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Abstract

A major effort of systems biology is the building of accurate and detailed models of bi-
ological systems. Because biological models are large, complex, and highly nonlinear,
building accurate models requires large quantities of data and algorithms appropriate
to translate this data into a model of the underlying system. This thesis describes
the development and application of several algorithms for simulation, quantification
of uncertainty, and optimal experimental design for reducing uncertainty. We ap-
plied a previously described algorithm for choosing optimal experiments for reducing
parameter uncertainty as estimated by the Fisher information matrix. We found,
using a computational scenario where the true parameters were unknown, that the
parameters of the model could be recovered from noisy data in a small number of
experiments if the experiments were chosen well. We developed a method for quickly
and accurately approximating the probability distribution over a set of topologies
given a particular data set. The method was based on a linearization applied at the
maximum a posteriori parameters. This method was found to be about as fast as
existing heuristics but much closer to the true probability distribution as computed
by an expensive Monte Carlo routine. We developed a method for optimal experi-
mental design to reduce topology uncertainty based on the linear method for topology
probability. This method was a Monte Carlo method that used the linear method to
quickly evaluate the topology uncertainty that would result from possible data sets
of each candidate experiment. We applied the method to a model of ErbB signaling.
Finally, we developed a method for reducing the size of models defined as rule-based
models. Unlike existing methods, this method handles compartments of models and
allows for cycles between monomers. The methods developed here generally improve
the detail at which models can be built, as well as quantify how well they have been
built and suggest experiments to build them even better.

Thesis Supervisor: Bruce Tidor
Title: Professor of Biological Engineering and Computer Science





Acknowledgments

Foremost, I acknowledge the unequivocal and unequaled support of my wife, Patricia.

Having joined me near the beginning of my graduate work at MIT, she has been

my primary source of encouragement through the frustrations and exasperations of

graduate research. As I move on in my career, I look forward to continuing my life

with her.

My Mom, Dad, and my brothers, John and Mark, were the first supporters of my

work in Cambridge. Even though I moved away from Ohio, they always felt close.

This thesis owes its existence to my advisor Bruce Tidor, who has provided the

guidance and resources necessary to complete this work. He is particularly responsible

for encouraging the biological applications of the methods I developed. He brought

together my colleagues in the Tidor lab, including Josh Apgar, Jared Toettcher,

Bracken King, Nate Silver, Yang Shen, Felipe Gracio, Yuanyuan Cui, Nirmala Paudel,

Ishan Patel, Gil Kwak, Tina Toni, Andrew Horning, Brian Bonk, Raja Srinivas, David

Flowers, Kevin Shi, David Witmer, Gironimo Mirano, and Sally Guthrie. These

people made coming into the lab fun and deserve to be thanked for putting up with

my occasional speculations on grand problems and frequent rants on everything that

is wrong with science today.

My closest collaborator was Tim Curran from the Forest White lab, a classmate

and superb mass-spectrometrist who provided the only real data analyzed in this

thesis. More important were our discussions into designing and refining both his and

my methods.

Jacob White provided much helpful guidance in refining my methods, especially in

the areas of optimization, simulation, linear algebra, and Matlab early in my graduate

work.

I finally acknowledge Ryan Dorow and Sean O’Reilly. The weekly card games we

have together are just an excuse to discuss science, economics, policy, etc. They have

helped keep me sharp and sane while I completed by graduate work.





Contents

1 Introduction 17

1.0.1 Mechanistic Modeling . . . . . . . . . . . . . . . . . . . . . . 19

1.0.2 KroneckerBio Modeling Toolbox . . . . . . . . . . . . . . . . . 22

1.0.3 Statistical Modeling . . . . . . . . . . . . . . . . . . . . . . . 26

1.0.4 Project Summaries . . . . . . . . . . . . . . . . . . . . . . . . 28

2 Convergence in Parameters and Predictions using Optimal Experi-

mental Design 31

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.1 Scenario Overview . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.2 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.3 The Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.4 Data Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.5 Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.6 Parameter Goal . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Efficient Bayesian Estimates for Discrimination among Topologically

Different Systems Biology Models 55

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

9



3.2.1 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2.2 Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2.3 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2.4 Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2.5 Akaike Information Criterion . . . . . . . . . . . . . . . . . . 69

3.2.6 Schwarz Information Criterion . . . . . . . . . . . . . . . . . . 69

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4 An Optimal Experimental Design Method for Efficiently Reducing

Topology Uncertainty 79

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.1 Scenario Overview . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.2 Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2.4 Priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2.5 Topology Probability . . . . . . . . . . . . . . . . . . . . . . . 87

4.2.6 Optimal Experimental Design Algorithm . . . . . . . . . . . . 89

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5 Exact Coarse-grained Reduction of Rule-based Models Featuring

Compartments and Cyclization 107

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.2.2 Model Assembly . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.2.3 Fragmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.2.4 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.2.5 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

10



5.2.6 Measurement Uncertainty . . . . . . . . . . . . . . . . . . . . 127

5.2.7 Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6 Conclusion 131

A Material for Chapter 2 137

B Material for Chapter 3 147

B.0.1 Quadratic Terms . . . . . . . . . . . . . . . . . . . . . . . . . 150

B.0.2 Linear Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

B.0.3 Constant Terms . . . . . . . . . . . . . . . . . . . . . . . . . . 153

B.0.4 Determinant Terms . . . . . . . . . . . . . . . . . . . . . . . . 154

B.0.5 Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . 155

11



12



List of Figures

2-1 Nonlinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2-2 Illustration of EGF-NGF model topology . . . . . . . . . . . . . . . . 36

2-3 Parameter uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2-4 Parameter error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2-5 Final prediction errors . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2-6 Prediction errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3-1 Illustration of linear topology probability . . . . . . . . . . . . . . . . 61

3-2 MAPK topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3-3 Typical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3-4 Divergence of each method from the gold standard . . . . . . . . . . . 72

3-5 Accuracy of the most probable topology . . . . . . . . . . . . . . . . 73

3-6 Bias in methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4-1 The topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4-2 Topology probability after nominal experiment . . . . . . . . . . . . . 88

4-3 Expected entropies of candidate experiments . . . . . . . . . . . . . . 90

4-4 Effect of heregulin on experiment quality . . . . . . . . . . . . . . . . 91

4-5 Distribution of results from top experiments . . . . . . . . . . . . . . 93

4-6 Impact of parameter prior in experiment 211 . . . . . . . . . . . . . . 97

4-7 Impact of parameter robustness in experiment 211 . . . . . . . . . . . 99

4-8 Distribution of results by topology . . . . . . . . . . . . . . . . . . . 102

5-1 Exploding species count . . . . . . . . . . . . . . . . . . . . . . . . . 108

13



5-2 Measurement uncertainty relationship . . . . . . . . . . . . . . . . . . 127

5-3 Behavior of best-fit model . . . . . . . . . . . . . . . . . . . . . . . . 128

A-1 Experiment effectiveness by number of perturbations . . . . . . . . . 140

A-2 Mixing experiments between goal functions . . . . . . . . . . . . . . . 141

A-3 Prediction errors after 3 experiments . . . . . . . . . . . . . . . . . . 142

A-4 Uncertainty after random experiments . . . . . . . . . . . . . . . . . 143

A-5 Uncertainty after random experiments . . . . . . . . . . . . . . . . . 143

A-6 Uncertainty after single experiment with all perturbations . . . . . . 144

A-7 Uncertainty with randomly effective experiments . . . . . . . . . . . . 145

A-8 Convergence with randomly effective experiments . . . . . . . . . . . 145

A-9 Experiments needed versus time points taken . . . . . . . . . . . . . . 146

14



List of Tables

2.1 Optimal Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1 Top 10 experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2 Deconstruction of experiment 179 . . . . . . . . . . . . . . . . . . . . 95

4.3 Deconstruction of experiment 211 . . . . . . . . . . . . . . . . . . . . 96

4.4 Influential parameters according to the parameter prior . . . . . . . . 98

4.5 Influential parameters according to the posterior volume . . . . . . . 100

A.1 True parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A.2 Experiments chosen for randomly effective experiments . . . . . . . . 139

A.3 Effect of measurement uncertainty on parameter convergence . . . . . 139

15



16



Chapter 1

Introduction

Upon the publication of first draft of the human genome in the year 2000, the director

of the NIH Francis Collins remarked, “I would be willing to make a prediction that

within 10 years, we will have the potential of offering any of you the opportunity to

find out what particular genetic conditions you may be at increased risk for, based

upon the discovery of genes involved in common illnesses like diabetes, hypertension,

heart disease, and so on [1].” For the most important diseases fourteen years later,

their genetic basis remains incomplete with at most partial correlations between par-

ticular genes and disease outcome having been uncovered [2, 3, 4]. The enthusiasm

surrounding the human genome project was warranted given the knowledge of the

day. Some of the most destructive diseases in the West, heart disease, cancer, stroke,

Alzheimer’s disease, diabetes, and kidney disease [5], appeared and still appear to

originate not from external agents, such as bacteria and viruses, but from internal

pathological processes. As the genome is the program for making and maintaining

a human being, where else would we look for answers to those diseases except in

the genome? Of the inborn diseases whose genetic basis had been solved, each was

caused by a single mutated gene. Sickle-cell disease was found by Linus Pauling and

colleagues in 1949 to be caused by a mutation in the hemoglobin molecule [6]. The

first mutation that caused cystic fibrosis was discovered by Francis Collins and col-

leagues in 1988 [7]. Using technology ultimately used for the human genome project,

the U. S.–Venezuela Collaborative Research Project located the gene responsible for

17



Huntingtin’s disease in 1993 [8]. With so many diseases remaining to be understood,

it was reasonable to just sequence the human genome, vacuuming up the remaining

unsolved diseases, rather than search for each one individually. It turned out that

many of the unsolved diseases were outside the paradigm of one gene, one protein,

one disease. The human body is an extraordinarily complex machine, and some of

the defects are born not from a single broken device, but from the miscooperation

of slightly misaligned parts. Thus, large swaths of biology and medicine cannot be

reduced to a single gene. These swaths, which seem to encompass almost all of human

biology, can only be understood as large networks of interacting components. Out of

these limitations arose systems biology, a study of biology not through the removal

and study of a single part but through the reassembly of many parts. Biological

systems can exhibit behavior that is more complex than can be easily predicted from

the behavior of the individual parts. Integrating the parts to discover the emergent

behavior requires at least mathematics and, for all but the simplest collection of parts,

a computer.

A computational model is one of the most important tools available in systems

biology. A computational model is a means to simulate the behavior of the system

under different conditions, assumptions, parameters, and other differences that may

be of interest to us. A running model allows scientists to study parts of the system

that are experimentally unobservable with current technology. The detail to which

a model can be trusted depends on how it was constructed. There are a number of

different frameworks in which to construct a model, each with its own advantages

and disadvantages [9].

At the most abstract level are the machine learning techniques. These methods

analyze a set of measurements and return a relationship between the parts. The

advantage of this technique is that few assumptions need to be made about the

data. It does not need to be a particular type of data or even the same type of

data. The disadvantage is that no mechanistic or causal relationships are determined,

only correlative ones. Because these methods are not constrained by mechanistic

assumptions, they typically use a simple and efficient framework, so that very large
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data sets can be examined with low computational cost. A famous example of a

method of this type in the biological sciences is hierarchical clustering [10], which

takes particular measurements under different conditions and clusters the behavior of

the measurements according to how similarly the measurements change in response

to the conditions. In terms of understanding the system, measurements that behave

similarly may measure components closely associated in the real system. In terms of

prediction, such models cannot predict the results of an experiment whose conditions

are dissimilar to conditions already studied. Other important methods at this abstract

level are principle component analysis [11] and partial-least squares [12], which extract

correlations between measured variables.

At the next level are non-mechanistic network models. These models have nodes,

representing species in the model, and edges between the nodes, representing causal

relationships between the nodes. The advantage of these modeling techniques is that,

by disregarding the mechanism of molecular interaction, they can use a mathematical

structure that is amenable to automatic construction from data. The disadvantage is

that disregarding the mechanism results in models that necessarily deviate from the

behavior of biological systems. Some well-known frameworks include Bayesian net-

works [13], Petri nets [14], and Boolean networks [15]. Some techniques can assemble

these models automatically from data in a computationally efficient way [16, 17, 18].

At the most detailed level are the mechanistic models. These models are built out

of chemical reactions between molecular species. The advantage is that there are few

assumptions required because, fundamentally, much of biology actually is networks

of chemical reactions.

1.0.1 Mechanistic Modeling

The reaction-diffusion master equation (RDME) is a general formula for describing

chemical reactions [19]. The RDME models a system as a collection of particles each

with a state and a position. The particles can be produced from nothing via a zeroth-

order reaction, which typically represents particles being introduced from outside the

conceptual boundary of the model, since nothing can truly be produced in this way.
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A single particle can transform into one or more particles via a first-order reaction,

and two particles can collide to form one or more particles. As a representation of

chemical kinetics, the RDME makes the following assumptions:

1. The state retains no memory of the past (Markov property)

2. The position changes over time according to molecular diffusion (Brownian mo-

tion)

Concerning the state, it would be more accurate to describe each particle with

numerous internal bond lengths and angles. Its propensity to react either alone or

in a collision with another particle is dependent on the state of those bonds. The

probability that a particle will or will not be internally configured to react in a

particular way is abstracted in the rate constant for that reaction. Once sufficient

time has passed since the particle was created for the internal configuration to reach

equilibrium, the probability of the particle being in a particular configuration remains

constant and the Markov property holds. We can justify making the assumption

broadly across biology by recognizing that the time it takes for atoms to move around

within a molecule is usually much shorter than the time it takes from molecules to

move around the cell. Whenever the assumption is not valid, additional states may

be added to the model to represent these metastable internal configurations.

Concerning diffusion, it is more accurate to describe the motion of the particles as

traveling in straight lines until they collide with another molecule. The approximation

of Brownian motion is appropriate as long as the distance that the molecules travel

between reactions is much greater than the distance they travel between collisions

[20]. Given that the cell is made mostly of water, which is largely a non-reactive

solvent for the purposes of biology, the simplifying assumption is well justified.

The reaction-diffusion master equation describes the evolution of the spatial prob-

ability distribution of each state over time. In general, solving the partial differen-

tial equation to obtain the probability distribution is impossible analytically and

intractable numerically. There are various spatial-stochastic algorithms to generate

a simulation of the system—one particular draw from the probability distribution
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[21, 22, 23]. The advantage of spatial stochastic algorithms is that few assumptions

need to be made. Each simulation tracks the movement and change in each particle

of the system. Needless to say, this can be very computationally expensive. Even

if there are many copies of each state, each particle must be tracked individually, it

must diffuse individually, and its propensity to react with each other particle must

be computed as well. Furthermore, because each simulation is stochastic, it is neces-

sary to run the simulation many times in order obtain a representative sample of the

system’s behavior.

One way to speed up the simulation is to make an assumption that allows for

lumping together particles with identical states. The assumption, which underlies

the use of partial differential equation modeling, is as follows:

3. Each state is a continuous density

This assumption is valid when the number of particles in each state is very large

such that the reaction of a single particle has a negligible impact on the local con-

centration of that state. The density can be evolved over time with a numeric partial

differential equation solver. With this assumption, the stochastic nature of the chem-

ical system has been averaged out. Simulation produces a deterministic result, which

obviates the need for running many simulations in order to obtain the average be-

havior. The caveat is that this assumption is not true for many biological systems.

Models that include DNA, for example, will have about two copies of each gene, which

is certainly not large enough to satisfy a continuous density assumption.

Disregarding the assumption made for partial differential equation modeling, a

different assumption can be made instead to arrive at non-spatial stochastic modeling,

which is as follows:

4. Each state is well-mixed within the reaction volume

This assumption is valid if the time it takes for a reaction to occur is much longer

than the time it takes each state to spread throughout the reaction compartment.

Every particle of a particular state is the same no matter where it was produced.
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This allows the spatial part of the simulation to be removed entirely, keeping only

a count of the number of particles in each state. Simulation of this model can be

done using various stochastic simulation methods, the most famous of which is the

Gillespie algorithm [24]. As long as the number of particles is small, the simulation is

computationally inexpensive, but if the number of particles is large, then simulating

each molecule change one at a time will be very slow.

Combining both additional assumptions leads to the kinetic aspect of the law of

mass action, the primary modeling framework of this thesis. By assuming that the

system is both well-mixed and uses a large count of particles, it can be modeled using

ordinary differential equations (ODEs).

1.0.2 KroneckerBio Modeling Toolbox

There are many features of biological systems, such as compartments, outputs, and

higher-level approximations, that may or may not be supported in a specific modeling

framework. To assist me in completing the work described in this thesis, I developed

a software toolbox in Matlab called KroneckerBio, a project that began with Joshua

F. Apgar, Jared E. Toettcher, Jacob K. White, and Bruce Tidor. This toolbox is

free and open-source software. A model in KroneckerBio is composed of the following

components: compartments, states, inputs, parameters, seeds, reactions, and outputs.

Compartments map to cellular compartments like the cytoplasm, nucleus, cyto-

plasmic membrane, or DNA. They have a specific dimensionality, 3 for volumes, 2

for membranes, 1 for fibers, and 0 for points. The rates of bimolecular reactions,

being dependent on the frequency of collisions, are inversely proportional to the size

of the compartment in which the reaction takes place. If the reaction is between two

species in different compartment, such as a free ligand binding to a membrane-bound

receptor, then the compartment with the highest dimensionality is the compartment

for the reaction. The volume of the compartments is represented by v a vector of

length nv.

KroneckerBio uses the formalism that a reaction rate is the change in the amount

of the species, not the change in the concentration. When dealing with a reaction in a

22



single compartment, using the concentration is somewhat simpler because the volume

of the compartment does not need to be considered, except indirectly through the

concentration. But when molecules can move between the compartments, conversion

factors need to be used when concentrations are tracked. For example, a molecule

moved from one compartment to another twice as small will increase the concentration

in the new compartment twice as much as it decreased the concentration in the old

compartment, even though the amount gained is equal to the amount lost. Computing

all rates and tracking all states as amounts allows the simulation to be simplified.

States are the main species of the model. Each state has a value that represents

the number of molecules of a particular type that exists. This value evolves over time

according to the simulation of the reactions of the model. Each state is confined to a

particular compartment, so that chemically identical states in different compartments

are tracked separately. The initial condition of the state may be a constant defined

in the model or a function of the seed parameters. The amount of the states as a

function of time are represented by x (t) a vector of length nx.

Inputs are also species of the model, but their amount as a function of time is

defined before the simulation and is not affected by the reactions, even if the inputs

are reactants or products of a reaction. Inputs are useful in representing species

that are at the boundary of the model—species whose behavior we already know

or can control. For the models used in this thesis that have inputs, most represent

external ligands whose conditions are under the control of the experimenter. For

any simulation in KroneckerBio, a flag determines whether the inputs are defined as

part of the model (the same for all experiments) or part of the experiment (may be

different for each experiment). The amount of the inputs are represented by u (t, q)

a vector of length nu as an arbitrary function of time and input control parameters q

a vector of length nq.

Parameters are the rate parameters for the reactions. Each reaction names ex-

actly one kinetic parameter to use. Each reaction may also have a scaling factor

for its parameter, which is only useful when simulating rule-based models. The rate

parameters are represented by k a vector of length nk.
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Seeds are parameters that determine the initial amounts of states. Each state

is a linear combination of seed parameters, and states may share seed parameters.

For any simulation, a flag determines whether the seeds are defined as part of the

model or as part of the experiment. The initial amounts of the states are computed

according to the following formula:

x (0) = x0 =
dx0

ds
· s+ xc (1.1)

where s is a vector of length ns representing the seed values, dx0

ds
is a matrix nx by

ns representing the mapping of the seeds onto the states they influence, and xc is the

constant initial amount of the state.

Reactions determine how the states evolve over time. All reactions are assumed

to follow the well-established law of mass action [25]. Each reaction has at most two

reactants and usually at most two products. The rate of the reaction is equal to the

rate parameter times the amount of the first reactant times the amount of the second

reactant divided by the volume of the reaction compartment. Mass-action reactions

can be represented in a compact matrix notation:

r (t, x, u) = D1 · x+D2 · (x⊗ (x/vx)) +D3 · (u⊗ (x/vx))

+D4 · (x⊗ (u/vu)) +D5 · (u⊗ (u/vu)) +D6 · u+ d
(1.2)

where a⊗ b represents the Kronecker product of vectors a and b, and here a/b repre-

sents elementwise division of vector a by vector b. Matrices D1 through D6 and vector

d (collectively called the D matrices) have a number of rows equal to the number of

reactions nr in the model and a number of columns appropriate to the number of

species or Kronecker product of species. These matrices are exceedingly sparse. For

each row across all the matrices there is exactly one non-zero entry; it is the rate

parameter for the reaction put into the correct column that represents the reactant

or reactants of that reaction.

The system of ODEs is generated by applying the stoichiometry matrix to the
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rate:

ẋ =
dx

dt
= f (t, x, u) = S · r (t, x, u) (1.3)

where S is an integer matrix nx by nr, mapping how much each state, either reactant

or product, is changed by the reaction. Because S and the D matrices are constant

over the course of a simulation, we distribute S over theD matrices when constructing

the model. This results in the KroneckerBio formulation of mass-action models,

a compact and computationally efficient representation assuming that fast sparse

matrix multiplication and addition algorithms are available:

f (t, x, u) = A1 · x+ A2 · (x⊗ (x/vx)) + A3 · (u⊗ (x/vx))

+A4 · (x⊗ (u/vu)) + A5 · (u⊗ (u/vu)) + A6 · u+ a
(1.4)

where matrices A1 through A6 and vector a (collectively called the A matrices) map

the effect that each species or Kronecker product of species has on the state variables.

Outputs are a linear combination of the states and inputs and are the observables

of the model. They are a convenience for biological models which usually have many

complexes or aggregates of monomeric species. Most measurement techniques cannot

measure the amounts of all complexes in the system; they can only measure something

like the total amount of phosphorylation of a protein. There is no species in the model

that represents this observable because the phosphorylated protein is bound up in

many complexes, possibly in multiple copies in some complexes. Outputs provide

a way to define observable quantities without having to sift through the state data

externally after every simulation. It also allows for competing topologies with different

numbers of states to describe the same data. The outputs are computed via the

following formula:

y (t) = C1 · x (t) + C2 · u (t) + c (1.5)

where C1 is a matrix ny by nx representing the contribution of each state to each

output, C2 is a matrix ny by nu representing the contribution of each input to each

output, and c is a vector of length ny representing the constant contribution to each

output. For most models, only the states contribute to the outputs.
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1.0.3 Statistical Modeling

We can conceptually separate the model into two main components: the topology and

the parameters. The topology is the structure of the model—here it is the equations

underlying f (t, x, u, k). For a mechanistic model, the topology is the set of chemical

reactions/interactions that occur. The parameters are values within the topology

that can be varied to produce different simulations—here it is k, s, and q. Both

the topology and the parameters can have uncertainty. Topology uncertainty would

question whether or not a particular reaction takes place, while parameter uncertainty

would question how fast that reaction takes place.

For a given problem, not all the kinetic parameters and seed parameters need to

be free, unknown parameters of the model. Some parameters of the model may be

known, with the rest being variable. In this thesis, the variable kinetic parameters

θk, the variable seed parameters θs, and the variable input control parameters θqwill

be concatenated into a single vector θ of length nθ and be simply referred to as “the

parameters”.

When gathering data on a system, some measurements are more likely to be

observed under one model than another. Because of this, data provides evidence in

favor of some models at the expense of others. The likelihood pŷ|m,θ (ŷ, m, θ) is the

quantification of the probability that measurements ŷ will be observed if the true

model consists of topology m and parameters θ. The likelihood function is specific to

a set of experimental conditions and measurement scheme.

In a Bayesian framework, the probability distribution of the parameters given the

data is described by the parameter posterior, which is proportional to the product of

the likelihood and parameter prior:

pθ|ŷ,m (θ, ŷ,m) =
pŷ|θ,m (ŷ, θ,m) · pθ|m (θ,m)

pŷ|m (ŷ, m)
(1.6)

where pθ|m (θ,m) is the prior for the parameters θ in topology m and pŷ|m (ŷ, m) is

26



the marginal likelihood defined by:

pŷ|m(ŷ, m) =

∫

θ

pŷ|m,θ(ŷ, m, θ) · pθ|m(θ,m) (1.7)

Similarly, the probability distribution of the topologies given the data is given by the

topology posterior, which is proportional to the product of the marginal likelihood

and the topology prior:

pm|ŷ (m, ŷ) =
pm (m) · pŷ|m (ŷ, m)
∑

i pm (i) · pŷ|m (ŷ, i)
(1.8)

where pm (m) is the prior for the topologies.

For all but the simplest biological models, the posterior distributions of the pa-

rameters and topologies do not have analytical solutions. They can only be computed

with Monte Carlo methods—in particular, methods like the Metropolis-Hastings al-

gorithm to sample the nonlinear parameter space [26, 27]. Because the number of

parameters in a biological model can be very large, the volume of parameter space

that needs to be sampled grows exponentially, making it computationally expensive

to accurately evaluate the parameter or topology probability. This is particularly

problematic when it is not just the one probability distribution for the current data

that is desired but when the probability calculation is a subproblem in a larger prob-

lem, such as estimating the probability distribution for each experiment in a large

set of candidate experiments in order to evaluate which ones are likely to be best at

reducing the uncertainty.

If fast but accurate approximations can be developed, then the high cost of the

Monte Carlo methods can be circumvented. The main theme of this thesis is the

development and use of approximations to arrive at a good estimate faster than a

Monte Carlo method for the purpose of optimal experimental design. In particular,

we found that a linear approximation of the model, and the analytical solution it

allowed, was an excellent approximation for several important problems in systems

biology.
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1.0.4 Project Summaries

In Chapter 2, we use the Fisher information matrix, a well-established linear approx-

imation, to predict what the parameter uncertainty would be after performing an

experiment from a large set of candidate experiments. We synthetically perform the

best experiment according to the expected Fisher information matrix by simulating

a “true” model and generating noisy data. We found that the approximation is effec-

tive for selecting experiments that reduced parameter uncertainty, which also reduced

parameter error of the best-fit parameters compared to the “true” parameters, and

reduced prediction error of the best-fit model compared to the behavior of the “true”

model. This method was demonstrated using a model of the EGF-NGF pathway.

In Chapter 3, we develop a method using linearization to compute the topology

probability. This is a new method in system biology, which solves a problem that is

uniquely difficult to solve with a Monte Carlo method. This chapter also introduces

a new Monte Carlo method, which was necessary to act as a gold standard to which

to compare the performance of the linearization method. The computational cost

of linearization was similar to the cost of several popular heuristics, but produced a

probability distribution much closer to the gold standard. The method was tested on

a set of four topologies of the one-step MAPK cascade.

In Chapter 4, we use the linearization method to develop an algorithm for evaluat-

ing experiments’ ability to reduce topology uncertainty. The linearization method is a

subfunction of the algorithm. This optimal experimental design algorithm generates

random potential data sets from each candidate experiment and uses the linearization

method to evaluate how much the topology uncertainty was reduced by the synthetic

data. The method was tested on a mass-action model of ErbB signaling.

In Chapter 5, we develop a different type of algorithm, not based on uncertainty

or optimal experimental design, but one to improve the speed of simulating rule-based

models. If some proteins in the model have many modification sites, then there are an

exponentially large number of possible species of that protein. However, if the sites

behave independently and are measured independently, then it is possible to simulate
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the system using fewer states than the number of species. Existing methods for this

problem do not take into account the importance of compartments in biology nor the

problem of proteins being able to form a cycle. Our method introduces compartments

and allows for proteins to form cycles. The method was used to construct a model

of the ErbB pathway, with a level of detail at the top of the pathway that would be

impossible using conventional model building techniques.
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Chapter 2

Convergence in Parameters and

Predictions using Optimal

Experimental Design

2.1 Introduction

A goal of systems biology is to construct models that incorporate known mechanisms

and reflect existing data under laboratory conditions. The notion is that mechanistic

mathematical models not only recapitulate existing measurements but can ultimately

predict the behavior of modeled systems under novel conditions not previously tested

and be the basis of design work as is done in more mature fields of engineering

[28, 29, 30, 31, 32, 33]. In addition, high-quality, mechanistically accurate models can

also lead to novel insights into systems operations. Biological systems are sufficiently

complex that mechanistic models will contain large numbers of parameters and thus

will require correspondingly large quantities of data for training. Recent and future

advances in the development of high-throughput measurement techniques (e.g., mass

spectrometry [34] and flow cytometry [35]) continue to increase the quantity and

quality of data collected, and bring nearer the promise of meeting the needs of true

mechanistic understanding of biological complexity, as reflected in the ability to de-
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termine the topology and parameters of corresponding models. Important research

areas include the development of experimental design strategies to efficiently deploy

experiments to probe new aspects of their operation, computational framing of the

space of relevant models, and probabilistic treatments of model uncertainty. Here we

focus on the first of these areas.

Recent work by Gutenkunst et al. [36] has suggested that it is difficult, if not

impossible, to accurately estimate the parameters of a typical biological model, re-

gardless of how accurately the data is collected, how many species of the model are

simultaneously measured, or how finely the species are measured in time. It was found

that, for typical biological models under typical experimental conditions, there were

some directions in parameter space that had so little effect on the measured quan-

tities that the resulting uncertainty in many of the parameters was too vast to be

overcome by higher quality measurements. In later work by Apgar et al. [37, 38, 39],

however, our group showed that the seemingly vast parameter uncertainty could be

dramatically reduced with a relatively small number of carefully selected perturbation

experiments. We demonstrated that sets of experiments could be found that together

exercised the epidermal growth factor (EGF) and nerve growth factor (NGF) path-

ways in sufficiently complementary ways so as to allow all parameters to be determined

within 10% uncertainty. This proof-of-concept study highlighted a potential role for

computational design of experimental conditions to efficiently reduce parameter un-

certainty.

Our previous work effectively demonstrated the existence in principle of a sequence

of experiments that progressively reduce parameter uncertainty to manageable lev-

els; it did not, however, investigate whether the sequence of experiments might be

discoverable in a practical setting. In an effort to address the challenge of parameter

error reduction issued by Gutenkunst et al. [36], most aspects of our study paralleled

theirs, and these choices precluded drawing conclusions regarding the practicality of

parameter error reduction through our scheme. These limitations included (1) the ac-

tual model parameters were known and used at each stage of the experimental design

progression to select the next experiment in the sequence, but in any real applica-
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Figure 2-1: Nonlinearity. (A) In a linear model, the Fisher information matrix
exactly describes the likelihood of the parameter sets in the neighborhood of the
most likely parameters. This likelihood is a Gaussian, which has contours that are
ellipsoids in parameter space. (B) The likelihood of the parameters of biological
models is not exactly Gaussian. For two parameters of the EGF–NGF model fit to
a nominal experiment, it can be seen that the true contour for the likelihood of the
association and dissociation parameters (green line) are only approximated by the
linearization (orange line). All contours in both plots represent parameter sets of
equal likelihood.

tion the actual model parameters would be unknown; (2) the data measurements in

each experiment provided the average information that could be obtained from any

species at any time, but in practical situations each data point provides information

from a single species at a discrete time; and (3) the model was assumed linear in the

sense that the Fisher information matrix was assumed to accurately represent the

parameter uncertainty, whereas in practice the Fisher information matrix is just the

first (linear) term in an expansion of that error (Figure 2-1). This work addresses the

practicality of setting up and solving as an optimization problem the task of selecting

experiments to progressively reduce parameter uncertainty in biological models by re-

moving these limitations and seeking convergence to the true, unknown parameters.

In particular, the performance of the approach could degrade significantly because

best-fit parameters with their inherent errors, rather than perfect parameters, are

used in the experimental design phase. A major result of the work presented here is

that fit parameters do, indeed, perform well in this role.
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For comparison to previous work from our group and that of Sethna, we carried

out this study with the same model of the EGF and NGF receptor kinase cascades,

which are an important pair of interlaced signaling networks in mammalian cells

[40]. The EGF receptor pathway, in particular, has become one of the best-studied

signaling pathways in biology [41, 42, 43, 44]. Constitutive activation of this pathway

is associated with cancers of the breast, bladder, cervix, kidney, ovary, lung, and

other tissues. Despite nearly half a century of investigation, much remains unknown

about this pathway [45, 46]. A number of models has been developed, differing in

the species included, the connections among them, and the data with which they

were parameterized. The diversity of the available models of this system reflects the

underlying uncertainty concerning the true nature of these pathways, in terms of both

topology and parameters [40, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59]. The

EGF–NGF model used in the current work is an ordinary differential equation (ODE)

model developed by Brown et al. in which the enzymatic reactions of the network

are modeled with Michaelis–Menten kinetics [40].

We used synthetic data sets generated according to the published model and

showed that the uncertainty in all 48 parameters can be effectively reduced below

10% using the discrete data generated from a small set of complementary experiments

chosen according to a greedy optimization algorithm. The parameters estimated

by fitting to the data of these chosen experiments converged to their true values

with a residual error consistent with 10% uncertainty. Furthermore, the error in the

predictions made according to these parameters was consistent with 10% parameter

uncertainty.

2.2 Methods

2.2.1 Scenario Overview

In our scenario, we treated the published model as the true system. To perform a

synthetic experiment, this model was simulated according to the defined experimental
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conditions, and noisy data were generated according to the measurement scheme of

that experiment by adding Gaussian random noise corresponding to 10% measure-

ment error.

A nominal experiment was performed and a starting model was fit to the re-

sulting data. A nominal Fisher information matrix was computed. Using the fitted

model, the expected information matrices for a large set of candidate experiments

were computed. The nominal information matrix was added to each of the expected

information matrices to predict the combined information matrix after doing each

of the candidate experiments. The utility of each sum was quantified using a goal

function, and the highest-ranked experiment was selected.

The selected experiment was performed using the true model to generate noisy

measurements in accordance with the experiment’s design. The model was fit to the

union of the nominal data set and the new data set from the best experiment. This

fitting returned a new parameter set from which the expected information matrices

were recomputed and the subsequent best experiment was selected. This procedure

of computing, selecting, performing, and fitting was repeated iteratively until all the

parameter directions had uncertainties below 10%.

2.2.2 The Model

The model describes signaling from the EGF and NGF receptors in rat PC12 cells

and was developed by Brown et al. [40]. It has 32 species and 48 parameters for 24

reactions in 2 compartments. We obtained a version encoded in the Systems Biology

Markup Language (SBML) from the BioModels Database [60]. The model includes

two extracellular species, EGF and NGF, which each bind to the corresponding re-

ceptor to form two complexes. The remaining species are divided between 11 enzymes

than can exist as either an active or inactive species and four enzymes that are consti-

tutively active. The parameters are divided into three classes: (1) four rate constants

for ligand–receptor association and dissociation, (2) 22 kcat values, and (2) 22 Km

values of the Michaelis–Menten enzymatic reactions. The species, reactions, and rate

parameters were retained from the original model. An illustration of the model topol-
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Figure 2-2: Illustration of EGF-NGF model topology. Each node (except EGF
and NGF) exists in an active and inactive species. Black arrows indicate Michaelis-
Menten reactions that activate the target node, while red arrows inactivate. EGF and
NGF, are exceptions, and bind in a mass-action fashion to their respective receptors
to form an active complex.

ogy is provided in Figure 2-2 and a list of parameters and their values is available in

Table A.1. The extracellular compartment was given a volume of 1000 times that of

the intracellular compartment to reflect the modification made by Apgar et al. [37].

The starting model had the topology of the true model, but each parameter was set

to the geometric mean of the class of parameters to which it belonged.

2.2.3 The Experiments

We defined a battery of candidate experiments that served as a collection of different

conditions and perturbations to the system, a selection of which could potentially

drive a sufficiently wide variety of system behavior to allow definition of most or all

of the parameters with small uncertainty. Each experiment included stimulation with

one of five discrete values of EGF (1.0 × 107, 1.0 × 105, 1.0 × 103, 1.0 × 101, and

0.0 molecules/cell) and five discrete values of NGF (4.56 × 107, 4.56 × 105, 4.56 ×

103, 4.56 × 107, and 0.0 molecules/cell). In this model, 1 ng/ml is equal to 1000

molecules/cell of EGF and 4560 molecules/cell of NGF. In addition, up to three

proteins in the network could have their concentrations changed through knock-down
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or over-expression. The species that could be changed were the two receptors, the

eleven inactive enzymes, and the four constitutively active enzymes, all of which

started with non-zero concentrations as their initial condition. To represent knock-

down or over-expression, each of these species had its initial concentration decreased

or increased to 100-fold its nominal value, respectively. Considering all combinations

of EGF and NGF concentrations and knock-downs and over-expressions, there were

150 475 possible experiments. The nominal experiment was the one with initial EGF

concentration equal to 1000 molecules/cell (1 ng/ml) and initial NGF concentration

equal to 4560 molecules/cell (1 ng/ml) and no knock-downs or over-expressions.

All experiments were performed synthetically by simulation of the system for 120

minutes using the numerical ODE solver ode15s, with analytical Jacobian supplied, in

Matlab R© (2008b, The MathWorks, Natick, MA). Each experiment called for measur-

ing all 32 species at 100 evenly spaced time points, and all data points were subjected

to random Gaussian noise with a standard deviation of 10% or 1 molecule, whichever

was larger. The experimental conditions and measurement scheme are comparable to

those used by Apgar et al. [10].

2.2.4 Data Fitting

The fit of the model to data for any particular parameterization was quantified using

generalized least squares:

χ2(θ) = eT (θ) · V −1
ȳ · e(θ) (2.1)

e(θ) = ȳ(θ)− ŷ (2.2)

where Vȳ is the variance–covariance matrix of the measurements, θ is the vector of

parameters of length nθ, and e(θ) is the difference between the model predictions ȳ(θ)

and the data points ŷ. Vȳ is a square symmetric positive semi-definite matrix the size

of the number of measurements nȳ, and e(θ), y(θ), and ŷ are all vectors of length nȳ.

Our procedure assumed that Vȳ was a constant for the data set. For the example
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in this paper, there was no covariance proper, so Vȳ was diagonal, and we estimated

the uncertainty as 10% of the value of each data point or 1 molecule, whichever was

larger.

The best-fit parameters were defined as the vector θ that minimized χ2(θ). This

nonlinear optimization was accomplished using the active-set algorithm implemented

within fmincon in Matlab. The lower bound of the search space was 1000-fold less

than the smallest value in each class of parameters in the published model; the upper

bound was 1000-fold greater than the largest value in each class.

2.2.5 Information

The Fisher information matrix was used to quantify the knowledge of the parameters.

The Fisher information matrix F (θ) for a set of normalized parameters that affect

the means of a multivariate normal distribution is given by:

F (θ) =

(
∂ȳ(θ)

∂ log θ

)T

· V −1
ȳ ·

∂ȳ(θ)

∂ log θ
(2.3)

where ∂ȳ(θ)
∂ log θ

is the sensitivity of the values of the data points to the normalized

parameters (an nȳ by nθ matrix calculated by integrating the forward sensitivities

together with the system during simulation using the numerical ODE solver ode15s

in Matlab).

To compute the information matrix for candidate experiments, the model was

simulated for each candidate experiment using the fitted parameters. The uncertainty

of each measurement was computed according to the measurement scheme of the

candidate experiment. The sensitivity of each concentration to the parameters was

also integrated. Using Equation 2.3, the measurement uncertainty and sensitivity

were used to compute the information matrix from the expected results of a candidate

experiment. When the information matrix was computed in this way, it was called

an expected information matrix.
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2.2.6 Parameter Goal

Three different goal functions were used to evaluate the efficiency of candidate ex-

periments. Each of the goal functions was based on the eigenvalues resulting from

an eigendecomposition of the information matrix. The inverse square roots of these

eigenvalues correspond to the uncertainties in the eigendirections of parameter space

[61, 62]. The first goal function maximized the number of eigendirections whose

uncertainties were less than 10% and used the remaining directions to break ties:

G1 = −

nθ∑

i=1

gi (2.4)

gi =







1, λi ≥
1

σ2
cut

λi
1

σ2
cut

·nθ
, otherwise

(2.5)

where λi is the ith eigenvalue of the information matrix and σcut is 0.1, the uncertainty

cutoff value. This goal function is equivalent to that used by Apgar et al. [10].

The second goal function minimized the sum of the natural logarithm of the

ellipsoid axes. It is equivalent to minimizing the volume of the uncertainty ellipsoid,

as well as minimizing the entropy of the parameter probability distribution, as well

as maximizing the determinant of the Fisher information matrix:

G2 =

nθ∑

i=1

log λ
−1/2
i (2.6)

The third goal function was identical to the second except that no additional ad-

vantage was given to directions that were tighter than 10%. In other words, directions

that had errors lower than 10% contributed to the goal function the same as if they

were exactly 10%:

G3 =

nθ∑

i=1

max(log λ
−1/2
i , log σcut) (2.7)
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2.3 Results

We began our parameter estimation experiments with no knowledge of the actual

model parameters. Instead, the process was begun with simulated experimental data

with 10% added noise from a nominal experiment (intact network stimulated with

1000 molecules (1 ng/ml) of EGF and 4560 molecules (1 ng/ml) of NGF per cell).

Initial parameters were estimated by fitting to the data according to weighted least

squares, and the corresponding Fisher information matrix was computed. The spec-

tra of inverse-square-root eigenvalues λ
−1/2
i , also referred to as the uncertainties in

parameter eigendirections, is given on the far left column of Figure 2-3 (marked

Nominal). The three panels of the figure correspond to the three goal functions used.

The nominal spectra show some parameter directions to be well determined (uncer-

tainties below 10%) but others to be poorly determined (uncertainties greater than

1000-fold). The actual errors in each parameter are shown in the left of Figure 2-4

(marked Nominal) and are consistent with the uncertainties.

A large collection of 150 475 candidate experiments that included a variety of levels

of stimulation with EGF and NGF acting on versions of the network modified with

up to three expression changes (100-fold over-expression or under-expression each)

was evaluated to determine which would lead to the largest reduction in parameter

uncertainty. The selected experiment was simulated and 10% noise was added to the

resulting concentrations to produce simulated experimental data. New parameters

were fit using cumulative data from the simulated experiments, the corresponding

updated Fisher information matrices were computed, and the process was repeated

iteratively. The resulting uncertainties and parameter errors are given in Figure 2-3

and Figure 2-4. The selection and implementation of experiments proceeded until all

parameter uncertainties were below 10%. The entire procedure was carried out three

times in parallel for the three different goal functions used, with similar results.

The sequential addition of experiments selected in the greedy optimization pro-

gressively reduced parameter uncertainty. Uncertainty was very low after just three

experiments beyond the nominal experiment, and all parameters were determined to
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Figure 2-3: Parameter uncertainty. Progressively choosing the optimal experiment
eventually led to all 48 parameter direction uncertainties being less than 10%. In all
three cases, it took 6 additional experiments. It does not appear that the rate of
convergence was strongly influenced by the particular goal function used.
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Figure 2-4: Parameter error. Here is shown the ratio of the fitted parameters to
the true parameters after each iteration of optimally chosen experiments according to
the three goal functions. “Start” is the scrambled parameter set before the nominal
experiment is fit. Each inset shows a magnified view of the final parameter set error.
The black, green, and red dashed lines are 10%, 20%, and 30% error, respectively. By
the final experiment, all parameter errors are less than 30% and most parameter errors
are less than 10%. This suggests that the linear approximation of the uncertainties is
an appropriate estimate of the underlying parameter error when the data are plentiful
and the uncertainties are small.
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within 10% with six experiments beyond the nominal.

An important aspect of the work is that the approximate parameters fit after

each new experiment were used to compute the Fisher information matrices leading

to the selection of the following experiment. Figure 2-4 shows that, early in the

procedure, many of the estimated parameters were significantly in error, yet they still

led to the selection of experiments that efficiently reduced parameter uncertainty.

This is significant in light of the fact that the theory strictly applies only to linear

models. Even though there are substantial nonlinearities in the EGF–NGF model,

the behavior of the parameter uncertainties is similar to that expected from the linear

theory. After the final experiment, nearly all 48 parameters were correct to within

10% error. On average, 2 parameters were outside 10%, roughly 1 was outside 20%,

and none were outside 30%. This is consistent with the linearized uncertainties from

which it is expected that no more than 33% and 5% of parameters should be outside 1

and 2 standard deviations, respectively (keeping in mind that many of the parameters

had less than 10% uncertainty by the end of the procedure). Taken together, the

results show that the estimated parameters converged to the true parameters and

the residual parameter errors were consistent with the calculated uncertainties. This

correspondence lends confidence to the usefulness of the method for cases where the

actual parameters will be unknown.

The experiments selected are shown in Table 2.1. Three genetic perturbations

were used for each experiment except for the final experiment for goal functions 1

and 3. Because the average information provided by one experiment alone is the

same for 0, 1, 2, or 3 perturbations (Figure A-1), the apparent preference for 3 per-

turbations is probably due not to an inherently greater sensitivity to the parameters

but instead to the greater diversity (and thus, perhaps complementarity) that 3 per-

turbations allow as well as the fact that three-perturbation experiments make up

90% of the candidate experiment pool. One anonymous reviewer noted that, for the

first goal function, there was never chosen an EGF-dominated stimulation, suggesting

reasonable parameter estimation may be achievable without broad exploration of the

input concentration space. It remains to be seen how much of the input space could
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Goal Function 1. Count of uncertainties above 10%

Exp.
[EGF]
(molec./cell)

[NGF]
(molec./cell)

Knocked-down Over-expressed

Nom. 1000 4560
1 0 4560 RasGap, Erk Rap1
2 10 4.56E+07 RapGap Erk, Akt
3 0 4560 Raf1PPtase Mek, C3G
4 1.00E+05 4.56E+07 Sos, Raf1, Braf
5 0 4.56E+07 Braf, C3G, Rap1
6 1.00E+07 4.56E+07 Sos, Ras

Goal Function 2. Sum of log of uncertainties

Exp.
[EGF]
(molec./cell)

[NGF]
(molec./cell)

Knocked-down Over-expressed

Nom. 1000 4560
1 1.00E+07 4560 EGFR, P90Rsk Rap1
2 10 4.56E+05 RasGap, Raf1PPtase Erk
3 1.00E+05 45.6 Sos, Mek, PI3K
4 0 4560 RapGap Braf, Rap1
5 1.00E+07 4560 RasGap Ras, Raf1
6 1000 4.56E+07 Rap1 PI3K, Akt

Goal Function 3. Sum of log of uncertainties floored at 10%

Exp.
[EGF]
(molec./cell)

[NGF]
(molec./cell)

Knocked-down Over-expressed

Nom. 1000 4560
1 0 4.56E+07 RasGap Raf1, Rap1
2 1.00E+05 45.6 Erk, RapGap Braf
3 10 4.56E+05 RasGap Ras, Mek
4 1.00E+07 4.56E+07 Raf1PPtase Sos, Braf
5 10 4560 Braf, C3G, Rap1
6 10 4560 Erk, Akt

Table 2.1: Optimal Experiments. The experiments chosen according each of the
three goal functions are shown here. The scenarios began with fitting to a nomi-
nal experiment. In each case, it required 6 additional experiments to constrain the
parameter uncertainty below 10%. All optimal experiments knocked-down or over-
expressed the maximum of three proteins in the network, with the exception of the
final experiments in the cases of goal functions 1 and 3.
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be removed while still retaining the ability to determine the parameters well within a

small number of experiments. Table 2.1 also shows that different sets of experiments

were used in the three parallel runs using different goal functions. Based on our

previous work we hypothesize that what is important about the sets of experiments

is their internal complementarity [37]. Multiple sets of experiments can efficiently

inform about all 48 parameters, but a set must still be self-complementary to be

informative about all parameters. For example, sets of six experiments constructed

by mixing two experiments from each of the three complementary sets in Table 2.1

were significantly less informative about the parameters than the optimized sets in

the table (Figure A-2).

In a linear system, the outputs change linearly in response to a change in the

parameters. Therefore, when a system has nonnegative outputs for any nonnegative

parameters, the percent error in any output is bounded by the worst percent error

in the parameters. With a nonlinear system, this guarantee disappears. To examine

the effect that the optimal experiments had on the prediction error of the EGF–NGF

model, we compared the predictions of the three final fitted models to the predictions

of the true model. We simulated the model under all 150 475 candidate experimental

conditions using both the true parameters and the final estimated parameters and

sampled the species according to the standard scheme. No noise was added to the

measurements, so that we quantified only the component of the error that came from

incorrect parameterization. We computed the relative error in each prediction:

relerr = |log ȳpred − log ȳtrue| =

∣
∣
∣
∣
log

ȳpred
ȳtrue

∣
∣
∣
∣

(2.8)

where ȳpred is the predicted species concentration and ȳtrue is the actual species con-

centration according to the true model. Predicted or actual concentrations less than

1 molecule/cell were not considered.

Because there were 3200 data points in each experiment (32 species, 100 data

points each), we summarized the prediction error in each experiment in three ways:

(1) the largest prediction error of all the data points in a given experiment, (2) the
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Figure 2-5: Final prediction errors. For all 150 475 experiments, we computed
the relative error of all data points, by comparing the predictions of the final fitted
model to the true model. The error in each experiment was summarized in three
ways: the maximum relative error in any species at any time, the maximum relative
error in active ERK at any time, and the median relative error in active ERK over
all time. Here each column of plots is a different summary and each row is a different
goal function. A, B, and C are for goal function 1; C, D, and E are for goal function
2; and G, H, and I are for goal function 3. A, D, and G are the overall maximum
relative error results; B, E, and H are the maximum ERK relative error results; and
C, F, and I are the median ERK relative error results. As expected, the worst error
in all species clusters around 10% (dashed black line), consistent with parameter
uncertainty of about 10%. Some errors are much worse (∼100%), though this is
dominated by transient intermediate species, as the worst error in active ERK, the
output of the system, is much smaller and almost exclusively confined below 10%.
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largest of all ERK prediction errors, and (3) the median of all ERK prediction errors.

The first summary is the most conservative, but the second and third may be the

most informative, because it is often the prediction error of a specified output, not

of all intermediate species, that is of greatest interest. A histogram of the prediction

errors according to these three summaries from the 150 475 candidate experiments

can be seen in Figure 2-5. The worst prediction errors cluster around 10%, which is

consistent with the parameter uncertainties and parameter errors. Taken together, the

results show that the parameters converged to their true values as data from optimal

experiments were added (Figure 2-4) and the residual prediction error in yet-to-be-

done experiments was consistent with the calculated parameter uncertainty (Figure 2-

5). While entirely expected for linear models, it is gratifying to see similar results in

this nonlinear system representative of the types of signaling models currently used

in systems biology.

In addition to the prediction error after the final iteration, we also examined the

prediction error from the fitted models at intermediate iterations. The predictions

of many experiments made by the models only fit to three optimal experiments were

worse than 10% (Figure A-3). For each of the three error summary types at each

iteration, we further summarized the histograms two ways: (1) the fraction of exper-

iments whose errors were below 10% and (2) the median error over all experiments.

Figure 2-6 shows the summarized prediction errors of the models after each exper-

iment was added. As expected, the predictions by all measures improved nearly

monotonically with increasing data. The improvements in the predictions tended to

taper off with the last few experiments; that is, the experiments chosen to determine

the most difficult parameters did not as greatly improve the global predictions. This

is consistent with the findings of Apgar et al. [37], who showed that the few final

parameters determined by the greedy search algorithm had only a few experiments

that were sensitive enough to these parameters to determine them. The converse,

that there are only a few conditions whose outcome is strongly affected by finally

determined parameters, is shown here.
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Figure 2-6: Prediction errors. As the model was fit to an increasing number of
experiments directed by the three goal functions, we summarized the prediction errors
in the set of candidate experiments compared to the true model according to the three
summaries described in Figure 4: the worst error in all species (blue), the worst error
in active ERK (green), and the median error in active ERK (red). A and B are for
goal function 1; C and D are for goal function 2; and E and F are for goal function 3.
These plots show the fraction of the experiments whose error was less than 10% (left
plots: A, C, and E) and the median error over all experiments (right plots: B, D, and
F). The prediction errors generally improve with each experiment regardless of the
goal function used or the technique used to summarize the error. The early optimally
chosen experiments appear to improve the prediction more than final experiments.
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2.4 Conclusion

Our previous work demonstrated that optimal experimental design could select ex-

periments that sequentially reduced parameter uncertainty, but it was a theoretical

demonstration that made use of the ideal model parameters, which in practice are

unknown [37]. Here we extend those findings by demonstrating convergence to the

correct parameters through iterative estimation and experimental design cycles, with-

out knowledge of the actual parameters. The parameter uncertainties converged to

below 10% for all parameter directions, and the actual parameter errors of the final

models were consistent with this uncertainty level. Moreover, the prediction errors

on experiments not used in the parameterization were also small and consistent with

the parameter errors. This is an important demonstration because, at each stage, the

scenario essentially needs to identify measurements that are sensitive to the poorly

known parameters based on a linearization about a set of parameters that could still

have large errors. If the model were purely linear, this would not be a concern; for

nonlinear models, the parameter error means the linearization could frequently be

taken about a point significantly different from the true parameter set, and so the

linearization would be grossly inaccurate. A major result of the current work is that

these inaccuracies do not spoil the rapid convergence of the method. We note that

the increase from 5 experiments in our previous work to the current 6 is due to the use

of discrete data here rather than continuous data as used previously; we determined

this from the observation that even using perfect parameters with discretely drawn

data requires 6 experiments to provide all parameters with 10% uncertainty (data not

shown). Using 6 randomly chosen experiments or a single experiment with all the

perturbations of a set of optimal experiments did not reduce parameter uncertainty

as effectively as the set of experiments chosen by our optimization scheme (Figures

A-6, A-7, and A-8).

Our method can be applied to any model defined as a system of ODEs, including

those that model multistable systems and oscillating systems, as well as those with

multiple minima when parameter fitting. In models with these properties, the non-
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linearity is even more apparent than in the EGF–NGF model. Linearization was an

appropriate approximation for our test system, but further study will be required to

determine if this continues to hold for other biological systems with more complex

behaviors.

As close as we tried to make our synthetic procedure mirror a real example,

there are a number of real system traits that were neglected. Most obviously, a real

system is not a set of ODEs. Real biomolecular systems are confined within cells and

subject to stochastic effects. Because the number of molecules in our test system was

mostly in the hundreds of thousands, stochasticity would be expected to be only a

small perturbation. But many biological systems operate with only a few molecules

of some species per cell, notably if DNA is involved, which usually exists as one

or two copies per cell. Stochasticity could mitigate our conclusions in three ways:

(1) even a perfectly parameterized ODE may not accurately recreate the behavior

of a stochastic system, (2) aggregate measurements over many cells may not reflect

the behavior of any single cell and, thus, fitting to such data could be meaningless

or inappropriate, and (3) predicting the next best experiment requires integrating

the sensitivities of the species to the parameters, and it is unclear how meaningful

these calculations would be in systems where stochasticity was dominant. One way

to deal with systems in which stochasticity is important is to use a deterministic

approximation to the stochastic noise, such as the linear noise approximation [63] or

mass fluctuation kinetics [64]. The Fisher information matrix has been derived for

the linear noise approximation and has been used for optimal experimental design

[65].

We also did not consider any uncertainty in the inputs to the model. For exam-

ple, the knock-downs were assumed to flawlessly reduce the initial concentrations to

one-hundredth of their prior value. This cannot be done in reality, but a straight-

forward extension of the method would propagate the uncertainty in the inputs to

the uncertainty in the outputs. In lieu of propagating input uncertainty, we re-

peated the procedure for the first goal function where, instead of the knock-downs

and over-expressions being perfectly effective at making 100-fold changes, the effect
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of the knock-down and over-expression in the true experiments was determined ran-

domly between 1 and 1000-fold on a logarithmic scale. Despite the fact that some

knock-downs and over-expressions could have nearly no effect and that the optimal

experimental design algorithm had no knowledge of this possibility when selecting the

next best experiment to do, this only increased the number of needed experiments

to 10 (Figures A-4 and A-5). The experiments chosen and the actual perturbations

used are available in Table A.2.

Alternative methods for minimizing the uncertainty in biological models through

optimal experimental design have been previously described. Some methods adopt a

rigorous Bayesian approach [66, 67]. Other methods adopt a different control mecha-

nism, such as time point selection [68] and dynamic input control [69, 70]. The method

investigated here, which selects experiments from a discrete set, is complementary to

these alternative control mechanisms. One could imagine combining methods to first

select the optimal general conditions from a discrete set and then using time-point

selection to remove non-informative measurements and altering the dynamic input

profile to further enhance the information gained from a possible experiment. Exist-

ing methods also vary in terms of their goal, such as the various optimality functions

of the covariance matrix [71] and minimizing prediction uncertainty [72]. All three of

our goal functions operated on the parameter covariance matrix and were designed to

minimize uncertainty in parameter eigendirections. In fact, goal function 2 is equiva-

lent to the popular D-optimal criterion of maximizing the determinant of the Fisher

information matrix. Seeking to maximize the trace of the Fisher information matrix

(T-optimality), or minimize the trace of the covariance matrix (A-optimality) are

popular goals that we did not test. Operating on prediction uncertainty instead may

be preferable if knowledge of the system is a secondary goal to using the model for a

specialized task.

It should be noted that having a diverse set of candidate experiments is critical to

the successful outcome of this procedure. This method selects the best experiment but

does not design new experiments should the candidate set be insufficient to find all

the parameters. As indicated by the computation of the Fisher information matrix,
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good experiments are those that make measurements that are sensitive to the yet

unknown parameters. If there are portions of the network that cannot be differentially

perturbed with existing techniques, it may not be possible to discover the values of the

parameters important there. If the number of time points per experiment is reduced

from 100 to 80, 40, 20, 10, or 5, the parameters can still be determined, though it takes

a few more experiments to do so (up to 12 experiments; Figure A-9). Furthermore,

if the measurement uncertainty is increased from 10% to 20%, it still takes only 6

additional experiments to determine all parameters better than 10%, reinforcing the

importance of complimentary. But when the measurement uncertainty is increased

to 2-fold, it now takes 22 experiments, although the number of needed experiments

can be brought back down by reducing the desired parameter uncertainty to 2-fold

as well (Table A.3).

Finally, our method assumes that the topology is already known. This can be

far from true. Even with an incorrect topology fit to data, it is possible to use our

approach and predict the best experiment to minimize parameter uncertainty. Yet it

is unclear what the ultimate result of that would be. Would the experiments actually

be effective at minimizing parameter uncertainty? Would it choose experiments that

eliminated it as a possible topology? Would the experiments it chose still be best, or

nearly best, once the correct topology was found?

Akt is known to also downregulate B-Raf [73], a reaction that is not described in

this model. We added a reaction to the original model in which Akt downregulated B-

Raf with Akt’s normal Km and a kcat of 1/100 of the strength by which Akt influences

Raf-1. We used this modified model as the true model to generate data, while using

the published model to actually fit to the data. This was intended to represent one

case where the model topology does not match the real system. The model was able

to fit the data of the nominal experiment, and two optimally chosen experiments

according to goal function 1. However, the model failed to fit the data after the third

experiment according to a chi-square test between the data and the best-fit model

(data not shown). This suggests that computational experimental design can not

only lead to well-determined parameters for appropriate topologies but can also lead
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to indications that topologies are insufficient to explain observed data.
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Chapter 3

Efficient Bayesian Estimates for

Discrimination among

Topologically Different Systems

Biology Models

3.1 Introduction

In systems biology, mechanistic models of biochemical networks can be seen as a

combination of two main components, a topology that defines the set of elementary

reactions that occur and a parameter set that defines the rate constants of those

interactions and perhaps initial concentrations. By mapping components of the model

to components of the system, one can computationally ask what role individual parts

of the system play with respect to a particular behavior—what behavior would result

if a particular part of the system were altered or what part of the system would have

to be altered to effect a desired behavior.

Determining the topology of a biological network from data is a difficult and widely

studied problem [74, 75, 76, 77]. The space of possible topologies is a discrete one.

For a finite number of chemical species, there is a finite, though exponentially large,
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number of possible ways to connect those species in a network of reactions. There

is currently a tradeoff between greater freedom in the mathematical formulation of

the topologies and an ability to consider a larger space of topologies, since only some

structures have algorithms that can define good topologies without enumerating all

possibilities. One can consider three main classes of topology determination methods

along this spectrum.

At the most abstract level are the statistical clustering algorithms [78, 79, 80, 81,

82, 83]. In hierarchical clustering [10], well-known for its use in analyzing microar-

rays, each state is organized as a leaf on a tree where the distance along the branches

indicates the amount of dissimilarity in the behavior of the states either in response

to a set of perturbations or over time in response to a single perturbation. If a previ-

ously unknown state is clustered closely with several known states, this suggests that

the unknown state may be involved in the same role as the known states. However,

a specific function or mechanism is not elucidated for any state. Another popular

method is principal component analysis, which finds the relationships between the

states that explain the most variance under the conditions studied [11]. The resulting

relationships may reveal the states that are most closely associated with the process

that is perturbed between the conditions as well as group the conditions with similar

responses. Like hierarchical clustering, such groupings only suggest a coarse organi-

zation of the topology, leaving out individual interactions. Methods at this level are

widely used because they provide testable hypotheses from very data large sets, even

if the studied system is poorly understood.

At the next level are algorithms that reverse engineer causal networks. These

algorithms use data to generate de novo interaction networks between states of the

system [84, 85, 86, 87, 88]. These methods exploit a useful mathematical relation

between a specific formulation of the model and a specific type of data. An algorithm

by Sachs et al. generates an acyclic Bayesian network using single-cell measurements

[16]. This method exploits the fact that the short-term stochastic fluctuations in one

state would be most strongly correlated with the short-term fluctuations of the nearest

states. Thus, a causal graph can be build, not by finding the strongest correlations
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in the states, but by finding the strongest correlations in the stochastic fluctuations

of the states about their mean value. Another algorithm by Yeung et al. generates a

system of linear ODEs using concentrations of states near a gently perturbed steady

state [89]. The method exploits the fact that a linear approximation is good near

a steady state, allowing a sparse SVD to be used to solve for the topology. By

requiring little a priori information, methods at this level bridge the gap between the

exponentially large number of possible topologies and a smaller number of topologies

supported by the data.

At the most specific level are algorithms that compare the evidence for an enumer-

ated set of topologies. Because one cannot actually enumerate all possible networks

for even a small number of states, the set must be shrunk either by assembling topolo-

gies based on prior knowledge or by collecting the most favorable topologies generated

by a higher-level method like one mentioned in the previous paragraph. These algo-

rithms make use of the likelihood that a topology generated the data to compute the

probability that the topology is correct. Several of these methods are used in this

work and are described below. Because these methods only require the likelihood of

the data, they can be used on a broad range of mathematical modeling techniques

such as dynamic nonlinear ODE modeling, which is used in this work.

We phrase the problem of topology probability in a Bayesian framework. Bayes

theorem provides the basic identity for computing the posterior topology probability:

pm|ŷ (m, ŷ) =
pm (m) · pŷ|m (ŷ, m)
∑

i pm (i) · pŷ|m (ŷ, i)
(3.1)

where pm|ŷ (m, ŷ) is the posterior probability that the topology with indexm is correct

given that data ŷ (a vector of length nȳ) has been observed, pm (m) is the topology

prior of model m, and pŷ|m (ŷ, m) is the marginal likelihood of data ŷ given model m.

The marginal likelihood is the probability that a set of data would be observed

under a particular topology. Because topologies alone do not generate data (param-

eterized topologies do) the average probability over all parameters weighted by the
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prior on the parameters is computed by an integral over parameter space:

pŷ|m (ŷ, m) =

∫

θ

pŷ|m,θ (ŷ, m, θ) · pθ|m (θ,m) (3.2)

where pŷ|m,θ (ŷ, m, θ) is the likelihood of data ŷ being produced by model topology

m parameterized with values θ and pθ|m (θ,m) is the parameter prior for parameter

values θ in model topology m.

It is difficult and computationally expensive to evaluate the Bayesian result be-

cause of the multidimensional integral required to compute the marginal likelihood in

Equation 3.2. This integral does not have an analytical solution for many interesting

problems, including mass-action models, and the possibly large number of dimen-

sions of the integral precludes the use of standard quadrature methods such as the

trapezoidal rule for numerical integration.

A number of methods have been developed to solve this integral for biological

problems [90]. All are Monte Carlo methods that compare a known distribution to

the unknown posterior distribution and currently require prohibitive computational

resources even for simple topologies. To be a known distribution means that its

normalization factor, the integral over all space, is known. The simplest methods

compare the prior distribution to the posterior distribution while either sampling

from the prior (Prior Arithmetic Mean Estimator [91]) or from the posterior (Posterior

Harmonic Mean Estimator [92]). Unfortunately, these methods are inefficient [90, 93,

94] and cannot be used effectively for any biological system because the difference

between the prior and posterior is always large for a topology with more than a

few parameters and a few data points, and the size of this difference determines the

uncertainty in the estimators [93]. Bridge sampling improves on these methods by

having one distribution “in between” the prior and posterior to which the prior and

posterior are compared, rather than to each other, so that the differences between

the compared distributions (and, thus, the variances) are smaller resulting in faster

convergence [95]. Other methods, such as Thermodynamic Integration [94, 96, 97],

Path Sampling [98], Annealed Importance Sampling [99], and more [100, 101], use
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even more distributions between the prior and the posterior, so that each comparison

is between two quite similar distributions resulting in a variance that is low enough

to converge for simple biological topologies [102]. We tried several of these methods

but were unable to find one that would converge in a reasonable time for the system

we investigated.

Because of this, we developed our own Monte Carlo method for use here. Our

method is similar to the one used by Neal [99]. Like almost all methods of this type,

ours integrates the marginal likelihood by stepping through a sequence of distributions

between the unknown marginal likelihood and a known distribution. Our method uses

the linear approximation as the known starting distribution, and the step size from

one distribution to the next is generated dynamically to minimize the variance in the

answer. A detailed description of our linearized approximation and full Monte Carlo

method is provided in the Methods section. The full method was used as the gold

standard to which our linearization and other methods were compared.

Because of the computational costs of Monte Carlo methods, approximations to

the topology probability are often used instead. The simplest method is to fit each

topology to the data and compare the likelihoods of obtaining the data from each

topology parameterized by the best-fit parameters [103, 104]. According to this

method, a topology that has a higher likelihood has more evidence in its favor. The

method is problematic for one main reason: because topologies have different num-

bers of parameters, and topologies with more parameters can typically fit data better

whether or not they are true, this leads to a bias in favor of more complex topologies

and an inability to rule out complex topologies if a simpler topology is true.

To compensate for the shortcomings of a simple comparison of likelihoods, several

methods have been developed to appropriately penalize topologies with more param-

eters. The two most popular are the Akaike Information Criterion (AIC) [105] and

the Schwarz (or Bayes) Information Criterion (SIC) [106], each justified by a different

derivation. These heuristics are no more expensive to compute than the likelihood.

One assumption of both heuristics is that sufficient data has been collected to make

the parameter uncertainty small [107]. This is not the case for typical biological mod-
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els fit to typical data, as our work and that of others has found [36, 37, 38, 39, 108].

As a result, the heuristics can be quite inaccurate [109, 110], which is also the case

in the current work.

Unsatisfied with the accuracy of the existing heuristics and computational cost of

the Monte Carlo methods, we created an approximation to the topology probability

problem that provides an accurate answer but at a lower computational cost. We no-

ticed that, if the model has a linear relationship between the parameters and outputs

and the measurements have Gaussian noise, the topology probability has an analyt-

ical solution. We wondered if there was a way to linearize the nonlinear model such

that it provided an effective approximation to the nonlinear answer. In this work, we

derive a method to compute the topology probability for a model linearized at the

maximum a posteriori parameters (the best-fit parameters considering the data and

prior).

A detailed derivation is provided in the Methods section of this work, but the

key insight in developing this method, visualized in Figure 3-1, is that the marginal

likelihood (Equation 3.2) of a linear Gaussian model can be written as:

pŷ|m (ŷ, m) = pŷ|θ,m

(

ŷ, θ̃ (ŷ, m) ,m
)

· pθ|m

(

θ̃ (ŷ, m) ,m
)

· ‖τ · Vθ̃ (ŷ, m)‖
1

2 (3.3)

where ‖X‖ is the determinant of matrix X, τ is the circle constant equal to 2 · π,

θ̃ (ŷ, m) is the maximum a posteriori parameter set, and Vθ̃ (ŷ, m) is the posterior

variance of the parameters. These are terms that can be calculated for a nonlinear

model as well; thus, using this equation to compute the marginal likelihood provides

a linear approximation of the topology probability.

We demonstrated this method on a set of four candidate topologies of MAPK

signaling by Ferrell et al. [111]. We generated random data sets by selecting a

random topology from the set of four according to a prior, a random parameter set

according to a prior, and a random data set by simulating the model and adding

noise. We then asked the various methods (Monte Carlo, linearization, likelihood

comparison, AIC, and SIC), to determine which topology had generated the data set
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ŷ θ

θ̃

Vθ̃

Figure 3-1: Illustration of linear topology probability. Here is a plot of the joint
probability distribution between the parameter and data point of a one-parameter,
one-data-point model. The orange curve has the same shape as the posterior, the
probability distribution over the parameters given that a particular data point was
observed, but does not have an integral equal to 1, which a true distribution must
have. The integral of that curve is the marginal likelihood and the critical component
to determining the topology probability. For a linear Gaussian model, the curve has
the shape of a Gaussian with a mean at the maximum a posteriori parameter set
and a variance equal to the posterior variance. Such an expression has an analytical
solution to the integral. If the model is nonlinear, then a linearization at the maxi-
mum a posteriori parameter set will provide a linear approximation to the marginal
likelihood.
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and compared the accuracy and speed of the methods. The Monte Carlo method

gave the most accurate answer, but took significantly more time, while the heuristics

took only the time needed to fit the data, but performed only slightly better than

random. The linearization method performed almost as well as Monte Carlo but took

no longer than the heuristics. These results suggest that this method is an effective

tool for topology discrimination for systems biology.

3.2 Methods

3.2.1 Linearization

Important to the linearization method is not just having an analytical solution to

the linear model, but writing that solution with terms that can be calculated for the

nonlinear model. In this section, we outline the derivation of the analytical solution

to the marginal likelihood (Equation 3.2) for a model that has a linear relationship

between the parameters and the outputs, which are measured with Gaussian noise

superimposed. The likelihood function of a topology with this form is defined by:

pŷ|θ,m (ŷ, θ,m) = N (ŷ, ȳ (θ,m) , Vȳ) (3.4)

where N (ŷ, ȳ, Vȳ) is the probability density function of the normal distribution over

the data ŷ with a mean of ȳ (a vector of length nȳ) and a variance of Vȳ (an nȳ by nȳ

matrix). The mean, which can be interpreted as the true value underneath a noisy

measurement, is a function of the topology and parameters and, in a linear model, is

defined in the following way:

ȳ (θ,m) = A (m) · θ + b (m) (3.5)

where A(m) is a matrix nȳ by nθ(m) and b(m) is a column vector of length nȳ.

Together, A(m) and b(m) define the linear topology m. The length of the parameter

vector θ depends on the topology. Combining Equations 3.4 and 3.5, we arrive at the
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likelihood of a linear Gaussian model:

pŷ|θ,m (ŷ, θ,m) = N (ŷ, A (m) · θ + b (m) , Vȳ) (3.6)

We also assume that the prior on the parameters is a Gaussian as well:

pθ|m (θ,m) = N
(
θ, θ̄ (m) , Vθ̄ (m)

)
(3.7)

where θ̄ (m) is the mean of the prior on the parameters for topology m (a vector

of length nθ(m)) and Vθ̄ (m) is the variance (an nθ(m) by nθ(m) symmetric positive

definite matrix).

Substituting the Gaussian definitions for the likelihood and prior into Equation

3.2, we get:

pŷ|m (ŷ, m) =

∫

θ

N (ŷ, A (m) · θ + b (m) , Vȳ) ·N
(
θ, θ̄ (m) , Vθ̄ (m)

)
(3.8)

This integral, the marginal likelihood of a linear Gaussian model, has a well-known

analytical solution:

pŷ|m (ŷ, m) = N
(

ŷ, A (m) · θ̄ (m)− b (m) , Vȳ + A (m) · Vθ̄ (m) · A (m)T
)

(3.9)

Nonlinear models are not defined using the A (m) and b (m) matrices, so this form

is not directly applicable as a linear approximation of nonlinear models. As shown

in Appendix 1, this can be rearranged into a convenient form that is the product of

the likelihood and prior evaluated at the maximum a posteriori parameter set and a

term involving the determinant of the posterior variance:

pŷ|m (ŷ, m) = pŷ|θ,m

(

ŷ, θ̃ (ŷ, m) ,m
)

· pθ|m

(

θ̃ (ŷ, m) ,m
)

· ‖τ · Vθ̃ (ŷ, m)‖
1

2 (3.3)

where θ̃ (ŷ, m) is the maximum a posteriori parameter set, the best-fit parameters

of topology m for data ŷ, and Vθ̃ (ŷ, m) is the inverse of the Fisher information ma-

trix evaluated at the maximum a posteriori parameter set. This representation of
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Figure 3-2: MAPK topologies. These are the four topologies used in the scenario to
generate synthetic data, which was then presented to several topology discrimination
methods to determine what the probability was that each topology had generated the
particular data set. The suffix “#P” indicates a phosphorylated species.

the marginal likelihood is the central formula to our method. While it is an exact

representation for linear models, it is composed of terms that are also well defined

for nonlinear models. Since all terms are calculated at the maximum a posteriori

parameter set, this formula can be interpreted as a linearization at that point. As we

show in Results, this turns out to be a powerfully effective approximation for ODE

models of biological systems.

3.2.2 Topologies

As our test case, we used four mass-action ODE topologies of MAPK activation [111].

A set of reaction diagrams illustrating these topologies is provided in Figure 3-2. The

topologies model the double phosphorylation of Erk by Mek. Each topology has a

pair of phosphorylation reactions in which the kinase either binds, phosphorylates

once, and falls off before rebinding and phosphorylating a second time (distributive

mechanism) or, after initial binding, the kinase phosphorylates once and remains

bound until a second phosphorylation occurs (processive mechanism). Each topology
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also has a pair of phosphatase reactions that follow either the distributive or processive

mechanisms like the kinase, falling off or remaining bound between reactions. The

four possible combinations of these two mechanisms for these two enzymes constitute

the four topologies used in this work.

The four model topologies have 12, 10, 10, and 8 parameters in the respective order

they will be listed throughout this work and shown in Figure 3-2. Each distributive

mechanism has two additional parameters for the on and off rates of enzyme rebinding

that don’t exist for the corresponding distributive topology. Each topology has 8

species, although in topology 4 (processive/processive) the free singly phosphorylated

state is not populated. Each topology has 1 input, the amount of kinase, which has a

constant value of 1 µM. The initial amount of substrate is 2 µM, the initial amount

of phosphatase is 1 µM, and all other initial amounts are 0 µM. These values are

comparable to experimental procedures of Ferrell et al. [45].

There are three outputs, the amounts of unphosphorylated substrate, singly phos-

phorylated substrate, and doubly phosphorylated substrate. The outputs include the

amounts of that species that are free or are bound in a complex with the kinase or

phosphatase.

3.2.3 Scenario

We set up a computational scenario to generate many data sets from the topologies

so that we could interrogate several methods of topology discrimination to determine

how well each performed. To generate each data set, a topology was chosen randomly

from a uniform distribution (all four topologies were equally likely to be chosen) and

the topology was parameterized with random parameters chosen from a multivariate

log-normal distribution with a geometric mean of 0.1 and an independent geometric

variance such that the 95% confidence intervals stretched 100-fold above and below

the geometric mean. This meant that each parameter was essentially chosen over a

range of four orders of magnitude.

Each randomly drawn model was simulated for 100 minutes and the three out-

puts were measured at 12.5, 25.0, 37.5, 50.0, 62.5, 75.0, 87.5, and 100.0 min. Each
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measurement had Gaussian error added to it with a standard deviation equal to 10%

plus 0.01 µM. The resulting noisy measurements were floored at 0 (negative values

were moved to zero). By measuring the sum of phosphorylation sites across the com-

plexes in which they appear and by only measuring at 8 time points, we intended to

represent the modern measurement capabilities of mass spectrometry [112].

This scenario was repeated 1000 times to generate that many random models with

that many random data sets.

3.2.4 Monte Carlo

The various Monte Carlo methods used to solve this problem are all similar in that

they compare the unknown likelihood function to a known likelihood function by

sampling from one and comparing the sample in some way to the other [91, 92, 94,

98, 99]. To be a known likelihood function means that its normalization factor, the

integral over all space, is known. The method we use in this work has some conceptual

similarity to the Annealed Importance Sampling method [99], but is procedurally very

different.

To use importance sampling to determine the normalization constant z1 of a distri-

bution determined by likelihood function l1, we sample from a distribution determined

by likelihood l0 with known normalization constant z0 and use the following formula

to estimate the ratio of the normalization constants:

z1
z0

≈ ŵ =
1

n

∑

i

l1 (θi)

l0 (θi)
(3.10)

where each θi is one of n random parameter sets drawn from the distribution repre-

sented by l0. The uncertainty in this estimator is:

σŵ =

√
√
√
√

1

n− 1

∑

i

(
l1 (θi)

l0 (θi)
− ŵ

)2

(3.11)

The convergence of this estimator is dependent on the amount of overlap between the

known and unknown distributions. If the distributions are similar, the estimator will
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converge quickly. If the distributions are very different, the estimator will converge

slowly. To ensure that the distributions are similar enough, we used a sequence of

distributions between the known and unknown distribution defined by the formula:

l (θ, β) = l0 (θ)
1−β · l1 (θ)

β (3.12)

which, by tuning β, gradually transforms the known distribution at β = 0 into the

unknown distribution at β = 1.

For the known distribution, we used a linear Gaussian approximation of the pos-

terior by using a nonlinear fitting algorithm to find the maximum a posteriori param-

eter set (the best-fit parameters) and the Fisher information matrix evaluated at the

best-fit parameter. The best-fit parameters became the mean and the inverse of the

Fisher information matrix plus the inverse of the prior variance became the variance

of a log-normal distribution in parameter space that served as the known, starting

distribution of the Monte Carlo procedure.

The final piece of the transformation process is the schedule on β to transform the

known distribution into a sequence of unknown distributions culminating in the final

unknown distribution. Again, there are many ways to select the points between 0 and

1. The most basic method, a uniform spacing did not allow the Monte Carlo method

to converge because the distribution changed far more near the ends than near the

middle (data not shown). For example, a change from 0% to 1% or 99% to 100%

unknown distribution was a far greater change than going from 49% to 50%. As a

result, the importance sampling estimates near the ends had very large uncertainties,

but making the steps fine enough to reduce the uncertainty resulted in many wasteful

estimates being made of the low-uncertainty middle region. To ensure that each step

had a reasonably low variance, we started from β = 0 and determined the next value

of β by generating a small sample from the distribution defined by the current value

of β and finding, via Matlab’s numerical root finder fzero, the value of the next β

that would result in a desired sample standard deviation. We chose 0.2, or 20%, as

the desired sample standard deviation of each step.

67



The importance sampling at each span provides an estimate to the change in the

integral across that span and an uncertainty in that estimate. The estimates are

combined by a simple product:

ŵfinal =
∏

j

ŵj (3.13)

where j is an index over each bridge point. (Because of the limitations of floating

point arithmetic, these calculations were actually performed in log space and expo-

nentiated to get the final answer.) The uncertainty in this estimate can be computed

by the linear propagation of uncertainty, but in working with this system we found

that this dramatically overestimated the uncertainty (data not shown). So we used

bootstrap resampling instead. We resampled with replacement each bridge point and

recomputed the estimate of the integral. This resampling was repeated 100 times, the

sample standard deviation of the recomputed integrals was used as the uncertainty

in the integral.

The sampling of the posterior was done using the Metropolis-Hastings algorithm

[26, 27]. At each bridge point, the sampling was started at the maximum a poste-

riori parameter set. The proposal distribution of the algorithm was a log-normal

distribution with a geometric mean of the current point and a geometric variance

equal to the inverse of the Fisher information matrix plus the inverse of the prior

variance computed at the starting point of the sampling multiplied by 5.66 divided

by the number of dimensions [113]. The log-normal distribution was truncated below

1 × 10−10 and above 1 × 108 to reduce the chance of drawing an extreme parameter

set that could destabilize the integrator. The sampling was thinned by saving only

every fifth point, and the sampling was restarted every 100 samples after thinning

using an updated proposal variance. The autocorrelation in each parameter was com-

puted with Matlab’s autocorr function. The sampling was thinned further using the

smallest step size such that the estimated autocorrelation in every parameter was less

than 0.05. To ensure that the estimate of the autocorrelation was itself accurate, the

autocorrelation step size was not trusted until the total length of the sample used to
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compute the autocorrelation was 20 times longer than the step size.

3.2.5 Akaike Information Criterion

The Akaike Information Criterion (AIC) [105] is a popular heuristic for topology

discrimination:

AIC (m, ŷ) = 2 · nθ (m)− 2 · log pŷ|θ,m

(

ŷ, θ̂, m
)

(3.14)

which evaluates the log likelihood at the best-fit parameters and adds a penalty

proportional to the number of parameters. To plot the relative evidence, we return

the AIC to probability space:

pAIC (m, ŷ) =

pŷ|θ,m(ŷ,θ̂,m)
exp(nθ(m))

∑

i

pŷ|θ,m(ŷ,θ̂,i)
exp(nθ(i))

(3.15)

The ranking of topologies under this metric is the same, but makes the values com-

parable to the Monte Carlo and linear methods.

3.2.6 Schwarz Information Criterion

The Schwarz (or Bayes) Information Criterion (SIC) [106] is another popular heuristic

for topology discrimination:

SIC (m, ŷ) = nθ (m) · log (nȳ)− 2 · log pŷ|θ,m

(

ŷ, θ̂, m
)

(3.16)

which differs from the AIC only by the size of the penalty. Both use the log likelihood

of the best-fit parameters, but the SIC penalizes the topologies with more parameters

more strongly. This metric can be transformed into parameter space in a similar way

to the AIC:

pSIC (m, ŷ) =

pŷ|θ,m(ŷ,θ̂,m)
nȳ ·exp(nθ(m))

∑

i

pŷ|θ,m(ŷ,θ̂,i)
nȳ ·exp(nθ(i))

(3.17)
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Figure 3-3: Typical results. The topology probability according to each of the five
methods is shown for four example data sets. The synthetic data underlying A, B, C,
and D were generated by topologies 1, 2, 3, and 4, respectively. The error bars on the
Monte Carlo method are the standard error on the mean as computed by bootstrap
resampling.

3.3 Results

We generated 1000 data sets from 1000 random parameterized topologies and asked

each of the methods to determine the relative evidence that each topology had gener-

ated the data, quantified as a probability distribution over the four candidate topolo-

gies. These probability distributions were compared to each other and, in particular,

to the Monte Carlo result, which should have converged to the correct probability

distribution.

We show four of the thousand runs in Figure 3-3 to illustrate typical results seen.

The true topologies underlying Figures 3-3A, 3-3B, 3-3C, and 3-3D were topologies

1, 2, 3, and 4, respectively. The results for our scenario can be classified into two

main cases. The less common case, represented by Figure 3-3B, is the case where
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the data unambiguously indicate the true topology; in this case, it was topology 2.

When only one topology can fit the data, with the ability to fit the data indicated

by the “Likelihood” bars, then all methods agree that the topology that fits is the

correct topology. The more common case is represented in Figures 3-3A, 3-3C, and

3-3D. Here, all the topologies can the fit the data to some degree and the different

methods give different probability distributions on the data. In these cases, one can

see that the likelihood method tends to overstate the true probability, given by the

“Monte Carlo” bars, for topology 1, which has the greatest number of parameters.

Interestingly, the AIC and SIC methods show a strong bias in favor of topology 4,

which has the fewest parameters. However, it can be seen that the linearization

method is quite close to the Monte Carlo method in each case, suggesting that it is a

good approximation. If one were to look at just one result, for instance Figure 3-3D,

it may appear that the AIC and SIC are the superior methods because they are the

only ones that put the highest probability on the true topology, topology 4. However,

this would be misleading, because they frequently put a high probability on topology

4, even when it is not the topology that generated the data (Figures 3-3A and 3-3C).

In fact, even in Figure 3-3D, they are overstating the evidence that topology 4 is true,

for the actual probability is provided by the Monte Carlo.

For each of the 1000 runs, we calculated the Jensen-Shannon (JS) divergence

between the probability distribution given by each method and the Monte Carlo

probability distribution. The JS divergence is one standard measure of how different

two probability distributions are, which in this case provides a single quantification for

how far each method’s answer is from the correct answer. The JS divergence returns

a value between 0 (identical distributions) and 1 (non-overlapping distributions). The

divergence values for each method over all runs were binned and plotted as a histogram

in Figure 3-4. Of the other methods, the linearization method is closest to the Monte

Carlo. The likelihood comparison was the next closest, followed by the AIC and the

SIC.

While the JS divergence is one measure of how different one probability distribu-

tion is from a reference distribution, it does not report numbers that can easily be
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Figure 3-4: Divergence of each method from the gold standard. The Jensen-
Shannon (JS) divergence measures the difference between two distributions on a scale
of 0 to 1, which ranges from identical to no overlap, respectively. The divergence
between the topology probability supplied by each method and the gold standard
Monte Carlo were computed for all 1000 data sets, sorted into 50 evenly spaced bins,
and plotted as histograms. For reference, the median residual divergence in the Monte
Carlo from the true probability distribution was estimated with bootstrap resampling
to be 0.0061.
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Figure 3-5: Accuracy of the most probable topology. For all 1000 data sets, the
most likely topology according to each method was compared to the actual topology
that generated the data. The fraction that each method found correct is plotted here.
The error bars are the standard error of the mean.

used to understand if the error in each approximation is large enough to matter. To

aggregate the results in a way that was easier to interpret, we took the most likely

topology according to each method and compared it to the topology that actually

generated the data. In the real world, we would not be able to do this test because

the true topology would be unknown, but this computational scenario allows us to

investigate whether the methods actually do what they are intended to do—tell us

which topology is correct according to the data. We computed the fraction of top

hits that were correct for each method (Figure 3-5). As expected, the Monte Carlo

was correct most often; the most likely topology according to this method was the

true topology 46% of the time. Because Monte Carlo provides the correct probability,

it is impossible to do better than this provided that the Monte Carlo has converged

and a sufficiently large number of runs are done to approach statistical averages. No

method could pick the correct topology 100% of the time because that information

was not contained in the data. The linearization method did almost as well as Monte

Carlo, finding the correct topology 44% of the time. The likelihood comparison, the
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AIC, and the SIC were correct 30%, 30%, and 28% of the time, respectively. Surpris-

ingly, these heuristics only do slightly better than randomly guessing one of the four

topologies, which would be correct 25% of the time.

We analyzed the bias in each method by plotting the mean probability each

method returned for each topology (Figure 3-6). An unbiased method will return

a mean of 0.25 for each topology because that is the probability by which each topol-

ogy was drawn. The bias that the likelihood comparison has for the topology with

the most parameters can be seen though it is not particularly large. Interestingly,

AIC and SIC are strongly biased toward the topology with the fewest parameters.

The Monte Carlo method has no bias, as expected, but neither does the linearization,

which is a satisfying result.

Despite the improved accuracy of linearization, the method does not take sub-

stantially greater computational resources than the heuristics, which take radically

less time to compute than the full Monte Carlo. While the Monte Carlo method took

a median of 13 days to complete, the linearization method, likelihood comparison,

AIC, and SIC all took a median of 4.2 minutes to complete. The fast methods took

the same amount of time to complete because the time of each was dominated by

the time it took to simply fit parameters for each of the topologies to the data. The

computation of the likelihood (needed for all methods) and the Fisher information

matrix (needed for the linearization method) took about as much time as a single

iteration of the gradient descent fitting algorithm. Computing the Fisher information

matrix requires computing the sensitivities of the outputs to the parameters, which

is not needed to compute a likelihood comparison, the AIC, or the SIC and is more

expensive that simply simulating the system to compute the likelihood of the data. If

the time to fit the topologies to the data is ignored, it took a median of 0.80 seconds

to compute the likelihood comparison, AIC, and SIC and 3.4 seconds to compute the

linearization method. Thus, the linearization was slightly more time consuming than

the other fast methods, but insignificantly so.
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Figure 3-6: Bias in methods. The mean topology probability distribution was
taken over all 1000 runs. Because all topologies were drawn with equal probabil-
ity, the mean probability distribution should be uniform if the method is unbiased
(dashed line). The linearization method shows this lack of bias as does the Monte
Carlo method. The likelihood method is expected to have a bias toward the topology
with the most parameters (topology 1) and against the topology with the fewest pa-
rameters (topology 4), which is visible but slight. A strong bias in favor of topologies
with fewer parameters can be seen with the AIC and SIC methods. The number of
parameters in topologies 1, 2, 3, and 4 are 12, 10, 10, and 8, respectively. (A) Monte
Carlo method, (B) the linearization method developed here, (C) likelihood method,
(D) Akaike Information Criterion method, and (E) Schwarz Information Criterion
method.
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3.4 Conclusion

The quantification of parameter uncertainty in ODE models of biological systems has

a number of successful and computationally feasible methods [101, 36, 37, 108, 114].

However, doing the same for the other half of the model, the topology, has not been

as successful. The existing methods are either expensive (Monte Carlo methods)

or inaccurate (various heuristics). We have proposed one method, our linearized

Bayesian approach, which may fill this gap. It returns an answer that is similar to

the Monte Carlo gold standard, but does so at a computational cost no more than

fitting the topologies to data.

There are several ways to interpret what the method is doing. The simplest one

and the one we have used throughout this work is that it is a linearization at the

maximum a posteriori parameter set, because we arrive at this parameter set with

nonlinear fitting and then evaluate the likelihood, the prior, and the Fisher informa-

tion matrix with these parameters. These values are then plugged into a formula that

is exactly true only for linear Gaussian topologies. Another interpretation is that the

integrand of the marginal likelihood equation has been replaced by a Laplace approxi-

mation. A Laplace approximation is like a second-order Taylor approximation except

that an exponential of a polynomial is used rather than a polynomial itself [115]. A

Laplace approximation generates a single Gaussian at a point to approximate the rest

of the function. This interpretation has one additional caveat: instead of the second-

order derivative of the log likelihood with respect to the parameters (also known as

the Hessian), we use the Fisher information matrix, which is only exactly equal to the

Hessian if the model is linear. Computing the Hessian takes greater computational

resources, yet has little impact on the result (data not shown). The use of the Hessian

and Fisher information matrix in the Laplace approximation of marginal likelihoods

even has some use in other fields [116].

The number of possible topologies grows exponentially with the number of states.

The linearization method would not be very effective at reverse engineering the topol-

ogy from scratch because the method considers each topology individually. However,
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the method could work effectively as a subsequent step to other methods that effi-

ciently pare down the vast topological space to a manageable number of topologies.

As long as the number of topologies is small enough such that each can be fit to

data, possibly in parallel, then the linearization method would efficiently quantify

the uncertainty in the remaining set.

Because the problem is phrased in a Bayesian fashion, the probability distribution

returned by the linearization method sums to 1. This means that, like all Bayesian

methods, it is implicitly assumed that the true topology is in the set of possibilities.

The possibility that no topology is a good fit for the data can be mitigated by checking

after the fact that there is one at least one topology that fits the data by using a

frequentist statistic, such as a chi-square p-value.

In this work we have demonstrated the effectiveness of the approximation only

on a single set of simple biological topologies. Testing on more systems, especially

more complex systems, is warranted. The main limitation with our testing scenario in

evaluating the method on more complex topologies was that the Monte Carlo method

already took 13 days to complete. A noticeably more complex set of topologies would

not finish in a reasonable amount of time, so that there would be no gold standard

with which to compare. Perhaps this illustrates why a good approximation of the

topology probability is so important: most of the models that biologists care about

are too large to compute the topology probability with a Monte Carlo method.

The approximation is dependent on the “area” under the hyperdimensional Gaus-

sian being similar to the “area” under the product of the likelihood and the prior,

which has the shape of the parameter posterior distribution. If the region of probable

parameters is substantially larger or smaller than the approximation, the approxima-

tion will fail unless the difference is similar for all topologies. It may be interesting

to note that the linear Gaussian approximation does not have to be very similar to

the true distribution; it only has to have a similar integral. This may be an im-

portant property because the posterior parameter uncertainty is typically very large

for biological models. When the uncertainty is large, there will be regions of likely

parameter sets that a linear approximation will not recognize as likely parameters be-
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cause the linear approximation is only valid for a short range. Fortunately, the linear

approximation does not actually have to overlay the underlying posterior distribution

in order to be a good approximation for the purpose of topology probability; it only

has to have a similar integral.

78



Chapter 4

An Optimal Experimental Design

Method for Efficiently Reducing

Topology Uncertainty

4.1 Introduction

The building of accurate models is one of the goals of systems biology. Scientists

desire accurate models to understand the behavior of the system, make predictions

under new conditions, and aggregate knowledge of the components. A thorough

understanding of a biological system requires knowing both the topology and the

parameters. Gathering data provides evidence for some models at the expense of

others, but because of uncertainty in the measurements, there will be uncertainty

in the parameters and topology, which can be statistically quantified. Once the

uncertainty is known, the goal is to reduce that uncertainty to an acceptable level.

The only way to reduce the uncertainty is to collect data from additional experiments.

Some experiments will reduce the uncertainty more than other experiments. Optimal

experimental design is the process of determining which experiments are likely to

reduce the uncertainty the most before the experiments are actually performed.

We consider ordinary differential equation (ODE) models of biological systems.

79



In this framework, the topology is the set of equations. If it is unknown which

reactions take place, then there will be multiple possible sets of ODEs to describe the

system. If the experimental data only supports one of the possible topologies, then

one can consider the topology uncertainty to be low. However, it is usually the case

that the existing data is consistent with multiple topologies. There is a diversity of

methods to quantify the evidence in favor of one topology over another. The most

common methods include the Akaike Information Criterion (AIC) and the Schwarz

(or Bayes) Information Criterion. Also used are Bayesian Monte Carlo methods,

such as Thermodynamic Integration [94, 96, 97], Path Sampling [98], and Annealed

Importance Sampling [99]. Recently, we developed a method based on linearization

that approximates the Bayesian topology probability, which was successful in giving

a result close to the Monte Carlo result but at a computational cost comparable

to the common heuristics [117]. Once the uncertainty in the topology is quantified,

additional experiments are necessary to reduce the uncertainty. Different experiments

will have different utility in distinguishing between topologies. Being able to predict

the quality of experiments before doing them is useful and fundamentally centered

on exercising the system under conditions that will give behaviors that are different

depending on which topology is true.

The earliest experimental design methods for topology discrimination in chemical

dynamics, such as the one by Hunter and Riener [118], simply fit the topologies to

the data, simulate the models under different experiments, and rank the experiments

according to which had the greatest sum of square difference between the simulations

at the measurement points. This criterion was later generalized to allow for different

weights on each measurement. These weights could either be proportional to the

magnitude of the measurement [119], be proportional the magnitude of the uncer-

tainty in the measurement, or give similar weight to all types of measurements [120].

Previous work by our group found that different topologies often required different

time-varying inputs to drive the outputs to particular values and suggested that these

input profiles may be good at distinguishing between the topologies [121].

Because of measurement noise, the exact measurement value cannot be predicted
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even assuming that a particular model is true. Instead, each measurement has a

different probability distribution depending on which topology is true. More recent

methods measure the overlap in these distributions, and rank experiments favorably

if they have many measurements with little overlap. The method by Skanda and

Lebiedz, which sums the KL-divergence over all measurement points, is one such

technique [122]. The methods that use only the sum of square distance between the

measurements can be interpreted as a measurement of overlap if one assumes only

Gaussian measurement noise and a weight that is proportional to the uncertainty in

those measurements.

The best-fit parameters of each topology are not the only parameters to con-

sider, and some existing methods take the parameter uncertainty into account. The

method by Chen and Asprey [123], which extends the method by Buzzi-Ferraris and

Forzatti [124], computes the ratio of the distance between predicted measurements

to the uncertainty in those measurements, ranking experiments with greater separa-

tion more highly. This method includes the contribution of parameter uncertainty to

the measurement uncertainty, ensuring that the best experiments would separate the

topologies regardless of their parameters.

The common goal of these methods is to find experiments where the topologies

give the greatest separation in the predicted measurement values. Some may take

the measurement noise into account, or the parameter uncertainty, but the framing

is ultimately a frequentist one. The evidence for a topology is defined as being

how well it fits the data, and a good experiment is defined by how many topologies

cannot fit the data. There are several well-known problems with using a frequentist

approach to distinguish between topologies. Most notable is that topologies with

more parameters tend to fit the data better than topologies with fewer parameters

regardless of whether or not the topology with more parameters is correct. In the

case of nested topologies, where a simpler topology is a special case of a more complex

topology, the more complex topology will always have at least as much evidence for

it as the simpler one because there is no data generated by the simpler topology that

the more complex cannot fit equally well. Working in a Bayesian framework provides
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a way to compensate for this and works by computing the probability distribution

over the set of possible topologies according to the data.

The difficult step in computing the topology probability is the marginal likelihood,

which requires integrating the likelihood over all parameter space. This integral does

not have an analytical solution for mass-action models, so it must be computed by an

expensive Monte Carlo method or approximated by some other method. A method

by Busetto et al. maximizes the expected divergence between the initial probability

distribution and the probability distribution after collecting data from a candidate

experiment [125]. The method uses Sequential Monte Carlo or unscented Kalman

filtering to perform the integration over parameter space.

Our group recently developed a method for approximating the topology proba-

bility in a biological system by linearizing the system at the maximum a posteriori

parameter set of each topology [117]. Because this method provides the topology

probability at minimal computational cost, we wanted to see if it was effective for

optimal experimental design for topology uncertainty. The optimal experimental de-

sign method outlined in this work minimizes the expected entropy in the probability

distribution after performing the experiment. Entropy is one way to quantify the

“peakiness” of a distribution; if the distribution is flat with all values being equally

likely, then the entropy and topology uncertainty are high, while a peaked distribu-

tion with some values being likely and others being very unlikely, then the entropy

and topology uncertainty are low. Naturally, the posterior probability distribution

over the set of topologies is dependent on what data is obtained from the experiment.

But what data is obtained depends on the topology, which is unknown, and the pa-

rameters, which are also unknown, and the measurement noise. In order to be an

effective experimental design method, it needs to predict the resulting entropy with-

out having to first run the experiment and collect the data. The method described

in this work finds the expected entropy by repeatedly drawing a random topology,

a random parameter set, and simulating the candidate experimental conditions to

provide a random data set. The topologies are fit to each of these data sets and

the topology probability is computed via the linearization method. The entropy of
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each probability distribution is computed, and the sequence is averaged, providing an

expected entropy in a Monte Carlo fashion.

We tested this method on a set of topologies based on the model by Chen et

al. describing the ErbB pathway [58]. This mass-action model includes the main

features of the ErbB system. The extracellular ligand EGF binds to receptor tyrosine

kinase ErbB1, and extracellular heregulin binds to ErbB3 and ErbB4. When ligand

is bound, these receptors and ErbB2 form various homodimers and heterodimers.

Through dimerization, the receptors phosphorylate each other. Adaptor proteins bind

to the phosphorylated sites, which then activate various downstream proteins. Not all

possible dimers were allowed to form in the model for various reasons. One interesting

case was that homodimerization of ErbB3 was not modeled because ErbB3 has an

inactive kinase so that it cannot phosphorylate itself, and so contributes nothing

to the downstream effects. While the complete inactivity of the ErbB3 kinase has

been recently questioned, it undoubtedly has a far weaker kinase than the other

receptors [126, 127]. But even if its kinase is inactive, dimerization of ErbB3 could

still affect signaling by sequestering ErbB3 away from other receptors, preventing it

from becoming phosphorylated and allowing the other receptors to find more active

partners. We were interested in understanding how experimental perturbations could

be used to unambiguously determine topological features of biological networks.

We applied our optimal experimental design algorithm for reducing topology un-

certainty to this system using synthetically generated data, examining a set of candi-

date experiments and determining the expected entropy in the topology probability

distribution. We found that our simple set of candidate experiments which observed

downstream effects had a mild ability to distinguish between the topologies—some

experiments could rule out a couple of topologies, but no single experiment could

conclusively determine the topology. We observed that heregulin, the ligand which

activates ErbB3 dimerization, was necessary to provide any distinguishing power be-

tween the topologies about ErbB3 dimerization.

We studied the terms of the linearized Bayesian topology probability in order to

understand what part of the model was important for distinguishing between the
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topologies and found that one such part was the parameters to which the measure-

ments were sensitive in every topology. The parameters that had this property in

this scenario tended to be those that controlled a broad portion of the network, not

necessarily those parameters closest to the point in the network where the topologies

differed.

4.2 Methods

4.2.1 Scenario Overview

We tested our method by assuming that the model with dimerization of ErbB3 when

heregulin was bound was the true model, which we used to generate synthetic data.

Starting data was generated using a nominal experiment and all topologies were fit

to the data. This data did not distinguish between the topologies, so we queried the

optimal experimental design algorithm to predict the ability of member of a set of

408 candidate experiments to reduce the uncertainty in the topology.

4.2.2 Topologies

The base topology was a model of ErbB signaling by Chen et al. [58]. It is a mass-

action ODE model with 3 inputs, 500 states, 167 kinetic parameters, and 27 seed

parameters. At the top of the pathway are all four of the ErbB receptor tyrosine

kinases, ErbB1, ErbB2, ErbB3, and ErbB4. The first input, EGF, binds to ErbB1,

activating it through inducing homodimerization and heterodimerization with other

activated receptors. The second input, heregulin, binds ErbB3 and ErbB4 and ac-

tivates them in the same way. The third input is a competitive inhibitor for ATP

binding to the receptor kinases. A bound inhibitor prevents the kinases from perform-

ing their primary function, which is to phosphorylate the other receptor to which they

are dimerized. Several adaptor proteins, such as Grb2, Shc, Sos, and Gab1, bind the

phosphorylated receptors leading to cascades of activation to downstream proteins,

such as Ras, Raf, Mek, Erk, PI3K, and Akt.
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Figure 4-1: The topologies. This is a simplified representation of the ErbB model
used in this work. The four topologies in question differ at the point of ErbB3
dimerization, highlighted by the dashed-line box. Grey lines indicate bonding between
two monomers. Grey arrows from a monomer to a monomer indicate a conversion,
while grey arrows from a monomer to another arrow indicate a stimulation of that
conversion. Pink monomers are inputs to the model. Not shown is phosphorylation
of the receptors when dimerized with ErbB1, ErbB2, or ErbB4. ErbB3 dimers are
unique (when present in a topology) in that no phosphorylation occurs. The top
adaptors Grb2, Shc, and GAP bind to various phosphorylated dimers, even though
only one line is shown for each. All dimers can be internalized and degraded.
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The topologies differed in the circumstances under which ErbB3 could dimerize.

A simplified diagram of the topologies is provided in Figure 4-1. The first topology

was the original topology, with ErbB3 being unable to homodimerize under any con-

ditions. In the second topology, ErbB3 could dimerize without heregulin bound. This

is not believed to occur in nature but was included as an alternative hypothesis for our

method to detect. Because ErbB3 has an inactive kinase, this led to no downstream

signaling by itself. The third topology had ErbB3 dimerizing upon binding hereg-

ulin. As this is the mechanism believed to actually occur, this topology served as the

“true” topology, generating the synthetic data. The fourth topology allowed dimer-

ization between ErbB3 both with and without heregulin binding—a combination of

the second and third topologies.

4.2.3 Experiments

Synthetic data was generated by simulating the true topology under given experimen-

tal conditions and generating noisy data. Each experiment was run for 120 minutes.

For the candidate experiments, the concentration of EGF, heregulin, and inhibitor

could be either 0 or 1 nM. The nominal experiment used 5 nM of EGF and 0 nM of

the others. The model has 42 outputs which are the unphosphorylated and phospho-

rylated forms of every protein monomer in the network. Each output was the sum

of all species containing that form of the monomer. All outputs were measured at 8

time points: 2.5, 5.0, 7.5, 10, 15, 30, 60, and 120 minutes. The system was run to

equilibrium with no stimulation before the experiment began.

The model had 25 protein monomers with non-zero initial conditions, which were

the seed parameters of the model. Each candidate experiment could have the pub-

lished seed parameters, or it could have one protein knocked-down, represented by

a 10-fold reduction in the appropriate initial condition, or it could have one protein

over-expressed, represented by a 10-fold increase in the initial condition. All possible

combinations of the knock-downs, over-expressions, and input values resulted in 408

candidate experiments.
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4.2.4 Priors

The prior on the topology probability was a uniform density, giving 0.25 to each of

the four topologies.

The prior on the parameters was derived from the parameters of the published

model. The parameters were divided into three categories based on the type of reac-

tion they were involved in: unimolecular reactions, intracellular bimolecular reactions,

and extracellular bimolecular reactions. The parameters of the unimolecular reactions

had a geometric mean of 8.70×10−2 and a geometric standard deviation of 3.00×10−1.

The parameters of the intracellular bimolecular reactions had a geometric mean of

4.32 × 10−6 and a geometric standard deviation of 1.52 × 10−5. The parameters of

the extracellular bimolecular reactions had a geometric mean of 1.22 × 104 and a

geometric standard deviation of 7.47 × 104. Here, the geometric standard deviation

is defined as the square root of the product of the variance and the geometric mean.

The distribution of the parameter values in each group was well represented by a log-

normal distribution (data not shown). A multivariate log normal distribution with

these means and standard deviations was used for the parameter prior.

4.2.5 Topology Probability

The probability distribution over the set of topologies according to a data set was

computed using linearized topology probability at the maximum a posteriori param-

eters [117]. This method is used to solve the topology probability according to Bayes

rule:

pm|ŷ (m, ŷ) =
pm (m) · pŷ|m (ŷ, m)
∑

i pm (i) · pŷ|m (ŷ, i)
(4.1)

where pm|ŷ (m, ŷ) is the posterior probability for topology m given that data ŷ has

been observed, pm (m) is the topology prior of topology m, and pŷ|m (ŷ, m) is the

marginal likelihood of data ŷ given model m.

The marginal likelihood is the probability that a set of data would be observed

under a particular topology. Because topologies alone do not generate data (param-

eterized topologies do) the average probability over all parameters weighted by the
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Figure 4-2: Topology probability after nominal experiment. After fitting to
the nominal experiment, which was treatment with EGF and no knock-downs or
over-expressions, the probability of each topology was roughly equal.

prior on the parameters is computed by an integral over parameter space:

pŷ|m (ŷ, m) =

∫

θ

pŷ|m,θ (ŷ, m, θ) · pθ|m (θ,m) (4.2)

where pŷ|m,θ (ŷ, m, θ) is the likelihood of data ŷ being produced by model topology

m parameterized with values θ and pθ|m (θ,m) is the parameter prior for parameter

values θ in model topology m.

For a linear Gaussian topology with a Gaussian prior, the marginal likelihood can

be computed analytically:

pŷ|m (ŷ, m) = pŷ|θ,m

(

ŷ, θ̃ (ŷ, m) ,m
)

· pθ|m

(

θ̃ (ŷ, m) ,m
)

· ‖τ · Vθ̃ (ŷ, m)‖
1

2 (4.3)

where θ̃ (ŷ, m) is the maximum a posterior parameter set and Vθ̃ (ŷ, m) is the posterior

variance of the parameters. This method was applied to the nonlinear topologies as a

linear approximation. The starting probability distribution was computed first. The

nominal experiment had little distinguishing power and all topologies were roughly

equally probable (Figure 4-2).
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4.2.6 Optimal Experimental Design Algorithm

To compute the expected entropy of each candidate experiment, a set of random data

sets was generated according the experiment by a Monte Carlo procedure. First, a

random topology was chosen according to the nominal topology probability.

A random parameter set was chosen for the topology using the Metropolis-Hastings

algorithm. The proposal distribution for the parameter sampling was a normal dis-

tribution in log-space with a mean of the current parameter set and a variance equal

to inverse of the Fisher information matrix multiplied by 5.66 divided by the number

of parameters [113]. The Fisher information matrix used in the proposal was recom-

puted every 500 steps and parameter directions of very large uncertainties reduced so

that acceptance ratio was between 0.15 and 0.5. The autocorrelation was computed

for each parameter and the samples were thinned so that the autocorrelation in any

parameter was less than 0.05. The autocorrelation was not trusted until the sample

used to compute the autocorrelation was 20 times longer than the step size.

The drawn model was simulated according to the candidate experiment, and a

noisy data set was generated according to the measurement scheme and measurement

noise of that experiment.

All the topologies were fit to the combined set of the original data and the Monte

Carlo data. The linearized topology probability was computed according to this

combined data set. The entropy of this topology probability distribution was saved.

This was repeated many times, drawing a different topology, parameter set, and

data set each time. An average over the entropy provided a Monte Carlo estimate for

the expected entropy of performing that experiment given the current uncertainties.

4.3 Results

We studied four topologies of the ErbB network, each differing in the conditions under

which ErbB3 could dimerize. We fit the topologies to a nominal data set generated by

simulating the topology in which ErbB3 could dimerize when heregulin was bound.

All four topologies were roughly equally probable according to the nominal data set.
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Figure 4-3: Expected entropies of candidate experiments. The expected en-
tropy from each experiment is plotted according to its index. The error bars are the
standard error on the mean of the Monte Carlo sample. From top to bottom, the
dashed lines indicate (1) a uniform distribution on the topologies (complete uncer-
tainty), (2) the equivalent entropy of 1 topology eliminated, and (3) the equivalent
of 2 topologies eliminated.

Using our optimal experimental design procedure, we computed the expected entropy

of each of 408 candidate experiments, which differed in the concentration of the inputs

to the system and up to one protein in the network that was knocked-down or over-

expressed.

There was a diverse range of expected entropies from the set of candidate ex-

periments (Figure 4-3). Only 47 experiments were expected to have lower entropy

than the elimination of one topology. No experiments were expected to eliminate two

topologies, let alone three. The best experiment according to the target function was

#179, with an expected entropy of 0.90. This experiment was not a unique outlier

and other experiments have similar expected entropy. For example, the tenth best

experiment, #34, had an entropy of 1.0.

The properties of the top ten experiments are listed in Table 4.1. The most

noticeable trend is all of the top ten experiments apply heregulin as an input (the
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Figure 4-4: Effect of heregulin on experiment quality. A histogram of the
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Rank Index EGF HRG Inh Perturbation Expected
Entropy

Actual
Entropy

1 179 0 1 nM 0 Pase1− 0.903 1.3
2 211 0 1 nM 0 Pase2− 0.954 0.76
3 177 0 1 nM 1 nM Pase1− 0.956 1.3
4 81 0 1 nM 1 nM GAP− 0.972 1.3
5 19 0 1 nM 0 ErbB2− 0.977 0.70
6 17 0 1 nM 1 nM ErbB2− 0.988 0.57
7 209 0 1 nM 1 nM Pase2− 0.998 1.4
8 289 0 1 nM 1 nM PDK1− 1.01 1.4
9 73 1 nM 1 nM 1 nM GAP− 1.02 1.3
10 34 0 1 nM 1 nM ErbB3+ 1.03 1.2

Table 4.1: Top 10 experiments. A description of each of the top experiments is
provided here, including its index in the list of 408 experiments, the concentration
of EGF supplied (EGF), the concentration of heregulin supplied (HRG), the concen-
tration of ATP analog inhibitor supplied (Inh), the protein that was knocked-down
(−) or over-expressed (+), the expected entropy of the experiment according to the
optimal experimental design algorithm, and the actual entropy from computationally
performing the experiment according to the “true” model.

trend is not broken until the 22-best experiment). This underlies the fact, illustrated

in Figure 4-4, that heregulin clearly divides the experiments into two populations:

those that use heregulin that tend to be useful and those that do not use heregulin

that tend to be useless for the purpose of determining if ErbB3 dimerizes. This is not

particularly surprising considering that heregulin is the ligand which stimulates the

dimerization of ErbB3 and that the nominal experiment already applied the other

ligand EGF.

Also notable is that 9 out the top 10 experiments are knock-down experiments.

Only 1 is an over-expression experiment and 0 are without perturbation to the net-

work. Our earlier work on optimal experimental design for reducing parameter uncer-

tainty also found that perturbations were absolutely favored over experiments without

perturbations [108]. Like in that case, it is remains unclear if favoring perturbation

experiments is due to the fact that perturbation experiments greatly outnumber non-

perturbation experiments, which only comprise 2% of the total experiments, or the

fact that the nominal experiment itself is a non-perturbation experiment means that

another non-perturbation experiment is unlikely to provide new information on the
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Figure 4-5: Distribution of results from top experiments. Standard box plots
of the entropies obtained by Monte Carlo sampling indicate the range of expected
results. Red boxes contain the first and third quartiles, line within boxes are the
median, the whiskers extend to the nearest point within 1.5 times the height of the
box, plusses mark outliers beyond the whiskers, and black crosses mark the actual
entropy resulting from simulating the experiment using the “true” model. Horizontal
dashed lines are same as Figure 4-3, indicating 0, 1, or 2 topologies eliminated. For
each experiment, there are some data sets that provide no additional evidence for the
true topology (near top) and some data sets that provide almost complete certainty
for the true topology (near bottom).

system.

Also notable is that the top 10 experiments only utilize 6 of the 54 possible per-

turbations. The knock-down of Pase1, which is the perturbation of the first best

experiment, appears again in the third best. The knock-down of Pase2 from the

second best experiments appears again in seventh best. The knock-down of GAP

appears in fourth and ninth best experiments. The knock-down of ErbB2 appears

in the fifth and sixth experiments. The repetition of similar experiments near the

top of the list indicates that there are some important features being revealed by our

optimal experimental design procedure.

It is tempting to expect that the entropy one will get after doing the experiment
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will be equal to the expected entropy. However, the expected entropy is an expected

value over the entropies that result from all possible data sets from that experiment.

For the top 10 experiments, the spread of possible entropies is very large (Figure 4-5).

Some data sets result in little change in the topology uncertainty, while other data

sets result in the topology being determined almost entirely.

To look deeper at the properties of good experiments, each of the top 10 ex-

periments was performed using the true model to generate the data. The resulting

topology probabilities are listed in Table 4.1 and the actual entropies are marked on

the box plots in Figure 4-5. Depending on which experiment was done, the actual

entropy was either more or less than the expected entropy but, in all cases, lay within

the expected distribution for the entropy.

We looked closer at experiments 179 and 211 because they were the first and

second best expected experiments, though each gave different results when the true

topology was simulated. When the topology prior is uniform, as it is in our scenario,

the topology probability is dependent only on the marginal likelihood, which in the

linear approximation is equal to Equation 4.3. When the prior is a Gaussian, as it is

in our scenario, the prior has the form:

pθ|m

(

θ̃ (ŷ, m) ,m
)

= ‖τ · Vθ̄ (m)‖−
1

2 · exp








(

θ̃ (ŷ, m)− θ̄ (m)
)T

·V −1
θ̄

(m)

·
(

θ̃ (ŷ, m)− θ̄ (m)
)








(4.4)

where θ̄(m) is the prior mean, Vθ̄(m) is the prior variance, and θ̃(ŷ, m) is the maximum

a posteriori parameter set. We can rewrite the marginal likelihood into three terms:

pŷ|m (ŷ,m) = pŷ|θ,m

(

ŷ, θ̃ (ŷ,m) ,m
)

︸ ︷︷ ︸

likelihood

· exp








(

θ̃ (ŷ,m)− θ̄ (m)
)T

·V −1
θ̄

(m)

·
(

θ̃ (ŷ,m)− θ̄ (m)
)








︸ ︷︷ ︸

prior

·
∥
∥Vθ̃ (ŷ,m)

∥
∥

1

2 · ‖Vθ̄ (m)‖−
1

2

︸ ︷︷ ︸

robustness

(4.5)
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Topology
Probability

Likelihood Prior Robustness

.16 .02 .44 .30

.11 .56 .07 .03

.30 .40 .11 .08

.43 .02 .38 .59

Table 4.2: Deconstruction of experiment 179. The topology probability of com-
putationally performing experiment 179 according to the published model was de-
composed into three components: the likelihood the data would have come from
the best-fit model of each topology, the prior probability that the parameters of the
best-fit model would stray this far from the mean, and the ratio of the volume of
parameter space of the best-fit model to the prior parameter space volume. Each
column is normalized to a sum of 1 to allow comparison of the relative contributions
of each term.

The likelihood is the easiest term to understand; it is merely the distance the data

is from the best fit parameters. It is well-known that topologies with more parameters

tend to be able to fit the data better even when they are not the true topology. The

remaining two terms appear in the Bayesian answer, which compensates for this bias

that exists in favor of more complex topologies. The prior term penalizes topologies

for each parameter that, in the best-fit parameter set, deviates from the prior mean in

order to provide the fit. The robustness term measures the ratio of the final volume

of parameter space to the prior volume of parameter space, penalizing topologies

for having a relatively small parameter space that fits the data as well as the best-

fit parameters. These terms compensate for the likelihood term because topologies

with more parameters have more ways that they can be penalized in the prior and

robustness term.

The values of the three terms of the topology probability for experiment 179 are

shown in Table 4.2. The final topology probabilities are not very different across

the topologies, but the contributions from the different terms show some structure.

The simplest topology, topology 1, has the lowest likelihood, indicating that it had

the worst fit. If only using likelihood, it would have a probability of about 1.5%.

However, the prior and robustness terms partially compensate, leaving it ultimately

with a 16% of being correct according to the data.
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Topology
Probability

Likelihood Prior Robustness

.46 .0003 .91 .97

.0053 .60 .0019 .0031

.52 .24 .067 .022

.0073 .16 .021 .0014

Table 4.3: Deconstruction of experiment 211. The topology probability of com-
putationally performing experiment 211 according to the published model was de-
composed in the same way as experiment 179 in Table 4.2.

The values of the three terms of topology probability for experiment 211 are shown

in Table 4.3. The topology probability indicates that 2 of the topologies were nearly

eliminated by the addition of the new data set from experiment 211. The topologies

eliminated were topologies 2 and 4. When looking at the components of the topology

probability, it is clear that they were not eliminated because they could not fit the

data. In fact, topology 1 is the worst fitting topology, yet it was ultimately rescued

by the other two terms. The prior and robustness terms were highly unfavorable to

topologies 2 and 4.

We looked at the contribution of each parameter to the parameter prior term.

The effect of each parameter is shown in Figure 4-6. A few parameters are mostly

responsible for making topology 1 seem more favorable relative to the other three

topologies. The top ten most influential parameters are listed in Table 4.4. The

overall effect on topologies 2, 3, and 4 is negative, though a few parameters are

favorable. The dominant theme of the important parameters is reactions related to

PIP3. This is particularly interesting because PIP3 is not a measured output. We

only measured proteins of the network, and PIP3 is a small molecule. The strongest

effect was with parameter 91, whose value was about 20 times less likely in topologies

2 and 3 than in topology 1. The fitting step takes this probability into account, so

that, in order to use this value rather than the one that was optimal for topology

1, some other aspect of the fitting had to be improved. We hypothesize that PIP3

shows up here because of a quirk in the model: when any complex forms in this

model, only the last monomer can fall off; the intermediate associations are frozen.
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Figure 4-6: Impact of parameter prior in experiment 211. Each parameter
contributes to the probability of each topology depending on how far its best-fit
value is from the mean. Using the parameters of the topologies fit to the nominal
experiment and experiment 211, the log2 of the contribution by each parameter is
plotted relative to topology 1, which was the worst-fit topology. The dominant peaks,
which on the net reduce the probability of topologies 2, 3, and 4, are discussed in the
text. The teal, yellow, and red bars correspond to topologies 2, 3, and 4, respectively.
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Index Name Reaction Description Contribution

89 k67 (R:R)#P:GAP:Grb2:Gab1#P + PI3K ->
(R:R)#P:GAP:Grb2:Gab1#P:PI3K

Association of
PI3K

[1.2, 1.2, 1.2]

90 kd67 (R:R)#P:GAP:Grb2:Gab1#P:PI3K ->
(R:R)#P:GAP:Grb2:Gab1#P + PI3K

Dissociation of
PI3K

[1.6, 1.8, 1.7]

91 kd68 (R:R)#P:GAP:Grb2:Gab1#P:PI3K:PIP2 ->
(R:R)#P:GAP:Grb2:Gab1#P:PI3K + PIP3

Phosphorylation
of PIP2 to PIP3

[0.05, 0.07, 0.5]

92 kd68b (R:R)#P:GAP:Grb2:Gab1#P:PI3K:(PIP2)2
-> (R:R)#P:GAP:Grb2:Gab1#P:PI3K:PIP2
+ PIP3

Phosphorylation
of PIP2 to PIP3

[1.8, 1.4, 0.6]

93 k69 PIP3 + AKT -> PIP3:AKT Activation of
AKT

[0.6, 0.6, 0.6]

104 kd76 PIP3 + PDK1 -> PIP3:PDK1 Activation of
PDK1

[1.7, 1.7, 1.7]

111 kd96 ErbB2#P + ErbB2#P ->
ErbB2#P:ErbB2#P

ErbB2
dimerization

[0.8, 0.8, 0.7]

113 kd7 (R:R)#P@endosomal membrane ->
(R:R)#P@cell membrane

Phosphorylated
receptor
recycling

[0.4, 1.0, 1.0]

137 kd106 (R:R)#P:GAP:Grb2:Gab1#P:PI3K:PIP2 ->
(R:R)#P:GAP:Grb2:Gab1#P:PI3K + PIP2

Dissociation of
PIP2

[2.0, 1.8, 1.8]

143 k109 PIP3 + PTEN -> PIP3:PTEN
PIP3 + Shp -> PIP3:Shp

Binding of PIP3
to its
phosphatase

[0.6, 0.5, 0.5]

Table 4.4: Influential parameters according to the parameter prior. Each of
the parameters contributed independently to the parameter prior term. The ten most
important parameters are listed, including their index in the model, their name, the
reaction they are associated with, and a short description. Their contribution was
dependent on how far the best-fit value of that parameter was from the prior mean.
The contribution was measured relative to the first topology, which was the worst-fit
topology, so that the relative values of topologies 2, 3, and 4 are shown respectively.
A number greater than one indicated that the parameter gave its associated topology
a higher probability, while a number less than 1 means that it gave a lower probability
relative to topology 1. Some parameters were used in multiple similar reactions, which
were summarized here. “R” is any receptor.
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Figure 4-7: Impact of parameter robustness in experiment 211. The pa-
rameter uncertainty as a whole contributes to the probability of each topology. To
examine the impact from each parameter, the marginal uncertainty of each parameter
was computed. The ratio of the uncertainty to the prior uncertainty of that param-
eter was computed. This ratio roughly approximates the impact on the probability
by that parameters uncertainty. The impact on the topology probability is plotted
relative to topology 1. The dominant peaks, which on the net reduce the probability
of topologies 2, 3, and 4, are discussed in the text. Topologies 2, 3, and 4 were colored
teal, yellow, and red, respectively.

As a consequence, PIP3 binding sequesters a portion of the receptors, GAP, Grb2,

Gab1, and PI3K. Because these are important proteins in the network, controlling

their release may give PIP3 a mild control over many outputs and acts as a way to

give the model a slightly better fit to the data. Biologically, this is not an ability

that PIP3 has because the intermediate associations are not actually influenced by

it, but it reveals a possible property of Bayesian topology discrimination. Namely,

parameters that affect many measurements are those that will be driven to extreme

values to improve the fit because only a strong influence on the measurements can

overcome the restraint that the prior provides to keep the parameter from going to

extreme values. Parameter 113, being the recycling parameter for every dimer, may

be another example of this, though the strong effect is seen only in topology 2.
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Index Name Reaction Description Contribution

2 k1c EGF + ErbB2:ErbB3 -> (ErbB2:ErbB3)#P Activation of
ErbB2:ErbB3

[1.4, 2.6, 0.90]

5 k1d EGF + ErbB2:ErbB4 -> (ErbB2:ErbB4)#P Activation of
ErbB2:ErbB4

[0.57, 0.43, 0.64]

33 kd21 (R:R):GAP:Shc#P?:Grb2:Sos:Ras:GDP ->
(R:R):GAP:Shc#P?:Grb2:Sos + Ras:GDP

Dissociation of
Ras

[0.47, 0.78, 0.57]

44 kd29 Ras:GTP:Raf -> Ras activated:GTP +
Raf#P

Phosphorylation
of Raf by Ras

[2.1, 1.7, 1.5]

86 kd65 *:Sos:Erk#P#P -> *:Sos#P + Erk#P#P Phosphorylation
of Sos by Erk

[2.0, 1.0, 1.4]

90 kd67 (R:R)#P:GAP:Grb2:Gab1#P:PI3K ->
(R:R)#P:GAP:Grb2:Gab1#P + PI3K

Dissociation of
PI3K

[2.5, 3.7, 3.4]

91 kd68 (R:R)#P:GAP:Grb2:Gab1#P:PI3K:PIP2 ->
(R:R)#P:GAP:Grb2:Gab1#P:PI3K + PIP3

Phosphorylation
of PIP2 to PIP3

[0.76, 0.46, 0.73]

104 kd76 PIP3 + PDK1 -> PIP3:PDK1 Activation of
PDK1

[0.48, 0.51, 0.50]

111 kd96 ErbB2#P + ErbB2#P ->
ErbB2#P:ErbB2#P

ErbB2
dimerization

[0.66, 0.59, 0.64]

150 kd113 (R:R):GAP:Grb2:Gab1#P:PI3K:Ras:GDP
-> (R:R):GAP:Grb2:Gab1#P:PI3K +
Ras:GTP

Activation of
Ras by PI3K

[1.6, 1.1, 1.6]

Table 4.5: Influential parameters according to the posterior volume. We
approximated the contribution of each parameter to the robustness term by dividing
the marginal standard deviation of each best-fit parameter by the prior standard
deviation. Each parameter has the same information associated as Table 4.4. Also like
Table 4.4, the contribution was measured relative to the worst-fit topology, topology
1, so that the relative values of topologies 2, 3, and 4 are shown respectively. A
number greater than one indicated that the parameter gave its associated topology a
higher probability, while a number less than 1 means that it gave a lower probability
relative to topology 1.
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The robustness term was dissected in a similar way. We computed the ratio of the

standard deviation of each parameter to the standard deviation of the prior. Because

the robustness term takes into account covariance in the parameters, comparing the

absolute variance of the parameters will give an incomplete picture, but a picture that

is easier to visualize and understand than one obtained by comparing eigenvectors of

parameters. The size of the contribution from each parameter relative to topology 1 is

shown in Figure 4-7. The top ten most important parameters of this term are listed in

Table 4.5. There is some overlap between the two lists—notably, parameter 91, which

had the strongest impact in the prior term. The actual fraction of the prior that was

available for this parameter in topologies 1, 2, 3, and 4 was 1.00, 0.76, 0.46, and 0.73,

respectively. This means that the robustness term itself only reduced the probability

of the topologies by about 25% to 50%. But this smaller range of parameter values

not only affected the topology probability directly, but also constrained the topology

to a more extreme value of this parameter via the prior term, which had as much as

a 16-fold effect.

The box plots in from Figure 4-5 were separated by topology to reveal if the

entropy distribution was different depending on which topology was true (Figure 4-8).

For most experiments, the difference appeared to be small. One notable distribution

difference is experiment 211. In experiment 211, the expected entropy distribution

has a smaller variance when topology 3 is true than when another topology is true.

The actual true topology was, in fact, topology 3 and the final value of the entropy

after performing experiment 211 is consistent with the Monte Carlo distribution. In

a realistic scenario, the true topology is not known beforehand, so evaluating a single

experiment based on the entropy distributions for each topology may not be that

useful in isolation. While experiment 211 appears to have low variance for topology 3,

the other three topologies ensure a rather large variance in the expected entropy of the

experiment. This type of analysis may be useful in considering several experiments at

once. If one is able to perform several additional experiments and wishes to guarantee

that at least one of the experiments in the set of experiments will be good, one could

choose one experiment that is good for each topology considered, which would ensure
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Figure 4-8: Distribution of results by topology. During the Monte Carlo proce-
dure, the topology used to generate the sample data set was recorded. The entropies
from the sample data sets were plotted in a standard box plot for each topology for
each experiment. The style of the box plots are the same as in Figure 4-5. Red boxes
contain the first and third quartiles, line within boxes are the median, the whiskers
extend to the nearest point within 1.5 times the height of the box, plusses mark out-
liers beyond the whiskers, and black crosses mark the actual entropy resulting from
simulating the experiment using the “true” model. Horizontal dashed lines indicate
0, 1, or 2 topologies eliminated.
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that at least one good experiment is performed. This assumes that one does not have

the computational power to directly compute the expected entropy of each possible

set of experiments, which would give a more complete analysis of the quality of each

set.

Ultimately, there was no experiment in the set of 408 candidate experiments that

could decisively distinguish between the topologies, assuming that the experimental

design procedure would have located it if it existed. We suspected that this was

because none of the experiments had the ability to directly measure the amount of

ErbB3 dimerization. We designed a synthetic experiment that would represent the

direct measurement of the ErbB3 dimer. This experiment used 1 nM of heregulin and

over-expressed ErbB3 by 10-fold and measured only the total amount of dimer at the

0 min time point and the eight time points defined for the rest of the experiments.

The measurement uncertainty was the same as the rest of the experiments. This

experiment was simulated with the true topology and synthetic measurements were

collected. According to the topology probability, the probability of each topology was

0.0, 0.0, 1.0, and 0.0 for topologies 1, 2, 3, and 4, respectively, indicating that this

type of experiment could reveal topology 3 to be the true topology.

4.4 Conclusion

We developed a method of optimal experimental design for efficiently reducing topol-

ogy uncertainty. The method used a Monte Carlo procedure to generate a sample

of data sets that would be expected from each candidate experiment and used a lin-

earized method for topology probability to quickly approximate the resulting topology

probability. The expected entropy of the topology probability was used to judge how

effective each experiment was expected to be.

We tested the method on a published model of ErbB signaling by generating

several competing models that added a few variations on how receptor ErbB3 could

dimerize. The topologies were fit to the synthetic data from a nominal experiment,

which did not distinguish between the topologies at all.
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The candidate experiments differed in whether or not they treated the system

with EGF, heregulin, or an inhibitory ATP analog. The most striking trend in the

expected effectiveness of the experiments was the separation between heregulin treat-

ment, which was necessary for relatively good experiments and was expected to elim-

inate about 1 of the topologies, and no heregulin treatment, which was almost uni-

versally expected to provide no information on which topology was correct. Because

heregulin is the ligand that activates ErbB3 for dimerization, it seems reasonable that

this ligand would be important for understanding the behavior of this receptor. It

may also be relevant that the nominal experiment already treated the system with

EGF, thus an experiment that treats the system with heregulin exercises a different

mode of the systems behavior. Previous research has shown that experiments that are

complimentary to existing experiments are important for efficiently reducing param-

eter uncertainty [108, 37]. It would be interesting if this property held for reducing

topology uncertainty as well, though to conclusively show this would require studying

a larger set of candidate experiments.

A closer look at one of the experiments that was effective at eliminating two of the

topologies revealed a complex interaction between the quality of the fit, the prior on

the parameters, and the robustness term of the topology probability. The topology

with the fewest parameters (topology 1) fit the worst, a well-known phenomenon,

but parameter prior and robustness terms compensated, resulting in it being equally

probable with the true topology (topology 3). Topologies 2 and 4 were punished

worse for their parameter and robustness terms, resulting in very low probability. It

is interesting to note that none of the terms ruled out a topology in a frequentist sense.

While the first topology fit the data worse, it was still a good fit by a chi-squared

goodness-of-fit sense (data not shown). Furthermore, in the parameter prior term,

no parameter was very far away from the mean in terms of standard deviations, but

the cumulative effect of many parameters needing to be some distance from the mean

in order to get the better fit was meaningful. Only by using a Bayesian approach to

aggregate the evidence could it be concluded that topologies 2 and 4 were unlikely

given the data from the experiment.
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One of the most curious observations is that the distribution of possible entropies

from each experiment was very large. For each experiment, there were some possible

data sets that would provide no additional information on the topology, but other

data sets that would conclusively eliminate all but one topology. Most of the data

sets were somewhere in the middle, eliminated 1 or 2 topologies, which is where the

actual results of the true model fell, as well. This is different from our previous work

on optimal experimental design for parameter uncertainty, in which the expected un-

certainty from an experiment and the actual uncertainty from a realized synthetic

data set were very similar [108]. The nature of parameter distributions and topol-

ogy distributions are very different, with the former being a continuous function in a

hyperdimensional space and the latter being a discrete function. For a linear model,

the entropy of the parameter distribution is perfectly known before the experiment

is done, while the entropy of the topology distribution before the experiment is done

is not known. This may pose a fundamental limitation on our ability to predict how

good an experiment will be for reducing topology uncertainty. If this is true, then

this increases the utility of our Monte Carlo optimal experimental design method. We

looked closely at the expected entropy to rank experiments, but one could also rank

experiments based one other factors besides the mean entropy. One could select ex-

periments that also had a low variance in the entropy and, therefore, were guaranteed

to be good. Or one could select experiments that had a high variance and, therefore,

a chance to be a killer experiment. It is never required that the entropy be the target

function minimized. A reasonable alternative would be to maximize the probability

that at least one topology is effectively eliminated by having its probability being

below some threshold.

We have made several observations about the role of the different components

of topology probability equation to distinguish between topologies. We have also

made several observations on the properties of experiments that may be good for

distinguishing between topologies of biological systems. Further study is warranted

to ensure that these observations generalize to broad classes of models in systems

biology. The computational cost of the method is tractable for a medium sized model,

105



so it may be useful for experimenters to apply in order to ensure that they are getting

the most out of their experiments. But we expect that this method will be more useful

as a means of studying what kinds of experiments are good for distinguishing between

topologies of biological systems and for comparing computational approximations to

the optimal experimental design problem for topology uncertainty.
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Chapter 5

Exact Coarse-grained Reduction of

Rule-based Models Featuring

Compartments and Cyclization

5.1 Introduction

Increasingly detailed models are being used to aggregate knowledge of biological sys-

tems. These models act as a framework to understand the higher-level behavior as a

function of the underlying components, to constrain the parameters of the underlying

reactions as a function of the higher-level measurements, to predict the behavior of

the system under new conditions, and to design interventions to alter the behavior

of the system to follow design specifications. The paucity of molecular data and the

difficulty of simulating a model with hundreds or thousands of states are the main

limitations of systems biology modeling.

In this work, we address a particular problem that arises when simulating models

that have proteins with many modification sites. If such a protein is present in the

model, this poses a problem for simulating the model because the number of possible

species in which that monomer can exist is exponential with respect to the number

of modification sites. For example, consider ErbB1 with five phosphorylation sites
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Figure 5-1: Exploding species count. As the number of modifiable sites on a
monomer increases, the number of possible states the monomer can be in grows
exponentially. For example, a monomer of ErbB1 with five sites has 32 states, as in
panel (A). If the monomers form protein complexes, the number of possible complexes
can be enormous. For example, a homodimer of ErbB1 has 1024 states, as in panel
(B).
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(Figure 5-1). If each site can be in either a phosphorylated or unphosphorylated state,

then there are 25 or 32 possible species of a single monomer of ErbB1. If ErbB1 can

dimerize in the model, then there are 210 or 1024 possible species of an ErbB1 dimer.

If each site can bind just one protein, then there are 310 or 59 049 possible states.

Having many modification sites on a single monomer is a common motif in biology,

but to define the possible species and their reactions in a model quickly becomes

infeasible as more sites are included in the model. Not only can such a model be too

large to write, it can also be too large to simulate if each species is represented by a

state in the model.

The principle effort to circumvent the problem of exploding states without making

additional assumptions or approximations is rule-based modeling (also called agent-

based modeling) [128, 129, 130]. Rule-based modeling in systems biology is based

on the observation that many of the sites on a monomer behave independently of

each other, or at least, our models treat them independently. For example, the

phosphorylation rate at one site will be the same whether or not a site on the opposite

side of the protein is phosphorylated. Of course, there are instances where one site

does affect another. Rule-based modeling allows a modeler to specify the dependent

instances without specifying all the independent instances. If a program can generate

the species and reactions described by those rules, this eliminates considerable work on

the part of the modeler, assuming that the number of dependent rules is substantially

less than the number of independent reactions. A few software packages implement

rule-based modeling of this kind, including Kappa [59], BioNetGen [131], little b [132],

and Biocham [133].

If the model assumes that some sites behave and are measured independently,

then it is often possible to simulate the system with fewer states than the full set

of species. Solving this problem by hand is extremely difficult and error-prone for

all but the most trivial systems. A few algorithms to construct the reduced-state

model automatically have been designed. They all operate on one basic principle: it is

exactly correct in a differential equation model to simulate the state of a particular site

alone and ignore the states of any other sites when that other state has no influence

109



on rate of any reaction affecting the particular state. Early investigations found

various transformations that, when applied to the full system, resulted in smaller

systems that gave exact results on some observables and inexact results on other

variables [134, 135, 136, 137, 138]. Eventually, these findings were codified in several

algorithms that automatically built coarse-grained systems of ODEs from a set of

user-defined rules [139, 140, 141, 142, 143].

The existing methods of rule-based modeling lacked several features that we felt

were important for building a detailed model of ErbB signaling. The broadest fea-

ture missing was a means to use compartments in the model. There are several

special needs for compartments in rule-based models. Rule-based models allow for

reactions to be specified with some ambiguity in the species that are participat-

ing. For example, the binding of Sos to Ras in the ErbB pathway is one step in

the mechanism by which Ras is activated in the pathway. Sos becomes able to

activate Ras when Sos is recruited to the membrane, increasing the local concen-

tration of Sos around Ras, which is constitutively associated with the membrane.

Sos is confined to the membrane when it binds via one or more adaptor proteins

to ErbB receptors, which are constitutively associated with the membrane. To

describe this process with rules that do not have compartments, one would have

to write a rule for each possible way that Sos could be associated with the mem-

brane, such as erbb1(Y1068~P-1).grb2(sh2-1,sh3N-2).sos(pp-2), erbb1(Y992~P-1).

shc(sh2-1,Y317~P-2).grb2(sh2-2,sh3C-3).sos(pp-3), and many more. Writing all

possible internal representations is the kind of time-consuming and error-prone model

writing that rule-based modeling is intended to prevent. It would be preferable to

be able to express this common motif in a rule like sos(r).@cell membrane + ras(s)

-> sos(r-1).ras(s-1), where .@name indicates that the entire species is localized to

the compartment given by name.

If both reactants of a bimolecular rule can be localized to two different compart-

ments, then with the above syntax there are four rules that need to be written, one

for each possible combination of compartments. For example, cytosolic proteins B-

Raf and C-Raf may heterodimerize when either is bound or not bound to Ras on the
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membrane.

1. braf(d).@cell + craf(d).@cell -> braf(d-1).craf(d-1)

2. braf(d).@cell + craf(d).@cell membrane -> braf(d-1).craf(d-1)

3. braf(d).@cell membrane + craf(d).@cell -> braf(d-1).craf(d-1)

4. braf(d).@cell membrane + craf(d).@cell membrane -> braf(d-1).craf(d-1)

It may be reasonable to give reactions 1, 2, and 3 the same rate constant. The

probability of a reactive collision between B-Raf and C-Raf is theoretically the same

as long as one of them is free-floating in solution. However, it is definitely wrong

to give the same kinetic parameter to a rule where both reactants are confined to a

lower dimensional compartment—the units are different! Rather than have to write

all four rules, it would be preferable to write one rule and assign a different parameter

to each compartment, which would be applied according to the highest-dimensional

compartment of each reactant.

A second feature missing from existing solutions was the ability to make models

in which cycles could form. An example of a cycle would be three proteins where

each had a specialized binding site for the others. A species in such a system could

either be a cyclic trimer A(b-1,c-3).B(a-1,c-2).C(b-2,a-3) or a polymer A(b-1).

B(a-1,c-2).C(b-2,a-3).A(c-3,b-4).... Existing methods fail because of the possi-

bility of polymerization, which leads to an infinite number of possible states. If the

rules allow for polymerization, then making a finite ODE model is impossible for all

but a few special cases. Even if the rules were written in a way that made it impos-

sible for polymerization to happen, existing methods will fail because they look at

all the possible bonds of the system at once. We introduce notation that makes it

easier to specify rules where cyclization can happen, but polymerization cannot—for

example, by saying that a particular monomer will bind only when it is not already

present in the species.

We demonstrate the method by building a model of ErbB signaling and fitting

it to absolutely quantified measurements of phosphorylated peptides. This model
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compiled into 620 states. It represented the mechanism of the ErbB pathway in

greater detail than conventional models would permit.

5.2 Methods

A rule-based model is composed of compartments, agents, seeds, observables, param-

eters, and rules. The notation used in a model file of the software implementation

will be used to describe the model components here.

A compartment is a container for species. It has a name by which it will be

identified elsewhere. It has a dimensionality, which is an integer between 0 and

3 and determines whether the compartment is volume, a membrane, a fiber, or a

point. The compartment has a size, which is a positive real number with units

appropriate to the dimensionality. Finally, each compartment may have a containing

compartment in which this compartment rests. No compartment may be contained

by a compartment that in turns contains the first compartment either directly or

indirectly. Also, a compartment can only be contained by a compartment that is either

of higher dimensionality or exactly one lower dimensionality. This can be understood

in the layout of a biological system. The cytoplasm of a cell, which is a 3-dimensional

compartment, can only be contained by a 2-dimensional membrane. A 2-dimensional

compartment may be contained by a 3-dimensional one, such as the cytoplasmic

membrane in the extracellular region, or it may be contained by a 1-dimensional

compartment, such as a lipid raft contained by the boundary of a lipid raft. A 1-

dimensional compartment may be contained by a 3-dimensional compartment, such

as DNA in a nucleus, or it may be contained by a 2-dimensional compartment, such

as the boundary of a lipid raft, ignoring 0-dimensional compartments, which do not

have much utility.

An agent is a description of an indivisible particle in the system, usually a protein

or small molecule. The agent has a name and a list of sites. Each site has a name

and a list of possible states. Each state can either be the unmodified state or a name

of a particular modification, such as “P” to represent a phosphorylated state. The
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rule-based model will use the agents to build any multimeric complexes in the model,

and each monomer in the complex must be an instance of one of the agents.

An essential concept of rule-based modeling is the graph. Each graph has a set

of monomers. Each monomer is an instance of an agent and may list some of the

sites on that agent and may have a list of possible compartments. Each site has a

list of possible states. Each site is either bound to another specific site in the graph

or has a list of possible sites on agents. By convention, sites that are not listed are

totally ambiguous; they are equivalent to sites that may be in any state connected

to any site. Of all the species in the model, the graph represents the subset that

it matches. A species can be represented as a completely unambiguous graph. A

graph matches a species if a map can be made from each monomer in the graph to a

monomer in the species such that each monomer to which it is mapped is different,

the possible compartments on each graph monomer contains the compartment on the

species monomer, every bound edge in the graph is present in the species and, for

every site, the possible states and edges of the graph contain the actual state and

edge of the species. The number of matches is equal to the number of ways that the

graph can be aligned with the species divided by the number of ways the graph can

be aligned with itself.

Similar to a graph is a pattern. A pattern is also a description of a set of species.

It has a graph as its core definition, but it has additional constraints. It has a list

of possible compartments for the species as a whole. The species compartment is the

compartment that the species as a whole is confined to. It is the lowest dimensional

compartment of all the monomer compartments. A pattern also has a Boolean ex-

pression of graphs called the disjoint context. For a species to be matched by the

pattern, each graph in the disjoint is tested to see if the species contains it. Then the

Boolean expression is evaluated by checking whether or not each graph in the expres-

sion matches the species and then evaluating those results through the AND, OR,

and NOT operators of the Boolean expression. The species matches if the expression

evaluates to true and does not match if the expression evaluates to false. The number

of matches per graph is not meaningful—the disjoint is merely a filter on the species.
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The current implementation limits each graph in the disjoint to a single monomer.

This is all that was needed at the time because it is enough to represent compart-

ment constraints, though this limitation could be lifted by changing the algorithm for

resolving disjoint context.

A seed describes an amount of a species with which the model will be initial-

ized. It is a completely unambiguous graph—no state, edge, or compartment may be

ambiguous.

An observable is defines the states that are measurable for this system. It is a

name associated with a list of patterns and a real number indicating how much each

pattern contributes to the value of the observable.

A parameter is a kinetic rate constant of the model. It has a name and a nonnega-

tive real value. The units of the parameter must be appropriate for the dimensionality

of the rules it will be used in.

A rule is a description of how fast a particular type of reaction occurs. Like a

reaction, it has a rate constant, at most two reactants, and any number of products,

usually at most two. Instead having specific species for reactants, it has a pattern

for each reactant. Any species that matches the pattern undergoes the reaction.

In this work, the product is an array of graphs, and the transformation of the rule

is discovered by mapping each monomer of the reactant graphs to a monomer of

the product. The monomers may be labeled so that the mapping is explicit, but by

convention, each unlabeled monomer in the reactants is mapped to the first unlabeled

monomer in the products of the same type that has not yet been labeled. Monomers

on the reactant side that are not mapped to product monomers are consumed by the

rule. Similarly, monomers on the product side not mapped to reactant monomers are

produced by the rule. Monomers that are produced must be completely unambiguous.

Once the monomers are mapped from reactant to product, the differences in the

states and edges define the transformation. If the state of a site changes, it must

change to a specific state. Similarly, if the compartment changes, it must change to

a specific compartment. Finally, if the edge of a site changes, it must change to an

unbound edge or to a bound edge with another site in the product. The rule has
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a list of parameters and a list of compartments for each parameter. Because of the

units on the parameters, bimolecular reactions must take place at a dimensionality

consistent with its units. Bimolecular rules must have different parameters when the

dimensionality of the reaction is different. By convention, if only one parameter is

given, the rule is assumed to apply only to the highest possible dimensionality given

the possible compartments of the reactants based on the possible compartments of

the monomers considering the seeds and monomer production.

5.2.1 Notation

We designed a file format for defining rule-based models in way that is human and

machine readable and writable. Much of the notation is similar to that of BioNet-

Gen files and KroneckerBio files and, to a lesser extent, Kappa files. The format is

line-based, but otherwise whitespace invariant. Blank lines are ignored, as are lines

beginning with a #. The file is divided into sections, of which there are six types:

compartments, agents, seeds, observables, parameters, and rules. The beginning of a

new section is specified with a section header beginning with a % character followed

by a name of a section, such as % Compartments, % Agents, % Seeds, % Observables,

% Parameters, or % Rules.

The compartment section header has an optional model name that may appear

at the end of the line, such as % Compartments Hagen ErbB, which can be interpreted

as saying that the following lines are compartments of the Hagen ErbB model. Each

line in a compartment section corresponds to one compartment. The line is simply

the name of the compartment, the dimensionality of the compartment, the volume of

the compartment, and optionally, the container of the compartment. For example,

the compartment section of a model may be:

% Compartments Hagen ErbB

extracellular 3 1

cell membrane 2 1 extracellular

cell 3 1 cell membrane

Each line in an agents section corresponds to one agent. Each line begins with the
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name of the agent, optionally followed by parentheses containing a list of sites sepa-

rated by commas, where each site is optionally followed by a ~ and braces containing

list of possible states separated by commas. Each site has a state 0, even if it is not

listed, and the braces may be omitted for a site that has a single state listed. Here

are some example agents from an ErbB model:

% Agents

egf(l)

erbb1(l,d,Y992~P,Y1045~P,Y1068~P,Y1086~P,S1142~P,Y1148~P,Y1173~P,ub~ub)

erbb2(d,Y877~P,Y1023~P,Y1139~P,Y1196~P,Y1221~P,Y1222~P,Y1248~P)

grb2(sh2,sh3N,sh3C)

shc(sh2,ptb,Y239~P,Y240~P,Y317~P)

sos(pp,r)

hras(s,nuc~{GDP,GTP})

The seeds section header has an optional compartment name that may appear

at the end of the line. Each monomer must be localized to a specific compartment,

but it can become burdensome to list the compartment for every monomer. This

compartment name acts as the compartment for all monomers in its section that do

not have a compartment specified. Each line is the graph of the seed, followed by its

initial amount. A graph is a list of monomers separated by periods. Each monomer is

the same as an agent except that each site listed must also specify if it is unbound, by

appending -0 which can be elided, or if it is bound, by appending a hyphen followed

by some other number. Two sites with the same number are bound to each other. A

monomer on the compartment is specified by appending to the monomer an at-sign

followed by a compartment name. Some example seeds are:

% Seeds

egf(l)@extracellular 1

hras(s,nuc~GDP)@cell membrane 1

% Seeds cell

grb2(sh2,sh3N,sh3C-1).sos(pp-1,r) 1
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Each line of the observable section has the name of an observable followed by a list

of patterns separated by commas with each pattern optionally followed by an equal

sign followed by a number that is the contribution to the observable by this pattern.

If no contribution is listed, it is assumed to be 1. A pattern is a graph optionally

followed by a disjoint and optionally followed by a species compartment. Unlike seed

graphs, these graphs can specify ambiguity. Ambiguity in the state or edge is specified

by listing multiple items between braces separated by commas. Sites not specified

on monomers are completely ambiguous in their states and edges. States or edges

marked with a question mark (~? or -?) are completely ambiguous. States or edges

not mentioned on a site are the unmodified state or the unbound edge, respectively.

A partial edge may be specified by the name of a monomer followed by an at-sign

followed by the name of one of that monomer’s sites. While there may be multiple

partial edges and unbound edges on a site, a bound edge must be unambiguously

connected to a specific site in the graph. The disjoint is a period followed by braces

enclosing graphs arraigned in a boolean expression with | indicating OR, & indicating

AND, ^ indicating XOR, and ! indicating NOT. Parentheses group subexpressions.

The species compartment is specified by a period followed by an at-sign followed by

braces enclosing compartment names. An integer may be specified for the compart-

ment to indicate all compartments of that dimensionality. The braces may be elided

if there is only one compartment listed. An example observable section is:

% Observables

ErbB1#pY1068 erbb1(Y1068~P-?)

ErbB1#S1142#pY1148 erbb1(S1142-?,Y1148~P-?)

TotalErbB1 erbb1()

RecruitedSos sos.@cell membrane

SosNotBoundToErbB sos.{!(erbb1|erbb2|erbb3|erbb4)}

ErbB1Dimers erbb1(d-1).erbb1(d-1)

Each line in a parameters section is simply the name followed by its value. An

example parameter section is:

% Parameters
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egf erbb1 on 1

egf erbb1 off 1

erbb1 erbb1 on 1

erbb1 erbb1 off 1

Each line in the rules section is one rule. There are at most two reactants, which

are patterns exactly as specified in the observables, separated by a plus sign. There

are an arbitrary number of products, which are graphs, separated by plus signs. The

reactants and products are separated by -> for a forward rule, <- for a reverse rule,

and <-> for a reversible rule. The rule is then followed by one rule parameter for

the forward and reverse rules and two rule parameters for the reversible rule. Each

rule parameter is a pair of parentheses enclosing a list of parameter names optionally

followed by an at-sign followed by braces enclosing a list of compartments names with

the braces being optional with only one compartment. The compartments are the

rule compartments of that parameter. Some example rules are as follows:

% Rules

egf(l) + erbb1(l,d) <-> egf(l-1).erbb1(l-1,d) egf erbb1 on egf erbb1 off

erbb1(l-!0,d) + erbb1(l-!0,d) -> erbb1(l-!0,d-1).erbb1(l-!0,d-1) erbb1 dimer

shc(Y239~P) + ptpe -> shc(Y239) + ptpe (deP shc Y239 3@3, deP shc Y239 2@2)

5.2.2 Model Assembly

The first set of steps in building the executable model is to simplify the components

by removing the many different ways that a user can specify the model and redefining

everything in its most general form.

In order refine graphs, it is necessary to know all the possible monomers, compart-

ments of the monomer, sites of the monomers, states of the sites of monomers, and

edges of the sites of monomers. We assemble the list of possible agents by collecting

the name of every monomer that is introduced via a seed or via production in a rule.

On the site of each agent we assemble the list of possible states by collecting the

states that are present on a seed monomer or produced via a rule. Also on each site,
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the list of other sites this site can form an edge with is assembled by collecting the

bonds that are present in the seeds or produced in a rule. In the same way, we also

assemble the possible compartments of each agent. It is assumed that an agent can

only be in a compartment if it is listed in that compartment by a seed or moved to

or created in that compartment by a rule. At the same time, we also assemble for

each site state and site edge the possible site states and site edges that may coexist

with it on the same monomer. For example, some sites may only be bound if they are

phosphorylated. In theory, this could be extended to even higher levels of coupling,

though at greater computational cost and lower usefulness. It may be desirable to

allow transport reactions representing movement from one membrane to other that

implicitly moves monomers from one side of the membrane to the equivalent com-

partment after transport, but this capability was not implemented. This list of agents

is similar to the annotated contact map of Feret et al., but ours both contains more

information and is less central to our method. While their contact map was the cen-

tral object in defining the coarse-grained model, ours is only used a reference for the

possible values that the sites may have.

The seeds are unique in that they do not need substantial simplification because

they are already completely unambiguous graphs.

The observables are simplified first by converting all pattern compartments into

disjoint context. To say that a species is located in a specific compartment means

that it contains at least one monomer in that compartment and no monomers in a

lower dimensional compartment. The agent list tells what monomers could possibly

be present in each compartment. These constraints are translated into a Boolean

expression and combined so that the disjoint context now must match the old disjoint

and one monomer of a correct compartment and none of the monomers with a lower

dimensionality.

To process the observables further, we use the process of refinement, which is a

technique that will be used in several later steps as well. Refinement takes a graph and

creates two new graphs, each of which is less ambiguous than original, but together,

the union of the species that each represents is equal to the species that the original
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represents. An example of this would be a graph that was ambiguous with respect

to the state of a particular site, and this graph was split into one graph that had

only one of the states and another graph that has all states except the one in the

first graph. A special step in refinement is the conversion of a site with one partial

edge into a site bound to that specific monomer and site. One of the resulting graphs

is with a newly added monomer. However, the refinement also creates the graphs

where the refined site binds to each of the sites already present in the graph that is

compatible with binding to the site being refined.

The observables are further simplified by converting the disjoint context into ex-

plicit context on the graph. This process begins by comparing each graph in the

disjoint context to the main graph of the pattern. Any disjoint graph that matches

the main graph entirely is replaced with True in the Boolean expression. Any disjoint

graph that is completely incompatible with the main graph is replaced with False.

A complete incompatibility is typically more difficult to prove than matching. There

has to be no way for any of the ambiguous edges of the main graph to connect to a

monomer of the disjoint graph in order to declare it incompatible. One determines

this by walking through the possible sites in the agent list. Once the True and False

disjoint graphs have been evaluated, the Boolean expression is simplified. If the entire

disjoint simplifies to True, then the main graph alone describes the species represented

by the pattern; the disjoint is already represented and can be discarded. If it simplifies

to False, then this pattern represents no species because there is no species that can

be matched by the main graph without disobeying the disjoint context; this pattern

is discarded entirely because it will not contribute to the observable. If the Boolean

expression does not completely simplify, then refinement is needed. The algorithm

searches the agent list for a site on the main graph that can connect to a monomer

on the disjoint. The site on the main graph is then refined by splitting the graph into

one graph that is not bound to that monomer and another graph that is bound to

that monomer. The graphs resulting from the refinement are used to create two new

patterns that have the same disjoint but different main graphs. The process is then

restarted with each of these patterns until all disjoint context has been resolved.
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The rules are simplified by converting the parameter compartments into reactant

compartments. This is only relevant for bimolecular rules, because zeroth-order and

first-order rules do not have rule compartments. Because the reactants of the bimolec-

ular rules must physically collide in order to take part in the reaction, the rule in each

compartment must be tracked separately. Each rule with several possible compart-

ments is split to create a new rule for each possible compartment. In order for a rule

compartment to be satisfied, one of the reactants must be in that compartment and

the other must either be in that compartment also or in an adjacent compartment,

one that contains the rule compartment or is contained by it. A new rule is gen-

erated for every possible ordered pair of compartments that meets this criterion by

intersecting the pattern compartment of the first reactant with the first member of

the ordered pair and doing the same with the second reactant and the second com-

partment. If any resulting rule has a reactant with an empty pattern compartment,

that rule is deleted. The rule compartment is now codified in the reactants’ pattern

compartments.

The rules are further simplified by converting the pattern compartments of the

reactants into disjoint context on the reactants. This is done exactly the same way as

it is done on the observables patterns. The reactants are simplified further by refining

away the disjoint context of the reactants. This is also done in the same way as the

observable patterns.

5.2.3 Fragmentation

We build the ordinary differential equation system using a set of graphs called frag-

ments. The following is true for every fragment and for every rule:

1. No partial consumption. If a reactant consumes any instance of a fragment,

then it must consume all instances of that fragment. Procedurally, this is de-

termined by aligning the reactant and the fragment. If the alignment is not a

complete match with respect to the reactant, then the alignment is partial. If

the same alignment does not partially match in the product, then the fragment
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is consumed. If the alignment is both partial and consumed, then this is not a

proper fragment of the system and must be refined.

2. No partial production. If a product produces any instance of a fragment, it

must always produce an instance of a fragment. Procedurally, this is done by

doing a partial alignment of the product and fragment. If the alignment is not

a complete match with respect to the fragment, then the alignment is partial.

If the same alignment does not partially match the reactant, then the fragment

is produced. It is not a proper fragment if the alignment is both partial and

produced.

The fragmentation algorithm begins by initializing a set of fragment clusters with

the graphs of the observables. A mapping is retained from each observable contrib-

utor to each fragment cluster. The fragment clusters are unique, so any observable

contributors that have identical graphs map to the same fragment cluster. An it-

eration of the fragmentation algorithm takes each of the new fragment clusters and

initializes with the main graph a mutable set of fragments that will become associated

with the fragment cluster. The set of fragments is compared to the reactants. If any

fragment partially matches the reactant, the fragment is refined toward the reactant

so that the resulting fragments are either not consumed or completely consumed by

the reactant. The original fragment is replaced by the refined fragments in the set

of fragments associated with the fragment cluster. In the set on the fragment clus-

ters, each fragment has a modifier that changes when the fragment is refined. The

modifier on the fragments resulting from refinement is equal to the original modifier

times the automorphism of the new fragment divided by the automorphism of the

original fragment. If comparison to the reactants resulted in any refinement, the set

of fragments is compared to the reactants again. Once no further refinement has

taken place, which means that there is no partial consumption of these fragments,

the list of rules is searched for each fragment and a list of rules that consume each

fragment is associated with the fragment. For each bimolecular rule with a reactant

that consumes a fragment, the other reactant initializes a new fragment cluster. The
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rules are searched again to find rules that produce the fragments. If any are found to

partially produce the fragment, the products are refined toward the fragment. The

refined rules that no longer match the fragment are discarded. The refined version of

the rule that fully produces the fragment is associated with the fragment and the re-

actants of that rule are added as new fragment clusters. The fragmentation algorithm

then repeats with all the new fragment clusters created from the various reactants of

the rules.

A mass-action model is built using the fragments as species and the rules as-

sociated with each fragments are reactions. The compartments of the mass-action

model are the same as the rule-based model. The hierarchy of the compartments

is not needed to construct a mass-action model. However, one additional default

compartment may need to be created for fragments that are not associated with a

particular compartment, which is possible for some fragments that never participate

in bimolecular rules. The states of the mass-action model are the fragments. For each

unimolecular consumption rule associated with the fragment, a reaction is generated

with the fragment as a reactant and nothing as the products. For each bimolecular

consumption rule associated with the fragment and for each fragment in the fragment

cluster that was generated from the other reactant, a reaction is generated with the

fragment as one reaction reactant and the fragment from the rule reactant as both

the other reaction reactant and the sole reaction product, so that it is not actually

consumed in this reaction, it only plays a part in controlling the rate of the reac-

tion. For each zeroth-order production rule associated with the fragment, a reaction

is generated with the fragment as a product. For each unimolecular production rule

associated with the fragment and for each fragment in the fragment cluster that was

the reactant of that rule, a reaction is generated with the fragment from the rule

reactant as both the reaction reactant and the product and the fragment as another

product. For each bimolecular production rule associated with the fragment, a reac-

tion is generated for every possible combination of fragments in the reactant fragment

clusters. The rule reactant fragments are the reaction reactants and products with

the fragment being a third product.
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The fragmentation algorithm can viewed as a process that started off with the

“things we need to know”, namely the observables that initialize the set of fragment

clusters. The rules change the amount of the observables over time. If the rules only

consume part of the things we need to know, then we need to split the things we

need to know into groups, namely fragments, that are either fully consumed or fully

not consumed. If the rule is unimolecular, then knowing the state of the fragment

and the rate constant is all that is needed to compute the reaction rate of that

fragment according to that rule. If the rule is bimolecular, the rate at which a

fragment is consumed depends on the concentration of the other reactant, so that

reactant becomes a new thing we need to know. If a rule produces a fragment, it

needs to be made more specific with respect to that fragment, and then its reactants

become things we need to know. This is repeated until everything that we need

to know is already being tracked. This fragmentation algorithm guarantees that

everything we need to know is being tracked and nothing that we do not need to

know is being tracked. This by itself results in simulations that are far more efficient

than simulating the amounts of all the species in the model. However, the algorithm

does not guarantee that everything we need to know is only included once. Exact

copies are already handled, but a fragment can be represented by the sum of several

other fragments.

A post-processing algorithm is run to ensure that the states needed are included

exactly once. For each fragment the algorithm searches for a set of other fragments

whose sum is equal to the original fragment. This means that there is a series of

refinements that can be made to the original fragment that results in the equivalent

set of fragments. A corollary of these requirements is that the original fragment is a

subfragment of each member of the set of the equivalent fragments. This means that

no fragment can be in each other’s equivalent sets unless they are exactly equal, which

is prevented when the list of fragments is initially constructed. The algorithm searches

for fragments that can represent another fragment by filtering the list for fragments

of which the fragment in question is a subset. The fragments that pass through the

filter are the candidates to replace this fragment. The fragment is aligned in every
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possible way with each candidate. Each alignment is refined toward its associated

candidate with one random refinement to generate a set of refined graphs. The

duplicates in the refinements are removed. If any refined graph is not a subgraph of

any candidate, this refinement fails to lead toward finding representative fragments.

If the refined graph is found exactly in the list of candidates, it is saved as a possible

member of the representative set. If the refined graph is not found exactly but is a

subgraph of any of the candidates, it is recursively checked to see if there is a set of

representative fragments in the candidates. If all subgraphs produced by a refinement

are represented in the set of candidates, either in this iteration or from a recursive

iteration, then a representative set of fragments has been found and this is returned.

Otherwise, no refinement finds a representative set of fragments. All fragments with

a representative set are replaced in the fragment clusters with their representatives.

5.2.4 Model

Using the rule-based modeling software described here, we constructed a model of

ErbB signaling. The scope of the model was to explain the behavior of the ErbB

pathway in MCF-10A cells [144] in the time scale of 30 seconds to 30 minutes. The

concentration of ErbB3 and ErbB4 is very low in this system, so the model only

considered the ErbB1 and ErbB2 receptors and their downstream effectors until Erk.

In the model, EGF binds to ErbB1, which allows it to dimerize with other ErbB1

monomers and ErbB2. Each member of the dimer tyrsosine phosphorylates the other.

ErbB1 becomes phosphorylated at Y992, Y1045, Y1068, Y1086, Y1148, and Y1173.

The evidence is against direct phosphorylation of Y1045 by either receptor, but be-

cause the actual kinase for the site is unknown and the phosphorylation does occur

indirectly after dimerization, we made the approximation that it is directly phospho-

rylated by the receptors. The sites undergo non-mechanistic dephosphorylation. Site

S1142 is also phosphorylated on ErbB1, but by the serine kinase CamK2. This phos-

phorylation is modeled as a two-reactant/two-product rule, rather than the mech-

anistic binding of the kinase followed by phosphorylation within the kinase. This

“drive-by phosphorylation” is used here and elsewhere to limit the size of the model,
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because forming complexes dramatically increases the number of states that need to

be tracked.

ErbB1 is degraded by C-Cbl when Y1045 is phosphorylated. This dramatically

telescopes the real behavior of the system in which C-Cbl ubiquitinates ErbB1 leading

to its internalization, which can lead to either recycling or degradation. ErbB1 is

replenished by synthesis.

Shc binds to phosphorylated Y992, Y1148, and Y1173 on ErbB1. Shc itself be-

comes phosphorylated on Y239 by ErbB1 when bound to it. Grb2 binds to phospho-

rylated Y1068 and Y1086 on ErbB1 and also on phosphorylated Y239 on Shc. Sos

binds to Grb2. When Sos is localized to the membrane, via indirect bonding to the

receptors, it catalyzes the conversion of Ras-GDP to Ras-GTP.

Raf binds to Ras-GTP if it is not in a closed conformation with 14-3-3. If Raf

is in an open conformation, PP2A dephosphorylates S365, preventing 14-3-3 from

returning Raf to a closed conformation. In the same way, if Ksr is in an open con-

formation, PP2A dephosphorylates S392, preventing 14-3-3 from returning it to a

closed conformation. PKA rephosphorylates Raf on S365 and Ksr on S392, allowing

both to be reset. Raf can dimerize with Ksr or with itself when both are an open

conformation. If it dimerizes with itself, it is an active kinase for Mek on S218 and

S222. Finally, Mek is kinase for Erk on T202 and Y204 when Mek is phosphorylated

on either S218 or S222.

The ODE model was simulated using the KroneckerBio toolbox in Matlab.

5.2.5 Data

The data was provided by Tim Curran of the Forest White lab. MCF-10A cells were

treated with 20 nM EGF. The amount of various phosphopeptides were measured by

the inclusion of an internal standard for each peptide. The amounts of all peptides

were measured before application of EGF (referred to as 0 seconds) and at 30 s, 1

min, 2 min, 3 min, 5 min, 10 min, and 30 min after the addition of EGF. Depending

on the number of times each peptide was detected, there were up to five replicates of

each data point.
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Figure 5-2: Measurement uncertainty relationship. For most of the measure-
ments of a particular phosphopeptide at a particular time, there were multiple biolog-
ical replicates of the measurement. For each set of replicates, the mean and standard
deviation was estimated and plotted. A roughly linear relationship between the mean
and standard deviation can be seen—a property that was used to estimate the percent
measurement uncertainty and the noise floor.

5.2.6 Measurement Uncertainty

The replicates in each point were used to estimate the measurement uncertainty. The

mean and standard deviation of all samples of each peptide-time pair was computed.

A scatter plot of the mean vs. standard deviation for all points is shown in Figure

5-2. The relationship appears to be roughly linear. A line was fit to the data with

weighted least squares to estimate the measurement uncertainty. The weights were

the means of each point so that fit weighted a percent error the same for all points.

The slope of the fit was 0.26, which indicated a 26% measurement uncertainty. The

intercept was 12 000 molecule per cell, which indicated the noise floor.

5.2.7 Fitting

The model was fit to the data using sequential quadratic programming as implemented

in Matlab’s fmincon using an analytical gradient computed using the adjoint method.
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Figure 5-3: Behavior of best-fit model. The black circles are the data collected
on this system. The red line is the behavior of the model parameterized with the
best-fit parameters. Each peptide is named with the protein it comes from followed
by the list of phosphorylatable sites on the peptide. If the site begins with a “p”,
then it is phosphorylated at that site and unmodified otherwise.
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5.3 Results

We created a model of the ErbB system using rule-based modeling and fit it to

absolutely quantified mass spectrometry data. The best-fit traces to the data are

shown in Figure 5-3. Some outputs do not fit particularly well. It remains unknown

whether this is due to limitations of the model or due to limitations in the fitting

algorithm.

5.4 Conclusion

We built a model of the ErbB system with greater detail in the mechanism of the top of

the network than had been achieved with previous ODE models. The phosphorylation

and dephosphorylation of each site was modeled individually. The complex binding

of Raf, Ksr, and Mek was modeling mechanistically, a portion of the pathway that

is usually modeled as a simple kinase cascade. Some mechanisms that we wanted to

include had to be simplified due to the model becoming too large to simulate. The

internalization and degradation of ErbB1 had to be simplified as just Cbl reacting

with Y1045 to eliminate ErbB1. Because the amount of all sites on ErbB1 depended

on degradation and most of the states in the model were some form of ErbB1, every

addition to this aspect of the model would nearly double the size of the model, whether

it was binding of Cbl, ubiquitination itself, binding to clatherin-coating pit protein,

or the entirely separate set of states in the internalized compartment.

We had expected to be able to build a larger model. However, we unexpectedly ran

into a limitation inherent in our use of Matlab sparse matrices to store and evaluate

the ODEs. Matlab uses compressed column storage (CSC) to store sparse matrices.

This normally allows us to simulate models very efficiently. However, when the num-

ber of states becomes very large, several matrices become exceedingly sparse—far

fewer than one entry per row or column. The CSC matrix format must still store

one entry for every column. This allows for some algorithms to perform quickly when

there is at least one entry per row and column, but this leads to extremely inefficient
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storage of matrices in which most columns are empty. The matrices in the model

required much memory to store and much time to operate over. Theoretically, a

different sparse matrix representation could be much more efficient, but an imple-

mentation of such a matrix and the necessary matrix operations was not available.

In the end, the model had to be limited to about 700 states.

It is unclear how large of a model could be simulated or, more importantly, fit

to data, with current computational resources if a more efficient means of evaluating

the ODEs were developed. Upon recognition of the immediate limitation of sparse

matrix multiplication, we did not aggressively optimize the rule-based modeling code

to see how large of models it could construct. The current implementation would

construct models with thousands of states in a few hours.

Despite the limitations of the current downstream implementation, the current

model was still able to provide insight into the behavior of the ErbB system. This

model would have been difficult to construct without the compartmental rule-based

modeling features introduced by the algorithm described here.
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Chapter 6

Conclusion

If we consider that biological models are made of a topology and a parameter set, then

being able to compute the uncertainty in both the parameters and topology represents

a complete package in quantifying the uncertainty in biological models. Similarly,

having algorithms to design optimal experiments for reducing the uncertainty in both

is another complete package.

The use of linearization in the form of the Fisher information matrix to approx-

imate the uncertainty in nonlinear systems has a well-established history. For this

reason, it is the only problem in the realm of quantifying uncertainty and optimal

experimental design for parameters and topology that did not get a chapter in this

thesis. Whether or not an approximation is good depends on the purpose for which

it is used. I showed that it is a good approximation for the purpose of predicting how

good an experiment is at reducing uncertainty. I also showed that it is a good approx-

imation for quantifying how far the fitted parameters are from their true values when

the linear uncertainty is small. The approximation is not good for drawing parame-

ters that are consistent with the data, which is why the Monte Carlo algorithm for

optimal experimental design for topology uncertainty uses the Metropolis–Hastings

algorithm to sample parameter space.

Previous research had found that optimally chosen experiments could reduce the

linearized uncertainty to very low levels. My work found that the nonlinear situation

was just as good. Not knowing the parameters beforehand, and therefore, using the
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wrong parameters to predict the next best experiment still allowed for experiments

to be found that were good enough to determine the parameters to very high accu-

racy. Part of the reason this method was successful was that it was computationally

inexpensive. There was no Monte Carlo step needed to test an individual experiment.

The evaluation was purely linear. This allowed hundreds of thousands of experiments

to be evaluated in a few hours when spread over a few hundred processors. While this

problem is called optimal experimental design, this algorithm was more like optimal

experimental selection. The experiments had to be enumerated. This means that a

continuous search space, such as optimizing the time to take a measurement, cannot

be explored with this method without discretizing the space. It would be possible to

use gradient descent on the goal function. This would require computing the gradient

of the Fisher information matrix. This is an expensive calculation, and it is unlikely

that the marginally better experiments would be worth the effort. The findings of this

work showed conclusively that it is not a specific, narrowly-defined experiment that is

needed to reduce the uncertainty in the model. Instead, it is a set of experiments that

are collectively complementary. There is not a specific measurement that needs to be

made, but a broad set of measurements under experimental conditions that exercise

the system into different modes that is needed to fully understand the system.

The linearization method for topology probability is probably the most substantial

contribution of this thesis. Seeing the success of linearization in quantifying parame-

ter uncertainty, I wondered if a similar approach would work for topology uncertainty.

There is an analytical solution for the topology probability of linear models. There

are different ways of expressing this solution, which give the same answer for linear

models, but of the ones I tested, only the one described in this thesis gave a robustly

accurate answer for nonlinear models. The existing heuristics were not good approx-

imations for biological models. This is probably because they all assume that the

number of measurements is so large that the parameter uncertainty is small. That

would only be true for someone who ran the experimental design algorithm for pa-

rameter uncertainty. In all other cases, the uncertainty in the models is enormous. It

is necessary in systems biology to be able to quantify the topology uncertainty before
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all the parameters have been effectively determined.

I used to believe that a straightforward and efficient Monte Carlo algorithm existed

for any statistical question. The topology probability problem is a counter-example.

Sampling from the posterior parameter distribution is not sufficient to compute the

marginal likelihood. It is necessary to sample from a large carefully designed se-

quence of distributions. The extraordinary computational expense of computing the

gold-standard answer for topology probability reinforces the need for a fast and accu-

rate approximation. The linearization method clearly filled this role for the MAPK

topologies. It remains to be seen if there are scenarios where it is not a good ap-

proximation. I suspect that when the parameter uncertainty is extremely large, the

algorithm will begin to break down as the robustness term swamps all other terms.

I never got to fully investigate this. Comparing to a gold standard for larger models

is probably impossible as it took weeks to compute for four topologies with only a

dozen parameters.

Interestingly, there is no analytical solution for optimal experimental design for

linear topologies, though this is only when the target function is the entropy. This

was disappointing because the entropy of the parameter distribution could be mini-

mized analytically with the goal function to minimize the determinant of the variance

matrix. There are some functions with reasonable properties of the topology prob-

ability that have analytical solutions for their expected value. These methods were

never fully investigated, though I suspect that some would work nicely for evaluating

more experiments than can be currently tested with the Monte Carlo method.

As larger models are needed, several computational bottlenecks will arise. The

simplest living organism has a few hundred genes, which in on the same order of mag-

nitude as the Chen model from Chapter 4 and ErbB model from Chapter 5. Some

portions of the ErbB model had be removed in order to get it down to this size because,

above about 1000 states, it was no longer possible to build the model. The immediate

limitation is the sparse matrix representation in Matlab. By using the CSC format

for sparse matrices, Matlab requires at least one entry for every matrix column. Some

matrices in a large model have an enormous number of columns, usually because they
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represent a matrix derivative, which is naturally a higher-dimensional array, but has

been flattened to two dimensions because a sparse representation is only available in

two dimensions. After flattening, almost all columns themselves are empty, but still

need to be stored in memory. None of the popular scientific computing environments

have higher-dimensional sparse arrays that support dot products. Despite the sub-

stantial computational improvement that the KronckerBio formulation of the model

gives, the sparse matrix implementation will limit the size of models that it can build.

Another looming limitation is that the best stiff ODE solvers, namely ode15s,

take the sparse LU decomposition of the jacobian. In order to compute the Fisher

information matrix, which is needed for all the higher-level algorithms except for

fitting, it is necessary to integrate the sensitivities of all the states with respect to

all the parameters. If the number of states and parameters each grow linearly with

the size of the model, then this integration grows with the square of the size of the

model and the jacobian grows with the fourth power of the size of the model. The

LU decomposition already dominates the cost of computing the Fisher information

matrix for the largest models I have used. It will be intractable once models get much

larger than 1000 states. It is possible that a stiff ODE integrator will be invented that

scales better with the number of states, but given that stiff ODE integrators have

been an active area of research for years, it seems unlikely that major advances will be

forthcoming. A possible avenue of advancement would be to find a way to compute

the Fisher information matrix without computing the sensitivities. This would take

advantage of the highly regular structure in the sensitivities calculations in order to

compute the Fisher information matrix through the integration of a smaller alter-

native system much like the gradient can be calculated through the adjoint system

rather than naively through the sensitivities.

For models of proteins with multiple sites of binding or modification, the limita-

tions are immediate. While a fragmentation algorithm with a rule-based model can

astronomically reduce the size of ODE models of these systems, it cannot reduce them

enough to accommodate the biology that we would like to include. The fundamental

problem is that any ODE model must, for any site, track every possible combination
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of sites that affect that site either directly or indirectly. This grows exponentially

with the number of sites that interact. I found that I could not include all the sites

that I wanted to interact and ultimately had to greatly simplify the model.

One way around the problem of exploding ODE states is to not track all possible

states, but track the individual particles. This is the main feature of the BioNetGen

and Kappa packages. Such systems can use the same rule-based models, but simulate

the system stochastically by calculating the probability of each rule applying to each

species. Here the cost of the algorithm is dependent on the number of particles and

not the number of possible species. Thus, if there are a large number of molecules

in the model, then the simulation is very costly. Even if the assumptions of mass

action are valid, some model may have to be simulated stochastically because the

number of states is so large. The greatest disadvantage of stochastic simulation is

that one cannot compute a gradient with which to inform parameter fitting. Without

an accurate gradient to follow, then it is unlikely that one will be able to find the

best-fit parameters of a model.

It remains to be seen if stitching together a model from multiple types of simula-

tion, ODE, PDE, stochastic, and spatial stochastic, can make an excellent platform

for systems biology. Ideally, the correct algorithm could be chosen automatically

based on whether or not the species met the assumptions of each method. Alterna-

tively, it may be simpler to simulate everything at the greatest common denominator,

which is spatial stochastic simulation. Possibly this could be done with specialized

hardware. In any case, any element of stochasticity prevents the model was being

optimized by gradient descent. It may be possible to use an ODE model in optimiza-

tion, even if the assumptions are not met, and transfer the parameters to a stochastic

simulation for an actual look at the system. It is unknown what relation, if any, the

best-fit parameters of an ODE model have to the parameters of a model that is truly

a stochastic model. Most of them would probably be close, but some could be very

wrong.

In the end, switching to stochastic algorithms because the ODE algorithms be-

came too computationally expensive is like moving to the North Pole because one
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cannot stand the cold winters in Boston. For all models built to date, simulating the

system with an ODE is radically faster than simulating it stochastically. Eventually,

computer hardware will be constructed that can simulate a large spatial stochastic

model. It is difficult to conceive of this happening in the near future without some

specialized hardware invented.

Until then, ODEs are the fastest method for simulating mechanistic biological

models. This thesis presented several new algorithms and demonstrated several old

algorithms for quantifying the uncertainty in these models and finding experiments

that most efficiently reduce this uncertainty. Linearization is the central technique.

Given the highly nonlinear behavior for which biological models are famous, its gen-

erality is somewhat surprising. Perhaps this can be credited to the universality of

Taylor’s theorem and the central limit theorem, which together say, in laymans terms,

everything eventually becomes a linear Gaussian.
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Appendix A

Material for Chapter 2
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Parameter Value Parameter Value

krbEGF 2.1850E-05 kdErk 8.8912
kruEGF 0.0121 KmdErk 3496490
krbNGF 1.3821E-07 kpP90Rsk 0.0214
kruNGF 0.0072 KmpP90Rsk 763523
kEGF 694.7310 kPI3K 10.6737
KmEGF 6086070 KmPI3K 184912
kNGF 389.4280 kPI3KRas 0.0771
KmNGF 2112.7 KmPI3KRas 272056
kdSos 1612.0 kAkt 0.0566
KmdSos 896896 KmAkt 653951
kSos 32.3440 kdRaf1ByAkt 15.1212
KmSos 35954 KmRaf1ByAkt 119355
kRasGap 1509.4 kC3GNGF 146.9120
KmRasGap 1432410 KmC3GNGF 12876
kRasToRaf1 0.8841 kC3G 1.4015
KmRasToRaf1 62465 KmC3G 10966
kpRaf1 185.7590 kRapGap 27.2650
KmpRaf1 4768350 KmRapGap 295990
kpBRaf 125.0890 kRap1ToBRaf 2.2100
KmpBRaf 157948 KmRap1ToBRaf 1025460
kdMek 2.8324 kdRaf1 0.1263
KmdMek 518753 KmdRaf1 1061.7
kpMekCytoplasmic 9.8537 kdBRaf 441.2870
KmpMekCytoplasmic 1007340 KmdBRaf 10879500

Table A.1: True parameters. The parameters of the EGF-NGF network as pub-
lished by Brown et al. and used as the “true” model in our simulations.
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Exp.
[EGF]
(molec./cell)

[NGF]
(molec./cell)

Knocked-down Over-expressed

Nom. 1000 4560

1 0 4560 RasGap×1.2,
Erk×760

Rap1×67

2 1000 4.56E+05 Ras×7.3, Erk×4.9,
PI3K×510

3 1000 4560 Sos×750, Ras×220,
Braf×2.3

4 1000 45.6 RasGap×2.2,
RapGap×2.7

Mek×32

5 10 4.56E+05 RasGap×780,
RapGap×160

Ras×100

6 10 4.56E+07 PI3K×4.6, Rap1×17,
Raf1×13

7 0 4.56E+05 Raf1×7.0 Braf×61, C3G×16

8 1000 4.56E+07 Raf1×13 Braf×3.3, C3G×36

9 1.00E+07 4.56E+07 RapGap×85,
Raf1PPtase×580

Braf×590

10 1.00E+07 4.56E+07 Braf×163, C3G×230,
Rap1×63

Table A.2: Experiments chosen for randomly effective experiments. We
tested how effective the experiments would still be at reducing parameter uncertainty
if the knock-down and over-expression effectiveness was randomly chosen on a log
scale between 1-fold and 1000-fold rather than the 100-fold change under which the
experiments were chosen. The number of experiments needed to reduce all parameter
uncertianties below 10% increased from 6 to 10 for the first goal function. The number
next to each protein indicates the amount by which it was actually changed rounded
to two significant digits.

10% uncertainty 20% uncertainty 100% uncertainty

10% threshold 6 6 22

20% threshold 4 5 12

100% threshold 3 4 5

Table A.3: Effect of measurement uncertainty on parameter convergence.

Using the true parameters, the Fisher information matrices for the candidate exper-
iments were computed. Optimal experiments were repeatedly chosen using the first
goal function with different levels of target parameter uncertainty. The parameters
were not refit between experiments and table reports the number of experiments
needed to bring the uncertianties in all parameters below the desired threshold. The
elements on the diagonal would be the same if the system was exactly linear with
Gaussian noise.
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Figure A-1: Experiment effectiveness by number of perturbations. All 150 475
experiments were grouped according to whether they represented 0, 1, 2, or 3 knock-
downs or over-expressions to the network. The Fisher information matrix was com-
puted for each experiment according to the true model. For each group, the exper-
iments were binned according to how many parameter eigendirections were known
better than 10%. The histograms for the groups are shown with 0, 1, 2, and 3 pertur-
bations corresponding to A, B, C, and D, respectively. The vertical dashed line shows
the mean of each histogram. That the means and distributions are about the same
suggests that some numbers of perturbations are not inherently more informative
than others for this model.
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Figure A-2: Mixing experiments between goal functions. The three sets of six
experiments generated by each of the three goal functions were mixed into three new
sets. In subplot A, the mixed set of experiments was experiments 1, 2, 3, 4, 5, and
6 from goal functions 1, 2, 3, 1, 2, and 3, respectively. In subplot B, the mixed set
of experiments was experiments 1, 2, 3, 4, 5, and 6 from goal functions 2, 3, 1, 2, 3,
and 1, respectively. In subplot C, the mixed set of experiments was experiments 1,
2, 3, 4, 5, and 6 from goal functions 3, 1, 2, 3, 1, and 2, respectively. The uncertainty
in parameter eigendirections according to the cumulative information from these ex-
periments as calculated by the true model is shown. Several directions remain worse
than 10%, unlike the unmixed sets that the experiments came from (Figure 2-3).
This suggests that while each goal function finds a good self-complementary set of
experiments, the order in which the complementarity is chosen differs so that com-
plementary experiments in one set are not complementary experiments in a different
set.
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Figure A-3: Prediction errors after 3 experiments. All 150 475 candidate exper-
iments were simulated with the model fit to only the first three optimal experiments
chosen from the greedy optimization. The relative error of the predictions made by
the fitted model were summarized in the same way as Figure 4. Here each column of
plots is a different summary and each row is a different goal function. A, B, and C
are for goal function 1; D, E, and F are for goal function 2; and G, H, and I are for
goal function 3. A, D, and G are the overall maximum relative error results; B, E,
and H are the maximum ERK relative error results; and C, F, and I are the median
ERK relative error results. Because many of the parameter errors at this stage are
still greater than 10% (Figure 2-3), the prediction errors tend to also be greater than
10% (dashed black line). The prediction errors in ERK tend to cluster around 10%
error, but this is worse than the model fitted to all 6 experiments, where the errors
tended to be confined below 10% (Figure 2-5).
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Figure A-4: Uncertainty after random experiments. By choosing a set of ran-
dom experiments, we showed that a diversity of experiments alone was ineffective at
reducing all parameter uncertainties below the desired threshold of 10%, unlike the
choosing of complementary experiments (Figure 2-3). Six random experiments total
were chosen. As each random experiment was chosen, the model was fit to the cumu-
lative data and the information matrix was computed. The uncertainty in parameter
eigendirections is shown.
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Figure A-5: Uncertainty after random experiments. The difference between the
true parameters and the fitted parameters was computed after each randomly added
experiment. The relative error in the parameters at each step is shown. The parame-
ters do not converge to their true values after 6 experiments, which is consistent with
the uncertainties at this point (Figure A-4) and worse than choosing complementary
experiments according to any of the three goal functions (Figure 2-4).
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Figure A-6: Uncertainty after single experiment with all perturbations. A
single experiment was created which implemented all the perturbations recommended
by each set of optimal experiments. If a single protein was both knocked-down and
over-expressed by separate experiments, the knock-down was used. This tested if the
advantage from perturbations can be obtained independently in a single experiment.
The uncertainty in parameter eigendirections is shown in the “Combined” column
with “Nominal” for reference. The three plots refer to the three goal functions. High
uncertainty compared to doing each perturbation separately (Figure 2-3) suggests that
information is lost when the perturbations of multiple experiments are combined.
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Figure A-7: Uncertainty with randomly effective experiments. Rather than
the knock-down and over-expression effectiveness performing at exactly 100-fold when
generating the data, the actual data was generated using a perturbation between 1
and 1000 on a log scale. The model was refit between experiments.
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Figure A-8: Convergence with randomly effective experiments. The conver-
gence of parameters to their true values is consistent with the uncertainty spectra in
Figure A-7. It appears that, occasionally, the precision of the parameters falls short
of the target, but eventually all parameters are known with lower error.
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Figure A-9: Experiments needed versus time points taken. The number of
time points at which measurements were taken was varied. The plot shows the num-
ber of additional experiments beyond the nominal experiment needed to reduce all
parameter uncertainties to less than 10%. The time points were still taken linearly
spaced over the time course of each experiment. We see an expected general trend of
requiring fewer experiments as the amount of data per experiments and reduction in
the marginal benefit to more data when much data has already been collected under
those conditions. The occasional increase in needed experiments when the amount of
data is increased probably reflects the loss of efficiency when using a greedy search
algorithm.
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Appendix B

Material for Chapter 3

Below is the derivation that the standard form of the marginal likelihood expressed

as a normal distribution

pŷ|m (ŷ, m) = N
(

ŷ, A (m) · θ̄ (m)− b (m) , Vȳ + A (m) · Vθ̄ (m) · A (m)T
)

(3.9)

can be expressed as a product of the likelihood evaluated at the best-fit parameter

set, the prior evaluated at the best-fit parameter set, and an expression containing

the determinant of the posterior variance

pŷ|m (ŷ, m) = pŷ|θ,m

(

ŷ, θ̃ (ŷ, m) ,m
)

· pθ|m

(

θ̃ (ŷ, m) ,m
)

· ‖τ · Vθ̃ (ŷ, m)‖
1

2 (3.3)

For brevity, the arguments for A(m), θ̄(m), θ̃(ŷ, m), Vθ̄ (m), and Vθ̃ (ŷ, m) will be

elided. Furthermore, θ̄(m) will be elided because ŷ can always be redefined as the

difference between the data and the intercept.

Expanding Equation 3.3 with the equivalent expressions for the likelihood (Equa-

tion 3.4) and prior (Equation 3.7) gives:

pŷ|m(ŷ,m) = ‖τ · Vȳ‖
− 1

2 · exp

(

−
1

2
·
(

ŷ −A · θ̃
)T

· V −1
ȳ ·

(

ŷ −A · θ̃
))

· ‖τ · Vθ̄‖
− 1

2 · exp

(

−
1

2
·
(

θ̃ − θ̄
)T

· V −1
θ̄

·
(

θ̃ − θ̄
))

·
∥
∥τ · Vθ̃

∥
∥

1

2

(B.1)

147



Combining the exponential terms under one exponential gives:

pŷ|m(ŷ,m) = ‖τ · Vȳ‖
− 1

2 · ‖τ · Vθ̄‖
− 1

2 ·
∥
∥τ · Vθ̃

∥
∥

1

2

· exp

(

−
1

2
·

((

ŷ −A · θ̃
)T

· V −1
ȳ ·

(

ŷ −A · θ̃
)

+
(

θ̃ − θ̄
)T

· V −1
θ̄

·
(

θ̃ − θ̄
)))

(B.2)

This equation will be considered in two parts: the product of determinants in the

front:

‖τ · Vȳ‖
− 1

2 · ‖τ · Vθ̄‖
− 1

2 ·
∥
∥τ · Vθ̃

∥
∥

1

2 (B.3)

and the sum in the exponential:

(

ŷ −A · θ̃
)T

· V −1
ȳ ·

(

ŷ −A · θ̃
)

+
(

θ̃ − θ̄
)T

· V −1
θ̄

·
(

θ̃ − θ̄
)

(B.4)

The maximum a posteriori parameter set has the following definition for linear

Gaussian models:

θ̃ (ŷ,m) = Vθ̃ ·
(

AT · V −1
ȳ · (ŷ − b) + V −1

θ̄
· θ̄
)

(B.5)

Replacing θ̃ in Equation B.4 with its definition (Equation B.5) gives:

(

ŷ −A · Vθ̃ ·
(

AT · V −1
ȳ · (ŷ − b) + V −1

θ̄
· θ̄
))T

·V −1
ȳ

·
(

ŷ −A · Vθ̃ ·
(

AT · V −1
ȳ · (ŷ − b) + V −1

θ̄
· θ̄
))

+
(

Vθ̃ ·
(

AT · V −1
ȳ · (ŷ − b) + V −1

θ̄
· θ̄
)

− θ̄
)T

·V −1
θ̄

·
(

Vθ̃ ·
(

AT · V −1
ȳ · (ŷ − b) + V −1

θ̄
· θ̄
)

− θ̄
)

(B.6)
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Expanding those terms gives:

ŷT · V −1
ȳ · ŷ

−2 · ŷT · V −1
ȳ ·A ·

(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1
·
(

AT · V −1
ȳ · ŷ + V −1

θ̄
· θ̄
)

+
(

AT · V −1
ȳ · ŷ + V −1

θ̄
· θ̄
)T

·
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1
·AT · V −1

ȳ ·A

·
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1
·
(

AT · V −1
ȳ · ŷ + V −1

θ̄
· θ̄
)

+θ̄T · V −1
θ̄

· θ̄

−2 · θ̄T · V −1
θ̄

·
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1
·
(

AT · V −1
ȳ · ŷ + V −1

θ̄
· θ̄
)

+
(

AT · V −1
ȳ · ŷ + V −1

θ̄
· θ̄
)T

·
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1
· V −1

θ̄

·
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1
·
(

AT · V −1
ȳ · ŷ + V −1

θ̄
· θ̄
)

(B.7)

Expanding those terms further gives:

ŷT · V −1
ȳ · ŷ

−2 · ŷT · V −1
ȳ ·A ·

(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1
·AT · V −1

ȳ · ŷ

−2 · ŷT · V −1
ȳ ·A ·

(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1
· V −1

θ̄
· θ̄

+ŷT · V −1
ȳ ·A ·

(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1
·AT · V −1

ȳ ·A ·
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1
·AT · V −1

ȳ · ŷ

+2 · ŷT · V −1
ȳ ·A ·

(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1
·AT · V −1

ȳ ·A ·
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1
· V −1

θ̄
· θ̄

+θ̄T · V −1
θ̄

·
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1
·AT · V −1

ȳ ·A ·
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1
· V −1

θ̄
· θ̄

+θ̄T · V −1
θ̄

· θ̄

−2 · θ̄T · V −1
θ̄

·
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1
·AT · V −1

ȳ · ŷ

−2 · θ̄T · V −1
θ̄

·
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1
· V −1

θ̄
· θ̄

+ŷT · V −1
ȳ ·A ·

(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1
· V −1

θ̄
·
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1
·AT · V −1

ȳ · ŷ

+2 · ŷT · V −1
ȳ ·A ·

(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1
· V −1

θ̄
·
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1
· V −1

θ̄
· θ̄

+θ̄T · V −1
θ̄

·
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1
· V −1

θ̄
·
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1
· V −1

θ̄
· θ̄

(B.8)

We will group each term according to whether it is quadratic, linear, or constant

with respect to ŷ.
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B.0.1 Quadratic Terms

Collecting the four terms from Equation B.8 that are quadratic with respect to ŷ and

factoring ŷ from the front and back gives:

ŷ·












V −1
ȳ

−2 · V −1
ȳ ·A ·

(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1
·AT · V −1

ȳ

+V −1
ȳ ·A ·

(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1
·AT · V −1

ȳ ·A ·
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1
·AT · V −1

ȳ

+V −1
ȳ ·A ·

(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1
· V −1

θ̄
·
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1
·AT · V −1

ȳ












·ŷ

(B.9)

Factoring the −AT · V −1
ȳ term from the front and AT · V −1

ȳ from the back of the

second, third, and fourth terms of the sum gives:

ŷ ·


















V −1
ȳ

−V −1
ȳ ·A ·















2 ·
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1

−
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1
·AT · V −1

ȳ ·A

·
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1

−
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1
· V −1

θ̄

·
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1















·AT · V −1
ȳ


















· ŷ (B.10)

Factoring
(
AT · V −1

ȳ · A+ V −1
θ̄

)−1
from the front and back of the third and fourth

terms to collapse the third and fourth terms together gives:

ŷ ·















V −1
ȳ

−V −1
ȳ ·A ·












2 ·
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1

−
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1

·
(

AT · V −1
ȳ ·A+ V −1

θ̄

)

·
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1












·AT · V −1
ȳ















· ŷ (B.11)
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Cancelling
(
AT · V −1

ȳ · A+ V −1
θ̄

)−1
·
(
AT · V −1

ȳ · A+ V −1
θ̄

)
in the third term gives:

ŷ ·








V −1
ȳ

−V −1
ȳ ·A ·




2 ·
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1

−
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1



 ·AT · V −1
ȳ








· ŷ (B.12)

Collapsing the second and third terms which now have the same form gives:

ŷ ·

(

V −1
ȳ − V −1

ȳ ·A ·
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1
·AT · V −1

ȳ

)

· ŷ (B.13)

Finally, applying the Woodbury identity [145] gives:

ŷ ·
(
Vȳ +A · Vθ̄ ·A

T
)−1

· ŷ (B.14)

B.0.2 Linear Terms

Collecting from Equation B.8 the terms that are linear with respect to ŷ and factoring

−2 · ŷT · V −1
ȳ · A from the front and V −1

θ̄
· θ̄ from the back gives:

−2·ŷT ·V −1
ȳ ·A·












(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1

−
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1
·AT · V −1

ȳ ·A ·
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1

+
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1

−
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1
· V −1

θ̄
·
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1












·V −1
θ̄

·θ̄

(B.15)
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Collapsing the first and third terms which have the same form gives:

−2·ŷT ·V −1
ȳ ·A·









2
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1

−
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1
·AT · V −1

ȳ ·A ·
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1

−
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1
· V −1

θ̄
·
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1









·V −1
θ̄

·θ̄

(B.16)

Factoring
(
AT · V −1

ȳ · A+ V −1
θ̄

)−1
from the second and third terms gives:

−2 · ŷT · V −1
ȳ ·A ·









2
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1

−
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1
·
(

AT · V −1
ȳ ·A+ V −1

θ̄

)

·
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1









· V −1
θ̄

· θ̄ (B.17)

Cancelling
(
AT · V −1

ȳ · A+ V −1
θ̄

)−1
·
(
AT · V −1

ȳ · A+ V −1
θ̄

)
in the second term gives:

−2 · ŷT · V −1
ȳ ·A ·




2
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1

−
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1



 · V −1
θ̄

· θ̄ (B.18)

Collapsing the first and second terms which now have the same form gives:

−2 · ŷT · V −1
ȳ ·A ·

(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1
· V −1

θ̄
· θ̄ (B.19)

Transforming V −1
ȳ · A ·

(
AT · V −1

ȳ · A+ V −1
θ̄

)−1
with the positive definite variant

of the Woodbury identity [145] gives:

−2 · ŷT ·
(
Vȳ +A · Vθ̄ ·A

T
)−1

·A · Vθ̄ · V
−1
θ̄

· θ̄ (B.20)

Cancelling Vθ̄ · V
−1
θ̄

gives:

−2 · ŷT ·
(
Vȳ +A · Vθ̄ ·A

T
)−1

·A · θ̄ (B.21)

152



B.0.3 Constant Terms

Collecting from Equation B.8 the terms that are not functions of ŷ and factoring θ̄

from the front and back gives:

θ̄T ·












V −1
θ̄

−2 · V −1
θ̄

·
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1
· V −1

θ̄

+V −1
θ̄

·
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1
·AT · V −1

ȳ ·A ·
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1
· V −1

θ̄

+V −1
θ̄

·
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1
· V −1

θ̄
·
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1
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Factoring −V −1
θ̄

from the front and V −1
θ̄

from the back of the second, third, and

fourth terms gives:
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−
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· V −1
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·
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Factoring
(
AT · V −1

ȳ · A+ V −1
θ̄

)−1
from the front and back of the third and fourth

terms gives:
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Canceling
(
AT · V −1

ȳ · A+ V −1
θ̄

)−1
·
(
AT · V −1

ȳ · A+ V −1
θ̄

)
in the third term gives:
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Collapsing the second and third terms which now have the same form gives:

θ̄T ·

(

V −1
θ̄

− V −1
θ̄

·
(

AT · V −1
ȳ ·A+ V −1

θ̄

)−1
· V −1

θ̄

)

· θ̄ (B.26)

Applying the Woodbury identity [145] to V −1
θ̄

−V −1
θ̄

·
(
AT · V −1

ȳ · A+ V −1
θ̄

)−1
·V −1

θ̄

gives:

θ̄T ·AT ·
(
Vȳ +AVθ̄A

T
)−1

·A · θ̄ (B.27)

B.0.4 Determinant Terms

Combining all determinant terms from Equation B.3 under a single exponent gives:

(

‖τ · Vȳ‖ · ‖τ · Vθ̄‖ ·
∥
∥τ · Vθ̃

∥
∥−1

)− 1

2

(B.28)

Pulling out τ from each determinant gives:

(

τnȳ · ‖Vȳ‖ · τ
nθ · ‖Vθ̄‖ · τ

−nθ ·
∥
∥Vθ̃

∥
∥−1

)− 1

2

(B.29)

Cancelling τnθ · τ−nθ gives:

(

τnȳ · ‖Vȳ‖ · ‖Vθ̄‖ ·
∥
∥Vθ̃

∥
∥−1

)− 1

2

(B.30)
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Replacing Vθ̃ with its linear definition
(
AT · V −1

ȳ · A+ V −1
θ̄

)−1
gives:

(

τnȳ · ‖Vȳ‖ · ‖Vθ̄‖ ·

∥
∥
∥
∥

(

AT · V −1
ȳ ·A+ V −1
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∥
∥
∥
∥

−1
)− 1

2

(B.31)

Cancelling the stacked negative exponents gives:

(

τnȳ · ‖Vȳ‖ · ‖Vθ̄‖ ·
∥
∥
∥AT · V −1

ȳ ·A+ V −1
θ̄

∥
∥
∥

)− 1

2

(B.32)

Applying a determinant identity gives:

(
τnȳ ·

∥
∥Vȳ +A · Vθ̄ ·A

T
∥
∥
)− 1

2 (B.33)

Finally, bringing the τ back into the determinant gives:

∥
∥τ
(
Vȳ +A · Vθ̄ ·A

T
)∥
∥
− 1

2 (B.34)

B.0.5 Recombination

Recombining the simplified quadratic (Equation B.14), linear (Equation B.21), and

constant (Equation B.27) expressions, which together equal Equation B.8, gives:

ŷ ·
(
Vȳ +A · Vθ̄ ·A

T
)−1

· ŷ−2 · ŷT ·
(
Vȳ +A · Vθ̄ ·A

T
)−1

·A · θ̄+ θ̄T ·AT ·
(
Vȳ +A · Vθ̄A

T
)−1

·A · θ̄

(B.35)

Factoring the quadratic equation gives:

(
ŷ −A · θ̄

)T
·
(
Vȳ +A · Vθ̄ ·A

T
)−1

·
(
ŷ −A · θ̄

)
(B.36)
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Replacing the simplified determinant (Equation B.34) and the simplified quadratic

equation (Equation B.36) in Equation B.2 gives:

pŷ|m(ŷ,m) =
∥
∥τ ·

(
Vȳ +A · Vθ̄ ·A

T
)∥
∥
− 1

2 ·exp

(

−
1

2
·
(
ŷ −A · θ̄

)T
·
(
Vȳ +A · Vθ̄ ·A

T
)−1

·
(
ŷ −A · θ̄

)
)

(B.37)

Given that the probability density function of a normal distribution is:

N (x, µ, V ) = ‖τ · V ‖−
1

2 · exp

(

−
1

2
· (x− µ)T · V −1 · (x− µ)

)

(B.38)

it is clear that the linearization formula (Equation 3.3) is equivalent to a normal

distribution of variable ŷ with a mean of A · θ̄ and a variance of Vȳ+A ·Vθ̄ ·A
T , which

is the standard marginal likelihood given in Equation 3.9.
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