
NASA/CR--1999-209483

PARAMESH: A Parallel Adaptive Mesh Refinement

Community Toolkit

Peter MacNeice

Drexel University, Philadelphia, Pennsylvania

Kevin M. Olson

Enrico Fermi Institute, University of Chicago, Chicago, Illinois

Clark Mobarry

NASA Goddard Space Flight Center, Greenbelt, Maryland

Rosalinda de Fainchtein and Charles Packer

Raytheon ITSS, Lanham, Maryland

National Aeronautics and

Space Administration

Goddard Space Flight Center

Greenbelt, Maryland 20771

October 1999

Email for Peter MacNeice:

macneice@ alfven.gsfc.nasa.gov

NASA Center for AeroSpace Information

7121 Standard Drive

Hanover, MD 21076-1320

Price Code: A17

Available from:

National Technical Information Service

5285 Port Royal Road

Springfield, VA 22161
Price Code: A10

Abstract

In this paper we describe a community toolkit which is designed

to provide parallel support with adaptive mesh capability for a large

and important class of computational models, those using structured,

logically cartesian meshes. The package of Fortran 90 subroutines,

called PARAMESH, is designed to provide an application developer

with an easy route to extend an existing serial code which uses a logi-

cally cartesian structured mesh into a parallel code with adaptive mesh

refinement. Alternatively, in its simplest use, and with minimal effort,

it can operate as a domain decomposition tool for users who want to

parallelize their serial codes, but who do not wish to use adaptivity.

The package can provide them with an incremental evolutionary path

for their code, converting it first to uniformly refined parallel code, and

then later if they so desire, adding adaptivity.

1 Introduction

Many scientific modeling challenges today attempt to simulate processes

which span very large ranges in spatial scale. They have reached a point

where the finest uniform meshes which can be run on the largest computers

do not provide sufficient resolution. Larger dynamic ranges in spatial res-

olution are required, and for this researchers are looking to adaptive mesh

refinement (AMR) techniques.

At the same time the largest computers are now highly parallel dis-

tributed memory machines which provide a challenging programming envi-

ronment. Few genuinely shared memory machines exist, and those which

do, with the exception of the Cray YMP architecture, perform inefficiently

unless the programmer takes aggressive control of decomposing their compu-

tational domain. The principal reason is that most shared memory machines

are actually distributed memory machines with globally addressable mem-

ory. Data locality is often critical for good performance, because memory

access times are not uniform, and fetching data from more remote memory

can be relatively expensive. For example the HP-Convex Exemplar series

has a sophisticated NUMA(non-uniform memory access) architecture, but

un-cached non-local shared data takes more than 100 times longer to retrieve

than does un-cached local shared data.

Ideally it should not be necessary for the developers of these models

to have to become experts in AMR techniques and parallel computing. It

should be possible to make these techniques available and competitive by

providing an appropriate toolkit which can be used to extend their existing

codes.

In this paper we describe just such a portable community toolkit which

is designed to provide parallel support with adaptive mesh capability for a

large class of models on distributed memory machines.

Our package of Fortran 90 subroutines, called PARAMESH is designed

to provide an application developer with an easy route to extend an existing

serial code which uses a logically cartesian structured mesh into a parallel

code with AMR.

Alternatively, in its simplest use, and with minimal effort, it can operate

as a domain decomposition tool for users who want to parallelize their serial

codes, but who do not wish to use adaptivity. The package can provide

them with an incremental evolutionary path for their code, converting it

first to uniformly refined parallel code, and then later if they so desire,

adding adaptivity.

The package is distributed as source code which will enable users to

extend it to cover any unusual requirements.

This paper is intended to serve as an introduction to the PARAMESH

package, not as a Users manual. A comprehensive Users manual is included

with the software distribution.

2 Literature Review

There are a number of different approaches to AMR in the literature. Most

AMR treatments have been in support of finite element models on unstruc-

tured meshes (i.e. LShner [1]). These have the advantage that they can be

shaped most easily to fit awkward boundary geometries. However unstruc-

tured meshes require a large degree of indirect memory referencing which

leads to relatively poor performance on cache-based processors.

Berger and co-workers [2, 3, 4] have pioneered AMR for more structured

grids. They use a hierarchy of logically cartesian grids and sub-grids to cover

the computational domain. They allow for logically rectangular sub-grids,

which can overlap, be rotated relative to the coordinates axes, have arbitrary

shapes and which can be merged with other sub-grids at the same refinement

level whenever appropriate. This is a flexible and memory-efficient strategy,

but the resulting code is very complex and has proven to be very difficult

to parallelize. Quirk [6] has developed a somewhat simplified variant of

this approach. De Zeeuw and Powell [5] implemented a still more simplified

variant which develops the hierarchy of sub-grids by bisecting grid blocks

in each coordinate direction when refinement is required, and linking the

hierarchy of sub-grids developed in this way as the nodes of a data-tree.

The package which we describe in this paper is similar to this in all the

essential details. All the AMR schemes in this class use guard cells at sub-

grid boundaries as a means of providing needed information to the sub-grids

which surround it. This can add a significant memory overhead and in most

cases a computational overhead also.

The AMR approaches for 'structured' grids which we cited above refine

blocks of grid cells. Khokhlov [7] has developed a strategy which refines indi-

vidual grid cells instead. These cells are again managed as elements of a tree

data-structure. This approach has the advantage that it can produce much

more flexible adaptivity, in much the same way that the finite-element AMR

does. It also avoids the guard cell overhead associated with the sub-grid ap-

proaches. However, just as with the unstructured finite element AMR, it

requires a large degree of irregular memory referencing and so can be ex-

pected to produce slowly executing code. Also, the code which updates the

solution at a grid cell is more labor intensive, and in some cases much more

so, than in the sub-grid approach. This is because it must constantly use

an expensive general interpolation formula to evaluate the terms in the dif-

ference equations, from the data in the neighboring grid cells which can be

arranged in many different spatial patterns.

Most of these AMR examples have been developed within application

codes to which they are tightly coupled. Some have been distributed as

packages to enable other users to develop their own applications. Serial ex-

amples include HAMR [9], and AMRCLAW [12]. However we are currently

aware of only one other package which supports the sub-grid class of AMR

on parallel machines. This is a toolkit called DAGH [8]. It is written in

4

C and C++, but caninterfacewith a user'sFortranroutines. It executes
in parallelusingMPI. An object-orientedAMR library calledAMR++ is
currentlyunderdevelopment[10].A third object-orientedpackageis known
at SAMRAI [11].

The PARAMESH,DAGH, AMR++, and SAMRAI havesomediffer-
ences. PARAMESHand SAMRAI haveadditional support routinesfor
conservationlawsandthe solenoidalconditionin MHD, andallowthe inte-

grationtimestepto vary with spatialresolution.DAGHenableserroresti-
mation by comparisonof the solutionat two differentrefinementlevelsat
eachspatialgrid point, a featurenot (currently)supportedby PARAMESH.
Perhapsthe mostsignificantdifferenceis that DAGHandSAMRAI arecon-
structedand aredescribedin termsof highly abstracteddataand control
structures.PARAMESHwasdesignedandis describedwith muchlessab-
straction. This differencewill havesomeimpacton the speedwith which
a usercanlearnto useeachpackage_thoughwemakeno claimshereasto
which is theeasierto learn.

3 Basic Package Design and Application

The PARAMESH package builds a hierarchy of sub-grids to cover the com-

putational domain_ with spatial resolution varying to satisfy the demands

of the application. These sub-grid blocks form the nodes of a tree data-

structure (quad-tree in 2D or oct-tree in 3D).

All the grid blocks have an identical logical structure. Thus, in 2D, if

we begin, for example, with a 6 x 4 grid on one block covering the entire

domain, the first refinement step would produce 4 child blocks, each with

its own 6 x 4 mesh, but now with mesh spacing one-half that of its parent.

Any or all of these children can themselves be refined, in the same manner.

This process continues, until the domain is covered with a quilt-like pattern

of blocks with the desired spatial resolution everywhere.

The grid blocks are assumed to be logically cartesian (or structured).

By this we mean that within a block the grid cells can be indexed as though

they were cartesian. If a cell's first dimension index is i, then it lies be-

tween cells i-1 and i+l. The actual physical grid geometry can be cartesian,

cylindrical, spherical, polar(in 2D), or any other metric which enables the

physical grid to be mapped to a cartesian grid. The metric coefficients which

define quantities such as cell volumes are assumed to be built into the user's

algorithm.

Each grid block has a user prescribed number of guard cell layers at each

of its boundaries. These guard cells are filled with data from the appropriate

neighbor blocks, or by evaluating user prescribed boundary conditions, if the

block boundary is part of a boundary to the computational domain.

The package supports 1D, 2D, 2.5D (such as is used frequently in Magneto-

Hydrodynamics applications where a magnetic field pointing out of the 2-D

plane is kept), and 3D models.

III

I 1.1,1 I I
I ITI I.I

II I']];] {_] {:

10

_f

_4

.,i .JL

10

2

6

11 12

789 13151617

1345

Figure 1: A simple 2D example of a grid block tree covering a rectangular

domain. The tree node shapes indicate how this tree might be distributed

on a 4 processor machine to balance the workload. The heavy lines in the

grid diagram indicate the boundaries of sub-grid blocks, and the lighter lines

indicate individual grid cells.

Requiring that all grid blocks have identical logical structure, may, at

first sight seem inflexible and therefore inefficient. In terms of memory use

this is certainly true, although, even in extreme cases the associated memory

overhead is rarely more than about 30%. However this has two significant

advantages. The first and most important is that the logical structure of

the package is considerably simplified, which is a major advantage in devel-

oping robust parallel software. The second is that the data-structures are

defined at compile time which gives modern optimizing compilers a better

opportunity to manage cache use and extract superior performance.

A simple example is shown in Figure 1 in which a 6 x 4 grid is created

on each block. The numbers assigned to each block designate the block's

location in the quad-tree below. The different shapes assigned to the nodes of

the tree indicate one possible distribution of the blocks during a 4 processor

calculation. The leaves of the tree are the active sub-grid blocks.

There are a some restrictions placed on the refinement process. For

example, during the refinement process the refinement level is not allowed

to jump by more than 1 refinement level at any location in the spatial

6

domain.

The packagemanagesthe creationof the grid blocks,buildsand main-
tainsthetree-structurewhichtracksthespatialrelationshipsbetweenblocks,
distributestheblocksamongsttheavailableprocessorsandhandlesall inter-
block and inter-processorcommunication.It can distribute the blocksin
wayswhichmaximizeblock locality and sominimize inter-processorcom-
munications.It alsokeepstrack of physicalboundariesonwhichparticular
boundaryconditionsareto be enforced,ensuringthat child blocksinherit
this informationwhenappropriate.

Thephilosophywehaveadoptedin constructingPARAMESH,is to re-
movefrom the applicationdeveloperasmuchof the burdenof inter-block
andinter-processorcommunicationaswepossiblycan. Hopefully,the re-
sult is that the applicationdevelopercanfocuson writing codeto advance
their solutionon onegenericstructuredgrid-blockwhich is not split across
processors.

The parallelstructurewhich PARAMESHassumesis a SPMD (Single
ProgramMultiple Data) approach.In otherwordsthe samecodeexecutes
on all the processorsbeingused,but the local data contentmodifiesthe
programflow on eachprocessor.It is the message-passingparadigm,but
with theburdenof message-passingremovedfromthe applicationdeveloper
by the package.

Theprogrammingtaskfacingthe usercanbebrokendowninto a series
of straightforwardsteps.

1. Edit a few lines in the headerfilesprovidedwith the packagewhich
definethe model'sspatialdimensionality,the propertiesof a typical
grid block, the storagelimits of the block-tree,and the numberof
datawordsrequiredin eachgrid cell for eachof the packagesdata°
structures.The headerfilesareextensivelycommentedto makethis
stepeasy.

2. Constructa main program. Most time-dependentfluid modelswill
beableto useanexampleprovidedasatemplatefor their main pro-
gram. This can be easilymodifiedto suit the user's requirements.
Thesequenceof callsto the 'upperlevel'routinesin the PARAMESH
packageshouldnot needto bealtered.Theuserwill needto customize
the constructionof an initial grid, establisha valid initial solutionon
this grid, setthenumberof timestepsandlimits on the allowedrange
of refinement,and add any I/O required. Samplecodefor all these
tasksis provided.

3. Providea routinewhichadvancesthe modelsolutionon all the 'leaf'

grid blocks through a timestep (or iteration). This step is much sim-

pler than it appears. The routine can be constructed by taking the

equivalent code from the user's existing application which advances the

solution on a single grid, and inserting it inside a loop over the leaf

7

blockson thelocalprocessor.Insidethis loop,thesolutiondatafor the
currentgrid block mustbe copiedfrom the package'sdata-structures
into the equivalentlocal variablesin the user'scodesegment.Then
the user'scodesegmentexecutesto updatethesolutionon that block.
Finally,thesolutioniscopiedbackfrom theuservariablesto thepack-
age'sdata-structures,beforethe loop moveson to repeatthe same
sequencefor the next leafblock. If conservationconstraintsmust be
satisfied,afewextra linesmustbe addedinsidethisroutineto capture
fluxesand/or celledgedata at block boundaries.

4. Providea routineto computethemodel'stimestep.Againthis canbe

straightforwardlyconstructedfrom the existingtemplateby inserting
the appropriatecodesegmentfrom the user'sexistingapplication,in
the mannerdescribedin step3. The existingtimesteproutinetem-
plate hasall the controlandinter-processorcommunicationsrequired
to properly computethe globalminimumof the maximumtimesteps
calculatedfor eachblock, or to enablelongertimestepson coarser
blocksif the userchoosesthat option.

5. Providea routineto establishthe initial stateon the initial grid. A

templatehasbeenprovidedwhich canbe tailored to suit the user's
model.

6. Providea routineto set datavaluesin guardcellsat physicalbound-
ariesin orderto implementtheuser'schoicesof boundaryconditions.
Onceagaina templateroutine hasbeenprovidedwhichcanbevery
easilymodified.

7. Providea functionto testa singleblockto determineif anyrefinement
or de-refinementis appropriate. This function is calledduring the
refinementtestingoperation. Again, a templateexistswhichcanbe
modifiedby the user.

Detailed'How To' instructionand illustration is providedin the User's
manualwhichcomesbundledwith the softwaredistribution.

Templatesand workedexamplesareprovidedwith the packagefor all
of thesetasks.The Fortran 90pointersmechanismcanbeusedto connect
thePARAMESHdatastructureswith thoseof the user'sapplicationsothat
they donot needto edit thevariablenamesin their codesegments.1

Thedesignphilosophywhiledevelopingthis packagehasbeento present
the userwith a cleanwell commentedFortran 90sourcecode,sufficiently

simplein structurethat theuserwouldnot beafraidto customizeroutines
for their own particular use. We alsostrove for efficiency on cache-based

multiprocessors.

1Use of the Fortran 90 pointers mechanism may degrade performance significantly. If

computational speed is critical it may be better to explicitly copy data between the user
defined variables and the PARAMESH data-structures, as necessary.

unk(:,i,j,k,lb)

facevarx(:,i,j,k,lb_ facevarz(:,i,j,k,lb)

facevary(:,i,j,k,lb)

Figure2: Thephysicalrelationshipof the basicsolutiondatawordsto their
grid cell shownfor grid cell indices(ij,k) in a 3D model.

4 Data-structures in PARAMESH

There are two critical data-structures maintained by the package, one to

store the model solution, and the other to store the tree information de-

scribing the numerical grid.

The data which constitutes the solution can include data located at the

center point of grid cells, and data located at the centers of the grid cell faces.

On each processor the cell-centered data for the grid blocks located in that

processors memory are stored in an array called unk. The cell face-centered

data are stored in arrays called facevaxx, facevary and facevaxz. This is

illustrated in Figure 2.

This datastructure is record based, which means that within each of

the arrays all the data words for a given grid cell are stored in contiguous

memory words. This should help give the package superior cache-line reuse

characteristics. For example in a 3D hydro code with mass density, momen-

tum and energy density all specified at grid cell center, only unk would be

used and its data for cell (ij,k) of grid sub-block lb could be set up like this

unk(l,i, j,k,lb)

unk(2,i, j,k,lb)

unk(3,i,j ,k,lb)

unk(4,i,j ,k,lb)

unk(5,i,j ,k,lb)

- mass density

- x-component of momentum

- y-component of momentum

- z-component of momentum

- energy density.

A 3D MHD code with mass, momentum and energy densities specified

at grid cell center, and the x-component of magnetic field on the x-face,

y-component of magnetic field on the y-face and z-component of magnetic

field on the z-face could use :

unk(l ,i,j,k,lb)

unk (2,i,j,k,ib)

unk(S,i,j ,k,lb)

unk(4,i, j ,k,lb)

unk(5,i, j ,k,lb)

facevarx (1,i, j,k, lb)

facevary (1 ,i,j ,k, lb)

facevarz(1,i, j ,k,lb)

- mass density

- x-component of momentum

- y-component of momentum

- z-component of momentum

- energy density

- x-component of magnetic field

- y-component of magnetic field

- z-component of magnetic field.

Each node in the tree structure stores the tree location of its parent

as well as any child nodes which might exist. Each node also stores the

location in space of the sub-grid block that it represents as well as a vector

which describes the physical size in each dimension of the bounding box

containing that sub-grid. The tree data structure is fully linked, meaning

that each node in the tree has stored at its location the tree locations of its

neighboring sub-grids at its level in the tree. Each link in the tree (i.e. stored

locations of parents, children, and neighboring sub-grids) are stored as two

integers: the first being the memory location within a remote processor and

the second being the processor to which that link points.

5 Additional Features

5.1 Conservation Laws and Solenoidal Constraint

Many applications will require consistent data use at the boundaries be-

tween grid blocks at different refinement levels. For example, conservative

hydrodynamics codes will require that the fluxes entering or leaving a grid

cell through a common cell face shared with 4 cells of a more refined neigh-

bor block, equal the sum of the fluxes across the appropriate faces of the 4

smaller cells. The package provides routines which enforce these constraints.

In MHD codes, a similar consistency issue can arise with electric field

values which are sometimes known at the centers of grid cell edges. The

magnetic field update evaluates a circulation integral along the cell edges

which bound a grid cell face, in order to compute the change in magnetic

induction through that face. This change must be consistent at the shared

10

boundaryof grid blocksof differentrefinementlevels.Weprovideroutines
which canbeusedto enforcethis constraintalso.

5.2 Variable timestep support

When thereis significantvariationin spatial resolutionwithin the compu-
tational domain,the timestepcomputedusinga fixedCourantnumberwill
probablyalsovarysignificantly.With PARAMESH,theusercanchooseto
usea uniformtimestep,or canvary the timestepfrom grid block to grid
block providedcertainrestrictionsaresatisfied.Theserestrictionsare that
any two blockswith thesamerefinementlevelmustusethe sametimestep,
that a blockcannotusea longertimestepthan anymorecoarselyresolved
blocks,andthat all timestepsareintegermultiplesof the timestepusedfor
the finestactiverefinementlevel.

Therearetworeasonswhywemightwantto allowthesolutiononcoarser
blocksto beadvancedwith longertimesteps,but it is not clearthat these
reasonsarecompellingfor all cases.

If weusealargenumberof veryfinetimestepsto advancethesolutionon
the morecoarselyrefinedgrid blocks,we introducethe possibilitythat the
accumulatedeffectsof numericaldiffusionwill becomesignificant.A counter
argumentto this, suggeststhat this canneverbe too seriousbecausethe
reasonthesegrid blockswerecoarselyrefinedwasthat therewasnot very
muchstructurethereanyway.

Thesecondreasonto usevariabletimestepsis to savethecomputational
effort associatedwith advancingthesolutionon the coarserblockswith un-
necessarilyfine timesteps.However,to enabletheuseof variabletimesteps,
extra memorymustbe allocatedto storetemporarycopiesof the solution.
Also, becausemost real applicationshaverestrictivesynchronizationcon-
straints,enablingvariabletimestepstendsto forceorderingof the way the
solutionmustbeadvancedon the differentgrid blocks,andthis canhavea
damagingeffecton loadbalance.

5.3 Load Balancing

PARAMESH aggressively manages the distribution of grid blocks amongst

the processors in an effort to achieve load balance, and by improving data

locality to lower communication costs. It uses a Peano-Hilbert space filling

curve to define the ordering of the grid blocks. Different work weighting

factors are assigned to the different types of blocks in the tree. For example

leaf blocks are assigned the highest value because they do the most work.

Parents of leaf blocks also receive a non-zero weighting. The package then

sums the work associated with all the blocks and tries to segment the list in

such a way as to maximize the load balance. The work weight assigned to

different types of blocks can be adjusted to suit the user's needs. This feature

is very similar to methods developed for distributing tree data structures

used for particle applications on multi-processor machines [13].

11

5.4 Interpolation functions.

When a child block is spawned during a refinement step, the solution ar-

rays on this new grid block must be initialized, by interpolating from the

solution on its parent. We call this operation 'prolongation' following the

convention used in Multigrid solvers. The interpolation used by default in

PARAMESH during prolongation is linear interpolation. This can be easily

up-graded if necessary for use with higher order algorithms such as the Piece-

wise Parabolic Method(PPM). Some alternative interpolation operators are

included with the package distribution.

6 Portability

The code uses the SGI/Cray SHMEM (shared memory) library to perform

all the necessary interprocessor communications. The SHMEM library is

available on the Cray T3E and on SGI machines. For machines which

do not support the SHMEM library, the package uses MPI. Replacement

SHMEM routines are provided which mimic the SHMEM calls but actually

use MPI inside. The MPI version uses an additional supplementary library

called MMPI (Managed MPI), developed by Harold Carter Edwards at the

University of Texas, which supports one-sided communications and blocking

gets.

7 The Structure of an Application

In this section we illustrate the basic structure of a typical application which

uses PARAMESH.

The final application should be thought of as having a basic skeleton

provided by the PARAMESH package, into which the user inserts appropri-

ate snippets of serial (i.e. single processor) code, each of which is designed

to perform a particular computational sub-task on a generic sub-block.

Templates are provided in PARAMESH for these sub-tasks, which the

application developer can edit. These define the interface required between

the package and the user's code snippet. We will illustrate this process

below.

However, first let us describe the basic skeleton, defined by the applica-

tions main program. The typical flowchart is shown in Figure 3.

7.1 Template for Main Program

This begins with a sequence of include statements, which make the tree and

solution data structures visible to the main program. The next step is to

initialize PARAMESH, which is done by calling the routine amr_iait ialize.

! amr package initialization

call amr_init ialize

12

Include header files

(compile time definition of datastruc_ures)

I

I Create tnRial gltd I

I

t

I

T :::::::::::::::::::::::::::::::
I

I Refine grid (If necessary) I

I

I

_No

I I

Figure 3: A typical flowchart for a PARAMESH application. Those elements

of the flowchart which the user may need to modify to some degree from the

templates provided are labeled with a 'T'.

We are now ready to generate the initial grid. The simplest way to

do this is to place a single grid block with refinement level 1 covering the

entire computational domain. The boundary condition flags are set on this

block and it is marked for refinement. Then we refine this block using the

machinery of the amr package until we have a mesh which has an acceptable

refinement pattern for the initial solution.

! Setup up initial grid-block tree

! set limits on the range of refinement levels to be allowed.

! level 1 is a single block covering the entire domain, level

i 2 is refined by a factor 2, level 3 by a factor 4, etc.

:refine_max -- 10 ! finest refinement level allowed

lref±ne_mn = 6 ! coarsest refinement level allowed

[set the no of blocks required initially to cover the

[computational domain

13

no_of_blocks = 2**(irefine-min-1)

! initialize the counter for the number of blocks currently

! on this processor

lnblocks = 0

! begin by setting up a single block on processor 0, covering

! the whole domain which ranges from 0 to 1.0 along each axis

I in this example.

if(mype.eq.0.) then

inblocks =

size(:,l) =

bnd_box(l,:,l)=

bnd_box(2_:,l)=

coord(:,l) =

nodetype (i) =

irefine(1) =

1

1.0

0.0

bnd-box(1,:,l)q-size(:,i)

.5*(bnd_box(l,:,1)+bnd_box (2,:,i))

i

i

neigh(:,:,l) -21 ! initial block is not its own

! neighbor, signifies external

! boundaries.

refine(1)=.true.

endif

! mark this block for refinement

At this point we have a single block covering the whole domain. In this

example the block size is set to 1.0 and the block center is located at 0.5

along each axis. This first block is placed on processor 0, and lnblocks

which stores the number of blocks on the local processor is set to 1 on

processor 0. This first block is assigned nodetype = 1 which indicates that

at this point it is recognized as a leaf block. Also note that the addresses

of this block's neighbors are all set to values less than -20. This is the

way external boundaries are identified to the package. If we wished to use

periodic boundaries we could set the neigh array so that the initial block

identifies itself as it's own neighbors.

Now we are ready to refine this first block.

I Now cycle over blocks until 'no_of_blocks' leaf blocks have

! been created.

loop_count_max = int(log(real(no_of_blocks))/log(2.)+.l)

do loop_count = l,loop_count-max

refine (h lnblocks)=.true.

call shmem_barrier-all 0

I refine grid and apply Peano-Hilbert reordering to grid blocks if

! necessary

14

call amr_refine_deref ine
enddo

In this example we loop over the list of blocks marking all the exist-

ing blocks for refinement and then implementing the refinement with a call

to the routine amr_refine_derefine. We continue looping until we have

reached a pre-selected refinement level. The routine amr__refine_derefine

creates the necessary child blocks, identifying them as leaf blocks and mod-

ifying the nodetype of their parents to indicate that they are no longer leaf

blocks. It also manages the inheritance of the neighbor addresses, which

in this case means that the correct boundary conditions will be applied to

children which are next to the external boundaries of the computational

domain. This simple example sets up an initial grid-block tree which covers

the computational domain with uniform refinement. However it is easy to

see how the process can be modified to create more complex initial grids.

This topic is discussed in more detail below.

Now we need to set up the initial solution on these initial grid blocks.

! set up initial solution on the grid blocks

time = 0.

call initial_soln(mype)

! exchange guardcell information - the call to guardcell also

! causes the guard cells at external boundaries to be filled

! using the user defined boundary conditions which the user

! must code into the routine amr_bc_block.

nlayers = nEuard

call amr_guardcell (mype_l,nlayers)

This is done here in a user supplied routine which we have called initial_soln.

This routine sets the initial solution on the interior grid cells on the leaf

blocks. Then the call to amr_guardcell causes nlayers of guard cells at

each block boundary to be filled with the correct data from their neighboring

blocks. The call to amr_guardcell also causes the guard cells at external

boundaries to be filled according to the boundary conditions which the user

has coded into the routine amr_bc_block. A template for amr_bc_block is

provided with the package.

Finally we are ready to advance the solution in time. The loop over

timesteps is very simple. First we call the user's routine which advances the

solution. In this case a user supplied routine called advect is being used to

advance the fluid equations through one timestep. The routine advect in-

cludes the computation of the timestep as well as the integration of the fluid

equations. When the solution has been advanced it is tested to see if the cur-

rent refinement pattern is still appropriate. The arguments lrefinenaax and

lrefine_min to amr_test._refinement set bounds on the refinement levels

which the code is permitted to use. Any refinements or de-refinements which

15

have been requested are then executed by the call to amr_refine_derefine.

Of course the user will need to modify amr_test_refinement to perform

the test which they deem appropriate for theirapplication. We demonstrate

how this can be done below. The call to amr_prolong fillsany newly cre-

ated child blocks with data by interpolating from their parents. Finally

the guard cellsare updated and boundary conditions established by calling

amr_guardcell.

! set the no of timesteps

ntsteps = 100

! Begin time integration

do loop=l,nt steps

! perform a single timestep integration

call advect (mype, dt, time, loop)

! test to see if refinement or de-refinement is necessary

callamr_t est_ref inement (mype, iref ine_min, iref inenmax)

! refine grid and apply Peano-Hilbert reordering to grid

! blocks if necessary

call amr_ref ine_deref ine

! prolong solution to any new leaf blocks if necessary

call amr_prolong(mype, iopt ,nlayers)

! exchange guardcell information and boundary conditions.

callamr_guardcell(mype, i ,nlayers)

enddo

! end timestep integration loop

Before we exit, we must close the amr package. The principal task

performed here is to properly close the MPI package, if the application has

been built to use MPI.

! Now close the amr package

call amr_close 0

That is the basic structure of the main program for a typical parallel

AMR fluid code which would work in 1, 2 or 3 spatial dimensions. It is

essentially independent of the algorithm which is being used, since these

details are submerged in the routine which the user supplies to advance

the solution through a single timestep. It should also be clear that this

design for the main program could be used for any calculation on this type

16

of grid which approaches a solution through an iterative loop - it need not

necessarily be a time dependent fluid code. Finally we should note that a

working code would have some I/O routines, which we have left out here in

the interests of simplicity.

7.2 User Modified Routines

One reason that the main program has such a straightforward and robust

template is because all the details associated with the actual applications

algorithm have been placed inside the few routines to be supplied by the

user. However these routines can also have a very straightforward structure.

In essence they amount to a 'do loop' over the grid-blocks stored on the local

processor. Inside the 'do loop _ the user inserts the serial code to perform

the appropriate computation on a generic grid-block. For all the necessary

routines, templates are provided which already contain the loop over grid

blocks which makes the task of integrating these code segments with the

package relatively painless.

We use the example of the routine amr_test_refinement to illustrate

this process.

The amr_test_refinement routine has the responsibility of setting val-

ues to the logical arrays refine and derefine, which belong to the tree

datastructure and which control whether a grid-block is refined or removed

by the subsequent call to amr._refine_derefine. It also guarantees that

no refinements or de-refinements are requested which exceed the refinement

limits lrefine_min and lrefine_max. Assume that we wish to compute

a local error measure from the data stored in unk(1, :, :, :, :). Refine-

ment is selected for any leaf grid block if this error exceeds some predefined

threshold anywhere in that block. Similarly if the error measure is less than

some small value everywhere on that block the block can be marked for

de-refinement. Here is a version of amr_test_refinement which does this.

It amounts to a loop over all the leaf grid blocks on the local processor, and

for each iteration we call a routine called error_measure which computes

the local error estimate for that block.

subroutine amr_test_refinement (mype, lrefine..min, lrefine_max)

#include "physicaldata.fh"

include 'tree.fh'

real error(1 :nxb+2*nguard, l:nyb+2*nguard, l:nzb+2*nguard)

real error_max

! Re-initialize the refinement and de-refinement flag arrays

refine(:) = .false.

derefine(:) = .false.

! Error limits which control the refinement and de-refinement

! requests below.

ref = .35

17

deref = .05

! Loop over all leaf blocks and all parents of leaf blocks

if(lnblocks.gt.0) then

do lb=l,lnblocks

if(nodetype(lb).eq. 1.or.nodetype (lb).eq.2) then

! User provided routine which returns an array error, which has

! some error measure computed for each grid cell, based on some

! computation on the input array unk(1,:,:,:,lb).

callerror_measure(error, unk(l, 1,i, i,ib))

error_max : maxval(error)

! Does the error measure on this block anywhere exceed the limit

! which should trigger refinement?

if((irefine(ib) .It.irefine_max) .and.

1 (errornnax .ge.ref)) refine (ib) -----.true.

! Can we derefine this block?

if((irefine(ib) .gt. irefine_min) .and.

1 (.not. irefine(ib)).and.

2 (error_max .It.deref)) derefine(ib) ----.true.

endif

end do

endif

! end of loop over blocks

return

end

That completes the construction of amr_test._refinement. From this it

should be obvious how it can be customized to handle more complicated

error measures.

All the other routines which the user is required to provide (in this case

initial_soln, advect and amr_bc_block) have essentially the same struc-

ture. Obviously some will be more complicated than others. However they

all consist of a 'do loop' or sequence of 'do loop's over the leaf grid blocks,

with each do loop executing a particular code segment on data entirely local

to the current grid block.

7.3 Conservation Laws

PARAMESH provides some support for conservation laws and the solenoidal

condition associated with MHD models. This is implemented in the most

obvious way. However, because this requires the insertion of a few lines of

code in the heart of the routine which the user supplies for advancing the

solution, we take the time to outline the steps here.

18

When neighboring grid blocks have different levels of refinement, the

fluxes at the common boundary used to update the solutions on the two

blocks may not be completely consistent. This will lead to a loss of conser-

vation if it is not remedied. PARAMESH provides some routines which will

update the fluxes on the coarser of the two blocks with data provided by

the finer block. This data should be captured while the user's algorithm is

computing the appropriate fluxes and advancing the solution. The strategy

here is to record the inconsistent fluxes used at the block boundaries as the

solution is advanced, modify then to achieve consistency, and then correct

the advanced solution for the differences between the original and modified

fluxes.

The flux data must be stored in the PARAMESH arrays called flux_x,

flux_y and flux_z. Once this has been done on all the leaf blocks, the

routine amr_=flux_conserve is called. The first thing this does is to copy

the contents of these flux arrays into temporary copies, called tflux_x,

tflux_y and tflux_z. Then when a block borders a finer neighbor the flux

array for that direction (flux_x on x faces, etc). is updated with the ap-

propriate sum or average of fluxes from the neighbor. Finally, after the call

to amr_:flux_conserve, each block is considered in turn and the solution in

cells immediately inside each block boundary are corrected for any differ-

ences between the arrays flux__x, flux_y, flux_z and tflux_x, tflux_y,

tflux 7_.

A variant of this problem can also occur in MHD codes which use cir-

culation integrals of electric field values defined on grid cell edges to update

magnetic field components. If these circulation integrals are not evaluated

consistently at the block boundaries where the refinement level jumps, then

the magnetic field will not remain divergence-free. We have provided some

routines which use the same approach as used with the fluxes, to ensure

consistency.

8 Examples

We discuss four examples of the application of PARAMESH to complex

fluid codes. The first is a 1D fluid model of the development of a Solar

Coronal condensation, using a MUSCL advection solver. The second is a

2D MUSCL simulation of a strong plane shock wave propagating past a

square obstacle. The third is a 3D MHD code which uses Flux Corrected

Transport(FCT). The fourth is another 2D hydrodynamics code based on the

Piecewise Parabolic algorithm. The purpose here is not to explain how these

pre-existing codes were modified to use PARAMESH, rather to illustrate

with physical examples the type of solutions which the package enables and

the range of real numerical algorithms that have already been supported,

and to introduce the codes which we used to produce performance results

described in section 9.

19

8.1 A 1D Fluid Model

The serial uniform mesh1D code [17]from which our first examplewas
developed,solvesthe fluid equationsusinga MUSCL-typescheme,asde-
scribedin Balsara[16]. A MUSCL algorithm is a secondordervariant of

the Godunov approach to hydrodynamic modeling.

In a classical Godunov scheme, each interface between grid cells is consid-

ered to represent a separate Riemann problem. Uniform states are assumed

to exist on either side of each cell interface at the beginning of the timestep.

An analytic solution to the Riemann problem exists for the 1D Euler equa-

tions, and this is applied over the timestep to compute the flow of mass,

momentum and energy across each cell interface. These fluxes are used to

updated the amount of mass, momentum and energy in each grid cell and

the new time advanced solution at cell centers is computed assuming that

the densities are piece-wise constant within each grid cell. The timestep

is limited by a Courant-Friedrichs-Lewy condition which ensures that dis-

turbances propagating from any cell interface in the analytic solution do

not interfere with similar disturbances propagating from its neighboring cell

interfaces during a timestep.

The classical Godunov scheme applies piece-wise constant interpolation

to define the mass, momentum and energy densities across a grid cell. A

MUSCL scheme is a second order variant because it uses a linear inter-

polant with a 'limiter' algorithm to reconstruct the profiles inside each grid

cell from the cell centered values. In this case the code also includes a steep-

ening algorithm which is applied to the linearly degenerate entropy wave, as

described by Yang [14].

The code uses a one pass time integration scheme which is second order

accurate [15] in time.

For the solar simulation the code included a spatially dependent grav-

itational acceleration term, optically thin radiative energy loss, a spatially

varying heating term and non-linear Spitzer-Harm thermal conduction. All

the solution variables were cell centered.

A snapshot of the development of a coronal condensation calculation is

shown in Figure 4. This shows the variation of electron number density,

velocity, temperature, and spatial resolution along the axis of a coronal flux

tube. It is not our purpose here to discuss the physical implications of this

calculation which will appear elsewhere [17]. The key points we wish to

emphasize are that the calculation was performed using grid blocks with 20

interior grid points and 2 guard cells at each block boundary. The refinement

criterion we used tested for variations in electron number density, triggering

refinement if a variation of more than 25% was seen between grid cells and

allowing de-refinement if no variation greater than 5% was detected in a pair

of sibling leaf blocks. At the time the snapshot was made, there were 55

grid blocks distributed along the flux tube, with 7 different refinement levels

(i.e. a factor of 26 = 64 variation in resolution between coarsest and finest

2O

1018

1016

1014

_ 1012
¢

a 1010

108

106

rime,= , t13665 ,

510152O 253O

tj

0

>

lx106

5x105

0

-5x105

-lx106

0 5 10 15 20 25 30

3x1061....... m 0.0150"020

2xi061 .EoaO.OLO

lx1061
o 0.005

Or , 0.000

0 5 1015202530 0 5 10 15 20 25 30

Figure 4: A snapshot during the development of a Coronal Condensation

modeled with a 1D MUSCL type fluid algorithm.

grid cell). The concentration of refined blocks in 2 distinct narrow regions

illustrates the power of AMR.

This calculation enforced conservation constraints at the block bound-

aries where the refinement varied. This was done by saving the gas dynamic

fluxes computed at grid block boundaries. These fluxes were then modified

by calling the routine eum=_.flux_coaserve which, at the shared grid block

boundary at a refinement jump, replaces the fluxes on the coarser block with

the fluxes used on the finer neighbor. The solution was then corrected to be

consistent with these flux modifications.

8.2 A 2D Fluid Model

The second example is a 2D gas dynamic simulation of a Mach 10 plane

shock wave propagating past a square obstacle. For this we used a MUSCL

scheme, with an approximate Riemann solver. We used 8 x 8 sized grid

blocks with 2 layers of guard cells at each block boundary. A snapshot

of the density variation in a section of the computational domain near the

obstacle is shown in Figure 5.

21

Figure 5: The top half of the frame shows a snapshot of the density from

a 2D hydro simulation of a Mach 10 shock flowing past a square obstacle.

Only the central portion of the computational domain is shown here. The

bottom half frame shows the same image but with the boundaries of the

grid blocks superimposed.

I_ Figure 5 you can see that there are 5 distinct 'ray'-like regions ex-

tending downstream from the obstacle. These are the bow shock above and

below the object, a second pair of shock fronts which extend from behind

the obstacle, and a shear layer extending straight back from the obstacle.

In the bottom frame of Figure 5 we show the same snapshot but with an

outline of the grid blocks superimposed on it. This shows how the refine-

ment algorithm has placed high resolution along all these features, and has

even adapted to follow the shape of the oscillation which has developed in

the unstable shear layer.

In the later stages of this calculation we used almost 25000 grid blocks

distributed across 128 processors of an SGI/Cray T3E. The computation

involved 10 different refinement levels. In the snapshot there are 5 different

22

levelsvisible,a dynamicrangeof 25 = 32.

8.3 A 3D MHD Model

Our third example is an AMR implementation of the FCTMHD3D code, a

3D MHD code which uses Flux Corrected Transport(FCT) [18].

This application exercises still more of the functions built into PARAMESH.

The time advance in this code achieves second order by using a 2 step

predictor-corrector approach. The grid blocks are 8 x 8 x 8 with 3 guard

cell layers at each block boundary. The code uses a staggered mesh ap-

proach in which the mass, momentum and energy densities are specified at

cell centers, but the magnetic field components are specified at cell face cen-

ters. So the x-component of the magnetic field is stored in our faceva.vx

array, the y-component in facevary and the z-component in facevarz (see

Figure 2). The routine amr.=flux_conserve was used to ensure that mass,

momentum and energy conservation were maintained at block boundaries

where the refinement level jumped.

The time advance of the magnetic field requires the computation of cir-

culation integrals of the electric field about each grid cell face. These electric

field values are known at the centers of the cell edges. To ensure that the

constraint V./_ -- 0 on the magnetic field/_, was maintained, it is necessary

that the circulation integrals on shared block faces at refinement jumps be

consistent. This is handled by a routine called hint_edge_average which

replaces the edge values on the coarser block face with appropriate averages

from the edge values on the finer block face.

In section 9 we report performance measurements for this code on the

T3E.

8.4 A PPM Model

Our final example is a hydrodynamics code, based on the Piecewise Parabolic

method [19].

This application is being developed at the University of Chicago as

part of the ASCI project [20]. The code (known as the FLASH code) is

being used to study Astrophysical X-ray bursts, Novae, and Supernovae.

FLASH employs the piecewise parabolic method, allows for equations of

state which vary as a function of space, can follow an arbitrary number of

nuclear species, and allows for energy generation via nuclear reactions. The

overall FLASH code is based upon an original uniform mesh code known as

PROMETHEUS [21] with extensions for nuclear burning and equations of

state appropriate for stellar interiors [22], [23].

FLASH uses PARAMESH blocks which are 8 x 8 x 8 cells with a 4

guardcell region around each block. To make the code multidimensional,

each timestep is vector split and so is divided up into 1, 2 or 3 directional

sweeps through the mesh. As a result, a flux conservation and guardcell

filling operation must be performed after each directional sweep. In three

23

dimensionstheguard-cellsmustbefilled3timespertimestepandthisplaces
aconsiderabledemandon thePARAMESHsoftwareto fulfill theseguardcell

filling requests. For the FLASH code severalof the main PARAMESH
routineshavebeenrewritten directly using MPI rather than the MMPI

library asdescribedabove.Weregardthesechangesasastepalongtheway
to producingthenext releaseof PARAMESHwhichwill includeversionsof
the communicationintensiveroutineswritten in MPI.

In section9 wereport performancemeasurementsfor the FLASH code
ona SGI Origin2000andthe ASCI RED (Intel) machine.

9 Performance

What performance results can we provide to a potential user of PARAMESH

which would enable them to decide whether they can use it to develop an

efficient application ? They need to be convinced that with AMR they can

achieve the desired resolution with faster, hopefully much faster, time to

solution than they can achieve with a uniformly refined calculation, and

that this will remain true when using a large number of processors.

Low AMR-related overhead, good scaling, and load balancing are im-

portant factors in enabling this. In this section we report some performance

results, with the following caveat.

It is difficult to define a useful and objective measure of the performance

of PARAMESH (or any other AMR package) which is not highly applica-

tion dependent. Fine details of the applications algorithm, its balance of

computation and communication when expressed in parallel, the refinement

criteria used in controlling refinement, the frequency with which the grid

resolution is tested and modified, the size of grid blocks used, and many

other design choices will all modify the performance. Likewise, the perfor-

mance figures will be highly dependent on the capabilities of the hardware

in use. Processor speeds, memory latencies, inter-processor communication

bandwidth and message latencies will all influence performance.

The best we can hope to do is to show that for some specific cases, good

scaling and/or performance were achieved.

To illustrate the performance which can be achieved with PARAMESH,

we have measured aspects of the AMR overhead, scaling, load balance and

time to solution of the AMR version of the FCTMHD3D code on the T3E,

and of the FLASH code on the ASCI RED machine.

9.1 Performance with Shared Memory

PARAMESH was originally written for the low latency, high bandwidth

environment of the T3E. We would therefore expect it to perform well on

any machine with those characteristics. Our first performance test describes

the use of the FCTMHD3D code on a 512 processor T3E using the SHMEM

communication library.

24

Wereport performancefrom two scalingtests,the first with a problem
constructedto keeptheamountof workperprocessorfixed,andthe second
with a fixed total amountof work. In eachcaseweshowthe total time to

solutionand the percentageof the time to solutionwhichwascontributed
by thoseroutinesperformingthe AMR andparallelizationtasks.

The tasks consideredto representAMR and parallelizationoverhead
wereguardcellfilling,buildingthegrid-blocktree,refinementandde-refinement,
dataprolongationand restriction,and enforcementof conservationlawsat
refinementjumps. Thetasksconsideredpart of the applicationwerelocal
computationof the timestep,local time advanceof the solution,and local
computationof the error measureto be usedin testing the local spatial
resolution.

Theperformancereportedwasfor 20timesteps,with testingandmodifi-
cationof thegrid enabledforeverysecondtimestep,andwith therefinement
testingroutinetestingout to 3 grid cellsbeyondthe physicalboundaryof
eachgrid block.

Figure6 showsthe executiontime for thesedifferent components,for
both tests,as the numberof processorsis varied. The left framerefersto
the scale-uptest, andthe right frameto the fixedsizeproblem.

Forthe scale-upproblem,the time to solutionis almostconstantasthe
processornumberis varied. The scalingfor the fixedsizeproblemis also
good,althoughit deterioratesat the larger processornumberswheneach
processorhasvery little workto do. Forexample,whenusing256processors
thereisan averageof only 3 leafblockson eachprocessor.

Figure7 showsthe typical loadbalanceachievedduring the transport
phaseof the samecalculationon 32 processorsof the SGI/Cray T3E. In
this casethe loadbalanceshowsthat the 32processorsused99.1%of the
availablecpu time during this phaseof the calculation.

9.2 Performance without Shared Memory

We set up several test calculations using the FLASH code to explore PARAMESH

performance in the absence of shared memory.

In the first calculation a constant amount of work was assigned to each

processor. A shock tube was modeled in which all disturbances propagate in

the x direction and the solution does not vary along the y and z coordinate

axes. As processors are added the domain size of the total problem was

increased proportionately in the y direction. The total execution time for

this test calculation is shown in figure 8. These curves clearly show that the

code scales well for this test calculation out to 1024 processors. They also

show that the AMR overhead amounts to only 25% of the total execution

time. These test calculations were run using the ASCI-RED machine located

at Sandia National Laboratory which is a 'one-of-a-kind' machine constucted

using Intel Pentium-pro processors connected by a fast network (for more

information see http://www.sandia.gov/ASCI/Red).

25

0
°M

0

0

¢

1000! '
, total

÷ amroverhead

..h --+
+ +- _p

DO0

100

10

"'.,..

"'.,.+,

"-..

"'"'_- +"I.

÷

I00 , 1 , m

I0 I00 I000I0 I00

No.ofProcessors No.ofProcessors

total 1

amr overhead

, perfect s,c a_. g.

I000

Figure 6: The execution time for the different components of the

FCTMHD3D code on the T3E, for the scale-up test (left frame), and the

fixed size test (right frame). The ideal scaling curve for the fixed size prob-

lem is shown for reference.

The next test we performed was designed to measure scaling for a prob-

lem with a fixed total amount of work. This calculation was done in two

dimensions and with a maximum refinement level of 7 (i.e. the finest resolu-

tion is the same as the resolution of a uniform 512x512 mesh). The scaling

of total execution time is shown in Figure 9. The scaling is poor, princi-

pally because the AMR overhead does not scale well, particularly at large

processor numbers. For comparative purposes we also show in figure 9 the

scaling curve for a uniform mesh version of the FLASH code run for exactly

the same problem and which was run at the same effective resolution as the

version using PARAMESH. This curve clearly shows that the uniform mesh

code scales well. This code achieved 40 Mflops per processor using double

precision arithmetic. Note, however that in spite of its scaling deficiencies

the time to solution for the FLASH code using PARAMESH is still bet-

ter than the uniform mesh code for ALL processor numbers for which we

collected timing results.

9.3 Time to Solution

To test whether the time to solution achieved using PARAMESH is indeed

improved when compared to a uniform mesh code running the same problem,

we constructed a test where the initial condition had a uniform density and

zero velocity in a square computational domain of size 1 unit on a side. The

26

15

14

i

1

O0 10 20 30

Processor Id

Figure 7: The execution time of the corrector step of the transport phase

of the FCTMHD3D code during a typical timestep on each processor for a

32 processor run. The ratio of the average height of these histogram bars to

the maximum height is a measure of the load balance.

pressure was set such that it had a high .value within a radius of 0.3 and a

low value everywhere else. This state was then evolved for a fixed number

of time steps using both the uniform version of the FLASH code and the

AMR version. Timing results were obtained for different resolutions and are

shown in Figures 10 and 11. Here we plot the highest level of refinement

used vs. the time to solution for both the AMR and uniform versions of

the FLASH code. For reference a refinement level of 5 corresponds to a

uniform mesh with a resolution of 128 points on a side. Each increase in

refinement by one level corresponds to a factor of 2 in linear resolution.

For these tests an identical two dimensional calculation was run on two

different computer architectures using different numbers of processors in

each case. The computers used were 16 processors of an SGI Origin 2000

and 256 processors of the INTEL based ASCI RED machine located at

Sandia National Laboratories.

These plots show that the AMR version of the FLASH code gets better

times to solution except for the coarsest resolutions. These plots also show

that the time to solution using AMR becomes much better relative to the

uniform version of the FLASH code as more and more levels of refinement

are added. This is due to the fact that refinement is only placed in areas

of the domain where it is needed and the fraction of the area of the mesh

which is refined to the finest level decreases with increasing resolution. One

can also see by comparing these plots that the curves representing the time

27

0

.E

1000,

AMRcode doingSod'spr_lem (30),doublingproblemsizefor eachprocessordoubling

....... ' ' ' "TOiAL"..I,__L'"

HYDRO --R--

GUARDCELL --.-_---

TREE --.-_-

100

10

I I I I I I I I I I

.__.----...--------------,-----,--.---.

....4(-.......I"_".......I"IS(".......IE.......",I".......I"I

.-_---_--_,--- 43 O ,3 3 3 0

i i I , ,,,,,.I I

10 100 1000

No.Processors

10000

Figure 8: Time to Solution as a function of the number of processors for a

problem which has a fixed amount of work per processor.

to solution using the AMR FLASH code and the uniform FLASH code cross

at a finer resolution for the cases run on 256 processors. This is due to the

fact that for the more coarsely refined cases the total number of blocks is

small relative to the number of processors and some processors have only a

small amount of work (see discussion below).

9.4 Discussion of Performance

We have run two types of scaling tests, fixed problem size and for fixed work

per processor.

For problems with fixed work per processor we see excellent scaling, both

with and without shared memory. Our tests illustrate that PARAMESH

adds overhead which is small compared with the cost of the core algorithm

for typical fluid and MHD codes.

The scaling for problems with fixed size is not as good. It is reasonably

good for the small processor range, but deteriorates at large numbers of

processors. This behavior is not surprising. It is due in part to the nature

of block adaptive AMR, and in the case of the FLASH results, also due to

inefficiencies in the way PARAMESH uses MPI.

Block adaptive schemes will scale reasonably well as long as each proces-

28

Ioooo

1ooo

1oo

IO

2DGaussianPressurePulse

....... ' ' AMR'--_-'-''
UNIFORM----_--

IDEALSCALING--

"11(-.

....... I 1 I ' i

10 100 1000 10000

No.Processors

Figure 9: Time to Solution as a function of the number of processors for

FLASH for a fixed problem size.

sot has a large enough number (i.e. > 10) of grid blocks on which to work.

As the number of blocks per processor decreases we expect the scaling to

deteriorate. The reasons for this are,

• it is harder to balance the communication and computational work

load when each processor has very few blocks

• the probability that a given processor's neighbors are off processor,

increases as the number of blocks per processor decreases, altering the

balance of communication and computation.

When performing scaling measurements on problems with fixed size, a

problem which fills memory on one processor will fill only 0.1% of memory

on one thousand processors. A typical user would never consider running

this problem on one thousand processors. Rather, they would increase the

size of their model, or run on fewer processors. We contend therefore that

the only part of these fixed size scaling curves which we show which relate

to the way a typical user would operate are at the lower processor number

range.

In the absence of shared memory, we expect much poorer performance

with the current release of PARAMESH, because MMPI relies on high la-

29

10000

1000

IO0

I0

I I i i I I

UNIFORM

AMR ---x--

1 I t I I I I

4 5 6 7 8 9 10 11

RefinementLevel

Figure 10: Time to Solution as a function of resolution for the AMR FLASH

code and the uniform FLASH code. The starred point represents an estimate

of the running time for the uniform code since this case did not fit in memory.

The curves shown were run in two dimensions using 16 processors of an SGI

Origin 2000.

tency system interrupts to manage the many one-sided communications,

blocking gets, and barriers in our code. 2 This is borne out in the scaling

curves for the FLASH code from the ASCI RED m .achine.

Given all these considerations with regard to scaling of fixed sized prob-

lems, our results still show that the performance is good enough to sub-

stantially improve on the time to solution achieved by uniformly refined

calculations when high resolution is required.

10 Installation and Test Runs

PARAMESH will run on any parallel UNIX system which has a Fortran 90

compiler, with a preprocessor, and the SGI/Cray SHMEM library or MPI.

The SHMEM and MPI libraries are not required when running on a single

processor.

2This situation should improve significantly with the release of MPI2. We are currently

engaged in rewriting critical routines to improve performance in this regard.

3O

1000

100

I0

0.1

I I I i i I

UNIFORM --+--

AMR ---_(---

I I I I I I

5 6 7 8 9 10 11

RefinementLevel

Figure 11: Time to Solution as a function of resolution for the AMR FLASH

code and the uniform FLASH code. The curves shown were run in two

dimensions using 256 processors of the ASCI RED machine.

The PARAMESH package is distributed as a UNIX tar file. To install the

package, simply untar it. When this is done a hierarchy of sub-directories

is created below the current directory. This is illustrated in Figure 12.

The current directory will then contain a README file. A comprehensive

user's manual is included in the 'Users_manual' sub-directory, which includes

detailed instruction on how to build applications. Makefile templates are

provided.

In the subdirectory Tests we have included a number of test programs

designed to verify that the package has been installed correctly. A README

file in this sub-directory gives instruction on how to build these test pro-

grams.

31

Directory Structure of the Package

m

_ _. _.'_-'_ I

AMRDIR/source

the amr packages Fortran 90 source code

AMRDIR/interpolation

some alternative interpolation routines

AMRDIR/headers

the amr packages header fries

AMRDIR/templates

templates for any routines which the
user may need to supply.

AMRDIR/mpi_amr
routines which translate the shmem library

calls used in the package into rnpi

AMRDIR/mmpi

the mmpi library

AMRDIR/Fests

a suite of test programs

AMRDIRAJsers_manual

a users manual written in HTML.

a tutorial which builds a parallel amr
2D diffusion solver.

Figure 12: The organization of the PARAMESH package distribution file

system.

TEST RUN OUTPUT

In the subdirectory Tests we have included a number of test programs

designed to verify that the package has been installed correctly. A README

file in this sub-directory gives instruction on how to build these test pro-

grams. Makefiles are provided to build these test programs, for Silicon

Graphics machines running IRIX, and for the SGI/Cray T3E. For any other

combination of machine and operating system these makefiles may require

slight modification. The corresponding author can be contacted for assis-

tance with these modifications.

To verify that the package has been installed properly run one or more

of the test programs. Check the last line of the output. It reports the

number of errors detected during the automatic testing process. If the test

is successful it will say

No errors detected - Test Successful.

The test programs require 15 MBytes of memory.

32

Acknowledgements

This work was supported by the NASA Earth and Space Sciences High

Performance Computing and Communications program. K. Olson acknowl-

eges support from the ASCI Flash Center at the University of Chicago under

DOE contract B341495. We would like to thank Dr. Daniel S. Spicer for

his assistance with the 2D MUSCL gas dynamics code, and Dr. Rick De-

Vore who provided the original FCTMHD3D code. Dr. Bruce Fryxell, Dr.

Andrea Malagoli, and Dr. Bob Rosner are also gratefully acknowledged for

many useful discussions.

References

[1] R. LShner, Computer Methods in Applied Mechanics and Engineering

61 (1987) 323.

[2] M.J. Berger, Ph.D Thesis, Stanford University, (1982).

[3] M.J. Berger and J. Oliger, J. Comput. Phys. 53 (1984) 484.

[4] M.J. Berger and P. Colella, J. Comput. Phys., 82 (1989) 64.

[5] D. De Zeeuw and K.G. Powell, J. Comput. Phys. 104 (1993) 56.

[6] J.J. Quirk, Ph.D Thesis, Cranfield Institute of Technology, (1991).

[7] A.M. Khokhlov, NRL Memo 6404-97-7950, (1997).

[8] S. Mitra, M. Parashar and J.C. Browne, Dept. of Computer Sciences,

Univ of Texas at Austin, 1997. at

http://www.caip.rutgers.edu/-parashar/DAGH/.

[9] H. Neeman, at http://zeus.ncsa.uiuc.edu:8080/-hneeman/hamr.html.

[10] D. Quinlan, at http://www.llnl.gov/casc/people/quinlan.

[11] S. Kohn, X. Garaizar, R. Hornung, and S. Smith, at

http://www.llnl.gov/CASC/SAMRAI

[12] R. LeVeque and M. Berger,

at http://www.amath.washington.edu:S0/'rjl/amrclaw/.

[13] M. S. Warren and J. K. Salmon, in: Proc. Supercomputing '93 (IEEE:

Computer Society, Washington D.C., 1993) 12.

[14] H. Yang, J. Comput. Phys. 89 (1990) 125.

[15] P. Colella, J. Comput. Phys. 87 (1990) 200.

[16] D. Balsara, Astrophys. J.Supp. 116 (1998) 133.

33

[17] S.K. Antiochos,P. MacNeice,D.S.Spicer,and J.A. Klimchuk,Astro-

phys. J. 512 (1999) 985.

[18] C.R. DeVore, at http://www.lcp.nrl.navy.mil/hpcc-ess/index.html

(1997).

[19] P. Colella and P. Woodward, J. Comput. Phys. 54 (1984) 174.

[20] F. X. Timmes, K. Olson, P. Ricker, M. Zingale, B. Fryxell, P. MacNeice,

H. Tufo, D. Q. Lamb, and R. Rosner, In preparation (1999).

[21] B. Fryxell, E. Muller, and D. Arnett, Hydrodynamics and Nuclear Burn-

ing, Max-Plank-Institute fur Astrophysik Report 449 (1989).

[22] F. X. Timmes and D. Arnett, Astrophys. J. Suppl. in press (1999).

[23] F. X. Timmes and D. Swesty_ Astrophys. J. Suppl. in press (1999).

34

Form Approved

REPORT DOCUMENTATION PAGE OMBNo. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this

collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson

Davis Highway, Suite 1204. Arlington, VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188), Washington, DC 20503.

;1. AGENCY USE ONLY (Leave blank)] 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

IOctober 1999 Contractor Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

PARAMESH: A Parallel Adaptive Mesh Refinement Community

Toolkit NAG5-6029

6. AUTHOR(S)

P. MacNeice, K.M. Olson, C. Mobarry, R. de Fainchtein, and C. Parker

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS (ES)

Goddard Space Flight Center

Greenbelt, Maryland 20771

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS (ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

8. PEFORMING ORGANIZATION
REPORT NUMBER

2000--00298-0

10. SPONSORING I MONITORING
AGENCY REPORT NUMBER

CR--1999-209483

11. SUPPLEMENTARY NOTES
P. MacNeice: Drexel University, Philadelphia, PA; K.M. Olson: Enrico Fermi Institute, University of Chicago,

Chicago, IL; R. de Fainchtein: Raytheon ITSS, Lanham, Maryland; C. Packer: (formerly of Raytheon ITSS,

Lanham, Maryland)

12a. DISTRIBUTION I AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified-Unlimited

Subject Category: 61

Report available from the NASA Center for AeroSpace Information,

7121 Standard Drive, Hanover, MD 21076-1320. (301) 621-0390.

13. ABSTRACT (Maximum 200 words)

In this paper, we describe a community toolkit which is designed to provide parallel support with

adaptive mesh capability for a large and important class of computational models, those using struc-

tured, logically cartesian meshes. The package of Fortran 90 subroutines, called PARAMESH, is

designed to provide an application developer with an easy route to extend an existing serial code

which uses a logically cartesian structured mesh into a parallel code with adaptive mesh refinement.

Alternatively, in its simplest use, and with minimal effort, it can operate as a domain decomposition

tool for users who want to parallelize their serial codes, but who do not wish to use adaptivity. The

package can provide them with an incremental evolutionary path for their code, converting it first to

uniformly refined parallel code, and then later if they so desire, adding adaptivity.

14.SUBJECTTERMS
adaptxve mesh, PARAMESH, cartesian mesh, parallel code, Fortran 90,

computational models

17. SECURITY CLASSIRCATION 18. SECURITY CLASSlRCATION

OF REPORT OF THIS PAGE

Unclassified Unclassified

NSN 7540-01-280-5500

19. SECURITY CLASSIRCATION
OF ABSTRACT

Unclassified

15. NUMBE_gF PAUP.:_

16. PRICE CODE

i

20. LIMITATION OF ABSTRACl

UL

Standard Form 298 (Rev. 2-89)

