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Abstract

We propose a neural network approach to model general interaction dynamics and

an adjoint-based stochastic gradient descent algorithm to calibrate its parameters.

The parameter calibration problem is considered as optimal control problem that is

investigated from a theoretical and numerical point of view. We prove the existence of

optimal controls, derive the corresponding first-order optimality system and formulate

a stochastic gradient descent algorithm to identify parameters for given data sets.

To validate the approach, we use real data sets from traffic and crowd dynamics to

fit the parameters. The results are compared to forces corresponding to well-known

interaction models such as the Lighthill–Whitham–Richards model for traffic and the

social force model for crowd motion.

Keywords Optimal control · Neural networks · Parameter identification · Data

analysis

AMS Classification 34H05 · 92B20 · 82C32

1 Introduction

In the recent years, many models for interaction dynamics with various applications

such as swarming, sheep and dogs, crowd motion, traffic and opinion dynamics have

been proposed, see, e.g. [1,3–5,8,9,21,26,27] for an overview. Typically, the models

are based on ordinary differential equations (ODEs) which describe the dynamics of

each particle (or agent) in the system by interaction forces. A common approach is
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to model forces that replicate observations made in nature. For example in swarming,

there exists the well-known three-phase model that consists of a short-range repulsion,

a neutral/comfort zone and a third zone with attraction for long-range interactions [5].

The ranges can be adjusted with the help of parameters that need to be fitted for

every application. Certainly, this is a smart approach and leads to promising results.

Nevertheless, it is interesting to overboard all those assumptions and instead use a

neural network to model the interactions with parameters based on data. This is the

path we will follow in this paper. Actually, a similar viewpoint was taken for example

in [2,19,28] where interaction kernels were inferred with a least squares approach from

given data. The theoretical basis was discussed in [2], where well-posedness under a

certain coercivity condition was shown. Moreover, the convergence of the approach

w.r.t. to the mean-field limit is discussed. In [28], the methodology was generalized

and applications with complicated dynamics allowing for pattern formation such as

clustering and milling were studied. The learned interaction kernels are compared to

well-known physical models with the help of confusion matrices and pattern indicator

scores.

Clearly, the idea of using neural networks as substitutes for static/dynamic models

or observers is well-known, see e.g [6,14] in the general context of ODEs. Furthermore,

in [23] neural networks are discussed as alternative to estimate friction in automotive

brakes. See [20] for a survey of artificial neural networks in energy systems. More-

over, in [12] deep neural networks are used to approximate Lyapunov functionals for

systems of ordinary differential equations and in [13] the same author proposes to

store approximate Lyapunov functions in a deep neural network in order to overcome

the curse of dimensionality.

We intend to follow a similar approach for interacting particle systems in this paper.

We first propose a framework to model very general particle interactions with the help

of neural networks. Then, we state the corresponding parameter calibration problem.

It enables us to identify the parameters using techniques from optimal control. We

prove the well-posedness of the identification problem and derive the corresponding

first-order optimality conditions that are used to compute the gradient for the stochastic

descent algorithm.

In addition to the neural network model, the proposed parameter calibration

approach can be used for general interacting particle systems with explicitly given,

differentiable interaction forces, for example in terms of gradients of a potential. For

our experiments, we apply the stochastic descent algorithm to real data sets from traffic

and crowd experiments [18,24] to fit the neural network parameters. For comparison,

we use the same algorithm to fit as well the parameters of well-known interaction

models, such as the Lighthill–Whitham–Richards (LWR) model for traffic [17] and

the social force model for crowd dynamics [15]. The two applications discussed here

are prototypical examples for a first-order approach in 1d and second-order approach

in 2d, respectively. Moreover, in both cases real data are available for our calibration

purposes.

Similar parameter identification studies for pedestrian models have been recently

introduced in [7,10] using a Bayesian probabilistic method and in [11,25] using neural

networks. In contrast to [11,25], where the pedestrian speed or unknown interaction

forces have been estimated, we address a more general setting that also allows for
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theoretical investigations and a rigorous numerical treatment. More precisely, for the

neural networks we make some basic assumptions, but it is important to note that

we do not prescribe any physical interaction assumptions. Using techniques from

optimal control, we derive and analyse a parameter identification procedure that is

based on stochastic gradient descent in Sect. 2. In Sect. 3, we begin with well-posedness

results concerning a general interacting particle system that is driven by an artificial

neural network. Then, we prove the existence of an optimal control for the parameter

identification problem. Moreover, in Sect. 4, we derive the first-order optimality system

for the identification problem in order to state the corresponding algorithm, an adjoint-

based stochastic gradient descent method. A proof of existence of the adjoint concludes

the theory part.

To validate our approach, we present an extended parameter estimation study for the

traffic and the pedestrian model in Sects. 5 and 6, respectively. We apply the algorithm

to a traffic scenario and estimate the interaction force as well as the speed of cars. The

second application is based on pedestrian data, here again we train the artificial neural

network with the help of our algorithm and compare the results to optimal parameters

resulting from interactions that involve the social model for pedestrian interaction.

The numerical results for both applications offer interesting insights and give rise for

future considerations.

2 Optimal Control problem

The parameter identification is cast as optimal control problem. Let u denote the

control variables, or, in terms of the application, the parameters to be identified and

z the reference data set. We denote the space of controls by U = R
K . Then, we are

interested in

min
u∈U

J (x(u); z)

for some tailored cost function J . As the parameters enter the cost function implicitly

through the state x, we propose to compute the gradient of the cost functional used

for a stochastic gradient decent method with the help of an adjoint-based approach.

From now on, it is clear that x depends on the parameters u, so for notational

convenience we drop the dependence in some equations. Let us assume that for each

cost evaluation, we consider N agents with corresponding trajectories zi : [0, T ] →

R
d for i = 1, . . . , N . Based on the applications we have in mind, we obtain parameter-

dependent trajectories xu
i : [0, T ] → R

d for i = 1, . . . , N . We focus on the cost

functional

J (x(u); z) =
1

2

∫ T

0

‖z(t) − x(t)‖2 dt =
1

2
‖z − x(u)‖2

L2(0,T )
.

The state x = x(u) is a solution to an ODE system that is driven by a feed-forward

artificial neural network (NN) as follows
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d

dt
xi =

N
∑

j=1

W
i, j
u (x j − xi ), xi (0) = zi

0, i = 1, . . . , N , (1)

where Wu models the interaction of the agents and is the output of a neural network

parametrized by u.

Remark 1 Throughout the work, we assume that every agent is driven by the same

artificial neural network. We need the index W i, j only for the applications. For example

in the traffic dynamic, the cars only interact with the car in front. This leads to W i, j

being nonzero only for j = i + 1. In contrast, the car in front drives with fixed

velocity, this can be represented with fixed weights, not involved in the parameter

identification. Moreover, pedestrians interact with every other person which yields

W i, j = W ; indeed, we can use the same artificial network to model the interaction

forces for all the pedestrians.

To summarize, the optimal control problem we propose for the parameter identifi-

cation driven by neural networks reads

Problem 1 Find ū ∈ Uad := [−1, 1]K such that

J (x(ū), z) = min
u∈U

J (x(u), z) subject to (1).

Remark 2 We emphasize that in contrast to [11] the cost functional is not of the usual

structure given by

1

m

(

m
∑

i=1

J (hu(xi ), yi )

)

,

where hu(xi ) denotes the output of a neural network defined by the parameters u.

Indeed, in the present article, the trajectories zi (u), i = 1, . . . , N are not the output

of the neural network, but solutions of ODEs that are driven by the neural network.

As mentioned above, we consider feed-forward artificial neural networks. For later

reference, we define these as follows.

Definition 1 A feed-forward artificial neural network (NN) is characterized by the

following structure:

– Input layer:

a
(1)
1 = 1, a

(1)
k = xk−1, for k ∈ {2, . . . , n(1) + 1},

where x ∈ R
n(1)

is the input (feature) and n(1)) is the number of neurons without

the bias unit a
(1)
1 .
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– Hidden layers:

a
(ℓ)
1 = 1, a

(ℓ)
k = g(ℓ)

⎛

⎝

n(ℓ−1)+1
∑

j=1

u
(ℓ−1)
j,k a

(ℓ−1)
j

⎞

⎠

for ℓ ∈ {2, . . . , L − 1} and k ∈ {2, . . . , n(ℓ) + 1}.

– Output layer:

a
(L)
k = g(L)

⎛

⎝

n(L−1)+1
∑

j=1

u
(L−1)
j,k a

(L−1)
j

⎞

⎠

for k ∈ {1, . . . , n(L)}

Note that the output layer has no bias unit. The entry uℓ
j,k of the weight matrix

u(ℓ) ∈ R
n(ℓ−1)×n(ℓ)

describes the weight from neuron a
(ℓ−1)
j to the neuron a

(ℓ)
k . For

notational convenience, we assemble all entries u
(ℓ)
j,k in a vector R

K with

K := n(1) · n(2) + n(2) · n(3) + · · · + n(L−1) · n(L).

For the numerical experiment, we use g(ℓ)(x) = log(1 + ex ) for ℓ = 2, . . . , N − 1

and g(L)(x) = x . An illustration of an NN with L = 3, four inputs and six units in

the hidden layer can be found in Fig. 1.

Fig. 1 Illustration of a feed-forward artificial network with 4 inputs and one bias input, one hidden layer

with one bias unit and 5 neurons and two outputs. This corresponds to n(1) = 4, n(2) = 5, n(3) = 2, L = 3
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3 Analysis of the optimal control problem

In this section, we analyse the parameter estimation problem in terms of well-

posedness. We begin with the state system and discuss then the well-posedness of

the parameter identification problem. Finally, we show the existence of an adjoint

state.

3.1 Well-posedness of the ODE system

Under some assumption on the activation functions g(ℓ), ℓ = 2, . . . , L we can establish

a well-posedness result for system (1). As the output of the neural network is the right-

hand side of the ODE, we assume n(L) = d for the following considerations.

Theorem 1 (Well-posedness of the state equation) Let the activation functions, g(ℓ) of

the NN defined in Definition 1 with n(L) = d be globally Lipschitz for ℓ = 2, . . . , L.

Then, there exists a unique solution x ∈ C1([0, T ], R
d) to (1).

Proof The proof exploits the recursive structure of the neural network defined in

Definition 1. In fact, let x ∈ R
n(1)

and a(L) ∈ R
d then

a
(L)
k (x) = g(L)

⎛

⎝

n(L−1)+1
∑

j=1

u
(L−1)
j,k a

(L−1)
j (x)

⎞

⎠ ,

a
(L−1)
j (x) = g(L−1)

⎛

⎝

n(L−2)+1
∑

m=1

u
(L−2)
m, j a(L−2)

m (x)

⎞

⎠ ,

. . . ,

a(1)
m = xm−1.

Note that all relations are linear except for the activation functions g(ℓ), ℓ = 2, . . . , L.

Using the globally Lipschitz assumption on g and the aforementioned linearity, we

obtain

|a
(L)
k (x) − a

(L)
k (y)| ≤ Cg|x − y|,

where the constant Cg depends on all the Lipschitz constants of g(ℓ), ℓ = 2, . . . , L.

This allows us to conclude the global Lipschitz property of the right-hand side of the

ODE. An application of the Picard–Lindelöf theorem yields the well-posedness of the

ODE as desired. ⊓⊔

Remark 3 The SmoothReLU activation function given by g(x) = ln(1 + ex ) is one

example satisfying the assumptions of Theorem 1. Another suitable activation function

is the identity g(x) = x .

The analysis of the optimal control problem is established in a Hilbert space frame-

work. That is why we use the embedding H1([0, T ], R
d N ) →֒ C([0, T ], R

d N ) and
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define the control to state map

S : U → H1([0, T ], R
d N ), S : u �→ x(u),

which is well-defined thanks to Theorem 1. Moreover, we define the reduced cost

functional

Ĵ (u) := J (S(u); z).

The next theorem provides us the continuous dependence on the data for the ODE

solution. It will help us in the proof of the existence of a minimizer below (Theorem 3).

Theorem 2 (Continuous dependence on the data) Let the assumptions of Theorem 1

hold and, additionally, let U be bounded and g(ℓ) be bounded for ℓ = 2, . . . , L − 1.

Then, the solution to (1) depends continuously on the data, i.e.

‖x − x̄‖H1([0,T ],Rd ) ≤ M (‖x0 − x̄0‖ + ‖u − ū‖U ) .

Proof Let us consider the i-th component of the difference of two solutions corre-

sponding to different data u and ū given by

xi (t) − x̄i (t) = (x0 − x̄0)i +

∫ t

0

N
∑

j=1

W
i, j
u (x j (s) − xi (s))

−

N
∑

j=1

W
i, j
ū (x̄ j (s) − x̄i (s))ds.

We therefore need to estimate the m-th entry of the difference of the interaction forces.

Let m ∈ {1, . . . , d} be arbitrary, we find

|
(

W
i, j
u (x j − xi ) − W

i, j
ū (x̄ j − x̄i )

)

m
|

= |g(L)

⎛

⎝

n(L−1)+1
∑

k=1

uk,ma
(L−1)
k (x j − xi )

⎞

⎠ − g(L)

⎛

⎝

n(L−1)+1
∑

k=1

ūk,ma
(L−1)
k (x̄ j − x̄i )

⎞

⎠ |

≤ Lg(L)

n(L−1)+1
∑

k=1

|uk,m ||a
(L−1)
k (x j − xi ) − a

(L−1)
k (x̄ j − x̄i )| + |uk,m − ūk,m ||a

(L−1)
k (x̄ j − x̄i )|

≤ Lg(L)

n(L−1)+1
∑

k=1

Mu |a
(L−1)
k (x j − xi ) − a

(L−1)
k (x̄ j − x̄i )| + Mg(L−1) |uk,m − ūk,m |,

where Mu denotes the upper bound of U , Mg(ℓ−1) denotes the bound for the activation

functions g(ℓ) with ℓ = 2, . . . , L − 1 and Lg(ℓ) denotes the global Lipschitz constants

of the activation functions.
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The last step of the previous estimate can be recursively applied to

|a
(ℓ−1)
k (x j − xi ) − a

(ℓ−1)
k (x̄ j − x̄i )|

≤

n(ℓ−2)+1
∑

p=1

u
(ℓ−2)
p,k a(ℓ−2)

p (x j − xi ) − ū
(ℓ−2)
p,k a(ℓ−2)

p (x̄ j − x̄i ), ℓ = 3, . . . , L − 1.

For the first layer, we have

|a
(1)
k (x j − xi ) − a

(1)
k (x̄ j − x̄i )| ≤ |(x j − x̄ j )k | + |(xi − x̄i )k |.

The two estimates together yield

|
(

W
i, j
u (x j − xi ) − W

i, j
ū (x̄ j − x̄i )

)

m
| ≤ C1‖u − ū‖ + C2‖x − x̄‖. (2)

This implies

‖x(t) − x̄(t)‖ =
∑

i=1

|xi (t) − x̄i (t)| ≤ ‖x0 − x̄0‖ + C3‖u − ū‖

+ C4

∫ t

0

‖x(s) − x̄(s)‖ds.

An application of Gronwall’s theorem gives us

‖x(t) − x̄(t)‖ ≤ C (‖x0 − x̄0‖ + ‖u − ū‖) eC4t . (3)

Using (2) and (3), we obtain for the time derivative

‖
d

dt
xi (t) −

d

dt
x̄i (t)‖ ≤

∑

j

‖W
i, j
u (x j − xi ) − W

i, j
ū (x̄ j − x̄i )‖

≤ C5

∑

j

(‖x0 − x̄0‖ + ‖u − ū‖) eC4t .

Summing over i = 1, . . . , N , we get the bound

‖
d

dt
x(t) −

d

dt
x̄(t)‖ ≤ C (‖x0 − x̄0‖ + ‖u − ū‖) eC4t . (4)

Combining the estimates in (3) and (4) leads to the desired result. ⊓⊔

In the following, we are concerned with the existence of a minimizer to the control

problem and the existence of an adjoint state. Latter will help us to state the first-

order optimality conditions and to compute the gradient for the descent algorithm. For
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notational convenience, we define the operator

e(x, u) : H1([0, T ], R
d N ) × U → Z , e(x, u) =

(

ei (x, u)
)

i=1,...,N

with

ei (x, u) =
d

dt
xi −

N
∑

j=1

W
i, j
u (x j − xi ).

Theorem 3 (Existence of a minimizer) Let W
i, j
u be weakly continuous for all i, j =

1, . . . , N and g(L)(0) = 0. Then, there exists a minimizer u∗ ∈ Uad for Problem 1.

Proof Equipped with the results of Theorem 1 and Theorem 2, the proof can be estab-

lished by standard arguments. See Theorem 1.45 in [16] for the main ideas. ⊓⊔

Remark 4 Note that the minimizer of the parameter identification problem may not be

unique due to the nonlinearity in the state problem.

Remark 5 Again, the SmoothReLU activation functions satisfy the requirements of

the existence result in Theorem 3. Indeed, g(x) = ln(1 + ex ) and g(x) = x have

uniformly bounded derivatives. Hence, we apply the mean-value theorem to obtain

∫ T

0

(g((xn j
− xni

)k) − g((x j − xi )k))φ(t)dt

=

∫ T

0

g′(ξ)(xn j
− x j + xni

− xi )kφ(t)dt −→ 0

as xn converges weakly to x for some ξ ∈ [(xn j
− xni

)k, (x j − xi )k]. Moreover,

choosing g(L) to be the identity leads to g(L)(0) = 0.

Theorem 4 (Existence of adjoint state) Let g(ℓ) ∈ C1 with (g(ℓ))′ ∈ Liploc(R) globally

bounded and let (x̄, ū) an optimal solution of Problem 1. Then, there exists an adjoint

state, p̄, such that the following optimality condition holds:

d

dt
x̄i =

N
∑

j=1

W
i, j
ū (x̄ j − x̄i ), x̄i (0) = zi

0, i = 1, . . . , N ,

∫ T

0

(

d

dt
hi +

N
∑

i=1

dxi
W

i, j
ū (x̄ j − x̄i )hi − dx j

W
i, j
ū (x̄ j − x̄i )h j

)

· p̄i dt + hi (0) · η

=

∫ T

0

(x̄i (ū) − zi ) · hi dt, ∀ hi ∈ H1((0, T ), R
d), η ∈ R

d ,

∫ T

0

N
∑

i=1

N
∑

j=1

∇u W
i, j
ū (x̄ j − x̄i ) · p̄i dt · (ū − u) ≥ 0 for all u ∈ Uad.
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Proof We aim to apply Corollary 1.3 in [16] and check its four requirements.

We begin with the set of admissible controls. Uad = [−1, 1]K ⊂ U = R
K is

nonempty, convex and closed. This verifies the first requirement.

Next, we have to show that J : Y × U → R and e : Y × U → Z are con-

tinuous Fréchet differentiable. We set U = R
K , Y = H1((0, T ), R

d) and Z =

L2((0, T ), R
d). Note that these are all Banach spaces. The cost functional J is Fréchet

differentiable by standard arguments, see for example [16], it holds

dy J (y(u), u)[h] =

∫ T

0

(x(u) − zi ) · h dt, du J (y(u), u)[h] = 0.

For the state operator e, we find

dyei (y, u)[h] =
d

dt
hi +

N
∑

j=1

dxi
W

i, j
u (x j − xi )hi − dx j

W
i, j
u (x j − xi )h j ,

i = 1, . . . , N ,

duei (y, u)[k] =

∫ T

0

N
∑

i=1

N
∑

j=1

du W
i, j
u (x j − xi )[k] · p̄i dt .

Using the assumptions on the activation function g(ℓ), this yields ey(y, u) ∈ L(Y , Z).

Third, Theorem 1 assures that e(y, u) = 0 admits a unique solution

y = y(u) ∈ C
1((0, T ), R

d) ⊂ H1((0, T ), R
d).

We are left to show that ey(y(u), u) ∈ L(Y , Z) has a bounded inverse for all u ∈ V

in a neighbourhood of Uad. In order to see that we consider

ey(y(u), u)[h] = r

for arbitrary r ∈ Z = L2((0, T ), R
d). By the Caratheodory theory for ODEs, there

exists a unique solution to this equation for every r ∈ Z . Using the explicit expression

of ey(y(u), u), we find

‖h(t)‖ = ‖h(0)‖ +

∫ T

0

‖r(s)‖ds + CDW

∫ T

0

‖h(s)‖ for all t ∈ (0, T )

for some constant CDW > 0 depending on the global bounds on the derivatives of the

activation functions. An application of Gronwall’s Lemma yields the boundedness of

the inverse of ey(y(u), u).

Hence, the requirements of Corollary 1.3 in [16] are satisfied and we find an adjoint

state p̄ such that the optimality condition holds as desired. ⊓⊔

These results assure the well-posedness of the optimization problem and its first-

order optimality system. We are well-equipped to state the stochastic gradient descent
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algorithm that we propose for the treatment of general neural network-driven opti-

mization problems. The numerical results below are computed with this algorithm as

well.

4 Stochastic gradient descent algorithm

Having the results of the previous section at hand, we can now propose the stochastic

gradient descent algorithm. In this section, we assume that p ∈ H1((0, T ), R
d) ⊂ Z .

This allows us to formulate the adjoint system in strong form given by

−
d

dt
p̄i =

N
∑

j=1

∇xi
W

i, j
ū (x̄ j − x̄i )( p̄i − p̄ j ) − (x̄i − zi ), i = 1, . . . , N ,

supplemented with the terminal condition p(T ) = 0, where x̄ is a solution to (1) with

initial condition x0 = z0. The gradient is based on this strong form of the adjoint.

4.1 Gradient of the reduced cost functional

We compute the gradient of the reduced cost functional as follows

〈 Ĵ ′(u), s〉RK = 〈z − S(u),S ′(u)[s]〉H1,H−1 = 〈S ′(u)∗(z − S(u)), s〉RK .

Let e be the operator defined above, we obtain

S′(u)∗(z − S(u)) = −eu(S(u), u)∗ey(S(u), u)−∗(z − S(u)) = eu(S(u), u)∗ p,

where we used the adjoint equation ey(S(u), u)∗ p = −(z − S(u)). Altogether, the

gradient of the reduced cost functional can be expressed as

Ĵ ′(u) = eu(S(u), u)∗ p(u) =

∫ T

0

N
∑

i=1

N
∑

j=1

∇u W
i, j
ū (x̄ j − x̄i ) · p̄i dt .

Based on these considerations, we may establish a gradient descent algorithm.

Moreover, for Uad bounded, we may employ a projected gradient descent method.

Note that in our application we face big data sets and therefore, the evaluation of the

full cost function is very costly. This is why we use a mini-batch algorithm. Its details

are discussed in the following section.

Remark 6 Note that we exploited the recursive structure of the artificial neural network

in the previous derivations. The approach can be generalized to a wider class of neural

networks, in fact, all neural networks that allow for backpropagation can be used.

Certainly, the computation of ∇x W
i, j
u and ∇u W

i, j
u can be very complicated in general.
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4.2 Stochastic descent

In many applications, we expect the cost functions to have several local minima, where

usual gradient descent algorithms may get stuck. To prevent this issue when training

the neural networks, we use a mini-batch gradient descent scheme. Indeed, we compute

ADADELTA updates as proposed in [11]. This leads to the following algorithm:

Let αk denote the k-th iterate of the gradient descent. We define

�αk = αk+1 − αk, E[g2]0 = 0, E[�α2]0 = 0,

E[g2]k = ρE[g2]k−1 + (1 − ρ)(∇ J m̃
k−1(αk−1))

2,

�αk = −

√

E[�α2]k−1 + ǫ
√

E[g2]k + ǫ
∇ J m̃

k (αk),

E[�α2]k = ρE[�α2]l−1 + (1 − ρ)�α2
k ,

where ρ ∈ (0, 1) is the rate for the adaption of the squared gradient information and

ǫ > 0 avoids singular values by division. Both are fixed parameters.

Note that these updates are still deterministic. In order to incorporate noise that

help us to escape from local minima, we add a multivariate normal distributed random

vector Nk with Nk ∼ N (0, �k) to the gradient in each iteration. Here, �k denotes the

variance matrix. We choose

(�k)i i =
η1

(1 + k)η2

for some constants η1, η2 > 0 and (�k)i j = 0 whenever i �= j . Note that the noise

diminishes as the number of iteration, k, increases. For the numerical simulations, we

set η1 = 1 and η2 = 0.55, the adaption rate ρ = 0.95 and ǫ = 10−6.

5 Parameter estimation based on traffic data

The stochastic gradient descent method proposed above can be used to treat general

neural network driven optimization or parameter identification problem. In the fol-

lowing, we apply it to two applications for which we have real data available. We

begin with a one-dimensional traffic dynamic modelled with the help of a first-order

ODE system, then we consider a two-dimensional pedestrian dynamic modelled with

a second-order dynamic. Moreover, we use the stochastic gradient descent algorithm

to estimate parameters of well-known interaction forces for the two scenarios and

compare the output and the cost. We want to emphasize that we treat both approaches,

the NN and the physically inspired models, as equally admissible. In particular, we do

not choose one of them to be the ground truth.

Remark 7 We noticed in discussions that often physical models are accepted as ground

truth without question. Even though these models are well-motivated, we cannot

blindly assume they represent the whole truth.
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5.1 Traffic models

For the traffic dynamic, we assume to have a follower–leader dynamic. Therefore, we

choose two microscopic versions of the well-known LWR-model [17] with logarithmic

and linear velocity function, respectively, as reference models.

5.1.1 Traffic dynamic with LWR-model

Let xi (t) denote the position of the i-th car at time t ∈ [0, T ]. Then, the evolution of

the cars is given by

d

dt
xi (t) = W i,i+1

u

(

xi+1(t) − xi (t)

L

)

, i = 1, . . . , N − 1, (5a)

d

dt
xN (t) = v0. (5b)

The parameters are v0 the velocity of the leading car and L the length of the cars. We

consider W
i,i+1
u (z) = v0 log(z) and W

i,i+1
u (z) = v0(1 − 1/z)for z > 0. The task of

the parameter identification is to estimate u = (L, v0) ∈ R
2.

5.1.2 Traffic dynamic with artificial neural network

The model driven by the feed-forward neural network is given as follows. We

parametrize the interactions of the follower–leader dynamic by Wu, where u =

(v0, uNet) and uNet is assumed to contain all the information of the neural network.

The dynamic is then given by

d

dt
xi (t) = W i,i+1

u (xi+1(t) − x j (t)), i = 1, . . . , N − 1, (6a)

d

dt
xN (t) = v0. (6b)

supplemented with initial data x(0) = x0.

Remark 8 Note that we have to prescribe some value for the first vehicle even in this

case, as we assume that the behaviour of cars depends on the distance to the vehicle

in front and the first vehicle has no one in front.

5.2 Data processing of traffic data set

We use the microscopic traffic data set that was recorded within the project ESIMAS

[18]. It contains vehicle data from 5 cameras that were placed in a 1km tunnel section

on the German motorway A3 nearby Frankfurt / Main. For the parameter estimation,

we extract sequences from the data that contain three or more vehicles in one lane. For

simplicity, we restrict our considerations to the middle lane data and neglect the data
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of the y−coordinate. Thus, we have one-dimensional traffic data for the parameter

estimation.

First, we interpolate the position data that is supplemented with time stamps to a

reference time discretization. Having all the data aligned to the reference time dis-

cretization, we filter sequences of data where two or more vehicles are present in the

camera frame. This yields a database with various sequences of different length and

with different number of vehicles that we use for the parameter identification.

Note that after this data extraction, the vectors containing the positions of the cars for

each sequence are ordered. In fact, we pass this ordered vector to the neural network

and hold on to the assumption that the interaction of the vehicles depends on the

distance to the vehicle in front. This is why we have to prescribe some velocity for

the first car in the data set, even in the case of the neural network without physical

parameters, see (6).

The ideas behind this data processing are the following. First, to solve the ODE it

is convenient to have a fixed number of particle in the scene. We therefore cut the data

into smaller time slices to ensure that the cars in the scene do not change within one

sequence. Another argument in favour of the small time slices is that the prediction of

the trajectories is more likely to be successful on short time intervals than predicting

the whole journey of the particles. In fact, the ODE interaction models do react to the

current situation and therefore the learning based on short time interval is justified.

The preprocessed data with position and timestamp information are available online.1

Remark 9 Note that even though the parameter set gives data on the vehicle type, we

do not use this information in the approach. Therefore, we expect to obtain an averaged

length L as output of the parameter estimation for the LWR-model with logarithmic

and linear velocity function.

5.3 Numerical schemes

For both approaches, the LWR and the NN model, we solve all the parameter identifica-

tion problems with the stochastic gradient descent method discussed in Sect. 4.2. The

forward and adjoint models are integrated using an Explicit Euler scheme. The traffic

data set has time step dtdata = 0.2 for the simulation we use a finer discretization, i.e.

dt = 0.002.

5.4 Numerical results

For the numerical results, we use the two data sets of "day 1" of all five cameras.

We test three different neural network settings with two, four and ten neurons in the

hidden layer and call them, N2, N4, N10, respectively. The results corresponding to

the LWR-model with logarithmic velocity function are denoted by "Log", and the ones

obtained with the linear velocity function are denoted by "Lin".

1 https://github.com/ctotzeck/NN-interaction.
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Fig. 2 The circles show the identified velocities of the leading car for the different methods (colour coded)

and the different data sets. The lines show the mean velocities taken over all data sets for the different

methods (Color figure online)

Table 1 Car lengths (in m) estimated with the algorithm for the 10 data sets with the LWR-model with

linear and logarithmic velocity

1 2 3 4 5 6 7 8 9 10 Average

Lin 3.47 3.95 5.64 4.50 2.25 2.54 8.33 7.07 2.00 7.16 4.69

Log 8.24 7.92 9.20 9.90 7.17 6.63 9.98 9.91 5.52 9.76 8.43

Note that the provided data units are meter m and seconds s. We initialize the

velocity v0 and car length L for the LWR cases with v0 = 30 m
s

and L = 5m. The

same initial velocity is used for all neural network dynamics. The weights for the

neural networks are initialized with random values uniformly distributed in [−1, 1].

We set a lower bound for the car length Lmin = 2m.

Figure 2 shows the results of the identification for the different models. The circles

show the identified velocities of the leading car for the different methods and the

different data sets. The lines show the mean velocities taken over all data sets for the

different methods. The mean velocity of the LWR-model with linear velocity function

is slightly larger than the other mean velocities which are close to 80 km
h

. The maximal

speed allowed on the highway is 100 km
h

. We see differences between the models for

single data sets. The car lengths identified for the two LWR approaches are shown in

Table 1.

The average car length estimated with the linear velocity approach is 4.69m, and

the one for the logarithmic velocity function is 8.43m. These numbers may indicate
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that the linear model estimates the true car length, while the logarithmic approach

includes the distance to the next car into this value. For test case 9, the car length of

the linear model hits the lower bound Lmin. Out of curiosity, we dropped the lower

bound assumption in this case, leading to a value of 0.6m and an over all average

velocity close to 80 km
h

similar to the other models.

Table 2 shows the cost for the different approaches using the interaction forces

and parameters identified by the algorithm. In average, the neural network approach

with four neurons in the hidden layer performs best. In fact, all the neural network

approaches perform better than the LWR-model with linear or logarithmic velocity

function. The least cost for each data set and for the average is highlighted. N4 has

the least cost in 60% of the test cases. N10 approximates the third data set best,

and Lin gives the best result for three of the data sets. The linear model is closer

to the NN approaches and outperforms the logarithmic model. We can see that the

smallest network with only two neurons in the hidden layer is not able to reproduce

the interaction forces (see Table 2). On the other hand, the bigger the neural network,

the more likely we run into problems of overfitting. This could be a reason why N4

outperforms N10. Nevertheless, this paper can only serve as a proof of concept of the

methodology. An investigation of the robustness of the results with respect to noise in

the data or the network architecture would be interesting future work.

Figure 3 illustrates the different interaction forces resulting from the parameter

estimation. The interaction forces of the neural network models are rather linear except

for the range 2m − 5m. The interaction forces of the linear and the logarithmic LWR-

model behave different in this region; in fact, they have very steep gradients and enter

a negative regime, which corresponds to slowing down. For distances in the range

of 15m-50m, the linear LWR-model is close to the interaction forces of the neural

networks, whereas the logarithmic LWR-model admits larger values. Due to the lack

of data in the short distance regime, we cannot expect the NN approaches to reproduce

the behaviour of slowing down.

The learning process is visualized exemplarily for data set 4 in Fig. 4 which shows

the norm of the gradient for different iterations of the learning process. The stochas-

ticity of our algorithms is visible; at the first iterations, we see a high variance which

is then diminishing when the learning process evolves. We choose a maximal number

of 2500 iterations for the learning process.

6 Parameter estimation based on crowd data

The following parameter estimation is based on a data set provided by the Institute

for Advanced Simulation: Civil Safety Research of Forschungszentrum Jülich [24].

In particular, the data set of a bidirectional flow in a corridor is used. We employ the

stochastic gradient descent algorithm to fit the parameters of the neural network as

well as the social force model.
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Fig. 3 Interaction forces resulting from the parameter identifications

Fig. 4 Illustration of the learning process. At the first iterations, our learning algorithms has a high variance,

and the variance diminishes as the learning process evolves. We stop at a maximal number of 2500 iterations
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6.1 Crowd data with social force model

We assume that the social force model proposed by Helbing and Molnár [15] is a good

fit to work with the crowd data set. It reads

d

dt
xi = vi , (7a)

d

dt
vi = vD

i +
1

Nm

N
∑

j=1

Fi, j +
1

K m

K
∑

k=1

Fiw (7b)

supplemented with initial data x(0) = x0 and v(0) = v0. The relevant parameters are

given in Table 3.

The relaxation term towards the desired velocity vdes
i is constructed from the given

trajectories as follows

vD
i =

1

τ

(

vdes
i (t) − vi (t)

)

, where vdes
i (t) =

xD − xi (t)

‖xD − xi (t)‖
‖vi (t)‖. (8)

Here, we assume that each pedestrian tries to head towards his or her destination which

is given by the last position of the data sequence and keeps the current speed. The

other force terms are assumed to be given as

Fi j = F(2r − di, j , vi − v j ) =

(

A exp
(2r − di j

B

)

+ k h(2r − di j )

)

ni j

+κ h(2r − di j )�vt
j i ti j (9)

with

di j = ‖xi − x j‖, ni j =
xi − x j

di j

, ti j = (−n2
i j , n1

i j ), �vt
j i = (v j − vi ) · ti j

Table 3 Parameters used for the

parameter estimation based on

crowd data. For the parameter

identification, we fix values for

m, r , τ, M, N , B and seek to

find A, κ and k

Parameter Variable

Mass m

Radius r

Relaxation time τ

Force constant A

Force constant B

Force constant κ

Force constant k

Desired velocity of i-th pedestrian vdes
i

Number of wall discretization points M

Number of pedestrians N
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being the distance of pedestrian i and pedestrian j, the normalized vector pointing

from pedestrian j to pedestrian i, the tangential direction and the tangential veloc-

ity difference, respectively, and, h(y) = H(y) y with Heaviside function H . The

interaction with the walls is parametrized using

Fiw = F(r − diw, vi ) =

(

A exp
(r − diw

B

)

+ k h(r − diw)

)

niw

+κ h(r − diw)(vi · tiw)tiw.

We assume here and in the following that the walls consist of stationary points, such

that diw, niw and tiw are easy to compute. We fix the radius r = 0.25, the scaling

B = 0.1, the relaxation parameter τ = 0.5 and the mass m = 1 for all simulations.

To summarize, the relevant parameters to find via the estimation procedure are u =

(A, k, κ).

6.2 Crowd data with neural networks

As we aim to compare the results of the model-based approach to the neural network

approach, we pass the same data to neural network that models the acceleration. Indeed,

we assume to neural network dynamic to be given by

d

dt
xi = vi , (10a)

d

dt
vi = vD

i +
1

m N

N
∑

j=1

W
i, j
u (xi − x j , vi − v j ) +

1

m Nwall

Nwall
∑

k=1

W i,w
u (xi − xk, vi − vk)

(10b)

supplemented with initial data x(0) = x0 and v(0) = v0. Here, we refer with xk to

the positions of the discretization points of the wall and with vk to artificial velocity

vectors of the wall points for k = 1, . . . , Nwall. Using separate neural networks for

the interaction and the walls allows us to compare the structure of the resulting terms

one by one and to understand the two approaches in more detail. Note that we use the

same neural network with different normal vectors for the different walls. As for the

social force approach, we fix the relaxation parameter τ = 0.5. The other parameters

need to be estimated. For notational convenience, we define

u = (uint
NN, uwall

NN ),

where uint
NN denotes all the parameters involved in the neural network modelling the

pairwise interaction between pedestrians and uwall
NN the parameters of the neural network

modelling the interaction of with the walls, respectively.
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6.3 Processing of the crowd data set

The crowd data set is processed with the same approach as the traffic data sets. Indeed,

we split it into sequences of fixed length Tseq. Then, we consider only the pedestri-

ans that are present during the whole sequence. In fact, we obtain T /Tseq sequences

with a different number of pedestrians present. This allows us to use a fixed number

of pedestrians in the models for each computation of the gradient in the parameter

estimation. We expect to have only small errors raised by the fact that some of the

pedestrians are neglected.

After the data processing, we have the trajectories of all pedestrians present in

each sequence. We use the first and the last point of these trajectories to compute

the relaxation term (8) in each time step. Moreover, we compute the velocities of the

pedestrians using a finite difference approximation. This applies to both, the social

force and the NN approach.

6.4 Numerical schemes and parameters

We use the Explicit Euler scheme to solve the state system and the adjoint systems.

The information is then passed to the stochastic descent algorithm, see Sect. 4.2.

Each sequence of the preprocessing involved 25 time steps of length dt = 0.04,

leading to Tseq = 1. We use the same time step dt = 0.04 for the Euler method.

The parameter of the stochastic descent algorithms is given in Sect. 4.2. The values

for the initial neural networks are a random sample that is chosen independently and

uniformly distributed on [−1, 1]K . We have four input variables, a hidden layer with

four neurons and two output variables representing the interaction force in x- and

y-direction.

The initial values for the social force model are a random sample uniformly dis-

tributed in the interval [0, 50]3.As the parameters of the social force model are assumed

to be non-negative, we set them to zero, if they became negative in some iteration of

the gradient descent algorithm.

6.5 Numerical results

In the following, we discuss the results of the parameter identification that we computed

with the help of the stochastic gradient descent methods derived in Sect. 4.2.

6.5.1 Results for social force model

First, we discuss the numerical results obtained for the social force model. We begin

with plots similar to [11], where we show the results for the interaction forces by

four contour plots for the x-direction and for the y-direction. For each of the plots,

we fix a vector v = (v1, v2) which describes the difference of the velocity vectors

of two interaction pedestrians. For example, a pedestrian with velocity vector (1, 0)

interacting with a pedestrian with velocity vector (−1, 0) leads to a difference vector
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Fig. 5 First component of the interaction force for social force approach with optimized parameters

Fig. 6 Second component of the interaction force for social force approach with optimized parameters
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Fig. 7 Interaction forces resulting from social force model for different settings, see Table 4 for more

details. The positions of the two interacting pedestrians is marked by the blue and red dot, respectively.

Their velocity vectors are the blue and red arrows, and the resulting forces are depicted as black arrows. On

the left side, the pedestrians face each other; on the right side, the pedestrians walk in the same direction

(Color figure online)

v = (2, 0). The contour colours show the value of the force components. Negative

values correspond to repulsive forces and positive values to attraction force.

The optimal parameters estimated are A = 0.0044, k = 34.9539, κ = 9.8894. It is

interesting to note that A, the prefactor of the exponential term, is almost switched off

by the optimization. In other words, only the k- and κ-term are active, this reduces the

interaction to a very short range, as both terms are multiplied by the Heaviside function

H(2r −d), compare to (9). We therefore restrict the area of the contour plot in Figs. 5

and 6 to [−0.5, 0.5]2. In fact, we even see in Figs. 5 and 6 that strong forces occur

in even shorter ranges around zero. In addition to these plots, we illustrate interaction

forces for six settings in Fig. 7. Every subplot shows two interacting pedestrians at

the positions marked with a blue and a red dot, respectively. Moreover, the velocity

vectors of the pedestrians are shown in blue and red as well. The black arrow is the

force vector resulting from the interaction of the two.

The data of the different settings are given in Table 4. Setting S1 and S2 show

a well-known problem of interaction schemes with radially symmetric forces. The

interaction forces of two pedestrians encountering each other are aligned along the

vector of the differences of the pedestrians positions. Therefore, there is no evasive

behaviour visible in this study. Nevertheless, in combination with the relaxation term

that drives the pedestrian towards their desired destination, we expect to have a rea-

sonable model. This problem for radially symmetric interactions is well-known and
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reported for example in [27]. Therein, an approach to solve this issue is presented

as well. Here, we see in practice what Remark 7 is referring to. Although physically

inspired models are well-motivated, they can fail to represent real-life behaviour.

For slightly shifted positions (see S3 and S4), we see evasion behaviour of the

pedestrians. The pedestrians are slowing down and slightly moving to the left or right,

respectively. The force directions are similar for the case where the velocity vectors

point at each other and also when the velocity vectors are aligned. In the settings

S5 and S6, we see how two pedestrians walking next to each other interact. In both

settings, there is a strong repulsion that pushes the pedestrians away from each other.

The walls have no influence on this behaviour, as their influence is only in very short

range and the positions are centred in the domain. Altogether, the resulting forces are

reasonable. They model some kind of evasive behaviour, which is expected as they

become active only if the two interacting pedestrians are very close together.

6.5.2 Results for NNmodel

Let us now discuss the interactions based on the neural network model. We consider the

same plots as for the social force model above and combine the forces resulting from

the neural network modelling the interaction with the forces resulting from the walls.

Figures 8 and 9 show contour plots of the forces resulting from the neural network

approach when we sum up the interaction force and the wall force. Comparing these

Figures to the ones resulting from the social force model, we see that the interaction

strength is smaller, but the interaction range is longer for the NN model. We analysed

the forces resulting from the interactions and the walls separately as well, it turns out

that the forces to not represent pairwise interaction between pedestrians and walls, as

we intended to model.

The observation that the interaction range is longer in the NN approach motivates to

adapt the ranges of the interaction settings. For a similar study as before for the social

force model, we use the values given in Table 5. The arrows in Fig. 10 show the sum of

the interaction and wall forces, i.e. they correspond to Figs. 8 and 9. The force vectors

in the first and second row coincide. This indicates that the NN model does not have

the same problem as forces resulting from radially symmetric potentials. It is very

interesting to see that the NN model easily reads the evasion behaviour of pedestrians

from the data. It therefore outperforms the social force model in this point. Moreover,

the plots indicate that the NN model reacts with evasive behaviour to pedestrians

approaching in a longer range (row one and two in Fig. 10). In contrast, pedestrians

that are close to each other encounter forces in similar directions. Especially, when

they head into the same direction (row three in Fig. 10). We summarize the findings

and comparison of the two models in the conclusion.

6.6 Comparison of the two approaches

The numerical results show that the optimized forces on the social model have a

very short range and show expected evasive behaviour for two pedestrians facing

each other. On the other hand, the optimized forces of the neural network approach
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are long ranging. The splitting into a neural network for pairwise interactions and

wall interactions is overturned by the optimization. Interestingly, it turns out that

a familiar evasive behaviour is recovered when we add the forces resulting from

the neural network for pairwise interaction and the neural network modelling the

walls.

The comparison of pairwise interactions show that in case of the social force model,

the pedestrians encounter a strong force slowing them down, in particular, the com-

ponent of force vector pointing in the opposite direction of the velocity vector is very

strong. For the neural network, the force vector is almost perpendicular to the velocity

vector. Hence, the pedestrians are changing direction but not slowing down as much

as in the social force case. The cost functional values for the two approaches averaged

over all samples of the data set are

JSF = 5.0841, JNN = 5.5979.

We conclude that despite the qualitative differences the two models perform similar

in terms of cost. The social force model with short-range interaction performs slightly

better in this measure as the neural network approach with long-range interaction.

On the other hand, the neural network approach delivers forces which imply evasive

behaviour and thus seem to be closer to reality than the ones of the social force

model.

Fig. 8 First component of the interaction and wall force for NN approach with optimized parameters
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Fig. 9 Second component of the interaction and wall force for NN approach with optimized parameters

Fig. 10 Interaction and wall forces resulting from NN model for different settings, see Table 5 for more

details. The positions of the two interacting pedestrians are marked by the blue and red dot, respectively.

Their velocity vectors are the blue and red arrows, and the resulting forces are depicted as black arrows. On

the left side, the pedestrians face each other; on the right side, the pedestrians walk in the same direction
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7 Conclusion

We proposed to use neural networks to model forces in general interacting particle

systems and derived an algorithm to estimate parameters with techniques from optimal

control. For validation, the algorithm is applied to a traffic data set and a pedestrian

data set. The results are compared to the well-known LWR-model and social force

model, respectively.

For the traffic data, it turns out that the neural network approach leads to almost

linear interaction forces that average the interaction forces resulting for the LWR-

model with linear and logarithmic velocity ansatz. The cost functional values are best

for the neural network with 4 neurons in the hidden layer.

In case of the pedestrian dynamics, the interaction forces of the social force model

and the neural network approach differ in the range of interaction and the strength.

The optimized social force model has strong interaction forces that act on a very short

range. In contrast, the forces resulting from the neural network approach act on a

longer range with less strength. Parameter identification with social model performs

slightly better than the one based on neural networks in terms of the cost functional

value. It is interesting to see that the NN approach is able to read evasion behaviour

of the pedestrians from the data.

Future work includes the investigation of parameter identification problems using

neural networks for partial differential equations arising in the context of crowd motion

and traffic flow. A performance comparison of the stochastic gradient descent method

to global optimization methods, such as Consensus-based global Optimization [22],

using real data based parameter calibration for interacting particle models is planned

as well.
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