.

In our work, we adopt a compositional approach where the objective is to allow
for the synthesis procedure to be parallelized. Our approach applies to recurrence
properties, in addition to safety and reachability. The approach relies on identifying
equivalence classes of states that “look the same” from a control perspective, in that
we can controllably steer the system from any state to any other state within the same
class (thus the name equicontrollable). The parametric controllers for individual
reachability games are synthesized in parallel to abstract the states corresponding to
the liveness guarantees into sets of equicontrollable states. Following the decompo-
sition into such sets, we abstract away the local transitions to construct a compos-
ite synthesis problem. The performance gain comes from solving the parametrized
reachability games in parallel during the identification of the equicontrollable sets.
Each process has its own BDD manager, thus a different kind of parallelization than
a single BDD manager with parallelized operations [27].

The main contribution of this paper is an approach to decompose and parallelize
synthesis for the GR(1) fragment. The approach is sound but as a limitation we do
lose completeness as a result of the decomposition. The paper is organized as fol-
lows. Section 2 provides background and introduces notation and Section 3 develops
an example used to illustrate the ideas presented in the paper. Section 4 describes
the approach for partitioning a set into subsets of equicontrollable states. Section 5
describes a procedure for setting up the synthesis problem for the composite con-
troller and employs the synthesized controller to compose the reachability games.
This ensures that the liveness properties are satisfied (soundness). Section 6 summa-
rizes the results from benchmarking experiments on planning problems for robots
with mutually exclusive access to critical areas of the workspace.
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2 Preliminaries

We use syntax from the raw temporal logic of actions (raw TLA™) [19, 20], with
semantics restricted to only declared variables, and variable values restricted to a
finite set of values Values (for example {FALSE, TRUE, —5, —4, ..., 35}). Temporal
semantics resembles LTL [24], from where we borrow one past temporal operator.
Let Vars denote a finite set of variable identifiers (for example { “z”, “y”}). A state
is a function with domain Vars and values in Values, i.e., an assignment of values
to variables. For example, the function state = [var € Vars — 3] assigns to every
variable var the same value, 3. So if “2” € Vars, then state[var] = 3. The set of
states X £ [Vars — Values] contains all assignments from Values. Let X|y =
X N Y. Let Nat denote the set of natural numbers {0, 1,. .. }.

We write s[¢] if formula ¢ is true at state s € X' (also denoted by s = ¢).
For example, the formula (z < 2) A (y = FALSE) is true at the state [z — 1,y —
FALSE]. We use the Boolean operators for conjunction A, disjunction V, implication
=, and equivalence =, and the temporal operators eventually < and always O.

Let [p] £ {state € X : state[y]} denote the states in X that satisfy formula
©. A behavior is an infinite sequence of states o € Behaviors = [Nat — X,
and a step is a pair of consecutive states within a behavior. Temporal formulas are
interpreted over behaviors, as follows. A primed variable identifier denotes the value
of a variable in the second state of a step (for example, z’), whereas an unprimed
identifier denotes the variable value at the first state of a step. A formula that does
not contain temporal operators (but may contain primes) is called an action. For
an action A and o a behavior, o, n = A means (o[n],o[n + 1])[A], and 0,0 |=
OA means Vn € Nat : o,n |E A, ie., every step of o satisfies A. For example,
([z ~ 3], [z — 4])[z' = = + 1]. For a formula ¢ that contains temporal operators,
0,0 = O¢ means that every suffix of ¢ satisfies formula . Dually, 0 |= ¢ P means
_|(O' ': O-P )

Reactive synthesis can be modeled as a “game” between two players [2]. The
component we design is required to behave as prescribed only as long as its en-
vironment does not violate certain assumptions. Different variables represent the
component and the environment. Partition the variables into the sets

EnvVars, SysVars € SUBSET Vars

that represent the environment and component, with Env Vars N SysVars = {} and
Vars = EnvVars U SysVars (SUBSET S denotes the powerset of S, i.e., all its
subsets). Let the restrictions of assignments be X, e [EnvVars — Values] and
Y. = [SysVars — Values).

Synthesis of a Mealy implementation is the problem of finding a function

fe[(ZexZxM)— (X, x M)]

such that the sequences of states generated by this strategy satisfy a given specifi-
cation ¢. M C Nat is a finite set of memory values with a unique initial memory
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value my. For a finite-memory strategy f, the infinite sequences that occur when
using f are referred to as plays:

Plays(f) = {o € Behaviors : 3m € [Nat — M] :
A m[0] = mg
AVk € Nat : LETr = k+1 args = (0[r]|Bnovars, o[k], m[k])
IN <O—[7’”Sys\/arm m[r]} :f[args}}

where f|g is the function [z € S — f[z]].

A strategy is winning for a formula ¢ if and only if all plays of f satisfy the
formula, A state s € X' is winning if there exists a strategy that is winning if we
replace the initial condition of ¢ with the requirement to start at s.

2.1 Assume-guarantee specifications with GR(1) liveness

We consider temporal specifications of an assume-guarantee form, with one gen-
eralized Streett pair as liveness (i.e., an implication of recurrence properties). For
Mealy implementations, assume-guarantee specifications are written using the op-
erator [17]
StrictImpl( EnvInit, EnvNext, EnvRecur,
SysInit, SysNext, SysRecur) =
Envinit = A SysInit
A O(UpToNow(EnvNext) = SysNext)
A (OEnvNext) = (EnvRecur = SysRecur)

The operators EnvInit, EnvNext, EnvRecur describe the assumption we make
about how the environment behaves, and SysInit, SysNezt, SysRecur the require-
ment from the component under design. The operator Up ToNow is borrowed from
LTL, where it is known as historically [23]. This form of specification ensures that
the component does not violate its safety constraint by forcing the environment to
violate its assumption in the future. The operators EnviInit, SysInit are state pred-
icates (initial conditions), and EnvNext, SysNext are actions. For Mealy specifica-
tions, primed Sys Vars should not occur in EnvNext.
Let Q(j), R(¢) denote state predicates for all indices j and . If

EnvRecur = VYjel..m: ooQ(y)

SysRecur = Yi e 1..k : OOR(4)
then the liveness formula EnvRecur = SysRecur is a GR(1) formula. The liveness
formula in an assume-guarantee specification of the form StrictImpl determines the
complexity of synthesis [2].
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2.2 Complexity of GR(1) Synthesis

Polynomial-time algorithms are known for the synthesis of strategies that implement
assume-guarantee GR(1) specifications. This favorable complexity is why GR(1)
synthesis is often used for high-level reasoning in engineering applications. Sym-
bolic algorithms allow for reasoning about problems with very large state spaces,
because they construct strategies by manipulating sets of states, as opposed to enu-
merative approaches. Symbolic algorithms for GR(1) synthesis represent sets of
states as (ordered) binary decision diagrams (BDDs) [2].

A BDD is a graph-based data structure with a specific order of Boolean-valued
variables (bits) associated with it. The variable ordering can have a significant effect
on the size of a BDD [5, 6]. Finding a variable order that minimizes the size of a
BDD is an NP-complete problem [3, 26]. The cost for reordering of BDDs is often
neglected in the complexity analysis of symbolic synthesis algorithms.

A cubic-time symbolic algorithm for GR(1) synthesis is known and commonly
used [2]. Memoization can reduce the run time to quadratic, but at the cost of storing
and reordering (in the worst case) nm |Z‘|2 BDDs (roots) [4] (for an implementation
see [12]). Reordering these stored BDDs can negate the gains from memoization.

Problem Statement 1 Synthesize a strategy that is winning for a GR(1) formula
@ in a scalable manner, computing sub-strategies in parallel, and compose those
sub-strategies in a way that implements .

Besides the obvious gain from parallelization, the decomposition-based approach
presented here also allows us to compute, reorder, and store the BDDs for the sub-
strategies separately, leading to gains in performance.

3 Example

In this section we introduce a simple instance of planning for a domestic mobile
robot that we use to illustrate and develop ideas presented in the paper. Consider
the workspace shown in Figure Fig. 1. The door is controlled by the environment.
Rooms with charging stations have a lighting sign to indicate the same.

DoorOpen is the proposition that indicates whether the door is open. The robot’s
position is controlled by us and the robot can transition from its current position
through an open slit to any of the adjacent rooms. The movement between the
Corridor and the LivingRoom is controlled by the DoorOpen guarding the slit:

A {DoorOpen, Corridor, LivingRoom, Garage, Corridor} C BOOLEAN
A (DoorOpen A Corridor) = (LivingRoom’ vV Garage' v Corridor’)

A (=DoorOpen A Corridor) = (Garage’ vV Corridor)

A (DoorOpen A LivingRoom) = (LivingRoom' V Corridor”)

A (=DoorOpen A LivingRoom) = (LivingRoom'")
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Fig. 1: Workspace for ex- .
ample in Section Section 3. Yo >
Slits represent pathways for Room Living

—

the robot. A door guards the ~—~, Room

. Door;\
path between the corridor ‘“M
and the living room. Light- Garage /
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ing sign in a room indicates , office */~
the presence of a charging ,/; _
station. Dining Room

4 Partitioning into Sets of Equicontrollable States

The arguments EnvRecur and SysRecur of the operator StrictImpl need not be
GR(1) formulas. The StrictImpl operator is useful for defining other kinds of games
too, for example reachability games. When the formula SysRecur is of the form
<& Goal where Goal a state predicate, and EnvRecur is TRUE, then the specification
describes a reachability game. A reachability game takes O(|X|) symbolic control-
lable steps (3V) to solve.

Let G =& {s € X : s[Goal]} be the set of states that satisfy the predicate
S. Suppose that EnvRecur is a conjunction of recurrence formulas (O<). Let
WinSet(G) be the set of states from where a strategy f exists that implements the
specification StrictImpl( EnvInit, EnvNext, EnvRecur, SysInit, SysNext, © Goal).
In other words, WinSet(Goal) is the set of states from where the component under
design can force the system to transition to Goal for any admissible environment
behavior. Computing the WinSet takes O(m |X|?) symbolic steps [16].

The winning set can contain states where FnuNext is false, because that case
violates the assumption. In contrast to the winning set, the set of reachable states
contains those states that the assembled system (component plus environment) can
reach. Formally, those states that occur along behaviors that satisfy the formula
EnvInit ASysInit A\O( EnvNext ASysNext) (if liveness is included, then this set can
shrink). The reachable states can be computed in at most O(|X|) symbolic successor
steps (3). For the example, in Section 3, states where Office = TRUE A Garage =
TRUE are unreachable, because the robot can be present in either the office or the
garage, but not both.

4.1 Parametrized Games

By computing which states can be controllably reached from which other states, we
can form equivalence classes of states that “look the same” from a control viewpoint.
Let Prm denote a finite set of constant identifiers, distinct from variables [20, p. 25].
The value of a constant remains unchanged throughout a behavior [19, Note 16 on
p- 920]. In BDD computations, bits that correspond to constants are represented
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by variables that are constrained to remain unchanged. An alternative is to leave
these bits unquantified. Each variable is mapped to a parameter by the function
fprm € [Vars — Prm], which is a bijection. We use the parameters to define a
specific state as goal, schematically

Goal é /\ uarESomeVars(’Uar = fprm(var)) (1)

This goal state is not fixed, but depends on the parameter values. For example, if
SomeVars £ {“z”, “y”}, and Prm £ {“p,”, “p,”}, then Goal £ (z = p,) A
(y = py). To map parameter assignments to states with same values for the cor-
responding variables, let PrmToSt(p, V) £ [var € V + p[f prm[var]]], and the
inverse from state to parameter assignments StToPrm(s, P) = [prm € Prm +
s[f prm [prm]]]. We use these mappings also for assignments to subsets of variables
and parameters, by passing V' C Vars and P C Prm. For simplicity, we dis-
cuss in terms of the Cartesian product of X' with the set of parameter assignments
II & [Prm — Values).

Solving a game with the parametric liveness objective <& Goal yields a parametric
set of winning states, WinSet(Goal) C X x II. For each valuation of parameters
p € [Prm — Values], for each state s € X, itis (s,p) € WinSet(Goal) if, and
only if, we can start from s and controllably reach the state t = PrmToSt(p, Vars).

The parametric set WinSet(Goal) can be computed in O(]X|*) symbolic steps,
as follows from the corresponding p-calculus formula [16, Lemma 9]. For each as-
signment of values to the parameters in Prm, the parametrized game corresponds to
solving a non-parametric game with at most X' reachable states. Thus, the symbolic
set operations can be viewed as operating on copies of the same transition system,
for different valuations of the parameters. So the number of symbolic steps needed
for solving each non-parametric game is limited by the same upper bound. How-
ever, the symbolic steps themselves are more expensive due to the added parameters,
which increase the size of BDDs. In other words, the parametric game corresponds
to solving multiple non-parametric games side-by-side [1]. The parametrization we
use is similar to previous work on reachability games [1], with the difference that
we include liveness for the environment, as recurrence properties in EnvRecur.

4.2 Partitioning the states into Equicontrollable Sets

We use the parametric winning set WinSet(Goal) from Section 4.1 to group states
into sets that are controllably reachable from each other. Let SomeVars C Vars.
A partial state is a function s € [SomeVars — Values]. Let SomePrms =
{fprmlvar] : var € SomeVars}, and

CanGoTo(a,b) £Vs € X : V (5|somevars # @)
V (s, StToPrm(b, SomePrms)) € WinSet(Goal).
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We call a pair of partial states (s1, s2 ) equicontrollable if and only if, from any state
s that agrees with s1 on Some Vars, the agent can force the execution to some state
that agrees with s, on Some Vars, and vice versa, i.e.,

AreEquicontrollable(sy, s2) 2 CanGoTo(s1,52) A CanGoTo(sz, 51).

Problem Statement 2 Given a state predicate &, partition the set of states {s € X :
s[€]} into equivalence classes of equicontrollable states over the variables in
SomeVars C Vars.

In this paper, we let Some Vars be the set of variables that the formula ¢ depends
on, also known as the support variables (in BDD terminology). We restrict atten-
tion to only the subset of variables Some Vars for two reasons. Firstly, formulas of
recurrence goals in SysRecur typically depend on only a few variables. So the sat-
isfaction of those goals is insensitive to the values of other variables. For example,
if the liveness guarantee is O (LivingRoom V Garage) in our running example,
and we declare a variable Weather, the value of this variable is irrelevant to this
goal. The second reason is that too fine-grained distinction between states leads to
unnecessary fragmentation of equivalence classes. By omitting Weather from the
set Some Vars, states with the robot in the living room belong to the same equiva-
lence class, even though they may differ in what the wheather conditions are outside
the house. The robot has no control over the weather conditions, but this fact can
be ignored when considering whether the goal LivingRoom V Garage has been
reached. So viewed over Vars (instead of Some Vars), not every pair of states need
be equicontrollable. For a specific application, domain knowledge could guide the
selection of the set Some Vars to be different from the support variables of &.

The algorithm of Algo. 2 describes how the partitioning problem is solved. As
liveness guarantee, we use the formula NewGoal £ ¢ A Goal. This goal is the objec-
tive of the parametric game defined by StrictImpl(. .., O NewGoal). The algorithm
splits the set of states into equicontrollability classes by iterating through assign-
ments of values to parameters in the set SomePrms = {f pm[var] : SomeVars},
i.e., only those parameters that correspond to variables in SomeVars. For sim-
plicity, we use Values for all variables and parameters, though the implementa-
tion has different ranges of values for each variable. This partitioning requires
O(k | X somevars|) evaluations, where k is the number of classes. Furthermore,
while iterating over sets of states, we can eliminate spurious classes by ignoring
those sets that are disjoint from the set of reachable states.

Example 1. For the workspace in Section 3, we want to partition the set of states
where the robot is in a room with a charging station into equivalence classes. £ has
the form £ = Office V LivingRoom V Garage. This formula specifies whether the
robot is in a room with a charging station. Denote the set of variables ¢ depends on
by X £ {Office, LivingRoom, Garage}.

Suppose that the behavior of the door is unconstrained. This yields that the garage
and office are in the same equicontrollability class, whereas the living room is in
a different class. If we assume that the door opens infinitely often EnvRecur =
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0< DoorOpen), then the living room is in the same equicontrollability class as the
office and garage.

Fig. 2: Separating into equicontrollable classes.

Input:

e Environment behavior Envinit, EnvNext, EnvRecur, and system safety formulas
SysInit, SysNext, and f pr, .

e State predicate & that represents the set of states to be partitioned.

e Set of states Reach reachable by the assembled system (as BDD).

e Set of variables Some Vars € SUBSET Vars that define equicontrollability.

Output:
e Partition FquiCls of X into classes of equicontrollable states.

Phi := StrictImpl(Envinit, EnvNext, EnvRecur,
SysInit, SysNext, & A Goal)
WinSet : = ComputeWinSet(Phi); FEquiCls : = {}
for p1 € [SomePrms — Values] :
z1 := PrmToSt(p1, SomeVars); IsInClass := FALSE
for po € EquiCls :
z2 1= PrmToSt(p2, SomeVars)
IsInClass := IsInClass V AreEquicontrollable(z1, z2)
if IsInClass AN 3s € X : (21 = $|Somevars) A s[Reach] :
EquiCls : = EquiCls U {p1}
return FquiCls

5 Synthesizing a Composite Controller

This section describes an approach to build a transition system and a specifica-
tion such that the winning strategy for this system can be used to compose the
sub-strategies that are synthesized and stored in parallel to find a strategy winning
against a GR(1) specification.

Example 2. For the workspace from Section 3, consider a synthesis problem where
the robot has to patrol the dining room and the music room infinitely often, while
making sure to visit a room with a charging station infinitely often and the robot is
initially in the dining room. The liveness guarantees to be satisfied are:

OO DiningRoom, O (Office V Garage V LivingRoom), OO MusicRoom.

We fix the ordering of liveness guarantees ( DiningRoom, Office V Garage V
LivingRoom, MusicRoom) and build a new transition system, shown in Fig. 3. For
each liveness guarantee, there is a state in the transition system that corresponds to
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a subset of equicontrollable classes arising from decomposition of the set of states
that satisfy the liveness guarantee. We add transitions between these states if all
states in the predecessor can reach some state in the successor.

If the environment behavior is modeled as Env = TRUE, we get the abstracted
supervisory transition system shown in Fig. 3a. For the liveness guarantee Office V
Garage V LivingRoom, the classes are { Office V Garage, Living }. The transition
system in Fig. 3a has states corresponding to all non-empty subsets of these classes.
If we assume that the door infinitely often opens, the supervisory transition system
is that shown in Fig. 3b. Both transition systems have a cycle that can be used
to compose the sub-strategies. The construction of the transition system and the
composition of the sub-strategies is described below.

Office
OR Garage
ing Room
OR Office

OR Garage

Living Room
OR Office
OR Garage

Dining
Room

Dining
Room
(b) Door does open infinitely often.

Room

(a) Door need not open infinitely often.

Fig. 3: Supervisory transition system for different assumptions about the environ-
ment.

5.1 Synthesizing a Supervisory Controller

Consider a GR(1) formula StrictImpl. The states corresponding to the liveness
guarantees 1)*; for the agent (within SysRecur) are partitioned into equicontrol-
lable classes as described in Section 4. For each ¢ € 1..n, let k; be the number
of classes 1®; is partitioned into. Let A; £ {a;1,q;2,...,q;,} be the set of
classes associated with ¢)?;. Let £2; = (SUBSET A;) \ {}. Note that |2;| = 2% — 1.
Without loss of generality, we fix some ordering of the elements in {2; such
that 2, = {2,1,82;2,..., .Qi)2k]71}. Denote by Ap, ; the WinSet for §2; ; i.e
Agq,, = WinSet(§2; ;) For the case in Example 2 where the door is not assumed
to open infinitely often, the classes that correspond to the specification where the
robot has to infinitely often visit a room with a charging station are Ay = { Office V

Garage, LivingRoom} and 25 = {{Oﬁfice V Garage}, { LivingRoom}, { Office V

Garage, LivingRoom} }
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Note that if [£2; ;| = 1 we can use the parametric WinSet computed for de-
composing [¢*;] into equicontrollable classes to obtain the WinSet for 2, ;, by
setting values to the parametric parameters appropriately. For 2, ; with |2, ;| > 1,
we compute WinSet(Ag, ;) by solving a reachability game with §2; ; as the goal to
be reached. As these computations are independent, they can be performed in par-
allel. The symbolic steps here are less difficult than that for finding the WinSet set
of [4)*;], because we are only considering a subset of the set of states satisfying the
liveness constraint [¢/*;] and hence there are fewer transitions to be accounted for
in each symbolic step.

Following this setup, the hierarchical game is constructed as follows. The set of
additional Boolean-valued variables is AP = {p; ;, : i € l..n,j; € 1.2% — 1}
The transition rule is specified as:

e \/ voA /\ (pw- = \/ p’k’l). 2)

v € AP 1€l.n, 2i; CAgy ke {ii®1},
jer2ti—1 let.2b —1

Here \/ is the exclusive-or operator. In Eq. (2), we allow for a transitions be-
tween the states {p;;} and {py} only if the current (2;; is contained in the
WinSet for the (2, ; corresponding to the successor state. For the transition system
in Fig. 3a, the DiningRoom is in the WinSet of LivingRoom\ OfficeV Garage but
LivingRoom V Office V Garage is not in the WinSet of MusicRoom. The transition
relations reflect the same. Similarly, transition relations are constructed between the
other states.

Note that we restrict & € {4, ¢ @ 1}, ensuring that only those transitions are cho-
sen that either stay in the same liveness guarantee or lead to the next liveness guar-
antee. Thus, we avoid cycling back to a liveness guarantee that was visited earlier
in the current cycle.

The liveness guarantees ensure that infinitely often for each ¢ € 1..n, p; ; for
some j is satisfied, and can be written as 1™, £ V je1..2¢—1pi - This ensures
that at least one of the classes corresponding to a liveness guarantee is visited in
each cycle through the liveness guarantees. For a particular i, satisfying P, is
equivalent to satisfying ¢)*; in the original system.

Note that here there is no environment here and we only need to search for a cycle
passing through all the liveness guarantees for a given set of initial states. Consider
some ¢ € 1..n. The set of valid initial states are the nodes corresponding to the ele-
ments in 2; for which EnvInit A SysInit lies in their WinSet. The initial condition

can be written as (for some 4) ™ £ v pi.;- Conjoining the specifications

fcAq,

above, we need to find a controller that implements the formula

0™ ADp°™ A N ie1. nDOY™. 3)
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Finding a winning strategy f°"? € [Zxp X M — Y55 x M*“P] for the above
specification gives the supervisory controller for composing the strategies for the
reachability games.

5.2 Assembling the Sub-strategies

Define f! € [Yex X x M f”ll — Yax M f”ll] to be the strategy that takes the

il
agent from a state in {2, ; to 2 ;. Let mlfjl be the initial memory value for M f’ll.
Without loss of generality, assume M /' 0 M¥2'2 — (Y when (iy,51, k1, 1) #

11,01 i2,l2
(i9,j2, k2, 1l2). Let kmax = max({k; : i € 1..n}), i.e., kmax is the size of the
largest number of equicontrollable classes for any of the liveness classes. Let M £

MSUP Ok le’jl and & comp £ 1..N x 1. kypax X 1..N X 1..kpmax. We construct a
1,5,k, b

strategy f %% € [X, X X X Ecomp X M- X, x Ecomp X ‘M| that uses f°™P
to compose the strategies for the reachability games (f f’ll)

fcomp056[$’ S, <iaja ka l>a <U), wsup>] = <y7 <i/aj/a kl7 ll)a <U]/, w;up>>

where if s € (2}, ;, then

A <y7w,> :fk7li,j['r757mf:jl]a else A <y’ w/> :fi'c,?jl[xasv w] (4)
Aokt W) = FP okt wepl, ALK ) = (6,5, k, 1)
A5 = (K, D). AWy = Weup

For the case s ¢ {2 ;, while we are moving towards 2}, ;, the values are updated
according to the strategy f fjl Once we reach (25 ; (s € (2} ;), the next goal is
updated according to f“™P and we continue towards the next goal, switching goals
again once the next goal is reached.

Theorem 1. Strategy f°™P°® is sound. Solving Eq. (3) takes O((2Fm=)2n3) sym-
bolic steps.

PROOF SKETCH: By construction, a winning strategy in the original system was
computed corresponding to every transition in the abstracted system i.e the agent
can either force the execution to the next liveness guarantee or block the environ-
ment from satisfying the assumption on its behavior. A winning strategy for the
abstracted system finds an execution that cycles through the liveness guarantees. Cy-
cling through the liveness guarantees in the abstracted system correspond to cycling
through liveness guarantees in the original system. Hence, composing the strategies
from the reachability games in accordance with the composite controller ensures
satisfaction of the original GR(1) formula.

The specification resulting in Eq. (3) is a GR(1) formula without an environment i.e
it is not reactive, hence the innermost fixpoint associated with blocking the environ-
ment from satisfying its assumptions does not add to the number of symbolic steps
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to be performed. The total number of states is (n2*me) and there are n liveness
guarantees, resulting in O((2%7e)2n3) symbolic steps [13].

For applications where the number of liveness guarantees and the number of
equicontrollable classes are much smaller than the total number of states, i.e n <
| 2| and k < | X|, the parallelized approach presented here is well-suited and should
result in performance gains in term of computation time. We expect such behavior
in multi-agent systems with large state spaces where the agents’ dynamics are not
closely coupled.

Limitations

The presented algorithm is not complete, because transitions can be lost during the
abstraction into a supervisory transition system. Another limitation of the approach
is that if we end up with a large number of equicontrollable classes, computing the
compositional strategy can become intractable.

6 Experiments

Fig. 4: Workspace with shaded
obstacles (black) and critical
sections (green and red).

We consider a multi-agent robot motion planning problem where the objective
is to, for a set of robots, schedule access to critical sections of a given workspace
in a safe manner. The environment consists of an uncontrolled adversarial mobile
robot that is functioning in the same workspace as the controlled robots and requires
access to certain critical sections of the workspace. An example instance is shown
in Figure 4. Both the controlled robots and the uncontrolled robot have to visit cells
shaded with each of the three colors (red and green) infinitely often. The problem
instances are parametrized in terms of the size of the workspace, the number of criti-
cal sections and the number of controlled robots. The colored cells represent critical
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sections of the workspace that must be accessed in a mutually exclusive manner
and each color represents a critical resource of a type. While the adversarial robot
is accessing a critical section, the controlled robots must not access the same crit-
ical section. Similarly, no two controlled robots can access a critical section at the
same time. The adversarial robot’s access to the critical sections is prioritized over
the controlled robots. When the adversarial robot attempts to access a critical space,
the controlled robots as a part of their safety requirement must allow the adversar-
ial robot to gain access by vacating the critical section. The regions shaded black
(density=5%) represent static obstacles and both the uncontrolled and controlled
robots must avoid the obstacles. The robots are allowed to transition to any of their
non-diagonally adjacent cells in a single step. The uncontrolled robot is allowed to
pursue a trajectory of its choice and the only assumption on its behavior, in addi-
tion to the constraints on its motion, is that the uncontrolled robot will access cells
shaded with each of the colors infinitely often.

Figures 5a, 5b report performance over problem instances of varying size. The
mean time over 50 problem instances is reported. For each of these instances the
initial positions of the robots, the positions of the obstacles and the critical sections
are randomized. The computations were performed on a 32 core AMD Opteron
machine at 2.4GHz with 96 GB of RAM, and and we see considerable gains in
computation time for the parallelized approach. The implementation is written in
Python using the packages dd, omega [15], and tulip [14].! A possible explana-
tion for the large variance is the cost of reordering the BDDs, which can show large
variance depending on the structure of the formula for which the reordering is being
done. For the case of the varying number of critical sections, the number of equiva-
lence classes roughly increases linearly with the number of critical sections. Hence,
for the parallelized approach, the dependence on the number of critical sections is
smaller.

7 Conclusions and Future Work

A major challenge to the widespread adoption of formal methods is their scalabil-
ity. As systems get larger and complex, scalable algorithms that can deal with the
size and complexity of the systems are necessary. In this regard, we present an ap-
proach that allows us to decompose and parallelize the synthesis algorithm for the
GR(1) fragment of linear temporal logic. The approach relies on the construction of
a composite strategy that is used to compose local strategies to ensure satisfaction
of the GR(1) specification. However, the approach comes with certain drawbacks
as outlined earlier. Empirical evidence demonstrating the resulting gains in perfor-
mance is presented for a robot motion planning problem, where in addition to path
planning, safe access to certain critical sections of the workspace is scheduled.

1" Available from PyPI: https://pypi.org/project/dd/, https://pypi.org/
project/omega/,and https://pypi.org/project/tulip/.
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Fig. 5: Performance on benchmark experiments — mean runtimes over 50 random-
ized problem instances are reported, error bars indicate standard deviation.

Future work would be to explore if a similar approach can be used to synthesize
policies that can handle uncertainty, because some local uncertainty can be tolerated
without a resynthesis of the entire strategy by applying a local correction. Some un-
expected disturbances can be handled locally, without the need for global synthesis.
A hierarchical framework as presented here could be used in such settings. Another
direction for future work includes exploring the possibility of a symbolic approach
for decomposition of sets into equicontrollable classes as opposed to the enumera-
tive approach considered here.
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