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Parameter Adaptation in Ant Colony Optimization

Thomas Stützle, Manuel López-Ibáñez, Paola Pellegrini, Michael Maur,
Marco Montes de Oca, Mauro Birattari, and Marco Dorigo

Abstract This chapter reviews the approaches that have been studied for the online adaptation
of the parameters of ant colony optimization (ACO) algorithms, that is, the variation of pa-
rameter settings while solving an instance of a problem. We classify these approaches according
to the main classes of online parameter-adaptation techniques. One conclusion of this review is
that the available approaches do not exploit an in-depth understanding of the effect of individual
parameters on the behavior of ACO algorithms. Therefore, this chapter also presents results of
an empirical study of the solution quality over computation time for Ant Colony System (ACS)
and MAX-MIN Ant System (MMAS), two well-known ACO algorithms. The first part of this
study provides insights on the behaviour of the algorithms in dependence of fixed parameter
settings. One conclusion is that the best fixed parameter settings of MMAS depend strongly on
the available computation time. The second part of the study uses these insights to propose sim-
ple, pre-scheduled parameter variations. Our experimental results show that such pre-scheduled
parameter variations can dramatically improve the anytime performance of MMAS.

1 Introduction

Ant colony optimization (ACO) is a metaheuristic inspired by the foraging behavior of ants
(Dorigo et al, 1996; Dorigo and Di Caro, 1999; Dorigo et al, 1999; Dorigo and Stützle, 2004;
Dorigo et al, 2006; Dorigo, 2007). In ACO algorithms, artificial ants are probabilistic solution
construction procedures, which are biased by artificial pheromones and heuristic information.
Heuristic information can be derived from a problem instance to guide ants in the solution
construction process. Pheromones are represented as numerical information that is modified
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iteratively to reflect the algorithm’s search experience. Modifications bias the search towards
good quality solutions (Zlochin et al, 2004).

The behavior of ACO algorithms depends strongly on the values given to parameters (Dorigo
and Stützle, 2004; Favaretto et al, 2009). In most ACO applications, parameter values are kept
constant throughout each run of the algorithm. However, varying the parameters at computation
time, either in pre-scheduled ways or in dependence of the search progress, can enhance the
performance of an algorithm. Parameter control and parameter adaptation are recurring themes
in the field of evolutionary algorithms (EAs) (Lobo et al, 2007). The adaptation of parameters
while solving a problem instance by exploiting machine learning techniques is also the unifying
theme in the research area of reactive search (Battiti et al, 2008). In the ACO literature as
well, several strategies have been proposed and tested for modifying parameters while solving a
problem instance.

In this chapter, we first review available research results on parameter adaptation in ACO
algorithms. We follow the three classes of parameter control strategies discussed by Eiben et al
(2007). Then, we analyze the development of the solution quality reached by ACO algorithms over
computation time in dependence of specific parameter values. The goal is to identify situations
where the best fixed parameter settings depend strongly on the available computation time
because it is exactly in such situations that a pre-scheduled variation of parameter values can
improve strongly the anytime performance (Zilberstein, 1996) of an algorithm. We observe strong
dependencies for MAX-MIN Ant System (MMAS) (Stützle and Hoos, 2000), and we show that
a pre-scheduled parameter variation actually leads to a much improved behavior of MMAS over
computation time without compromising the final solution quality reached.

This chapter is structured as follows. In Section 2 we give an introductory description of the
main ACO variants, which are also mentioned later in the chapter. After a short review of pa-
rameter adaptation in Section 3, we discuss relevant literature concerning ACO in Section 4. The
experimental part in this chapter is divided in two sections: Section 5 describes experiments with
fixed parameter settings, whereas Section 6 describes experiments with pre-scheduled parame-
ter variation. From the review of the literature and our experimental study, we provide some
conclusions and suggestions for future research in Section 7.

2 Ant Colony Optimization

The earliest ACO algorithms used the traveling salesman problem (TSP) as an example applica-
tion. The TSP is typically represented by a graph G = (V,E), V being the set of n = |V | vertices,
representing the cities, and E being the set of edges that fully connects the vertices. To each
edge (i, j) a distance dij is associated. The objective is to find a Hamiltonian cycle of minimum
total cost. The TSP is a computationally hard problem, but the application of ACO algorithms
to it is simple, which explains why ACO applications to the TSP have played a central role in
the development of this algorithmic technique.

2.1 Ant Colony Optimization for the TSP

When applying ACO to the TSP, a pheromone value τij is associated with each edge (i, j) ∈ E.
The pheromone value represents the attractiveness of a specific edge for the ants, according to
the experience gained at runtime: the higher the amount of pheromone on an edge, the higher
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procedure ACOMetaheuristic
ScheduleActivities

ConstructSolutions

DaemonActions //optional

UpdatePheromones

end-ScheduleActivities

end-procedure

Fig. 1 ACO metaheuristic for NP-hard problems in pseudo-code.

the probability that ants choose it when constructing solutions. Pheromone values are iteratively
updated by two mechanisms: pheromone evaporation and pheromone deposit. In addition to
the pheromone trails, the ants’ solution construction process is also biased by a heuristic value
ηij = 1/dij , which represents the attractiveness of each edge (i, j) from a greedy point of view.

The algorithmic outline of an ACO algorithm (see Figure 1) contains three main procedures
ConstructSolutions, DaemonActions, and UpdatePheromones. The main characteristics of these proce-
dures are as follows.

• ConstructSolutions. This procedure includes the routines needed for ants to construct solutions
incrementally. After the selection of the starting city, one node at a time is added to an ant’s
path. An ant’s decision of where to go next is biased by the pheromone trails τij and the
heuristic information ηij . In general, the higher the two values, the higher the probability of
choosing the associated edge. Typically, two parameters α > 0 and β ≥ 0 are used to weigh
the relative influence of the pheromone and the heuristic values, respectively. The rule that
defines the ant’s choice is specific to each ACO variant.

• DaemonActions. This procedure comprises all problem-specific operations that may be consid-
ered for boosting the performance of ACO algorithms. The main example of such operations
is the introduction of a local search phase. In addition, daemon actions implement centralized
tasks that cannot be performed by an individual ant. This type of procedure is of optional use,
but typically several daemon actions are very useful to significantly improve the performance
of ACO algorithms (Dorigo and Stützle, 2004).

• UpdatePheromones. This procedure updates the pheromone trail values in two phases. First,
pheromone evaporation is applied to decrease pheromone values. The degree of decrement
depends on a parameter ρ ∈ [0, 1], called evaporation rate. The aim of pheromone evaporation
is to avoid an unlimited increase of pheromone values and to allow the ant colony to forget
poor choices done previously. Pheromone deposit is applied to increase the pheromone values
that belong to good solutions the ants have generated. The amount of pheromone deposited,
and the solutions considered are peculiar of each ACO variant.

ACO algorithms involve a number of parameters that need to be set appropriately. Of these, we
already have mentioned α and β, which are used to weigh the relative influence of the pheromone
and heuristic values in the ants’ solution construction. The role of these parameters in biasing
the ants’ search is intuitively similar. Higher values of α emphasize differences in the pheromone
values, and β has the same effect on the heuristic values. The initial value of the pheromones, τ0,
has a significant influence in the convergence speed of the algorithm, however, its recommended
setting depends on the particular ACO algorithm. The evaporation rate parameter, ρ, 0 ≤ ρ ≤ 1,
regulates the degree of the decrease of pheromone trails. If ρ is low, the influence of the pheromone
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values will persist longer, while high values of ρ allow a fast forgetting of previously very attractive
choices and, hence, allow a faster focus on new information that becomes included into the
pheromone matrix. Another parameter is the number of ants in the colony, m. For a given
computational budget, such as a maximum computation time, the number of ants is a critical
parameter for determining the tradeoff between the number of iterations that can be done and
how broad is the search at each of the iterations. In fact, the larger the number of ants per
iteration, the fewer iterations the ACO algorithm will do.

2.2 ACO Variants

The ACO framework can be implemented in many different ways. In the literature, several ACO
algorithms have been proposed, which differ in some choices characterizing the ConstructSolutions

and UpdatePheromones procedures. Three of the main variants are described next. For a description
of other variants we refer the interested reader to Dorigo and Stützle (2004).

2.3 Ant System

Ant System (AS) is the first ACO algorithm proposed in the literature (Dorigo et al, 1991, 1996).
In AS, an ant k being in node i chooses the next node j with a probability given by the random
proportional rule defined as

pij =
[τij ]

α
· [ηij ]

β

∑

h∈Nk

[τih]
α
· [ηih]

β
, (1)

where Nk is its feasible neighborhood. The feasible neighborhood excludes nodes already visited
in the partial tour of ant k, and it may be further restricted to a candidate set of the nearest
neighbors of a city i. Once an ant has visited all nodes, it returns to its starting node.

During the execution of the UpdatePheromones procedure in AS, all m ants deposit pheromone
at each iteration. The pheromone trail values are updated as

τij ← (1− ρ) · τij +

m
∑

k=1

∆τk
ij , (2)

where ∆τk
ij is defined as

∆τk
ij =

{

F (k) if edge (i, j) is part of the solution constructed by ant k,

0 otherwise,
(3)

where F (k) is the amount of pheromone deposited on the edges of the solution constructed by
ant k. F (k) is equal to the reciprocal of the cost of the solution constructed by ant k, possibly
multiplied by a constant Q. Hence, the better the solution, the higher the amount of pheromone
deposited by an ant.
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2.4 MAX–MIN Ant System

MAX–MIN Ant System (MMAS) is an improvement over the AS algorithm (Stützle and Hoos,
2000). The main difference is the handling of the pheromone trails update. Firstly, only one
solution is used for the pheromone deposit. This is typically either the iteration-best solution or
the best-so-far solution, that is, the best solution since the start of the algorithm. Secondly, all
pheromone values are bounded in the interval [τmin, τmax]. The pheromone update rule used is

τij ← max
{

τmin, min{τmax, (1− ρ) · τij + ∆τbest

ij }
}

(4)

where ∆τbest

ij is defined as

∆τbest

ij =

{

F (sbest) if edge (i, j) is part of the best solution sbest,

0 otherwise.
(5)

F (sbest) is the reciprocal of the cost of the solution considered for the deposit. For more details
on the pheromone initialization and the usage of occasional pheromone trail reinitializations, we
refer the reader to Stützle and Hoos (2000).

2.5 Ant Colony System

Ant Colony System (ACS) (Dorigo and Gambardella, 1997) differs in several ways from AS
and MMAS. ACS uses the pseudo-random proportional rule in the solution construction: with a
probability q0 the next city to visit is chosen as

j = arg max
h∈Nk

{τih · η
β
ih}, (6)

that is, the most attractive edge is selected greedily with a fixed probability. With probability
1− q0, the AS random proportional rule defined by Equation 1 is used. In ACS, the parameter
α is fixed to one, and, therefore, it is often omitted.

The pheromone deposit of ACS modifies only the pheromone values of edges from one solution.
As in MMAS, this solution is either the iteration-best or the best-so-far solution. The ACS
pheromone update formula is

τij ←

{

(1− ρ) · τij + ρ ·∆τij if (i, j) is part of the best solution sbest,

τij otherwise,
(7)

with ∆τij = F (sbest).
A local pheromone update rule is applied during the solution construction of the ants. Each

time an ant traverses an edge (i, j), τij is modified as

τij ← (1− ξ) · τij + ξ · τ0 , (8)

where ξ ∈ (0, 1) is a parameter called pheromone decay coefficient, and τ0 is the initial value of
the pheromones. In ACS, τ0 is a very small constant with value 1/(n · Lnn), where Lnn is the
length of a nearest neighbor tour. The local pheromone update aims at avoiding stagnation: it
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decreases the pheromone value on the previously used edges and makes them less attractive for
other ants.

3 Overview of parameter adaptation approaches

The dependency of the performance of metaheuristics on the settings of their parameters is well
known. In fact, finding appropriate settings of an algorithm’s parameters is considered to be a
non-trivial task and a significant amount of work has been devoted to it. The approaches for
tackling this task can roughly be divided into offline versus online procedures.

Offline tuning has the goal of finding appropriate settings of an algorithm’s parameters before
the algorithm is actually deployed. Traditionally, offline tuning has mostly been done in a trial-
and-error fashion. This process is time-consuming, human-intensive and error-prone, and it often
leads to an uneven tuning of different algorithms. Moreover, tuning by trial-and-error depends
much on the intuition and experience of the algorithm developer, and it is typically undocumented
and therefore not reproducible. More recently, an increasing effort has been devoted to methods
that allow for a search-based, hands-off tuning of algorithm parameters. Techniques for automatic
algorithm configuration are currently a rather active research area. Still, these methods typically
come up with one specific parameter setting that then remains the same while the algorithm
solves a particular instance.

An alternative to offline tuning is online tuning. Typically, this consists in the modification
of an algorithm’s parameter settings while solving a problem instance. A potential advantage
of an online modification of parameters is that algorithms may adapt better to the particular
instance’s characteristics. When instances are relatively heterogeneous, parameter settings that
result in good performance on average across all instances may lead to much worse results on
some instances. Online parameter adaptation may also be useful to reach the best performance
in dependence of the stage of search. It is often possible to identify an algorithm’s explorative
and exploitative search phases and good parameter settings in these phases may again be very
different. Finally, if algorithms are applied in situations that are very different from the context
in which they have been developed or offline tuned, allowing parameters to change online may
increase an algorithm’s robustness.

There are different ways of modifying parameters during the run of an algorithm. Many
strategies have been widely studied in the context of EAs, and Eiben et al (2007) give a possible
classification of these strategies. Perhaps the simplest possibility is to define the parameter vari-
ation rule before actually running the algorithm. In such an approach, the problem is observed
from an offline perspective: Static parameters are substituted by (deterministic or randomized)
functions depending on the computational time or on the number of algorithm iterations. Eiben
et al (2007) call such strategies deterministic parameter control; however, we prefer the term
pre-scheduled parameter variation, because the adjective “deterministic” does not correctly char-
acterize this way of controlling parameters, given that the schedule could also allow randomized
choices. Even if pre-scheduled parameter variation is an online tuning method, it does not make
the offline tuning problem disappear since also the parameters that define the schedule need to
be appropriately set.

An alternative is to use adaptive parameter settings, where the parameter modification scheme
is defined as a function of some statistics on the algorithm behavior. Various measures can be used
for this online adaptation. They can be grouped depending on whether they are based on absolute
or relative evidence. In the first case, the adaptation strategy monitors the occurrence of some
events during the run, for example, some fixed threshold of the distance between the solutions
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visited. Surpassing the threshold then triggers a set of rules for parameter variation. In the
second case, the adaptation strategy considers the relative difference between the performance
reached with different parameter settings, and adapts the parameter values to resemble the
most successful ones. For parameter adaptation to work, some additional decisions need to be
made beyond the ones strictly related to the implementation of the algorithm. In particular, the
equations that describe the parameter update need to be defined a priori and it is hoped that
the used mechanisms are very robust with respect to their particular definition.

A further possibility that has been object of studies consists in having the parameters mod-
ified at run time by the algorithm itself. Specifically, dimensions that represent parameters of
exploration strategies are added to the search space of the problem. The optimization process is
then executed in this new space. Eiben et al (2007) name this approach self-adaptation. Taking
the notion of self-adaptation a step further, we call search-based adaptation those strategies that
use a search algorithm, which is different from the underlying algorithm, for parameter adap-
tation. This class of strategies includes techniques such as local search or EAs for adapting the
parameters of ACO algorithms.

4 Parameter Adaptation in ACO

The study of the impact of various parameters on the behavior of ACO algorithms has been an
important subject since the first articles (Dorigo et al, 1991, 1996). We schematically summarize
in Table 1 the main approaches that have been used in the ACO literature to adapt parameter
values, following roughly the classes defined by Eiben et al (2007). This summary shows that
the most frequently chosen parameters for adaptation are α, β, q0 (in the case of ACS), and
parameters that control the pheromone update. We describe these approaches in the following
sections.

4.1 Pre-scheduled variation of parameter settings

There is surprisingly little work on pre-scheduled parameter variation for ACO algorithms. Merkle
and Middendorf (2001) describe a contribution that considers an ACO algorithm for the resource-
constrained project scheduling problem. They propose to decrease the value of the parameter β
linearly over the run of an algorithm from an initial value of two to zero. In a subsequent study,
Merkle et al (2002) consider the same problem and propose to modify the parameter β, and the
evaporation rate ρ. For β they propose a schedule as described before. For ρ, they propose to
start at a small value for increasing the initial exploration of the search space and to later set the
evaporation rate to a high value for having an intensive search around the best solutions found
by the algorithm.

Meyer (2004) proposes a variant of AS called α-annealing. The idea at the basis of his work is
to change the value of α according to some annealing schedule. Increasing α slowly throughout
the search can keep diversity in the beginning and gradually increase the selective pressure to
cover better regions of the search space in the later phases.
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Table 1 Schematic description of the literature on adaptive ACO. Some of the articles propose
general adaptation strategies that could be used for several parameters. Here we only indicate
the parameters that have been adapted experimentally.

Authors Adaptation strategy ACO variant Parameters

Merkle and Middendorf (2001) pre-scheduled variant of AS β

Merkle et al (2002) pre-scheduled variant of AS β, ρ

Meyer (2004) pre-scheduled AS α

Randall and Montgomery (2002) adaptive ACS candidate set
Chusanapiputt et al (2006) adaptive AS α, β

Li and Li (2007) adaptive new variant α, β

Hao et al (2007) adaptive ACS ρ

Kovář́ık and Skrbek (2008) adaptive variant of MMAS β

Li et al (2008) adaptive variant of ACS q0, pheromone update
Cai et al (2009) adaptive ACS ρ

Randall (2004) self-adaptation ACS β, ρ, q0, ξ

Martens et al (2007) self-adaptation MMAS α, β

Förster et al (2007) self-adaptation new variant pheromone update
Khichane et al (2009) self-adaptation MMAS α, β

Pilat and White (2002) search-based adaptation ACS β, ξ, q0
Gaertner and Clark (2005) search-based adaptation AS–ACS combination β, ρ, q0
Hao et al (2006) search-based adaptation variant of ACS β, ρ, q0
Garro et al (2007) search-based adaptation variant of ACS algorithm specific
Ling and Luo (2007) search-based adaptation variant of ACS α, ρ, Q

Amir et al (2007) search-based adaptation ACS β, q0
Anghinolfi et al (2008) search-based adaptation variant of ACS β, q0
Melo et al (to appear) search-based adaptation multi-colony ACS α, β, ρ, q0

4.2 Adaptive approaches

Many of the approaches proposed in the literature can be classified as adaptive. In these ap-
proaches, some parameters are modified according to some rules that take into account the search
behavior of the ACO algorithm. The average λ-branching factor (Gambardella and Dorigo, 1995)
is one of the first proposed measures of ACO behavior. Other measures include entropy-based
measures for the pheromone, dispersion of solutions generated by the algorithm, or simply the
quality of the solutions generated (Colas et al, 2008; Pellegrini et al, 2009). Favaretto et al (2009)
propose a technique for measuring the effect of parameter variation on the exploration performed;
this technique may also serve as an indicator for defining parameter adaptation strategies.

In an early discussion of the usefulness of parameter adaptation in ACO algorithms, Merkle
and Middendorf (2001) propose a decomposition of the search in different phases to allow for the
development of parameter adaptation strategies. Several strategies have been proposed later and
we divide these in two groups: adaptations based on the dispersion of the pheromone trails, and
adaptations based on the quality of solutions. Within the first group, Li and Li (2007) introduce
an ACO algorithm that varies the parameters α and β over time. Their parameter adaptation
strategy considers a measure of the entropy on the action choice probabilities of the ants during
solution construction and they aim at obtaining a schedule for α and β. During the early stage
of the search, the value of α is small to allow an extensive exploration of the search space; the
value of α increases over time to improve the local search ability of the algorithm. They suggest
the opposite schedule for β. Li et al (2008) propose a variant of ACS that uses a “cloud-based
fuzzy strategy” for choosing the solution to be used in the global pheromone update. The main
idea is that, as the pheromones get more concentrated around a single solution, tours other
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than the best-so-far one have a good chance of depositing pheromone. Additionally, they adapt
the parameter q0 with the goal of decreasing it as soon as the pheromone trails concentrate on
very few edges. Chusanapiputt et al (2006) propose a variation of AS for dealing with the unit
commitment problem. Three of the algorithm’s parameters are adapted based on pheromone
dispersion.

In a second group of papers, the driver of adaptation is the quality of the solutions generated.
Hao et al (2007) and Cai et al (2009) propose a variant of ACS for the TSP. In their imple-
mentation, a different value of the parameter ρ is associated to each ant in dependence of the
quality of its solution. This mechanism aims at having high quality solutions contributing more
pheromone than low quality ones. Amir et al (2007) add a fuzzy logic controller module to the
ACS algorithm for the TSP for adapting the value of β and q0. The adaptive strategy uses two
performance measures: the difference between the optimal solution (or the best known solutions)
and the best one found and the variance among the solutions visited by a population of ants.
Kovář́ık and Skrbek (2008) describe an approach that divides the ant colony into groups of ants
using different parameter settings. They adapt the number of ants in each of the groups in depen-
dence of the improvement of the solution quality obtained by each group; however they do not
give all details of the adaptation strategy. An analysis of the experimental results for adapting
the values of β indicates that better initial performance is obtained with high values of β while
towards the end of the run low values of β are preferable. Randall and Montgomery (2002) apply
an adaptation mechanism to an ACS algorithm that uses a candidate set strategy as a speed-up
procedure. At each step, the component to be added to the partial solution under construction
is chosen among the ones belonging to such a set. The composition of such a set is modified
throughout the run. Elements that give low probability values are eliminated temporarily from
the search process (they become tabu). After a number of iterations, they are added again to
the candidate set. The threshold for establishing which elements are tabu is varied throughout
the search process depending on the quality of solutions being produced.

4.3 Search-based parameter adaptation

Various adaptive ACO strategies fall into the category of self-adaptive strategies (Eiben et al,
2007), where an algorithm tunes itself by integrating its parameters into its search task. We first
present strategies that are “purely self-adaptive” in the original meaning used by Eiben et al
(2007). Later, we discuss approaches that use other search algorithms than the ACO algorithm
for adapting parameters. Given that these strategies are search-based, most of the approaches
discussed in the following use as feedback the quality of the solutions generated.

4.3.1 Pure self-adaptive approaches

The first self-adaptive approach to ACO is by Randall (2004). He suggests to discretize the
parameter range and associate to each resulting value of a parameter a pheromone trail that
gives the desirability of choosing it. In his approach, each ant adapts its own parameter settings
and chooses them at each iteration before solution construction. This mechanism is tested by
adapting the parameters β, q0, ρ, and ξ for ACS applied to the TSP and the quadratic assignment
problem. The comparison of the results to the default parameter settings is somehow inconclusive.

Martens et al (2007) propose a self-adaptive implementation of MMAS applied to the genera-
tion of decision-rule based classifiers. In their algorithm, called AntMiner+, ants choose suitable
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values for the parameters α and β. This is done by introducing for each parameter a new vertex
group in the construction graph. The values of α and β are limited to integers between one and
three. Differently from the previous paper, here parameters are treated as interdependent.

Förster et al (2007) apply the same idea to an ACO approach for a multi-objective problem.
The parameters adapted are specific to the algorithm proposed, but they are mostly related to
pheromone deposit. As in Randall (2004), the dependence among parameters is neglected, that
is, no new nodes are added to the construction graph. A separate pheromone matrix is recorded,
each column representing a parameter to be adapted. Before starting the solution construction,
each ant selects probabilistically its own parameter settings based on the pheromone matrix.

Khichane et al (2009) study a self-adaptive mechanism to tune the parameters α and β of their
implementation of MMAS and apply it to constraint satisfaction problems. However, differently
from the previous works, they define parameter settings not at the level of an individual ant.
For each iteration one common parameter setting for the whole ant colony is defined. The two
parameters are considered independent of each other. The authors propose two variants of the
parameter adaptation mechanism. In the first one, called global parameter learning ant-solver
(GPL-Ant-solver), the colony uses the same parameter setting during the solution construction of
each ant. In the second one, called distributed parameter learning ant-solver (DPL-Ant-solver),
at each step of the solution construction the colony chooses new values for α and β; hence, in this
case the pheromones that encode specific parameter settings refer to the desirability of choosing
a specific parameter value for a specific construction step. In an experimental evaluation of the
two variants, both are shown to reach a similar performance level. A comparison with an offline
tuned version of their ant-solver shows that for some instances the adaptive version is performing
better while for others the opposite is true.

4.3.2 Other search algorithms for adapting parameters

Pilat and White (2002) test two ways of using an EA to adjust parameters of an ACS algorithm,
one of them is to do online tuning. Their approach to online tuning uses an EA to determine,
at each ACS iteration, the parameter settings of four ants before constructing solutions. The
EA in turn uses the constructed solutions to further evolve a set of good parameter settings.
The authors choose three parameters for adaptation, namely, β, q0, and ξ. Their results are
somewhat inconclusive. This approach is similar to the mechanism used in an earlier paper by
White et al (1998), where the authors evolve the parameters α and β in an ACO algorithm for a
telecommunications routing problem. As an alternative to the online tuning of ACO parameters
by an EA, Pilat and White (2002) explore the usage of an EA as an offline tuning mechanism,
analogous to earlier work by Botee and Bonabeau (1998).

Gaertner and Clark (2005) propose a similar adaptive approach. In their work, every ant
is initialized with a random parameter combination, where the parameter values are chosen
from a predefined range. Over time, the entire population of ants evolves, breeding ants with
parameter combinations which find improved solutions. In their experiments, the authors consider
an algorithm based on a combination of AS and ACS for the TSP. They test their approach on
three parameters: β, ρ and q0.

Hao et al (2006) propose a variant of ACS in which each ant is characterized by its own pa-
rameter setting. The usual random-proportional rule is applied for selecting subsequent moves.
After each iteration, the parameter configurations are modified using a particle swarm optimiza-
tion (PSO) approach. Three parameters are adapted throughout the algorithm’s run, namely β,
ρ and q0. If the PSO mechanism assigns a value outside a predefined range to a parameter, then
the parameter is randomly re-initialized. Following a similar idea, Ling and Luo (2007) propose
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to use an artificial fish swarm algorithm for exploring the parameter space. They also consider
a variant of ACS and vary the three parameters α, ρ and Q, a parameter that influences the
amount of pheromone an ant deposits. The main difference between this work and the one of
Hao et al (2006) is that Ling and Luo use the same parameter setting for all ants.

Garro et al (2007) present an algorithm that evolves parameters using an EA. An individual in
the EA represents an ant characterized by specific parameter values. The authors study a variant
of ACS for automatically determining the path a robot should follow from its initial position to
its goal position. They adapt three parameters of a newly proposed state transition rule.

Anghinolfi et al (2008) adapt two parameters using a local search in the parameter space.
They define the neighborhood of the current parameter setting as all possible combinations
of parameter settings that can be obtained by increasing or decreasing each parameter value
by a fixed amount. Therefore, in the case of two parameters, at each iteration five parameter
configurations are tested: the incumbent one and its four resulting neighbors. The test is done by
assigning each parameter combination to one of five equal-sized groups of ants; each group then
uses its parameters to generate solutions. After each iteration, the incumbent parameter setting
is changed to the one that produced the iteration best solution. In their experiments, the authors
adapt two parameters of a variant of ACS, namely β and q0. They observe better performance
of the adaptive strategy than a tuned, fixed parameter setting.

Finally, Melo et al (to appear) propose a multi-colony ACS algorithm, where several colonies of
ants try to solve the same problem simultaneously. Each colony uses different parameter settings
for α, β, ρ and q0. Apart from exchanging solutions among the colonies, their proposal includes
a mutation operator that replaces the parameter settings of the worst colony with the value of
the same parameter in the best colony modified by a small uniformly random value.

4.4 Conclusions from the review

The review above shows that there is an ongoing interest on automatic parameter tuning in
the ACO literature. However, we also observe that several of the contributions apply adaptive
techniques without a prior in-depth understanding of the effect of individual parameters. Without
such an understanding, the decision of which parameters to adapt and how to adapt them is
mostly arbitrary. In particular, we did not find in our review any systematic study of the effect
of different parameter settings on the anytime behavior of ACO algorithms. It is our intuition that
such a simple analysis can inform not only the decision of which parameters may be worth varying
during runtime, but also how to perform such a variation. Moreover, the anytime behaviour
of fixed parameter settings provides a baseline for evaluating the performance of parameter
adaptations. In the next sections, we first provide such a systematic study, and we later use the
knowledge acquired from it to design successful schemes for pre-scheduled parameter variation.

5 Experimental investigation of fixed parameter settings

In this section, we examine the effect that various parameters have on the performance of ACS
and MMAS. In particular, we are interested in the development of the best-so-far solution over
time when varying one parameter at a time. Our goal is to identify which parameter settings
produce the best results at any moment during the run of the algorithm. Clearly, a parameter
setting that produces very good solutions during the initial stages of a run but leads to much
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Table 2 Default settings of the parameters under study for MMAS and ACS without local
search and with 2-opt local search.

Algorithm β ρ m q0

ACS 2 0.1 10 0.9
ACS + 2-opt 2 0.1 10 0.98
MMAS 2 0.02 n 0.00
MMAS + 2-opt 2 0.2 25 0.00

worse results later in the run is an interesting candidate for varying its settings online. In other
words, we are interested in the anytime behavior (Zilberstein, 1996) of specific parameter settings
to clearly identify opportunities for the adaptation of parameter values over computation time.

Our experimental analysis is based on the publicly available ACOTSP software (Stützle, 2002),
which we compiled with gcc, version 3.4. Experiments are carried out on a cluster of Intel
XeonTM E5410 quad-core processors running at 2.33 GHz with 6MB L2-Cache and 8 GB RAM
under Rocks Cluster GNU/Linux. Due to the sequential implementation of the code, only one
core is used for running the executable.

We test two ACO algorithms, ACS and MMAS. Table 2 gives the default values for the
parameters under study. In each experiment where one parameter is varied, the others are all
kept fixed to their default values. For the remaining parameters, that is, τ0, ξ (for ACS), the
choice between iteration-best and best-so-far update, etc., we use the default values given by
Dorigo and Stützle (2004), which are also the default values of the ACOTSP package. We test
the algorithms with and without the use of the first-improvement 2-opt local search provided by
the ACOTSP package. For the experiments, TSP instances are randomly generated using the
instance generator provided for the 8th DIMACS Challenge on the TSP; in particular, points are
generated uniformly at random in a square of side-length 1 000 000. When using ACO algorithms
without local search, the tests are done on instances of size 100, 200, 400 and 800; because of
the much higher performance of the ACO algorithms when local search is used, we use with
local search larger instances of size 1 500, 3 000 and 6 000 to minimize possible floor effects. The
presentation of the experimental results is based on the development of the relative deviation of
the best solution found by an ACO algorithm from the optimal solution value (or the best known
solution value for the instance of size 6 000). Each of these curves of the solution quality over
time, or SQT curves (Hoos and Stützle, 2005), is the average of 25 executions of each parameter
setting. Since we only present plots, we give for each setting results on only one instance. However,
the trends are the same on all instances and, hence, the plots are representative of the general
results.

5.1 Fixed parameter settings for Ant Colony System

In the case of ACS, we study the effect of β, which regulates the influence of the heuristic
information; m, the number of ants; ρ, the evaporation factor; and q0, the probability of doing
a deterministic choice in Equation 6. Here, we present SQT curves only for the case where ants’
solutions are improved by a local search for the instance of size 3 000. The final conclusions
concerning the usefulness of the variation of parameters at run-time were the same on the other
instances and in the case of using ACS without local search. Figures 2 to 5 report the results on
parameters β, m, ρ, and q0, respectively.
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The main overall conclusion we obtain from these results is that very often there is a single
parameter setting that performs best during most of the available runtime. Hence, there does
not appear to be a clear benefit in varying the parameter settings at run-time. This conclusion
remains the same if ACS is run without local search; the main difference is that the performance is
more variable and more dependent on specific parameter values. More in detail, the observations
and conclusions that arise for the single parameters from the presented results are the following.

β, Figure 2: Medium range values of β equal to 2 or 5 produce the best results during most
of the runtime. Smaller values of β are initially worse but, after enough computation time,
eventually match the results of the default value. Much larger values (e.g., β = 10) are quickly
outperformed by smaller ones.

m, Figure 3: The default value of 10 ants results in very good anytime performance. Interest-
ingly, very small values (notably m = 1) make the algorithm slightly worse performing during
the whole runtime, whereas much larger values (m = 100) lead to much worse results. The
latter effect is probably due to too much diversification because of the application of the local
pheromone update rule in ACS.

ρ, Figure 4: Surprisingly, the differences among different settings of ρ are almost non percep-
tible. Without local search (not shown here), large ρ values produce a faster convergence.
However, after a short time small values close to the default (ρ = 0.1) produce progressively
better results.

q0, Figure 5: As suggested in the literature, good values of q0 tend to be close to 1. In the
extreme cases, a value of 1 quickly leads to search stagnation, while values smaller than 0.75
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Fig. 6 MMAS with various fixed values of β; left plot without local search and right plot with
local search.

produce a very slow convergence towards good solutions. Similar conclusions are obtained
when local search is disabled.

5.2 Fixed parameter settings for MAX–MIN Ant System

We now study the impact of the same parameters, β, m, ρ, and q0 on the anytime behavior of
MMAS. For MMAS, the behavior is more interesting from a parameter adaptation point of view.
We therefore present results for the cases with and without local search. Results without local
search are for one instance with 400 nodes, whereas for the case with local search, these are for
a 3 000 nodes instance.

β, Figure 6: Without local search (upper part of Figure 6), MMAS requires relatively large
values of β, which produce a significant advantage especially during the initial part of the
run when compared to the default setting of β = 2. While the default setting eventually
matches the results obtained with higher settings, values of β less than 2 lead to quite poor
performance. With local search, the differences are much smaller and a setting of β = 10 is
quickly outperformed by lower ones. This suggests that starting with a high value of β may
enhance the performance of MMAS at the beginning of the run, but a value close to the default
may produce better results for larger computation times.

m, Figure 7: With and without local search, the number of ants shows a clear trade-off between
early and late performance. In particular, a low number of ants (for example, m = 5) produces
the best results during the early stages of the algorithm run. However, a higher number of
ants (for example, m = 100) obtains much better results towards the end of the run. Without
local search, the fast initial progress with few ants soon levels off and apparently leads to
search stagnation. In this case, the default setting of m = 400 appears to be already too high,
and it slows down the algorithm when compared to using 100 ants without improving the
final result. With local search, the SQT curves cross for the different parameter settings and
those with few ants (m = 1 and m = 5) result in worse final solution quality. In fact, a larger
number of ants (m ≥ 25) pays off if the algorithm is allowed to run for enough time. This
result suggests that increasing the number of ants from an initially low value may lead to a
better anytime behaviour of MMAS.
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Fig. 7 MMAS with various fixed numbers of ants (m); left plot without local search and right
plot with local search.
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Fig. 8 MMAS with various fixed values of ρ; left plot without local search and right plot with
local search.

ρ, Figure 8: There is some degree of trade-off between large and low values of ρ. Large values
(for example, ρ = 0.6) converge faster than the default values (ρ = 0.02 without local search,
ρ = 0.2 with local search). Nevertheless, low values of ρ are able to reach the same performance,
and, given sufficient time, produce the best final results. This effect is most noticeable in the
case without local search. Hence, starting with a high evaporation factor and then reducing
it over time to its default value appears to be a promising strategy.

q0, Figure 9: Finally, we test the use of the pseudo-random proportional rule of ACS (Equa-
tion 6) in MMAS. Here, we study the effect of different values of q0 as we previously did for
ACS. In this case, a clear trade-off is observed: high values of q0 perform best for a short
runtime, whereas low values of q0 (q0 = 0 effectively reverts to the standard MMAS) generally
result in better final performance.

Summarizing the above experiments, in MMAS a strong trade-off exists for various parameters
between the performance of fixed settings for short and long computation times, making the
behavior of MMAS very different from that of ACS. In particular, β, m and q0 seem good
candidates for using variable settings in order to achieve good anytime performance. Therefore,
in the next section, we examine a few simple alternatives for varying the parameter settings of
MMAS during the run.
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Fig. 9 MMAS using the pseudo-random proportional rule with various fixed values of q0; left
plot without local search and right plot with local search.

6 Pre-scheduled parameter variation for MMAS

Given that MMAS was a clear candidate for varying the parameters during the computation
time, we examine various schedules for changing the parameter settings. In this section, we give
exemplary results for a pre-scheduled parameter variation. In particular, we show results con-
cerning the adaptation of the parameters β, m, and q0. These illustrate the type of improvements
in the anytime behavior of MMAS that may be obtained. We do not consider varying the evap-
oration factor, ρ, since we did not find schedules that significantly improve over a fixed, high
setting (such as ρ = 0.6).

First, we study the variation of β. We tested schedules that decrease the value of β linearly with
the iteration counter as well as schedules where a switch from a high value to a low value occurs
at a fixed iteration number. The latter type of schedule resulted in better anytime performance
and, hence, we focus on these here. The rationale of these schedules is to start with a high value
of β = 20, which was shown to yield good performance at the start of the run, and to set later
β directly to a lower value close to the default. Figure 10 shows the results with local search for
three alternatives that differ in the number of iterations after which β is changed from 20 to 3; in
particular, we consider 50 (aβ 1), 100 (aβ 2) and 200 (aβ 3) iterations. The schedule aβ 1 obtained
the best SQT curve, and delaying the change of β produces worse results. In the case without
local search (not shown here), delaying the switch from the high to the low value of β showed
some improvement. Nonetheless, for simplicity, we choose strategy aβ 1 for further comparison.
Figure 11 compares strategy aβ 1 to the default value of β and a large value (β = 20) without
(left) and with local search (right). In both cases, the pre-scheduled parameter variation is able
to combine the best results of both fixed settings, achieving a better anytime performance.

In the case of the number of ants, m, the strategies studied here start with a single ant
and increase the number of ants as the algorithm progresses. Figure 12 shows that there is a
progressive degradation of the quality of the results as the rate by which ants are added increases.
The best results are obtained with the lowest rate (am 1, which adds one ant after every 10
iterations) for both cases, with and without local search (only the local search case is shown for
conciseness). The comparison between the fixed and pre-scheduled settings (Figure 13) shows a
clear benefit of the pre-scheduled variation of m, which matches the good performance obtained
for short runtimes by only one ant and for long runtimes by a large number of ants.

For varying q0 for MMAS, we tested strategies that start with a high value of q0 = 0.99 and
decrease it until reaching a setting of q0 equal to 0. Figure 14 shows four alternative strategies
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Fig. 10 MMAS, scheduled variation of parameter β; the three strategies aβ 1 to aβ 3 start
each with β equal to 20 and set β to 3 after 50 (aβ 1), 100 (aβ 2), and 200 (aβ 3) iterations,
respectively.
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Fig. 11 MMAS, comparison of fixed and varying parameter settings for β, left side: case without
local search; right side: case with local search. The adaptation strategy used is aβ1 (see caption
of Figure 10 for details).

that decrease q0 at different rates, namely, by 0.001 every 15 iterations (aq0
1), by 0.001 every

2 iterations (aq0
2), by 0.005 every iteration (aq0

3), and by 0.02 every iteration (aq0
4). Without

local search, the strategies that decrease q0 more slowly result in a faster convergence to good
solutions (not shown here). However, with local search there is a trade-off between the slowest
and the fastest decrease of q0 with the former being better at the start of the algorithm whereas
the latter performs best for higher computation times. This suggests that more sophisticated
strategies may be able to further enhance the performance of the algorithm. Nevertheless, the
comparison of the schedule aq0

2 with the fixed parameter settings shows that the pre-scheduled
parameter variation is able to match the best results of both fixed parameter settings along the
complete execution time of the algorithm.

A general observation from our study of pre-scheduled parameter variation is that considerable
improvements of the anytime behavior of MMAS are possible without substantially affecting
the final performance reached by the algorithm. In some preliminary experiments, which are
summarized in the appendix of this technical report, we verified that the same conclusion is
also true for the parameter α, which weights the influence of the pheromone trails. In fact, for
similar simple schedules as proposed previously, we could observe strong improvements in the
anytime behavior when compared to fixed settings for α. Further studies need to verify whether
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Fig. 12 MMAS, scheduled variation of the number of ants (m). All strategies am 1 to am 5 start
with one ant and iteratively increase the number of ants. In particular, am 1 adds one ant every
ten iterations, am 2 one ant every second iteration, am 3 one ant each iteration, am 4 two ants
each iteration, and am 5 five ants each iteration.
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Fig. 13 MMAS, comparison of fixed and varying parameter settings for parameter m, left side:
case without local search; right side: case with local search. The adaptation strategy used is am1
(see caption of Figure 12 for details).

the same observations on the usefulness of simple pre-scheduled parameter variations hold for
other problems.

7 Conclusions and future work

In this chapter, we have given an overview of the literature on parameter adaptation in ACO al-
gorithms. A variety of approaches have been proposed but the overall impression of the research
results is that further efforts are required to determine which are actually the most suitable
strategies for parameter adaptation and what exactly is their role and importance in ACO al-
gorithms that perform at the state-of-the-art level. Only few of the presented publications have
shown clear computational advantages, for example, in the form of a better average solution
quality reachable in highly effective ACO algorithms.

In the second part of the chapter, we have given an experimental analysis of the impact that
specific parameters have on the anytime behavior of ACO algorithms. For the application of
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Fig. 14 MMAS, scheduled variation of the parameter q0. All strategies (aq0
1 to aq0

4) start at
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Fig. 15 MMAS, comparison of fixed and varying parameter settings for parameter q0, left side:
case without local search; right side: case with local search. The adaptation strategy used is aq0

2 (see caption of Figure 14 for details).

ACS and MMAS to the TSP we could determine a very different behavior of these algorithms.
While the anytime behavior of ACS was rather insensitive to parameter variation, the analysis
of the anytime behavior of MMAS has identified clear opportunities for pre-scheduled parameter
variation. We tested a number of rather straightforward schedules of the values for the parameters
β, m, and q0 in MMAS. As a result, we could observe that the anytime behavior of MMAS can
be greatly improved without a significant loss in final solution quality.

Our computational study can clearly be extended in different directions. An interesting exten-
sion is the study of interactions between different parameter settings. Such a study may hint at
combined variations of at least two parameters that can further improve the anytime behavior of
MMAS or even its final performance. Finally, it is certainly worthwhile to study in more detail
the contribution of adaptive strategies that take into account the internal state of the algorithm
in order to adapt to different classes of instances. For their study, it is probably preferable to
consider problems where the algorithm parameters depend more strongly on specific instance
classes than in the TSP.

As a main conclusion we can state that parameter adaptation is a relatively large field that
is receiving a strong attention by the research community. Many techniques have already been



20 IRIDIA – Technical Report Series: TR/IRIDIA/2010-002

proposed in the context of other heuristic methods, but their adoption in ACO algorithm still
opens a number of research opportunities with a potentially significant impact.
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Appendix: Pre-scheduled parameter variation of α in MMAS

We briefly present results with various fixed values of parameter α for the cases with and without
local search. Results without local search are for one instance with 400 nodes, whereas with local
search, these are for a 3 000 nodes instance. We performed experiments with both ACS and
MMAS. The original description of ACS did not include an explicit parameter α, however, we
add it as an exponent of the pheromone information in Equation 6.

The experimental results with ACS (Fig. 16) show that a value of α = 2 without local search
and a value of α = 1 with local search achieve the best results during the whole run. On the
other hand, MMAS shows a different behaviour, illustrated by Fig. 17. In the case of MMAS,
values larger than the default (α = 1) greatly increase the convergence speed at the earlier stages
of the run, but they appear to lead to stagnation in the last half of the runtime.

In addition, we tested on MMAS the following two pre-scheduled variations of α: aα 0.5 and
aα 1. Both strategies start with α = 5 and decrease this value by 0.5 and 1, respectively, every
25 iterations until reaching α = 1. The comparison between the fixed and the adaptive settings,
illustrated in Fig. 18, shows that aα 0.5 is indeed able to match the best performance of both
fixed settings. Our conclusion is, therefore, that also the parameter α is a good candidate for
parameter adaptation in MMAS.
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Fig. 16 ACS with various fixed values of α; left plot without local search and right plot with
local search.
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Fig. 17 MMAS with various fixed values of α; left plot without local search, right plot with
local search.
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Fig. 18 MMAS, comparison of fixed and varying parameter settings for α, left side: case without
local search; right side: case with local search. The adaptation strategies aα 0.5 (resp. aα 1) start
with α = 5 and decrease it by 0.5 (resp. 1) every 25 iterations until reaching α = 1.
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