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The theory of Berk and Schrieffer on the paramagnon-mediated interaction in nearly 
ferromagnetic Fermi liquids is extended so as to include triplet as well as singlet BCS pairings. 
The paramagnon effect on the BCS transition in liquid He3 is expressed in terms of the 
enhancement factor of the low temperature specific heat in the normal phase. If the usual 
estimate of the latter is accepted, an· the singlet pairings become practically impossible. 

§ I. Introduction 

Recent experirnents1l indicate that liquid He8 undergoes a second order phase 
transition at TA=2.65rnK (under the pressure of 34 atoms) and also a first order 
transition at a lower temperature TB~l.s mK. Let us call the new phase between 
TA and TB the phase A and the one below TB the phase B. One is tempted to 
identify the phase A with the BCS superfluid state predicted many years ago.2l 
In order to explain the NMR shift observed 'in the phase A, however, one should 
assume a triplet pairing8l in the BCS theory in contradiction with the 1D pairing 
predicted previously.2l 

In dealing with the pair of non-vanishing angular momentum, we introduce 
the partial wave analysis of the effective interaction potential in the BCS Hamil
tonian:2l 

= 
V(k, k') = :E (2l+1) V1P1 (cos (}). (1·1) 

l=O 

Here k, k' are on the Fermi surface (k ~ k' = kF) · and (} is the angle between 
them. The K-niatrix calculation of Brueckner and Gammel2l• 4l shows that V2 is 
most attractive near the Fermi surface in He3 under zero pressure, and that is 
why the 1D pair was assumed previously. When the Fermi momentum increases, 
however, I V2l decreases and I Val, which is next attractive, increases. We may 
therefore expect the 3F pair at high pressures; Quantitatively, if these V2 or Vs 
are inserted into the BCS formula 

Tc = 1.14~ exp [ (p V)B~s] (1·2) 

together with appropriate state density pat the Feri:ni surface and cutoff ~(rv1K), 
the transition point Tc is a little too high in comparison with observed TA and 
TB. Recently Soda and Yamazaki"l have assumed the 3F pairing for the phase 
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A and the 1 D pairing 
observed. T A and T 8 • 

values of p v!. 
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for the phase B, and obtained pV2;:SpV8~-0.15 by fitting 
A more precise K-matrix calculation might result in such 

In the present paper, however, we would like to emphasize that the para
magnon effect, which has been ignored so far, has such importance that we should 
take it into consideration before attempting any improved calculation of V1• As 
is indicated by the enhanced magnetic susceptibility, a strong exchage coupling is 
effective between atoms and makes liquid He8 nearly ferromagnetic. There exist 
in the liquid, therefore, large spin fluctuations, which may be described as pseudo 
spin waves or parai}lagnons. In the normal phase, the atomic mass and therefore 
the T-linear specific heat are enhanced through the interactions with paramagnons 

m*/m=1+..1.. (1·3) 

If the observed enhancement of specific heat is assumed to arise entirely from 
the paramagnon effect, we have ..1.~2, which is probably an overestimate. Note 
that (1· 3) is a dynamical effect which cannot be included ;n the usual K-matrix 
calculation and similar to the electron mass enhancement through the interaction 
with phonons in a metal. In analogy with the phonon-mediated interaction to be 
added to the direct interaction between He atoms, (1·1), in the BCS Hamiltonian. 
In contrast to the· phonon-mediated interaction, our paramagnon-mediated interac
tion suppresses the singlet pairing as one might intuitively expect and as was 
discussed by Doniach7l and by Berk and .Schrieffer6l in connection with supercon
ductivity of nearly ferromagnetic metals. 

In th~ present paper, the argument of Berk and Schrieffer will be extended 
so as to include the triplet as well as the singlet. pairings. A semi-quantitative 
estimate of the paramagnon contribution to p Vacs will be made. It will thus_ be 
shown that the paramagnon effect upon the BCS transition is just as important 
as it is in the normal specific heat enhancement given by (1· 3). 

§ 2. Paramagnon-mediated interaction 

Following Berk and Schrieffer,6l let us describe the large exchange enhance
ment in liquid He3 by a simple Fermi gas model, in which we introduce a strong 
zero-range repulsion I acting between two atoms with antiparallel spins. In the 
simplest approximation, 1 may be identified with the S-wave part of (1·1). In 
order to make our argument as simple and transparent as possible, we will apply 
the random phase approximation (RPA) to this model, though RPA tends to ove~
estimate paramagnon effects and therefore makes our theory rather qualitative. 
In our final expression (2 · 7), though derived on the basis of RP A, J (k, k') may 
be regarded as phenomenological parameters similar to Landau parameters in Fermi 
liquid theory. 
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. J--o-\ • }--o-o~\ • · · · 
Fig. 1. Fig. 2 (a). 

1--o--o--< + 1--o-o--o--o--<. + • ~ + \---r----w + ••• J-----1\ j-1--Y\ 
Fig. 2 (b). Fig. 2 (c). 

Let us begin w.ith familiar RP A expression for the dynamic susceptibility 

(2·1) 

Here XP is the Pauli susceptiblity and u (q, ())) is the polarization function of the 
Fermi gas for wave number q and frequency w. It is normalized as u (0, 0) = 1. 
Throughout the present paper, we will assume the limit of extreme enhancement, 
in which the so-called. Stoner factor K02 = 1-pi satisfies 

(2·2) 

In the perturbational expansion in powers of I, (2·1) is the sum of the terms 
represented by diagrams in Fig. 1, in which the full line means the free atom 
propagator and the broken line means the interaction I. In accordance with this, 
Berk and Schrieffer explicitly took into account the terms represented by diagrams 
in Fig. 2(c) to obtain the paramagnori-mediated interaction for the singlet pair 
of atoms with opposite momenta. In order to include the case of triplet pairing 
and in order that our interaction be invariant under spin rotation, however, we 
need also to take account of the terms represented by diagrams in Figs. 2(a) 
and (b). 

In writing down the corresponding analytic expressions, we assume the weak 
coupling limit of BCS theory, since the observed transition point T A, which we 
wish to identify with (1· 2), is much lower than ~ or even than K02~. The para
magnon effect is dynamical in general, but in the weak coupling limit we can 
take the zero-frequency limit of the vertex function for the paramagnon-mediated 
interaction and regard it as an effective interaction potential to be added to (1·1) 
in the BCS Hamiltonian. The situation is similar to the case of weak coupling 
superconductors, where the zero-frequency limit of the phonon propagator plays 
the role of the potential for the phonon-mediated attraction between electrons . 

. Let us first write down the expression corresponding to Fig. 2 (a), remember
ing that the bubble in these diagrams makes contribution - pu (k- k') in the zero
frequency limit, where, u (q) = u (q, 0). We thus obtain the effective potential 
for two atoms with opposite momenta k, - k and parallel spins: 
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-Ppu-I'(puY-···=-l_I[ 1 1 ]. 
2 1 - plu · 1 + plu · 

Though u (q) varies from unity to 1/2 over the range O<q<2kF relevant to the 
scattering on the Fermi surface, we can ignore the second term on the right 
against the first since we have assumed (2 · 2). Thus the diagrams in Fig. 2 (a) 
give the following interaction in the BCS Hamiltonian: 

(2·3) 

Here ak~' at~ are destruction and creation operators of the atom with momentum 
k and spin iJ, and 

J(q) =1[1-plu(q)]-1• (2·4) 

Similarly the diagrams in Fig. 2(b) give the interaction potential between 
two atoms with opposite momenta k, - k and anti parallel spins. 

I(plu)2 1._ 1 [ 1 + 1 2] 
1- (plu )2 2 1- plu 1 + plu 

~1 =-J. 
2 

In the BCS Hamiltonian we thus obtain 

t 2: J(k-k')at~~:k-~a-k'-~ak'~. (2·5) 

In the case of Fig. 2(c), the momentum which enters into the polarization func
tion is k + k'. Denoting u (k + k') by u·+, we obtain the interaction potential 

I[ 1 
1-plu+ 

1] 
~J+. 

By use of anti commutation rules for aM, we may write the corresponding interac
tion term in the BCS Hamiltonian as 

t 2: J(k + k') at~a:k-~a-k'-~ak'~ 

(2·6) 

The sum of (2 · 3), (2 · 5) and (2 · 6) is the paramagnon-mediated interaction 
to be added to the BCS Hamiltonian 

Hpm = -t 2: J(k- k') [aita:kta-k'tak't 

(2·7) 

With use of Pauli spin operators Sx, Sy, S. normalized as Sx2 =1/4 etc., we· can 
write (2 · 7) compactly as 
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(2·8) 

This is manifestly invariant under spin rotation as it should be. Though derived 
on the basis of RPA, the final form (2 · 8) has such generality that J(k, k') may 
be regarded as phenomenological parameters if we like. 

§ 3. Gap equations 

Since J>O in (2 · 4), we see from (2 · 8) that the paramagnon-mediated in
teractiof!- is attractive for the triplet pair and repulsive for the singlet pair. In 
fact the operator 281 • S 2 has the eigenvalue 1/2 when S 1 and S 2 are coupled in 
triplet states and the eigenvalue - (3/2) when in the singlet state. Adding the 
direct interaction (1·1), we thus obtain the effective potentials for triplet and 
singlet pairs respectively as 

U.=V+-V. (3·:).) 

We will confirm (3 ·1) more explicitly by deriving gap equations from the BCS 
Hamiltonian, which in our case takes the form 

HBcs = L; c:kat"ak" + i L; [V(k, k') IJ""'IJ .. , 

(3·2) 

c:k being the one-particle energy measured from the Fermi level. 
We apply the Gorkov formalism9> and write !emperature Green's functions 

on the complex frequency plane as «.ak<T; atr)), etc. In our paramagnetic system 
without magnetic field, we can assume the form 

(3· 3) 

where E runs over imaginary frequencies (2n + 1) niT with temperature T and 
integers n. As for anomalous Green's function, we define 

Fo = i [«_a~kJ.; att)) + ((a~kt; atJ.))], 

F.=H«a~kJ.; att»-«a~kt; at.))]. 

(3·4) 

Similarly we define anomalous amplitude ID1 = \a~ktatt), etc. by replacing (( .. -)) by 
corresponding expectation values < .. -) in (3 · 4). These expectation values are 
connected with (3·4) by 

(3·5) 

where the index a runs over 1, 0, -1, s. Obviously (}), is the singlet part and 
ID1, ID0, ID-1 are triplet components of the pair amplitude. In fact, we have 

,P,( -k) =ID,(k), (3·6) 

where a=1, 0, -1. 
We now write down Gorkov ~quations derived directly from (3 · 2) 
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(E-s)G=1+.d1*F1+ (.do*+.J.*) (Fo+F.) 

= 1 + .d~1F-1 + (.do*- .J,*) (Fo- F,), 

(E+s)Fa=.daG. 

We have defined order parameters 

A a (k) = ~ Ua (k, k') (/)a (k'), 

(3·7) 

(3·8) 

where Ua is given by U, in (3 ·1) for a= s and by Ut for a= 1, 0, -1. In the 
expansions of Ua similar to (1·1), we will as usual retain the single term, for 
which Ua 1 is most attractive: 

Ua (k, k') ~ (2l + 1) Ua!Pt (cos 8). (3·9) 

Then Ua(k-k') = ( -1YUa(k, k'). In conjunction with (3·6), we thus obtain 
the well-known conclusion2l 

.d,=O for odd l, 

.da = 0 for even l and a= 1, 0, -1 . (3·10) 

From (3 · 7), (3 · 5), we see that the same conclusion applies also to Fa and (/)a· 

The solution of (3 · 7) can always be written as 

(3 ·11) 

Inserting 111 (3 · 8) through (3 · 5), we obtain gap equations 

(3·12) 

The difference between triplet and singlet pairs appears only 111 the expression 
for the quasiparticle energy Ek = [ek2 + .d2]i12• Thus .d = I.J.I for the singlet pair, 
whereas for the triplet pair 

(3·13) 

We have conveniently defined 

.J.,=t(.d1+L1), A11 =H.J1-L1), .d.= .do. (3·14) 

They are transformed as vector components and therefore .d Is a scalar under 
spin rotation. 

In the weak coupling limit, we may assume that order parameters depend
only upon the direction Q of k on the Fermi surface. We therefore write .da 
= Amafa (Q) and .d = .dmf(Q), where fa and fare normalized on the Fermi surface. 
Hence Am= Ams for the singlet pair and Am= [.J!,.., + .d!,11 + .d~.]l/2 for the triplet. As 
was shown by Anderson and Morel,2l we can derive from (3·12) at T=O 

.dm = 2~ r exp [ (p Ua1)-1] , 
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lnT=- fi!l 2 ln lfld!J. (3·15) 

Under (3·9), we usually ,assume that the pair has the definite angular momentum 
l of the relative orbital motion. Hence fa (Q) are linear combinations of spherical 
harmonics of the order l. The different choice of these combinations gives slightly 
different r and' therefore binding energy because of the non-linear character of 
gap equations. The detailed analysis of this point is available only for 1D and 
3P pairs.2h 10l For instance, in the case of 3P pair, it has been proved that the 
solution of the minimum free energy is given by f 1 (Q) oc (k1/k), where j=x, y, z. 
However, we do not know the solution of the minimum free energy for the 3F 
pair. We will discuss the problem in a separate paper. 

§ 4. Estimate of paramagnon, effect 

We now go back to the paramagnon effect upon the transition point (1· 3). 
In the normal phase, it modifies the one-particle energy ck which is given by the 
pole of the Green's function, so the ck gives the enhanced density of states p* 
= (1 + ,l.) p. It· also modifies the residue of the pole, so that the normal Green's 
function near the Fermi surface takes the form [ (1 + ,l.) (E- ck) J-1_ Inserting this 
in the Gorkov formalism8> to determine the transition point, we see that in (1· 3) 
we should take 

From (3·1) and (3·11), 

So we need to estimate J 1 in some way. 

(l odd) 

(l even) 

(4·1) 

(4· 2) 

For the scattering over the Fermi surface, q in (2· 4)is given by q = 2kF sin(0/2), 
where e is the scattering angle. For our purpose, it is convenient to introduce 
the variable X'= (q2 I 4kF )2 = sin2 ( e /2) . Then 

Jt=l_ ·fl J (2kF sin.!)Pt(COS O)d(cos e) 
2 J-1 2 

= fJ(2kFx112)P1(1-2x)dx. ' (4·3) 

In RPA, u(q) in (2·4) is given by the Lindhard function. 11> In the limit of ex
treme exchange enhancement, (2 · 2), small angle scattering makes the main· con
tribution to (4·3), so that we may use the expansion u(q)~l- (1/3) (qj2kF)2• 

Quantitatively RPA may not be quite reliable, but we can always assume the 
low q expansion in the form u (q) ~1- {3-1 (q/2kF)2, where {3 is a numeri,cal factor 
of the order of unity. Thus, in the limit (2 · 2) 
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pJ"'~ [x+ ~Ko2]-l. 

Similarly we take P1 (1- 2x) ~ P, (1) = 1. Hence 

pJ, ""~ In [r I ~Ko2], 

where r is a cutoff parameter. 

(4·4) 

(4·5) 

The same logarithmic singularity appears m the enhancement f~ctor A in 
(1· 3). This is given by5l 

Hence 

A= (314kF2) J x(q, O)qdq 

""(3~12) In [r I ~Ko2]. 

pJ,"' (213) A , 

{ 
p V,- t A for l odd , 

pU,"' 
p V, +A for l even . 

(4·6) 

(4·7) 

(4·8) 

These asymptotic relations do not depend explicitly upon the model parameters 
~. r, I, and will therefore be applicable even outside the range of RPA, from 
which we have started. 

As we have mentioned in § 1, if we assume that the observed specific heat 
enhancement CICo, where Co is the Fermi gas value, arises entirely from the 
paramagnon effect (1· 3), we obtain A~ 4. Then all singlet pairings will be prac
tically impossible, since - p V1 are of the order of 0.1 even for most attractive 
components. It might even be possible that a triplet pairing, say 3P, is stabilized 
almost entirely by the paramagnon effect. 

This is probably an overestimate of )., however. Apart from the paramagnon 
enhancement (1· 3), we must also have a usual, Hartree-F ock type effective mass, 
so that PI p0 differs from unity, w,here p0 is the density of states for the free atom. 
Thus the observed specific heat enhancement in the normal phase is given by 

CICo= (1+A) (PIPo). (4·9) 

For example, the K-matrix calculation of Brueckner and·Gammel4l gives (plp0)~2. 
From ( 4 · 9), then A ~1.5, which is still big enough to suppress the singlet pair
ing when inserted in (4·8). However, when A becomes smaller, our asymptotic 
estimate is less reliable. For instance J, will certainly depend on l. Anyway 
we need more precise estimates of J, as well as of V, to proceed further. 

§ 5. Conclusion 

In the present paper, we have' emphasized the importance of the paramagnon 
effect upon the BCS transition in liquid He8, in which we expect large spin fluc
tuations to exist. The paramagnon effect is just as important as it is in the en-
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hancement of the low temperature specific heat in the normal phase, as we can 

clearly see from the asymptotic estimate ( 4 · 8) in the limit of extreme exchange 

enhancement of the normal magnetic susceptibility. 

A more realistic calculation of the paramagnon effect seems difficult at present. 

We might rather regard pJ1 in '( 4 · 2) as phenomenological parameters similar to 

Landau parameters in Fermi liquid theory. It might be possible in this way to 

understand the observed transitions at TA and TB consistently. 
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