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Parameter and state estimation for articulated heavy vehicles
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This article discusses algorithms to estimate parameters and states of articulated heavy vehicles. First,
3- and 5-degrees-of-freedom linear vehicle models of a tractor semitrailer are presented. Vehicle
parameter estimation methods based on the dual extended Kalman filter and state estimation based
on the Kalman filter are presented. A program of experimental tests on an instrumental heavy goods
vehicle is described. Simulation and experimental results showed that the algorithms generate accurate
estimates of vehicle parameters and states under most circumstances.

Keywords: parameter estimation; state estimation; Kalman filter; dual extended Kalman filter;
articulated vehicle

1. Introduction

Some control strategies require the feedback of vehicle states which cannot be measured
easily. Among all vehicle states, sideslip is a very important variable for vehicle dynamics and
control [1–3]. The accuracy of the sideslip measurement has a significant effect on vehicle
control. The sideslip angle can be measured using either optical or Global Positioning System
(GPS) sensors. However, these methods have practical issues of cost, accuracy, and reliability,
that limit their use in production vehicles [4].

Many approaches have been proposed to estimate the sideslip angle, or equivalently the
lateral velocity, in the literature. Among them, the most commonly used method is a model-
based estimator with Kalman filter (KF). In 1960, Kalman [5] published his paper describing
a recursive solution to the discrete-time linear filtering problem. Since then, the KF has been
the subject of extensive research and application.

Zuurbier et al. [6] developed a vehicle controller and a state estimator for a combined
braking and chassis control system to improve the handling of an automobile. The state
estimator was based on a nonlinear vehicle model combined with an extended Kalman fil-
ter (EKF), which was connected to another estimation algorithm for the tyre-road friction
coefficient.
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400 C. Cheng and D. Cebon

There are some reports on other estimation methods for estimating sideslip. Hac and Simp-
son [7] presented an algorithm for estimating vehicle yaw rate and sideslip angle using steering
wheel angle, wheel speed, and lateral acceleration sensors. The algorithm was tested on various
surfaces for handling manoeuvres. The results showed that the algorithm gave good etimates
of yaw rate and sideslip, even in extreme manoeuvres.

In 2004, Ungoren and Peng [8] presented a study on three approaches to vehicle lateral
speed estimation: transfer function approach, state–space approach, and kinematics approach.
The first two methods rely on a vehicle dynamics model, and the last approach is based on the
kinematic relationships of the measured signals. The performance of these three methods was
investigated using simulation and experimental data. The authors concluded that each method
would need to be improved before it could be used alone, or an integrated system could be
developed to produce reliable lateral speed estimation.

In order to estimate the vehicle states and design an active controller using a model-based
estimation approach, an accurate set of parameters is needed for the vehicle model. This means
that some vehicle parameters (e.g. tyre cornering stiffness) must first be estimated. Sienel [9]
reported a method for estimating the tyre cornering stiffness of the front axle of a car, based on
the measurements of front steering angle, yaw rate, and lateral acceleration at the front axle.
Simulation results showed that the estimates of the tyre cornering stiffness to match well with
the values in the vehicle model.

In 2006, Kober and Hirschberg [10] presented a paper concerned with on-board payload
identification for commercial vehicles. The identification system was based on the measured
pressures of the vehicle’s air springs and its lateral acceleration. The identified parameters
include the load mass, the position of its centre of gravity and especially the height of its
centre of gravity. The identified results can be used as driver information or delivered to
vehicle dynamics controllers.

In 2006, Wenzel et al. [11] reported implementation of the dual extended Kalman filter
(DEKF) technique for vehicle state and parameter estimation using two interdependent KFs
running in parallel. The parameter estimator can be switched off, once a sufficiently good set
of parameter estimates has been achieved. The potential benefits of DEKF were shown using
both simulation and vehicle test data. But it was also concluded that appropriate selection of
the process noise covariance matrix is a key factor for the parameter estimation.

Extensive research has been done on parameter and state estimation of passenger cars.
However, papers on parameter and state estimation for articulated heavy vehicles are few.
Little has been found on the key issues of the estimation of tyre cornering stiffness and
trailer’s Centre of Gravity (CoG) position of articulated heavy vehicles.

This article, therefore, deals with parameter and state estimation methods for articulated
heavy vehicles. The modelling is presented in Section 2, including linear vehicle mod-
els, parameter estimation algorithm with DEKF, and state estimation algorithm with KF.
Simulation and experimental results are presented in Sections 3 and 4, respectively.

2. Modelling

2.1. Linear vehicle models

Two different vehicle models are used in the estimation process. A 3-degrees-of-freeedom
(DOF) sideslip/yaw model is used for estimating some of the parameters and a 5-DoF linear
sideslip/roll/yaw vehicle model is used for estimating the remaining parameters and vehicle
states. These models embody the most important aspects of articulated vehicle handling. The
coordinate system of tractor semitrailer is shown in Figure 1.
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Vehicle System Dynamics 401
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Figure 1. Vehicle-fixed coordinate system of tractor semitrailer with the possibility of trailer wheel steering (a) top
view of tractor semitrailer; (b) rear view of semitrailer; (c) side view of tractor semitrailer.

2.1.1. 5-DoF linear sideslip/roll/yaw vehicle model

The 5-DoF sideslip/roll/yaw linear vehicle model has two rigid bodies: the tractor and the
semitrailer. The DOFs are tractor sideslip, tractor yaw and roll, and semitrailer yaw and roll.

The assumptions for the linear vehicle model are as follows:

• The forward speed is a slow-changing state.
• Vehicle parameters are constant but vary with payload.
• The tractor and semitrailer units have no pitch or bounce.
• The angular displacements during the manoeuvres are small, the articulation angle between

the tractor and the semitrailer units is small, and the vehicle dynamics are considered
as linear.
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402 C. Cheng and D. Cebon

• The roll stiffness and damping of the vehicle suspension systems are constant in the range
of roll motions involved.

• Both wheels on an axle have the same slip angle and are modelled as a single wheel as per
the ‘bicycle’ model approach.

• The cornering stiffnesses of the three trailer axles are the same.
• The effects of side wind and road slope are neglected.

The equations representing the 5-DoF linear vehicle are given in the Appendix. Detailed
derivative of the equations can also be found in [12–14]. The state–space representation of
these equations is given by

ẋ = Ax + Bu, (1)

where x = [
φ1 φ̇1 β1 ψ̇1 φ2 φ̇2 β2 ψ̇2

]T
and u = [

δ1f δ2f δ2m δ2r

]T
.

The discrete-time formulation of state–space representation is given by

xk+1 = Adxk + Bduk. (2)

The subscript k denotes the discrete-time instant kT , and T is the time step.

2.1.2. 3-DoF linear yaw vehicle model

A 3-DoF linear yaw vehicle model was used to design the parameter estimation algorithm
for tyre cornering stiffnesses and trailer yaw moment of inertia. This model is a simplified
version of the 5-DoF linear vehicle model described previously. The tractor is free to sideslip
and yaw, and the semitrailer can yaw relative to the trailer, but the equations and variables
related to roll motion. The equations of the 3-DoF vehicle model can also be expressed using
the state–space representations in Equations (1) and (2), with x = [

β1 ψ̇1 β2 ψ̇2
]T

.

2.2. Theory

2.2.1. Introduction

In this article, a model-based estimator with the 5-DoF linear vehicle model is proposed to
estimate the vehicle states. In order to implement the estimator, all the vehicle parameters in
the 5-DoF linear vehicle model need to be known.

Some of the vehicle parameters do not change with different payloads, such as tractor yaw
and roll moments of inertia and height of the tractor sprung mass CoG. These parameters are
assumed to be known. They could be obtained from the tractor manufacturer or calculation,
or by measurements.

A second group of vehicle parameters may vary with payloads, but they can be available
from the manufacturer, or by rough estimation as well. These include suspension roll stiffness
and damping ratio, the axle roll stiffness caused by tyre deflection, and the roll stiffness of the
hitch point (fifth wheel) between tractor and semitrailer.

Among the rest of the vehicle parameters required by the model, some can be calculated
based on the static axle loads, as could be measured by an on-board axle weighing system (e.g.
using air spring pressure sensor). These include the masses of tractor and semitrailer, and the
longitudinal CoG positions of tractor and semitrailer. These values are regarded as constant if
the payload condition is not changed. The weights and CoG positions used in the simulations
reported here were based on measured axle weights.
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Vehicle System Dynamics 403

Apart from the above parameters, there are still some key vehicle parameters that remain
unknown. These are the tyre cornering stiffnesses, trailer roll and yaw moments of inertia, and
the height of trailer sprung mass CoG. In order to estimate these vehicle parameters, estimation
algorithms based on the DEKF technique are introduced below.

Initial simulation results showed that the accuracies of parameter estimation were not good,
and the estimation values did not converge in some circumstances, when all the vehicle param-
eters (tyre cornering stiffnesses, trailer roll and yaw moments of inertia, height of trailer
sprung mass CoG) were estimated at the same time using the DEKF. Consequently, a two-step
procedure was developed to estimate all vehicle parameters.

Figure 2 shows the overall estimation process. In ‘parameter estimation stage 1’, the tyre
cornering stiffnesses and the trailer yaw moment of inertia are estimated using the 3-DoF
linear yaw vehicle model. These parameters are then assumed fixed in ‘parameter estimation
stage 2’, when the height of trailer sprung mass CoG and the trailer roll moment of inertia
about the trailer roll axis is estimated with the 5-DoF linear vehicle model.

When all the vehicle parameters are known, the vehicle states are estimated by a model-based
estimator with KF.
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(5-DoF model)

Estimate parameters
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(5-DoF model)

Plant vehicle model 
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Figure 2. Parameter and state estimation process.
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404 C. Cheng and D. Cebon

2.2.2. Kalman filter

The KF is an efficient recursive filter that can estimate the states of a dynamic system from a
series of incomplete and noisy measurements.

The linear vehicle model can be formulated as follows:

xk+1 = Adxk + Bduk + wk, (3)

yk = Cdxk + Dduk + vk, (4)

where x is the state vector, u the input vector, y the output vector, with w and v being the
process and output noise vectors, respectively. w and v are assumed to be independent white
Gaussian noise process.

p(w) ∼ N(0, Q), (5)

p(v) ∼ N(0, R), (6)

where N(,) means a normal probability distribution.
The process noise covariance matrix Q and the measurement noise covariance matrix R

could vary at each time step. However, they are assumed to be constant in this article. The
measurement noise covariance matrix R can be determined from the measured signals on the
experimental vehicle.

2.2.3. Dual extended Kalman filter

Wan and Nelson [15,16] presented reviews of the EKF for both state and parameter estimation.
They introduced the DEKF, which is a combined state and parameter estimation algorithm
using two EKFs in parallel.

Figure 3 schematically illustrates the operation scheme of the DEKF. At each time step, the
‘state EKF’ generates state estimates, and requires a vector of parameters p̂k−1 for the time
update. The ‘parameter EKF’ generates parameter estimates, and requires a vector of states
x̂k−1 for the measurement update. The detailed equations of the DEKF are given in [17].

For finite data sets, the algorithm can run iteratively over the data until the parameters
converge [18]. In addition, the parameter covariance matrix Qp can be adjusted by repeatedly

State EKF

Time
update

Measurement
update

Time
update

Measurement
update

1ˆ k −x ˆ kx

ˆ
kp1ˆ k −p

ˆ k
−x

ˆ k
−p

Parameter EKF

ky
Measurements

Figure 3. Operation scheme of the DEKF.
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Vehicle System Dynamics 405

multiplying by a ‘forgetting factor’ λ(0 < λ < 1) at each time step. This will enhance the
convergence of the parameter estimation in the DEKF for a linear vehicle system. Simulation
results, in the following, show that the parameters in the DEKF can effectively converge to
the reference values. Refer to Cheng [17] for further details.

Both EKFs are needed to estimate the parameters; however, for state estimation, it is possible
to switch off the parameter estimator, once a sufficiently good set of parameter estimates
has been achieved. In this article, the parameter estimates are determined by averaging the
estimated values for the rest of the estimation process, after their estimation variations are
reduced within a small amount of percent (e.g. ±1%). This leaves the state estimator function
only. This should increase the accuracy of the state estimator, because it reduces the parameter
uncertainties.

2.2.4. Parameter estimation stage 1 (Ca, I2zz)

The tyre cornering stiffnesses Ca and the trailer yaw moment of inertia I2zz are estimated by
DEKF with the 3-DoF linear yaw vehicle model based on the knowledge of the mass of each
vehicle unit and the longitudinal position of its CoG. The tractor yaw moment of inertia is
assumed to be available as well. The tyres are assumed to be linear (i.e. the cornering stiffnesses
of each axle are assumed to be constant) with varying slip angle and lateral load transfer. This
is reasonable for small steer angles. To simplify the estimation process, the tyre cornering
stiffnesses of all tyres on the trailer are lumped together into a single value as follows:

Cα2 = Cα2f
+ Cα2m

+ Cα2r
, (7)

where Cα2f
, Cα2m

, and Cα2r
are the cornering stiffness of front/middle/rear trailer axles (N/rad)

The measured signals include the longitudinal vehicle speed, front wheel steering angle,
trailer wheel steering angles, yaw rate of tractor, and yaw rate of semitrailer. The estimated
vehicle parameters include tyre cornering stiffnesses of tractor steering axle, tractor drive axle
and trailer axles, and the trailer yaw moment of inertia.

2.2.5. Parameter estimation stage 2 (h2s , I2sx ′x ′)

Based on known axle weights and parameters from estimation stage 1 (see Figure 2), the
height of trailer sprung mass CoG, h2s , and the trailer roll moment of inertia about the trailer
roll axis, I2sx ′x ′ , are estimated by DEKF with the 5-DoF linear vehicle model.

Because the height of the trailer sprung mass CoG and the trailer roll moment of inertia are
interdependent, initial simulations showed that, when estimated simultaneously, the estimated
values of these two parameters would not converge.

The approach taken was, therefore, to assume a uniformly distributed payload; to estimate
the payload height by DEKF and hence to calculate the height of trailer sprung mass CoG and
the trailer roll moment of inertia.

The following assumptions were necessary to perform the calculation:

• The height of unladen trailer sprung mass CoG is known.
• The unladen trailer roll moment of inertia around the roll centre of trailer is known.
• The payload is uniformly distributed across the area of the trailer box.
• The height of the trailer floor is known from the measurement.
• The vertical distance between the trailer roll centre and the trailer floor does not change

with payload.
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406 C. Cheng and D. Cebon

With the estimated height of payload from the trailer floor, h2p, the height of trailer sprung
mass CoG and trailer roll moment of inertia around the trailer roll centre can be calculated as
follows:

h2s = h2se
m2se

+ (h2f + (h2p/2))(m2s − m2se
)

m2s

, (8)

I2sx ′x ′ = I2sx ′x ′
e
+ 1

12
(m2s − m2se

)((Dp)2 + (h2p)2) + (m2s − m2se
)

(
h2f + h2p

2
− h2r

)2

,

(9)

where h2se
is the height of empty trailer sprung mass CoG (m), m2se

the empty trailer sprung
mass (kg), h2f the height of trailer floor from the ground (m), h2p the height of payload from
the trailer floor (m), h2r height of trailer roll axis from the ground (m), I2sx ′x ′

e
the roll moment

of inertia of empty trailer sprung mass around trailer roll axis (kgm2), and Dp the width of
payload in trailer (m).

The measured signals include the longitudinal vehicle speed, front wheel steering angle,
trailer wheel steering angles, tractor roll rate and yaw rate, and trailer roll rate and yaw rate.

2.3. Vehicle state estimation

Using the approach described above, all the vehicle parameters, including the mass, moment
of inertia, dimensional parameters, tyre cornering stiffnesses, etc., can be found step-by-step.

Vehicle states can then be estimated using a KF with a limited number of noisy measure-
ments. The measured signals can be divided into two groups. One group is system inputs,
including longitudinal vehicle speed, tractor front wheel steering angle, and trailer axle steer-
ing angles. The other group is system outputs, including roll rate and yaw rate of tractor, and
roll rate and yaw rate of semitrailer.

The unmeasured vehicle states, estimated by the KF, are roll angle and sideslip of the tractor,
and roll angle and sideslip of the semitrailer.

3. Simulation

3.1. Introduction

Simulation results are described in this section to verify the estimation algorithms. Only the
condition with fully laden trailer is discussed in this article. Other test cases are detailed in [17].

A standard high-speed SAE J2179 lane change [19] was used to determine vehicle param-
eters and state estimation. The vehicle followed a half-sinusoidal ‘lane change’ path with an
offset of 1.464 m, in the distance of 61 m, at a speed of 88 km/h. Repetitions of this lane
change were used for the parameter estimation.

The offset magnitude of the lane change manoeuvre for parameter estimation depends on
the signal-to-noise ratio. Generally, the more severe the lane change (with the vehicle tyres
still in, or near, their linear region), the more accurate the estimated parameters should be. For
state estimation, any driving manoeuvre is acceptable, even a straight line manoeuvre with a
constant vehicle speed.

For parameter estimation, the process noise covariance matrix Qx was set to zero. While
for the vehicle state estimation, the process noise covariance matrix Qx was set to a small
diagonal matrix, that is, Qx = I × 10−8, where I is an identity matrix.
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Vehicle System Dynamics 407

In addition, a forgetting factor λ was used in the DEKF algorithm [16], working together
with the parameter covariance matrix Qp. The parameter covariance matrix Qp was repeatedly
multiplied by the forgetting factor λ at each time step. The forgetting factor λ allows the DEKF
to apply less emphasis on previous information about parameter uncertainties as time grows.

The initial values of the estimated vehicle parameters were set as either 80% or 120% of
the values in the plant vehicle model.

Simulations using the same vehicle models for the plant, and in the estimation algorithms,
proved the correctness of the estimation algorithms and the feasibility of using repetitions
of a lane change as the driving manoeuvre for parameter estimation. The simulation results
presented here are for the much more realistic nonlinear plant vehicle model in TruckSim [17].
This model includes translational and rotational motions of tractor and semitrailer, vertical
and roll motions of each axle, wheel steer, and wheel rotation. The most important source of
nonlinearity in the model is the side force behaviour of the tyres, which is a nonlinear function
of slip angle and normal load.

The measurements used in the KF are outputs from the TruckSim model with added white
Gaussian noise.

The parameter estimation results for tyre cornering stiffnesses and trailer yaw moment of
inertia are given in Section 3.2. Then, the parameter estimation results of the height of payload
are given in Section 3.3. Finally, the state estimation results are given in Section 3.4.

3.2. Tyre cornering stiffnesses and trailer yaw moment of inertia

The DEKF with the 3-DoF vehicle model was used to estimate the tyre cornering stiffnesses
and trailer yaw moment of inertia. The simulated measurements were tractor yaw rate ψ̇1

and trailer yaw rate ψ̇2. The corresponding measurement noise covariance matrix R was
determined from measured sensor noise levels on the test vehicle as follows:

R =
[

1.52 × 10−5 0
0 1.11 × 10−5

] [
ψ̇1

ψ̇2

]
. (10)

(The diagonal elements of R have dimensions of [noise units]2, in this case (rad/s)2.)
The initial parameter covariance matrix Qp was set as follows:

Qp =

⎡
⎢⎢⎣

(475)2 0 0 0
0 (766)2 0 0
0 0 (1273)2 0
0 0 0 (413)2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

Cα1f

Cα1r

Cα2

I2zz

⎤
⎥⎥⎦ , (11)

where the square root of the terms of Qp (475, etc.) is 0.1% of the nominal values of the
estimated parameters. The forgetting factor λ was set as 0.999.

Figure 4 shows the estimation results for the tyre cornering stiffnesses of the trailer axles
and trailer yaw moment of inertia. The estimated values are shown as dashed lines, while
the reference value is a solid line in Figure 4b. Since the values of tyre cornering stiffnesses
in TruckSim vary with slip angle and vertical load, the approximate range of the reference
values is shown as dash–dot lines in Figure 4a. These were determined by running the vehicle
simulation in TruckSim at 88 km/h, with front wheel steering angle at 0.1◦ and 1◦. With 1◦
front wheel steering, the tyre sideslip angles of each axle are close to the maximum values of
tyre sideslip angles in the lane change.
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408 C. Cheng and D. Cebon

Figure 4. Estimation of Cα and I2zz in TruckSim: (a) tyre cornering stiffness of all tyres on trailer axles and (b)
trailer yaw moment of inertia. Estimated values ( ), range of reference values ( ), reference values
( ).

The estimated values of linearised tyre cornering stiffnesses and trailer yaw moment of iner-
tia are Cα1f

= −4.77 × 105 N/rad, Cα1r
= −8.98 × 105 N/rad, Cα2 = −1.30 × 106 N/rad,

and I2zz = 4.24 × 105 kgm2. The estimation error for the trailer yaw moment of inertia is
2.5%, relative to the reference value in TruckSim model. It is due to the nonlinearity in the
TruckSim model.

3.3. Height of trailer sprung mass CoG and trailer roll moment of inertia

The height of the payload from the trailer floor was estimated using the DEKF with the 5-DoF
model.

The simulated measurements were tractor roll rate φ̇1, trailer roll rate φ̇2, tractor yaw rate
ψ̇1, and trailer yaw rate ψ̇2. The corresponding measurement noise covariance matrix R was
set as follows:

R =

⎡
⎢⎢⎣

4.52 × 10−4 0 0 0
0 4.70 × 10−5 0 0
0 0 1.52 × 10−5 0
0 0 0 1.11 × 10−5

⎤
⎥⎥⎦

⎡
⎢⎢⎣

φ̇1

φ̇2

ψ̇1

ψ̇2

⎤
⎥⎥⎦ . (12)

The initial parameter covariance matrix Qp was set as follows:

Qp = [(0.005)2]h2p, (13)

where 0.005 is approximately 0.5% of the nominal values of the estimated height of the
payload. The forgetting factor λ was set as 0.999. The initial value of the height of payload
was set as 0.1 m, which is much less than the actual value 1.23 m. The estimated results of
tyre cornering stiffnesses and trailer yaw moment of inertia from parameter estimation stage 1
(Section 3.2) were used in the estimation stage 2.

Figure 5 shows the estimated payload height. The estimated value is 1.237 m, shown as
dashed line. The reference value from the TruckSim model is 1.23 m, shown as solid line. It
can be seen that the estimated value of the height of payload is very close to the reference
value. The estimation error is about 0.6%.

Based on the estimated payload height, the height of trailer sprung mass CoG and the trailer
roll moment of inertia around the trailer roll axis were calculated using Equations (8) and (9)
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Figure 5. Estimation of h2p in TruckSim.

as h2s = 1.602 m and I2sx ′x ′ = 4.35 × 104 kgm2. These values are accurate within 0.1% and
0.4%, respectively.

The simulation of parameter estimation with non-uniform payload distribution in TruckSim
was also examined. Instead of assuming that the trailer payload is uniformly distributed across
the rectangular area of the trailer box, it was assumed that it occupies a point along the trailer
centre line with the effective height of payload.

The estimated value of the height of payload in this case was 1.084 m. The estimation error
is about 11.9%, relative to the reference value of 1.23 m in the TruckSim model.

Based on the estimated payload height, the height of trailer sprung mass CoG and the trailer
roll moment of inertia around the trailer roll axis [see Equations (8) and (9)] were calculated
as h2s = 1.553 m and I2x ′x ′ = 3.99 × 104 kgm2. The estimation errors are 2.9% and 20%,
respectively, relative to the reference values of 1.6 m and 33,308 kgm2. The estimation error is
caused by that the estimation algorithm assuming the payload is uniformly distributed while
it is actually not in the TruckSim plant model. In the extreme condition, the algorithms still
gave good estimates of the height of trailer sprung mass CoG and the trailer roll moment of
inertia. Refer to Cheng [17] for details.

3.4. Vehicle state estimation

Once all vehicle parameters were available from the parameter estimation, the performance
of the state estimation was examined in simulation with the TruckSim vehicle model.

The simulated measurements were tractor roll rate φ̇1, trailer roll rate φ̇2, tractor yaw rate
ψ̇1, and trailer yaw rate ψ̇2. The corresponding measurement noise covariance matrix R is set
the same as in Equation (12). While the process noise covariance Qx is set as follows:

Qx = I × 10−8, (14)

where I is an 8 × 8 identify matrix.
Figure 6 shows the estimated trailer states in the lane change manoeuvre. It can be seen

from Figure 6c that the estimated trailer’s sideslip is very close to the reference value from the
vehicle model in TruckSim. The largest differences between the estimated and the reference
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Figure 6. Estimated states of the TruckSim model in lane change manoeuvre: (a) roll angle of sprung mass of
trailer; (b) roll rate of sprung mass of trailer; (c) sideslip angle of sprung mass of trailer; and (d) yaw rate of sprung
mass of trailer.

values occur at sections with high sideslip values. These differences are due to the reduction of
effective tyre cornering stiffnesses in TruckSim with lateral load transfer and tyre slip. These
nonlinear effects were ignored in the estimation algorithms.

4. Experiment

4.1. Introduction

To investigate the viability and practicality of the estimation approach, an instrumented test
vehicle, comprising a two-axle tractor unit and a three-axle semitrailer unit, was used. The
vehicle parameter and state estimation algorithms were verified through a series of tests.

4.1.1. Vehicle configuration

The vehicle used in the testing was the Cambridge Vehicle Dynamics Consortiums (CVDC)
experimental vehicle with active steering trailer. The CVDC tractor is a Volvo FH-12 4 ×
2, which has been fitted with a variety of sensors. It is typical of two-axle tractors used
throughout UK and the European Union. Further details about the tractor unit can be found
in [20,21].

The active steering trailer is a 12.5 m long tri-axle trailer fitted with active steering axles
developed by CVDC. All axles on the trailer were locked during the experiment, for this study
of parameter and state estimation. Further details of the steering system are given in [22].
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Vehicle System Dynamics 411

The floor of the trailer was fitted with 18 ballast water tanks, which were uniformly dis-
tributed. The trailer with fully filled water tanks is near full UK legal weight limits for this
vehicle configuration: 38 tonne Gross Vehicle Weight (GVW). The trailer was also fitted with
outriggers on each side to prevent rollover during extreme manoeuvres.

4.1.2. Signal logging system

A distributed, multi-level control system was used to log the signal data from all sensors, and
the trailer’s steering system. It was based on the distributed control system which was first
developed for the CVDC’s roll/ride vehicle [20,21], and then adapted for the steering trailer
project in [22].

Signals from the sensors on the tractor and semitrailer units were passed to two ‘ICON’
industrial computers, one on each vehicle unit. These signals were filtered, digitised, and pro-
cessed in the local controllers before being transmitted to a central ‘Global Control Computer’
in the tractor unit, via the vehicle’s CANbus communication network. The global controller
stored the data for each test and a laptop computer was used to retrieve the data from the global
controller and save it for post-processing. Further details of this logging system can be found
in [20,21]. The ICON computer on the steering trailer was specifically built and commissioned
for the steering projects. Further details can be found in [22].

4.1.3. Sensors

The CVDC experimental vehicle is fitted with a number of sensors to measure key vehicle
states. The measured tractor’s states in this project include the front wheel steering angle,
longitudinal vehicle speed, roll rate, and yaw rate. Further details about these sensors are
given in [20,21,23].

The CVDC steering trailer unit is also fitted with a number of sensors. The sensor signals
used in this project include the roll rate, yaw rate, and the steering actuator displacement
on each axle (used to determine the steering angle of each trailer axle). See Jujnovich and
Cebon [22] for further details.

In order to determine the accuracy of the estimated sideslip of trailer, a Corrsys–Datron
two-axis optical sensor was fitted to the trailer to measure the sideslip. It was mounted on a
cross beam at the position of landing leg of the trailer. The distance between the optical sensor
and the fifth wheel was 2.34 m, and the wheel base of trailer was 8.0 m. This optical sensor
takes a series of images of the road surface and uses correlation between images to determine
the longitudinal vehicle speed and sideslip angle. Refer to [24] for more details about the
optical sensor.

4.1.4. Test manoeuvres

Vehicle testing was conducted at the Motor Industry Research Association (MIRA) proving
ground at Nuneaton, Warwickshire, UK, in November 2006. The vehicle was subjected to a
lane change manoeuvre, to validate the parameter and state estimation algorithms.

The length of the lane change was 30 m and its lateral offset was 4 m. The testing track
is dry ‘delugrip’ surface, whose nominal coefficient of friction is 0.75. The nominal path for
the manoeuvre was marked on the test track with yellow tape. The vehicle speed was kept
constant for each test. Three runs were performed to ensure repeatability. See Cheng [17] for
further details of these tests.
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412 C. Cheng and D. Cebon

4.2. Tyre cornering stiffnesses and trailer yaw moment of inertia

Some initial investigation showed that the estimation results were not accurate, if all tyre
cornering stiffnesses Cα1f

, Cα1r
, Cα2 and trailer yaw moment of inertia I2zz were estimated

simultaneously with DEKF.
In order to improve the performance of the parameter estimation algorithm, the stiffness

of the tyres on the tractor front axle was assumed to be known. A value of Cα1f
= −4.20 ×

105 N/rad was used for the steering axle in the laden case. This is based on the manufacturer’s
data for this tyre.

The measurements of system outputs were tractor yaw rate ψ̇1 and trailer yaw rate ψ̇2. The
corresponding measurement noise covariance matrix R was set the same as in Equation (10).

The initial parameter covariance matrix Qp was set as follows:

Qp =
⎡
⎣(600)2 0 0

0 (1000)2 0
0 0 (400)2

⎤
⎦

⎡
⎣Cα1r

Cα2

I2zz

⎤
⎦ , (15)

where the square root of the terms of Qp are approximately 0.1% of the values of the estimated
parameters. The forgetting factor λ was set as 0.9995.

The estimation results from all of the tests were similar. Only one of them is shown. Figure 7
shows the parameter estimation results for the tyre cornering stiffness of trailer axles and
trailer yaw moment of inertia. The estimated values of the tyre cornering stiffnesses of tractor
drive axle, trailer axles, and trailer yaw moment of inertia are Cα1r

= −1.12 × 106 N/rad,
Cα2 = −1.66 × 106 N/rad, and I2zz = 3.59 × 105 kgm2.

By adding the yaw moment of inertia of unladen trailer and the yaw moment of inertia of
the fully filled water tanks around the trailer whole mass CoG, the yaw moment of inertia of
fully laden trailer is approximately 3.80 × 105 kgm2. It can be seen from Figure 7 that the
estimated value of the trailer yaw moment of inertia I2zz = 3.59 × 105 kgm2 is approximately
6% below the reference value.

There are several possible reasons for the estimation error, including nonlinearity of the
vehicle parameters, offsets of the sensor signals, inaccurate values of the assumed tractor
yaw moment of inertia I1zz, and assumed cornering stiffness of the tyres on the tractor front
axle Cα1f

.
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Figure 7. Estimation of Cα2 and I2zz for test vehicle: (a) tyre cornering stiffness of all tyres on trailer axles; (b)
trailer yaw moment of inertia.
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Vehicle System Dynamics 413

4.3. Height of trailer sprung mass CoG and trailer roll moment of inertia

With the estimated values of tyre cornering stiffnesses and yaw moment of inertia of
trailer, the height of the payload in the trailer was estimated with the estimation algorithm
and the height of trailer sprung mass CoG and trailer roll moment of inertia were
calculated.

The height of unladen trailer sprung mass CoG was assumed to be 1.20 m, and the roll
moment of inertia of the unladen trailer about its roll axis was I2sx ′x ′ = 1.27 × 104 kgm2.

The measurements were tractor roll rate φ̇1, trailer roll rate φ̇2, tractor yaw rate ψ̇1, and
trailer yaw rate ψ̇2. The corresponding measurement noise covariance matrix R was set the
same as in Equation (12).

The initial parameter covariance matrix Qp was set the same as in Equation (13), and the
forgetting factor was set as λ = 0.9995. The initial value of the height of payload above the
floor of the trailer was set as 0.1 m. The estimated tyre cornering stiffnesses and trailer yaw
moment of inertia, from the vehicle testing data in Section 4.2, were used to estimate the
height of the payload.

Figure 8 shows the estimation results for the height of payload from the trailer floor. The
estimated value of the height of payload is shown as dashed line. The reference value (the
height of the water tanks is 1.145 m) is shown as solid line. The estimated payload height
was 1.257 m, which is slightly different from the reference value. This is mostly due to the
inaccuracy of the suspension roll stiffness and damping used in the estimation algorithm.

The height of trailer sprung mass CoG and the trailer roll moment of inertia was calculated
as h2s = 1.609 m and I2sx ′x ′ = 4.40 × 104 kgm2.

It can be seen that the two-stage estimation procedure yields good results.
It also can be seen that it takes more than 10 repetitions for the estimated parameters to

converge at both stages above, as shown in Figures 7 and 8. Currently, the parameter estimation
algorithm can only be used off-line with the measurements in vehicle tests. This convergence
time is not an issue for off-line estimation. But it may restrict the online application of the
algorithms.

4.4. Vehicle state estimation

When all the vehicle parameters were available, the vehicle states were estimated using the
state estimator.

The measurements were tractor roll rate φ̇1, trailer roll rate φ̇2, tractor yaw rate ψ̇1, and trailer
yaw rate ψ̇2. The corresponding measurement noise covariance matrix R was set the same as
in Equation (12), and the process noise covariance Qx was set the same as Equation (14).

Figure 9 shows the estimated vehicle states in a lane change manoeuvre with fully laden
trailer. It can be seen that the estimated sideslip at the position of the landing leg in both
conditions are close to the reference values measured by the optical sensor.

The estimated values generated by the KF have much less noise than the measured sig-
nal. This will improve the performance of the active trailer steering controller developed by
Jujnovich and Cebon [22].

Overall, the two-step method can estimate the parameters off-line, with good accuracy in
comparison with the measurements in vehicle test. There are difficulties with online real-
time applications due to the nature of two-step estimation and the convergence time. Further
investigation is needed for real-time application of the parameter estimation algorithm.

In addition, road camber, nonlinear tyre characteristics, and varying road surface conditions,
which are highly coupled with sideslip and tyre cornering stiffness, are not included in this
article. This will limit the practical applications of the estimation algorithms.
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Figure 8. Estimation of h2p for the test vehicle.
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Figure 9. Estimation of vehicle states for test vehicle in lane change manoeuvre: (a) roll angle of sprung mass of
trailer; (b) roll rate of sprung mass of trailer; (c) sideslip angle at position of trailer landing leg; and (d) yaw rate of
sprung mass of trailer.

5. Conclusions

(1) A model-based KF was designed for vehicle state estimation.
(2) Estimation algorithms based on the DEKF were designed to estimate the vehicle states

and parameter values simultaneously.
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Vehicle System Dynamics 415

(3) Simulation results using a nonlinear plant model in TruckSim showed that the linear
parameter estimation algorithm could achieve a reasonably accurate estimation of vehicle
parameters, considering the nonlinearity of the plant vehicle model and the signal noise.
The model-based estimator gave good estimates of vehicle states for low lateral accel-
eration levels, even though there may be some modest errors in the estimated vehicle
parameters.

(4) Experiments were conducted to verify the vehicle parameter and state estimation algo-
rithms. The experimental study verified the viability of the estimation approach for an
experimental vehicle.
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Nomenclature

Superscripts and subscripts
�i variable of the ith unit of articulated heavy vehicle (φ, β, ψ)

For the vehicle of tractor semitrailer, 1-tractor, 2-semitrailer
�̇ first-time derivative of the variable (φ, β, ψ)

�̈ second-time derivative of the variable (φ, ψ)

A, B matrices of continuous-time state–space representation
Ad , Bd , Cd , Dd matrices of discrete-time state–space representation
C1f/r roll damping of front/rear suspension of tractor (N/rad)
C2 roll damping of all suspensions of semitrailer (N/rad)
Cα1f/r

tyre cornering stiffness of tyres on the front/rear axle of tractor (N/rad)
Cα2 tyre cornering stiffness of all tyres of trailer (N/rad)
Dp width of payload in trailer (m)
Fy12c

lateral component of directional forces at coupling point between tractor and semitrailer (N)
(pointing in the direction of y-axis on the tractor, pointing in the opposite direction of y-axis
on the semitrailer)

I identity matrix
I2sx′x′

e
roll moment of inertia of sprung mass of empty trailer, measured about roll axis of trailer (kgm2)

Iisxx roll moment of inertia of sprung mass of vehicle unit i, measured about CoG centre of sprung
mass (kgm2)

Iisx′x′ roll moment of inertia of sprung mass of vehicle unit i, measured about roll axis of vehicle unit
i (kgm2) (=Iisxx + mis (his − hir )

2)

Iisxz roll/yaw product of inertia of sprung mass of vehicle unit i, measured about CoG centre of
sprung mass (kgm2)

Iizz yaw moment of inertia of whole mass of vehicle unit i, measured about CoG centre of whole
vehicle mass (kgm2)

J cost function of optimal control
K vector of gains in the optimal control
K1f/r roll stiffness of front/rear suspension of tractor (Nm/rad)
K1tf/r roll stiffness of front/rear axle and tyres of tractor (Nm/rad)
K∗

1f/r roll stiffness of front/rear suspension of tractor adjusted with tyre vertical stiffness (Nm/rad)
(1/K∗

1f/r = (1/K1f/r ) + (1/K1tf/r ))
K2 roll stiffness of trailer suspensions (Nm/rad)
K2t roll stiffness of trailer axles with tyres (Nm/rad)
K∗

2 roll stiffness of trailer suspensions adjusted with tyre verticals stiffness (Nm/rad) (1/K∗
2 =

(1/K2) + (1/K2t ))
K12 roll stiffness of coupling point between tractor and semitrailer (Nm/rad)
N(, ) normal probability distribution
Nβi

∂Mz/∂β = ∑
j xi,jCαij

, partial derivative of net tyre yaw moment w.r.t. sideslip angle
(Nm/rad)
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416 C. Cheng and D. Cebon

Nδ1f
∂Mz/∂δ1f = −x1f Cα1f

, partial derivative of net tyre yaw moment of tractor front axle w.r.t. steer
angle (Nm/rad)

Nδ2f/m/r
∂Mz/∂δ2f/m/r = −x2,f/m/rCα2f/m/r

, partial derivative of net tyre yaw moment of each trailer axle
w.r.t. steer angle (Nm/rad)

Nψ̇i
∂Mz/∂ψ̇i = ∑

j l2
i,jCαij

/u, partial derivative of net tyre yaw moment w.r.t. yaw rate (Nm/(rad/s))
Qp parameter covariance matrix
Qx process noise covariance matrix
R measurement noise covariance matrix
T time step
Yβi

∂Fy/∂β = ∑
Cαij

(j th axle on the vehicle unit i), partial derivative of net tyre lateral force w.r.t.
sideslip angle (N/rad)

Yδ1f
∂Fy/∂δ1f = −Cα1f

, partial derivative of net tyre lateral force of tractor front axle w.r.t. steer angle
(N/rad)

Yδ2f/m/r
∂Fy/∂δ2f/m/r = −Cα2f/m/r

, partial derivative of net tyre lateral force of each trailer axle w.r.t. steer
angle (N/rad)

Yψ̇i
∂Fy/∂ψ̇i = ∑

j li,jCαij
/ui , partial derivative of net tyre lateral force w.r.t. yaw rate (N/(rad/s))

g gravity constant (m/s2)

h2f height of trailer floor from the ground (m)
h2p height of payload from the trailer floor (m)
h2se height of sprung mass CoG of unladen trailer, measured upwards from the ground (m)
hic height of coupling point on vehicle unit i, measured upwards from the ground (m)
hicr height of coupling point on vehicle unit i, measured upwards from roll axis of sprung mass of vehicle

unit i (m)
hir height of roll centre of sprung mass of vehicle unit i, measured upwards from the ground (m)
his height of sprung mass CoG of vehicle unit i, measured upwards from the ground (m)
k discrete-time instant kT in discrete-time state–space equations
l1f/r distance between the whole mass CoG of tractor and the front/rear axle (m)
l2r distance between the whole mass CoG of semitrailer and the middle trailer axle (m)
l2ce distance between the fifth wheel and the trailer rear end (m)
lic distance between the whole mass CoG of vehicle unit i and the coupling point (m)
lie distance between the whole mass CoG of vehicle unit i and the rear end of the same vehicle unit (m)
m2se sprung mass of empty unladen trailer (kg)
mi total mass of vehicle unit i (kg)
mis sprung mass of vehicle unit i (kg)
p̂ vector of estimated parameters
u input vector
ui longitudinal velocity of vehicle unit i (m/s)
v output noise vector
w process noise vector
x vector of vehicle states
x̂ vector of estimated vehicle states
y output vector
αif/m/r tyre slip angle of front/middle/rear axle of vehicle unit i (rad)
βi sideslip angle of vehicle body of vehicle unit i on roll axis under the whole vehicle mass CoG position

(rad)
δif/m/r steer angle of tyres on the front/middle/rear axle of vehicle unit i (rad)
λ forgetting factor in DEKF
φi absolute roll angle of sprung mass of vehicle unit i (rad)
ψi yaw angle of vehicle body of vehicle unit i (rad)
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Appendix

The equations representing the motion of the tractor are (refer to the list of Nomenclature and Figure 1 for definitions
of the symbols) as follows:

m1u1(β̇1 + ψ̇1) − m1s (h1s − h1r )φ̈1 = Yβ1 β1 + Yψ̇1
ψ̇1 + Yδ1f

δ1f + Fy12c
, (A1)

−I1sxzφ̈1 + I1zzψ̈1 = Nβ1 β1 + Nψ̇1
ψ̇1 + Nδ1f

δ1f − Fy12c
l1c, (A2)

[I1sxx + m1s (h1s − h1r )
2]φ̈1 − I1sxzψ̈1 = m1sg(h1s − h1r )φ1 + m1s (h1s − h1r )[u1(β̇1 + ψ̇1) − (h1s − h1r )φ̈1]

− (K∗
1f + K∗

1r )φ1 − (C1f + C1r )φ̇1 + K12(φ2 − φ1) − Fy12c
h1cr .

(A3)

Since the roll motion of axles is neglected in the equations, the resultant roll stiffness K∗
1f and K∗

1r caused by both
suspension and tyre are calculated by 1/K∗

1f = (1/K1f ) + (1/K1tf ) and 1/K∗
1r = (1/K1r ) + (1/K1tr ).

The equations representing the motion of semitrailer are as follows:

m2u2(β̇2 + ψ̇2) − m2s (h2s − h2r )φ̈2 = Yβ2 β2 + Yψ̇2
ψ̇2 + Yδ2f

δ2f + Yδ2m
δ2m + Yδ2r

δ2r − Fy12c
, (A4)

−I2sxzφ̈2 + I2zzψ̈2 = Nβ2 β2 + Nψ̇2
ψ̇2 + Nδ2f

δ2f + Nδ2m
δ2m + Nδ2r

δ2r − Fy12c
l2c, (A5)

[I2sxx + m2s (h2s − h2r )
2]φ̈2 − I2sxzψ̈2 = m2sg(h2s − h2r )φ2 + m2s (h2s − h2r )[u2(β̇2 + ψ̇2) − (h2s − h2r )φ̈2]

− K∗
2 φ2 − C2φ̇2 − K12(φ2 − φ1) + Fy12c

h2cr . (A6)
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Similarly, the resultant roll stiffness K∗
2 due to tyre and suspension stiffness are calculated by

1

K∗
2

= 1

K2
+ 1

K2t

.

The kinematic constraint equation between the tractor and the semitrailer is given by

β̇2 = β̇1 − h1c − h1r

u1
φ̈1 + h2c − h2r

u2
φ̈2 − l1c

u1
ψ̈1 − l2c

u2
ψ̈2 + ψ̇1 − ψ̇2. (A7)
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