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ABSTRACT
We constrain flat cosmological models with a joint likelihood analysis of a new compilation
of data from the cosmic microwave background (CMB) and from the 2dF Galaxy Redshift
Survey (2dFGRS). Fitting the CMB alone yields a known degeneracy between the Hubble
constant h and the matter density �m, which arises mainly from preserving the location of
the peaks in the angular power spectrum. This ‘horizon-angle degeneracy’ is considered in
some detail and is shown to follow the simple relation �m h3.4 = constant. Adding the 2dF-
GRS power spectrum constrains �m h and breaks the degeneracy. If tensor anisotropies are
assumed to be negligible, we obtain values for the Hubble constant of h = 0.665 ± 0.047,
the matter density �m = 0.313 ± 0.055, and the physical cold dark matter and baryon densi-
ties �c h2 = 0.115 ± 0.009, �b h2 = 0.022 ± 0.002 (standard rms errors). Including a possible
tensor component causes very little change to these figures; we set an upper limit to the tensor-
to-scalar ratio of r < 0.7 at a 95 per cent confidence level. We then show how these data can
be used to constrain the equation of state of the vacuum, and find w < −0.52 at 95 per cent
confidence. The preferred cosmological model is thus very well specified, and we discuss the
precision with which future CMB data can be predicted, given the model assumptions. The
2dFGRS power-spectrum data and covariance matrix, and the CMB data compilation used
here, are available from http://www.roe.ac.uk/∼wjp/.
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1 I N T RO D U C T I O N

The 2dF Galaxy Redshift Survey (2dFGRS; see, e.g., Colless et al.
2001) has mapped the local Universe in detail. If the galaxy dis-
tribution has Gaussian statistics and the bias factor is independent
of scale, then the galaxy power spectrum should contain all of the
available information concerning the seed perturbations of cosmo-
logical structure: it is statistically complete in the linear regime.
The power spectrum of the data as of early 2001 was presented
in Percival et al. (2001), and was shown to be consistent with re-
cent cosmic microwave background (CMB) and nucleosynthesis
results.

In Efstathiou et al. (2002) we combined the 2dFGRS power spec-
trum with recent CMB data sets in order to constrain the cosmo-
logical model (see also subsequent work by Lewis & Bridle 2002).
Considering a wide range of possible assumptions, we were able
to show that the Universe must be nearly flat, requiring a non-zero
cosmological constant �. The flatness constraint was quite pre-
cise (|1 − �tot| < 0.05 at 95 per cent confidence); since inflation
models usually predict near-exact flatness (|1 − �tot| < 0.001; e.g.
Section 8.3 of Kolb & Turner 1990), there is strong empirical and
theoretical motivation for considering only the class of exactly flat
cosmological models. The question of which flat universes match
the data is thus an important one to be able to answer. Removing
spatial curvature as a degree of freedom also has the practical ad-
vantage that the space of cosmological models can be explored in
much greater detail. Therefore, throughout this work we assume a
universe with baryons, cold dark matter (CDM) and vacuum energy
summing to �tot = 1 (cf. Peebles 1984; Efstathiou, Sutherland &
Maddox 1990).

In this work we also assume that the initial fluctuations were
adiabatic, Gaussian and well described by power-law spectra. We
consider models with and without a tensor component, which is al-
lowed to have slope and amplitude independent of the scalar compo-
nent. Recent Sudbury Neutrino Observatory (SNO) measurements
(Ahmad et al. 2002) are most naturally interpreted in terms of three
neutrinos of cosmologically negligible mass (�0.05 eV, as opposed
to current cosmological limits of the order of 2 eV – see Elgaroy
et al. 2002). We therefore assume zero neutrino mass in this analysis.
In most cases, we assume the vacuum energy to be a ‘pure’ cosmo-
logical constant with equation of state w ≡ p/ρc2 = −1, except in
Section 5 where we explore w > −1.

In Section 2 we use a compilation of recent CMB observations
(including data from VSA, Scott et al. 2002, and CBI, Pearson et al.
2002, experiments) to determine the maximum-likelihood ampli-
tude of the CMB angular power spectrum on a convenient grid,
taking into account calibration and beam uncertainties where appro-
priate. This compression of the data is designed to speed the analy-
sis presented here, but it should be of interest to the community in
general.

In Section 3 we fit to both the CMB data alone, and CMB +
2dFGRS. Fits to CMB data alone reveal two well-known primary
degeneracies. For models including a possible tensor component,
there is tensor degeneracy (Efstathiou 2002) between increasing
tensors, blue tilt, increased baryon density and lower CDM density.
For both scalar-only and with-tensor models, there is a degener-
acy related to the geometrical degeneracy present when non-flat
models are considered, arising from models with similar observed
CMB peak locations (cf. Efstathiou & Bond 1999). In Section 4 we
discuss this degeneracy further and explain how it may be easily un-
derstood via the horizon angle, and described by the simple relation
�m h3.4 = constant.

Section 5 considers a possible extension of our standard cosmo-
logical model, allowing the equation of state parameter w of the
vacuum energy component to vary. By combining the CMB data,
the 2dFGRS data and an external constraint on the Hubble constant
h, we are able to constrain w. Finally, in Section 6, we discuss the
range of CMB angular power spectral values allowed by the present
CMB and 2dFGRS data within the standard class of flat models.

2 T H E C M B DATA

Recent key additions to the field of CMB observations come from
the VSA (Scott et al. 2002), which boasts a smaller calibration er-
ror than previous experiments, and the CBI (Pearson et al. 2002;
Mason et al. 2002), which has extended observations to smaller an-
gles (larger �). These data sets add to results from BOOMERaNG
(Netterfield et al. 2002), Maxima (Lee et al. 2001) and DASI
(Halverson et al. 2002), amongst others. Rather than compare mod-
els with each of these data sets individually, it is expedient to com-
bine the data prior to analysis. This combination often has the ad-
vantage of allowing a consistency check between the individual data
sets (e.g. Wang, Tegmark & Zaldarriaga 2002). However, care must
be taken to ensure that additional biases are not introduced into the
compressed data set, and that no important information is lost.

In the following we consider COBE, BOOMERaNG, Max-
ima, DASI, VSA and CBI data sets. The BOOMERaNG data of
Netterfield et al. (2002) and the Maxima data of Lee et al. (2001)
were used assuming the data points to be independent, and have
window functions well described by top-hats. The � < 2000 CBI
mosaic field data were used assuming that the only significant cor-
relations arise between neighbouring points that are anticorrelated
at the 16 per cent level as discussed in Pearson et al. (2002). Win-
dow functions for these data were assumed to be Gaussian with
small negative side lobes extending into neighbouring bins approxi-
mately matched to fig. 11 of Pearson et al. (2002). We also consider
the VSA data of Scott et al. (2002), the DASI data of Halverson
et al. (2002), and the COBE data compilation of Tegmark (1996),
for which the window functions and covariance matrices are known,
where appropriate. The calibration uncertainties used are presented
in Table 1, and the data sets are shown in Fig. 1. In total, there are
six data sets, containing 68 power measurements.

In order to combine these data sets, we have fitted a model for
the true underlying CMB power spectrum, consisting of power val-
ues at a number of � values (or nodes). Between these nodes we
interpolate the model power spectrum using a smooth Spline3 algo-
rithm (Press et al. 1992). The assumption of smoothness is justified
because we aim to compare CMB data with CDM models calcu-
lated using CMBFAST (Seljak & Zaldarriaga 1996). Internally, this

Table 1. Best-fitting relative power calibration correc-
tions for the experiments considered are compared with
expected rms errors. In addition, we recover a best-fitting
beam error for BOOMERaNG of +0.4 per cent, mea-
sured relative to the first data point in the set, and +0.07
per cent for Maxima.

Experiment Power calibration error
Best fit (per cent) rms (per cent)

BOOMERaNG −13.5 20
Maxima +1.6 8
DASI +0.9 8
VSA −0.3 7
CBI +0.7 10
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Figure 1. Top panel: the compilation of recent CMB data used in our analysis (see the text for details). The solid line shows the result of a maximum-likelihood
fit to these data, allowing for calibration and beam uncertainty errors in addition to intrinsic errors. Each observed data set has been shifted by the appropriate
best-fitting calibration and beam correction. Bottom panel: the solid line again shows our maximum-likelihood fit to the CMB power spectrum now showing
the nodes (the points at which the amplitude of the power spectrum was estimated) with approximate errors calculated from the diagonal elements of the
covariance matrix (solid squares). These data are compared with the compilation of Wang et al. (2002) (stars) and the result of convolving our best-fitting power
with the window function of Wang et al. (crosses). In order to show the important features in the CMB angular power spectrum plots we present in this paper
we have chosen to scale the x-axis by (log �)5/2.

code evaluates the CMB power spectrum only at a particular set of
� values, which are subsequently Spline3 interpolated to cover all
multipoles. It is therefore convenient to use as our parameters the
CMB power values at the same nodes used by CMBFAST in the key
regime 150 � � � 1000. Using the same smoothing algorithm and
nodes for our estimate of the true power spectrum, we ensure that no
additional assumptions are made in the data compilation compared
with the models to be tested. For � < 150 and � > 1000 the data
points are rather sparsely distributed, and we only selected a few
� values at which to estimate the power. The best-fitting amplitude
of the power spectrum at an extra node at � = 2000 was determined
in our fit to the observed CMB data, in order for the shape of the in-
terpolated curve around � = 1500 to have the correct form. This was
subsequently removed from the analysis, and models and data were
only compared for � � 1500. In addition to requiring no interpola-
tion in CMBFAST, this method of compression has a key advantage for
our analysis. Normally, CMB data are expressed as bandpowers, in
which one specifies the result of convolving the CMB power spec-
trum with some kernel. This remains true of some previous CMB

data compilations (e.g. Wang et al. 2002). In contrast, we estimate
the true power spectrum at a given � directly, so that no convolution
step is required. This means that parameter space can be explored
more quickly and efficiently.

Given a set of nodal values, we form an interpolated model power
spectrum, convolve with the window function of each observed data
point and maximized the likelihood with respect to the nodal val-
ues (assuming Gaussianity – see Bond, Jaffe & Knox 2000 for a
discussion of the possible effect of this approximation). Calibration
errors and beam uncertainties were treated as additional independent
Gaussian parameters, and were combined into the final likelihood,
as well as being used to correct the data. The resulting best-fitting
calibration and beam errors are compared with the expected rms
values in Table 1.

In agreement with Wang et al. (2002), we find a negative best-
fitting BOOMERaNG calibration correction (13 per cent in power),
caused by matching data sets in the regime 300 < � < 500. Applying
this correction (included in the data points in Fig. 1) slightly de-
creases the amplitude of the first peak. Nevertheless, our combined
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Table 2. Recovered best-fitting power spec-
trum values with rms values given the six data
sets analysed.

� δT 2 (µK2) rms error (µK2)

2 314 443
4 803 226
8 770 156

15 852 174
50 1186 1414
90 2796 673

150 3784 546
200 5150 627
250 5306 590
300 3407 364
350 2339 265
400 1627 205
450 1873 202
500 2214 240
550 2479 249
600 2061 245
650 1849 244
700 2023 274
750 1614 295
800 2089 373
850 2654 475
900 2305 515
950 1178 480

1000 1048 320
1200 1008 214
1500 530 178

power values are systematically higher than in the compilation of
Wang et al. (see the lower panel of Fig. 1). This derives partly from
the inclusion of extra data, but also results from a bias in the analysis
method of Wang et al. They use the observed power values to esti-
mate the error in the data, rather than the true power at that multipole
(which we estimate from our model). A low observational point is
thus given a spuriously low error, and this is capable of biasing the
averaged data to low values.

The final best-fitting power spectrum amplitudes given the six
data sets analysed are presented in Table 2, with the correspond-
ing �-values of the nodes and rms errors. Formally, this fit gave
χ 2

min = 31.9, given 34 degrees of freedom (there are 68 data points,
and we estimate 27 power spectrum values, five calibration and
two beam corrections). This result demonstrates that the different
data sets are broadly consistent after allowing for calibration and
beam uncertainty. The Hessian matrix of the likelihood provides an
estimate of the inverse covariance matrix for the power spectrum es-
timates. This was calculated numerically and is available, together
with the averaged data, from http://www.roe.ac.uk/∼wjp/. As em-
phasized previously, these are estimates of the true power at the
� values given and therefore do not require window functions. In
the following section we use these CMB results to constrain flat
cosmological models.

3 C O S M O L O G I C A L M O D E L S

3.1 Parameter space

In the following we parametrize flat cosmological models with seven
parameters (plus two amplitudes): these are the physical baryon den-

Table 3. The distribution of parameters (defined in the text)
in the ∼ 2 × 108 flat cosmological models considered in this
paper. The grid used was linear in each parameter between the
limits given in order to simplify the marginalization assuming
a uniform prior on each.

Parameter Min Max Grid size

�bh2 0.01 0.04 25
�ch2 0.05 0.22 25
h 0.40 1.00 25
τ 0.00 0.10 2
ns 0.80 1.30 25
nt −0.20 0.30 10
r 0.00 1.00 25

sity1 �b h2, the physical CDM density �c h2, the Hubble constant h,
the optical depth to the last scattering surface τ , the scalar spectral
index ns, the tensor spectral index nt and the tensor-to-scalar ratio r.
The tensor-to-scalar ratio r is defined as in Efstathiou et al. (2002):
the scalar and tensor C� are normalized so that

1

4π

1000∑
�=2

(2� + 1)ĈS
� = (4 × 10−5)2, (1)

1

4π

50∑
�=2

(2� + 1)ĈT
� = (2 × 10−5)2. (2)

C� is then given by C� = Q2(ĈS
� + rĈT

� ), where Q2 is the nor-
malization constant. We marginalize over both this and the ampli-
tude of the 2dFGRS power spectra in order to avoid complications
caused by galaxy biasing and redshift space distortions (Lahav et al.
2002).

CMB angular power spectra have been calculated using CMBFAST

(Seljak & Zaldarriaga 1996) for a grid of ∼ 2 × 108 models. For
ease of use, a uniform grid was adopted with a varying resolution in
each of the parameters (details of this grid are presented in Table 3).
Likelihoods were calculated by fitting these models to the reduced
CMB data set presented in Section 2. Similarly, large-scale structure
(LSS) power spectra were calculated for the relevant models using
the fitting formula of Eisenstein & Hu (1998), and were convolved
with the window function of the 2dFGRS sample, before being
compared with the 2dFGRS data as in Percival et al. (2001).

In order to constrain parameters, we wish to determine the prob-
ability of each model in our grid given the available CMB and 2dF-
GRS data. However, we can only easily calculate the probability of
the data given each model. In order to convert between these prob-
abilities using Bayes’ theorem, we need to adopt a prior probability
for each model or parameter. In this work, we adopt a uniform prior
for the parameters discussed above between the limits in Table 3. i.e.
we assume that the prior probability of each model in the grid is the
same. Assuming a uniform prior for physically motivated parame-
ters is common in the field, although not often explicitly mentioned.
Note that the constraints placed by the current data are tight com-
pared with the prior, and that the biases induced by this choice are
therefore relatively small.

The likelihood distribution for a single parameter, or for two
parameters can be calculated by marginalizing the estimated

1 As usual, �b and �c are the densities of baryons and CDM in units of the
critical density, and h is the Hubble constant in units of 100 km s−1 Mpc−1.
‘Derived’ parameters include the matter density �m = �c + �b and
�� = 1 − �m.

C© 2002 RAS, MNRAS 337, 1068–1080
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Figure 2. Two parameter likelihood surfaces for scalar-only models. Contours correspond to changes in the likelihood from the maximum of
2� lnL= 2.3, 6.0, 9.2. Dashed contours are calculated by only fitting to the CMB data, solid contours by jointly fitting the CMB and 2dFGRS data. Dotted
lines show the extent of the grid used to calculate the likelihoods.

probability of the model given the data over all other parameters. Be-
cause of the grid adopted in this work, we can perform this marginal-
ization by simply averaging the L values calculated at each point in
the grid.

In Fig. 2 we present two-parameter likelihood contour plots
(marginalized over the remaining parameters) for the subset of
scalar-only models, i.e. r fixed at 0. For these scalar-only models,
we choose to plot τ only against �b h2 as τ is poorly constrained
by the CMB data, and has no degeneracies with the other param-
eters. In Fig. 3 we present two-parameter likelihood contour plots
(marginalized over the remaining parameters) for models allowing
a tensor component. The spectral index of the tensor contribution is
poorly constrained by the CMB data so, as for τ , we only show one
plot with this parameter.

Figs 2 and 3 reveal two key directions in parameter space that the
CMB data have difficulty constraining. When a tensor component
is included, we have the tensor degeneracy – a trade-off between
increasing tensors, increasing ns, increasing �b h2 and decreasing
�c h2 (for more detail see Efstathiou 2002). In addition, in both the
scalar-only and with-tensor cases, there is a degeneracy between
�c h2 and h, which results in the Hubble parameter h being poorly
constrained by the CMB data alone. This degeneracy is discussed
in detail in the next section.

We note that nearly all of the likelihood is contained well within
our prior regions, except for the case of tensor models with CMB-
only data in Fig. 3: here there is a region allowed by CMB outside
our priors with high tensor fraction, h > 1, ns � 1.3, �c h2 � 0.06.
These parameters are ruled out by many observations apart from
2dFGRS, so the truncation is not a concern.

3.2 Results

The recovered mean and standard rms error calculated for each pa-
rameter (except τ which is effectively unconstrained) are given in

Table 4. What is striking is how well specified many of the param-
eters are.

The general features are as follows: changing from the compila-
tion of Wang et al. to our compilation shrinks the error bars slightly
(owing to VSA and CBI), but the central values are similar except
for a slight shift in ns. Allowing tensors widens the error bars and
causes modest shifts in central values (the best fit has a zero tensor
fraction, but the fact that r must be non-negative explains the shifts).
The CMB data alone constrains �b h2 and ns well and �c h2 quite
well, but �m and h less well. Adding the 2dFGRS data shrinks the
errors on �c h2, h and thus �m and �b/�m by more than a factor
of 2.

The most restrictive case is the set of scalar-only models. These
yield h = 0.665 with only a 7 per cent error, which is substantially
better than any other method. The matter density parameter comes
out at �m = 0.313, with a rather larger error of 18 per cent; errors
on h and �m are anticorrelated so the physical matter density is well
determined,�m h2 = 0.136 ± 7 per cent. In Section 4 below we show
that this is because the CMB data measure the combination �m h3

very accurately, so that an accurate measurement of �m requires
h to be known almost exactly.

Moving from matter content to the fluctuation spectrum,
the scalar-only results give a tantalizing hint of red tilt, with
ns = 0.963 ± 0.042. Current data are thus within a factor of 2 of the
precision necessary to detect plausible degrees of tilt (e.g. ns = 0.95
for λφ4 inflation; see Section 8.3 of Liddle & Lyth 2000). Inflation
of course cautions against ignoring tensors, but it would be a great
step forward to rule out an ns = 1 scalar-only model.

Including the possibility of tensors changes these conclusions
only moderately. The errors on h and �m hardly alter, whereas the
error on ns rises to 0.066. The preferred model has r = 0, although
this is rather poorly constrained. Marginalizing over the other pa-
rameters, we obtain a 95 per cent confidence upper limit of r < 0.7.
One way of ruling out the upper end of this range may be to note that

C© 2002 RAS, MNRAS 337, 1068–1080
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Figure 3. As in Fig. 2, but now considering a wider class of models that possibly include a tensor component.

such tensor-dominated models predict a rather low normalization for
the present-day mass fluctuations, as we now discuss.

3.3 Normalization

An advantage of the new CMB data included here is that the most
recent experiments have a rather small calibration uncertainty. It is
therefore possible to obtain precise values for the overall normal-
ization of the power spectrum. As usual, we take this to be specified
by σ8, the rms density contrast averaged over spheres of 8 h−1 Mpc
radius. For the scalar-only grid of models shown in Fig. 2, this
yields

σ8 = (0.72 ± 0.03 ± 0.02) exp(τ ). (3)

The first error figure is the ‘theory error’: the uncertainty in σ8

that arises because the conversion between the observed C� and the
present P(k) depends on the uncertain values of �m, etc. The second
error figure represents the uncertainty in the normalization of the C�

data (see Fig. 7 in Section 6). The total error in σ8 is the sum in
quadrature of these two figures.

This result confirms with greater precision our previous conclu-
sions that the allowed scalar-only models prefer a relatively low
normalization (Efstathiou et al. 2002; Lahav et al. 2002). As dis-

cussed by Lahav et al. (2002), a figure of σ8 = 0.72 is consistent
with the relatively wide range of estimates from the abundance of
rich clusters, but is lower than the σ8 � 0.9 for �m � 0.3 preferred
by weak lensing studies. The obvious way to reconcile these figures
is via the degenerate dependence of σ8 on τ . The lowest plausible
value for this is τ = 0.05, corresponding to reionization at zr = 8 for
the parameters given here. To achieve σ8 = 0.9 requires τ = 0.22, or
reionization at zr = 22, which is somewhat higher than conventional
estimates (zr < 15; see, e.g., Loeb & Barkana 2001). Additional ev-
idence in this direction comes from the possible first detection of
Sunyaev–Zeldovich anisotropies at � > 200 by the CBI (Mason et al.
2002). This signal is claimed to require σ8 � 1 (Bond et al. 2002),
which would raise zr to almost 30. Further scrutiny of these indepen-
dent estimates for σ8 will be required before one can claim evidence
for first object formation at extreme redshifts, but this is an exciting
possibility.

Finally, we note that these problems are sharpened if the CMB
power spectrum has a substantial tensor component. As shown by
Efstathiou et al. (2002), the model with the maximal allowed tensor
fraction (r = 0.6) has a normalization lower by a factor 1.18 than the
best scalar-only model. This pushes zr to almost 40 for σ8 = 1, which
starts to become implausibly high, even given the large uncertainties
associated with the modelling of reionization.

C© 2002 RAS, MNRAS 337, 1068–1080
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Table 4. The recovered mean and root mean square (rms) error for each parameter, calculated by marginalizing over
the remaining parameters. Results are presented for scalar-only and scalar + tensor models, and for CMB data only or
CMB and 2dFGRS power spectrum data. To reduce round-off error, means and rms errors are quoted to an accuracy
such that the rms error has two significant figures. We also present constraints on some of the possible derived parameter
combinations. (Note that because of the marginalization, the maximum-likelihood values of ‘derived’ parameters, e.g.
�m are not simply ratios of the ML values for each ‘independent’ parameter.)

Parameter Results: scalar only Results: with tensor component
CMB CMB + 2dFGRS CMB CMB + 2dFGRS

�bh2 0.0205 ± 0.0022 0.0210 ± 0.0021 0.0229 ± 0.0031 0.0226 ± 0.0025
�ch2 0.118 ± 0.022 0.1151 ± 0.0091 0.100 ± 0.023 0.1096 ± 0.0092

h 0.64 ± 0.10 0.665 ± 0.047 0.75 ± 0.13 0.700 ± 0.053
Using the ns 0.950 ± 0.044 0.963 ± 0.042 1.040 ± 0.084 1.033 ± 0.066
CMB data nt − − 0.09 ± 0.16 0.09 ± 0.16
compilation r − − 0.32 ± 0.23 0.32 ± 0.22
of Section 2 �m 0.38 ± 0.18 0.313 ± 0.055 0.25 ± 0.15 0.275 ± 0.050

�mh 0.226 ± 0.069 0.206 ± 0.023 0.174 ± 0.063 0.190 ± 0.022
�mh2 0.139 ± 0.022 0.1361 ± 0.0096 0.123 ± 0.022 0.1322 ± 0.0093

�b/�m 0.152 ± 0.031 0.155 ± 0.016 0.193 ± 0.048 0.172 ± 0.021

�bh2 0.0209 ± 0.0022 0.0216 ± 0.0021 0.0233 ± 0.0032 0.0233 ± 0.0025
�ch2 0.124 ± 0.024 0.1140 ± 0.0088 0.107 ± 0.025 0.1091 ± 0.0089

h 0.64 ± 0.11 0.682 ± 0.046 0.74 ± 0.14 0.719 ± 0.054
Using the ns 0.987 ± 0.047 1.004 ± 0.047 1.073 ± 0.087 1.079 ± 0.073
Wang et al. (2002) nt − − 0.03 ± 0.15 0.03 ± 0.15
compilation r − − 0.25 ± 0.21 0.27 ± 0.20

�m 0.41 ± 0.20 0.296 ± 0.051 0.28 ± 0.17 0.261 ± 0.048
�mh 0.240 ± 0.076 0.200 ± 0.021 0.189 ± 0.071 0.185 ± 0.021
�mh2 0.145 ± 0.024 0.1356 ± 0.0092 0.131 ± 0.024 0.1324 ± 0.0088

�b/�m 0.149 ± 0.033 0.160 ± 0.016 0.186 ± 0.049 0.177 ± 0.021

4 T H E H O R I Z O N A N G L E D E G E N E R AC Y

In this section we explore the degeneracy observed in Figs 2 and 3
between �c h2 and h. This is related (but not identical) to the geomet-
rical degeneracy that exists when non-flat models are considered,
and we now show that it is very closely related to the location of
the acoustic peaks. Below, we first review the basics of the geo-
metrical degeneracy; secondly, note why this is only weakly broken
by the flatness assumption, and thirdly give a simple heuristic ar-
gument why this degeneracy approximately follows a contour of
nearly constant �m h3.

4.1 The geometrical degeneracy

The ‘geometrical degeneracy’ in the CMB is well known (Bond,
Efstathiou & Tegmark 1997; Zaldarriaga, Spergel & Seljak 1997;
Efstathiou & Bond 1999). If we take a family of models with
fixed initial perturbation spectra, fixed physical densities ωm ≡
�m h2, ωb ≡ �b h2, and vary both �� and the curvature �k to keep a
fixed value of the angular size distance to last scattering, then the re-
sulting CMB power spectra are identical (except for the integrated
Sachs–Wolfe effect at low multipoles, which is hidden in cosmic
variance, and second-order effects at high �). This degeneracy oc-
curs because the physical densities ωm, ωb control the structure of
the perturbations in physical Mpc at last scattering, while curvature
and � (plus ωm) govern the proportionality between the length at
last scattering and the observed angle. Note that h is a ‘derived’
parameter in the above set, via h = [ωm/(1 − �k − ��)]1/2, so the
geometrical degeneracy is broken by an external measurement of h.

4.2 The flat-universe case

Assuming a flat universe, �k = 0, thus also breaks the geometrical
degeneracy. However, as noted by, for example, Efstathiou & Bond

(1999), and investigated below, there is a closely related degeneracy
based on varying two free parameters (chosen from �m, ωm, h, ��)
so as to almost preserve the locations of the first few CMB acoustic
peaks. This is illustrated in Fig. 4, where the likelihood contours
in the (�m, h) plane for CMB-only data form a long and narrow
‘banana’ with its long axis at approximately constant �m h3. The
banana is surprisingly narrow in the other direction; this means that
�m h3 is determined to approximately 12 per cent (1σ ) by the CMB
data.

This ‘banana’ is similar in form to the line in fig. 4 of Efstathiou
& Bond (1999), though it is different in detail because they used
simulations with ωm = 0.25. It is also similar to that in fig. 1 of
Knox, Christensen & Skordis (2001) as expected. However, both
of those previous papers presented the degeneracy in the (��, h)
plane; although this is just a mirror-image of the (�m, h) plane,
it is less intuitive (e.g. changing �� alters observables that have
no explicit � dependence, via the constraint �m = 1 − ��), so the
simple �m h3 dependence has not been widely recognized.

4.3 Peak locations and the sound horizon

The locations �m of the first few CMB acoustic peaks may be con-
veniently expressed (e.g. Hu et al. 2001; Knox et al. 2001) as

�m = �A(m − φm), m = 1, 2, 3 (4)

�A ≡ π/θS (5)

θS ≡ rS(z∗)

DA(z∗)
, (6)

where rS is the sound horizon size at last scattering (redshift z∗),
DA is the angular diameter distance to last scattering, therefore θS

is the ‘sound horizon angle’ and �A is the ‘acoustic scale’. For any
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Figure 4. Likelihood contours for �m against h for scalar-only models,
plotted as in Fig. 2. Variables were changed from �bh2 and �ch2 to �m

and �b/�m, and a uniform prior was assumed for �b/�m covering the
same region as the original grid. The extent of the grid is shown by the
dotted lines. The dot-dashed line follows the locus of models through
the likelihood maximum with constant �mh3.4. The solid line is a fit to
the likelihood valley and shows the locus of models with constant �mh3.0

(see the text for details).

given model, the CMB peak locations �m(m = 1, 2, 3) are given by
numerical computation, and then equation (4) defines the empiri-
cal ‘phase shift’ parameters φm. Hu et al. (2001) show that the φm

are weakly dependent on cosmological parameters and φ1 ∼ 0.27,
φ2 ∼ 0.24, φ3 ∼ 0.35. Extensive calculations of the φm are given by
Doran & Lilley (2002).

Therefore, although θS is not directly observable, it is very simple
to compute and very tightly related to the peak locations, hence
its use below. Knox et al. (2001) note a ‘coincidence’ that θS is
tightly correlated with the age of the universe for flat models with
parameters near the ‘concordance’ values, and use this to obtain an
accurate age estimate assuming flatness.

4.4 A heuristic explanation

Here we provide a simple heuristic explanation for why θS and
hence the �ms are primarily dependent on the parameter combination
�m h3.4.

Of the four ‘FRW’ parameters �m, ωm, h, ��, only two are inde-
pendent for flat models, and we can clearly choose any pair except
for (�m, ��). The standard choice in CMB analyses is (ωm, ��),
while for non-CMB work the usual choice is (�m, h). However, in
the following we take ωm and �m to be the independent parameters
(thus h, �� are derived); this looks unnatural but separates more
clearly the low-redshift effect of �m from the pre-recombination ef-
fect of ωm. We take ωb as fixed unless otherwise specified (its effect
here is small).

We first note that the present-day horizon size for flat models is
well approximated by (Vittorio & Silk 1985)

rH(z = 0) = 2c

H0
�−0.4

m = 6000 Mpc
�0.1

m√
ωm

. (7)

(The distance to last scattering is ∼ 2 per cent smaller than the
above because of the finite redshift of last scattering.) Therefore,
if we increase �m while keeping ωm fixed, the shape and relative
heights of the CMB peaks are preserved but the peaks move slowly
rightwards (increasing �) proportional to �0.1

m . (Equivalently, the
Efstathiou–Bond R parameter for flat models is well approximated
by 1.94 �0.1

m .)
This slow variation of �A ∝ �0.1

m at fixed ωm explains why the
geometrical degeneracy is only weakly broken by the restriction to
flat models: a substantial change in �m at fixed ωm moves the peaks
only slightly, so a small change in ωm can alter the sound horizon
length rS(z∗) and bring the peaks back to their previous angular
locations with only a small change in relative heights. We now give
a simplified argument for the dependence of rS on ωm.

The comoving sound horizon size at last scattering is defined by
(e.g. Hu & Sugiyama 1995)

rS(z∗) ≡ 1

H0�
1/2
m

∫ a∗

0

cS

(a + aeq)1/2
da, (8)

where the vacuum energy is neglected at these high redshifts; the
expansion factor a ≡ (1 + z)−1 and a∗, aeq are the values at recombi-
nation and matter–radiation equality, respectively. Thus rS depends
on ωm and ωb in several ways:

(i) the expansion rate in the denominator depends on ωm via aeq;
(ii) the speed of sound cS depends on the baryon/photon ratio via

cS = c/
√

3(1 + R), R = 30 496 ωb a;
(iii) the recombination redshift z∗ depends on both the baryon

and matter densities ωb, ωm in a fairly complex way.

Since we are interested mainly in the derivatives of rS with ωm, ωb,
it turns out that (i) above is the dominant effect. The dependence
(iii) of z∗ on ωm, ωb is slow. Concerning (ii), for baryon densi-
ties ωb � 0.02, cS declines smoothly from c/

√
3 at high redshift to

0.80 c/
√

3 at recombination. Therefore, to a reasonable approxi-
mation we may take a fixed ‘average’ cS � 0.90 c/

√
3 outside the

integral in equation (8), and take a fixed z∗, giving the approximation

rS(z∗) � 0.90√
3

rH (z = 1100), (9)

where rH is the light horizon size; this approximation is very accurate
for all ωm considered here and ωb � 0.02. For other baryon densities,
multiplying the right-hand side of equation (9) by (ωb/0.02)−0.07 is
a refinement. [Around the concordance value ωb = 0.02, effects (ii)
and (iii) partly cancel, because increasing ωb lowers the speed of
sound but also delays recombination i.e. increases a∗.]

From above, the (light) horizon size at recombination is

rH(z∗) = c

H0�
1/2
m

∫ a∗

0

1

(a + aeq)1/2
da

= 6000 Mpc√
ωm

√
a∗

[√
1 + (aeq/a∗) −

√
aeq/a∗

]
. (10)

Dividing by DA � 0.98 rH (z = 0) from equation (7) gives the angle
subtended today by the light horizon,

θH � 1.02
�−0.1

m√
1 + z∗

(√
1 + aeq

a∗
−

√
aeq

a∗

)
. (11)

Inserting z∗ = 1100 and aeq = (23 900 ωm)−1, we have

θH = 1.02 �−0.1
m√

1101

×
[√

1 + 0.313

(
0.147

ωm

)
−

√
0.313

(
0.147

ωm

)]
, (12)
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and θS � θH × 0.9/
√

3 from equation (9). This remarkably simple
result captures most of the parameter dependence of CMB peak
locations within flat �CDM models. Note that the square brackets
in equation (12) tends (slowly) to 1 for aeq � a∗ i.e. ωm � 0.046;
thus it is the fact that matter domination occurred not much earlier
than recombination that leads to the significant dependence of θH

on ωm and hence h.
Differentiating equation (12) near a fiducial ωm = 0.147 gives

∂ ln θH

∂ ln �m

∣∣∣∣
ωm

= −0.1,

∂ ln θH

∂ ln ωm

∣∣∣∣
�m

= 1

2

(
1 + a∗

aeq

)−1/2

= +0.24, (13)

and the same for derivatives of ln θS from the approximation above.
In terms of (�m, h) this gives

∂ ln θH

∂ ln �m

∣∣∣∣
h

= +0.14,
∂ ln θH

∂ ln h

∣∣∣∣
�m

= +0.48, (14)

in good agreement with the numerical derivatives of �A in equa-
tion (A15) of Hu et al. (2001). Also note the sign difference between
the two ∂/∂ ln �m values above.

Thus for moderate variations from a ‘fiducial’ model, the
CMB peak locations scale approximately as �m ∝ �−0.14

m h−0.48, i.e.
the condition for constant CMB peak location is well approxi-
mated as �m h3.4 = constant. This condition can also be written as
ωm�−0.41

m = constant, and we see that, along such a contour, ωm

varies as �0.41
m , and hence the peak heights are slowly varying and

the overall CMB power spectrum is also slowly varying.
There are four approximations used for θS above: one in equa-

tion (7), two (constant cs and z∗) in equation (9), and finally the
�m h3.4 line is a first-order (in log) approximation to a contour of
constant equation (12). Checking against numerical results, we find
that each of these causes up to 1 per cent error in θS, but they
partly cancel: the exact value of θS varies by <0.5 per cent along
the contour h = 0.7(�m/0.3)−1/3.4 between 0.1 ��m � 1. The peak
heights shift the numerical degeneracy by more than this (see below),
so the error is unimportant.

A line of constant �m h3.4 is compared with the likelihood surface
recovered from the CMB data in Fig. 4. In order to calculate the re-
quired likelihoods, we have made a change of variables from ωb and
�c h2 to �m and �b/�m, and have marginalized over the baryon
fraction assuming a uniform prior in �b/�m covering the limits of
the grid used. As expected, the degeneracy observed when fitting the
CMB data alone is close to a contour of constant �A and hence con-
stant θH. However, information concerning the peak heights does al-
ter this degeneracy slightly; the relative peak heights are preserved at
constant ωm, hence the actual likelihood ridge is a ‘compromise’ be-
tween constant peak location (constant�m h3.4) and constant relative
heights (constant �m h2); the peak locations have more weight in this
compromise, leading to a likelihood ridge along �m h3.0 � constant.
This is shown by the solid line in Fig. 4. To demonstrate where this
alteration is coming from, we have plotted three scalar-only mod-
els in the top panel of Fig. 5. These models lie approximately along
the line of constant �m h3.4, with �m = 0.93, 0.36, 0.10. Parameters
other than �m and h have been adjusted to fit the CMB data. The dif-
fering peak heights (especially the third peak) between the models
are clear (though not large) and the data therefore offer an additional
constraint that slightly alters the observed degeneracy. The bottom
panel of Fig. 5 shows three models that lie along the observed de-
generacy, again with �m = 0.93, 0.36, 0.11. The narrow angle of

intersection between contours of constant �m h3.4 and �m h2 [only
10◦ in the (ln �m, ln h) plane] explains why the likelihood banana
is long.

The exponent of h for constant θH varies slowly from 2.9 to 4.1
as ωm varies from 0.06 to 0.26. Note that Hu et al. (2001) quote an
exponent of 3.8 for constant �1; the difference from 3.4 is mainly
caused by the slight dependence of φ1 on ωm, which we ignored
above. However, since that paper, improved CMB data has better
revealed the second and third peaks, and the exponent of 3.4 is
more appropriate for preserving the mean location of the first three
peaks. Also, note that the near-integer exponent of 3.0 for the like-
lihood ridge in Fig. 4 is a coincidence that depends on the observed
value of ωm, details of the CMB error bars, etc. However, the argu-
ments above are fairly generic, so we anticipate that any CMB data
set covering the first few peaks should (assuming flatness) give a
likelihood ridge elongated along a contour of constant �m h p , with
p fairly close to 3.

To summarize this section, the CMB peak locations are closely re-
lated to the angle subtended by the sound horizon at recombination,
which we showed is a near-constant fraction of the light horizon
angle given in equation (12). We have thus called this the ‘horizon
angle degeneracy’, which has more physical content than the alter-
native ‘peak location degeneracy’. A contour of constant θS is very
well approximated by a line of constant �m h3.4, and information
on the peak heights slightly ‘rotates’ the measured likelihood ridge
near to a contour of constant �m h3.0.

5 C O N S T R A I N I N G QU I N T E S S E N C E

There has been recent interest in a possible extension of the stan-
dard cosmological model that allows the equation of state of the
vacuum energy w ≡ pvac/ρvacc2 to have w �= −1 (e.g. Zlatev, Wang
& Steinhardt 1999), thereby not being a ‘cosmological constant’,
but a dynamically evolving component. In this section we extend
our analysis to constrain models with w �−1; we assume w does
not vary with time since a model with time-varying w generally
looks very similar to a model with a suitably chosen constant w

(e.g. Kujat et al. 2002). The shapes of the CMB and matter power
spectra are invariant to changes of w (assuming the vacuum energy
was negligible before recombination): the only significant effect is
to alter the angular diameter distance to last scattering, and move
the angles at which the acoustic peaks are seen. For flat models, a
useful approximation to the present-day horizon size is given by

rH(z = 0) = 2c

H0
�−α

m , α = −2w

1 − 3.8w
(15)

(compare with equation 7 for w = −1). As discussed previously, the
primary constraint from the CMB data is on the angle subtended to-
day by the light horizon (given for w = −1 models by equation 12).
If w is increased from −1 at fixed �m, h, the peaks in the CMB
angular power spectrum move to larger angles. To continue to fit
the CMB data, we must decrease �m h3.4 to bring θH back to its
‘best-fitting’ value. However, the 2dFGRS power spectrum con-
straint limits �mh = 0.20 ± 0.03, so to continue to fit both CMB +
2dFGRS we must reduce h.

The CMB and 2dFGRS data sets alone therefore constrain a com-
bination of w and h, but not both separately. The dashed lines in
Fig. 6 show likelihood contours for w against h fitting to both the
CMB and 2dFGRS power spectra showing this effect. Here, we have
marginalized over �m assuming a uniform prior 0.0 < �m < 1.3.
An extra constraint on h can be converted into a limit on w: if we
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Figure 5. The top panel shows three scalar-only model CMB angular power spectra with the same apparent horizon angle, compared with the data of Table 1.
Although these models have approximately the same value of �m h3.4, they are distinguishable by peak heights. Such additional constraints alter the degeneracy
observed in Fig. 4 slightly from �m h3.4 to �m h3.0. Three scalar-only models that lie in the likelihood ridge with �m h3.0 are compared with the data in the
bottom panel. For all of the models shown, parameters other than �m and h have been adjusted to their maximum-likelihood positions.

include the measurement h = 0.72 ± 0.08 from the Hubble Space
Telescope (HST) key project (Freedman et al. 2001) we obtain the
solid likelihood contours in Fig. 6. The combination of these three
data sets then gives w < −0.52 (95 per cent confidence); the limit of
the range considered, w = −1.0, provides the smallest uncertainty.
The 95 per cent confidence limit is comparable to the w < −0.55 ob-
tained from the supernova Hubble diagram plus flatness (Garnavich
et al. 1998). See also Efstathiou (1999), who obtained w < −0.6
from a semi-independent analysis combining CMB and supernovae
(again assuming flatness).

6 P R E D I C T I N G T H E C M B P OW E R S P E C T RU M

An interesting aspect of this analysis is that the current CMB data
are rather inaccurate for 20 � � � 100, and yet the allowed CDM
models are strongly constrained. We therefore consider how well
this model-dependent determination of the CMB power spectrum is
defined, in order to see how easily future data could test the basic
CDM + flatness paradigm.

Using our grid of ∼ 2 × 108 models, we have integrated the CMB
+ 2dFGRS likelihood over the range of parameters presented in
Table 3 in order to determine the mean and rms CMB power at

each �. These data are presented in Table 5 at selected � values, and
the range of spectra is shown by the grey-shaded region in the top
panel of Fig. 7. A possible tensor component was included in this
analysis, although this has a relatively minor effect, increasing the
errors slightly (as expected when new parameters are introduced),
but hardly affecting the mean values. The predictions are remarkably
tight: this is partly because combining the peak-location constraint
on �m h3.4 with the 2dFGRS constraint on �mh gives a better con-
straint on �m h2 than the CMB data alone, and this helps to constrain
the predicted peak heights.

The bottom panel of Fig. 7 shows the errors on an expanded scale,
compared with the cosmic variance limit and the predicted errors
for the MAP experiment (Page 2002). This comparison shows that,
while MAP will beat our present knowledge of the CMB angular
power spectrum for all � � 800, this will be particularly apparent
around the first peak. As an example of the issues at stake, the scalar-
only models predict that the location of the first CMB peak should
be at � = 221.8 ± 2.4. Significant deviations observed by MAP from
such predictions will imply that some aspect of this model (or the
data used to constrain it) is wrong. Conversely, if the observations of
MAP are consistent with this band, then this will be strong evidence
in favour of the model.
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Table 5. The predicted mean and rms CMB
power calculated by integrating the CMB +
2dFGRS likelihood over the range of param-
eters presented in Table 3, allowing for a pos-
sible tensor component. These data form a
testable prediction of the CDM + flatness
paradigm.

� δT 2 (µK2) rms error (µK2)

2 920 134
4 817 102
8 775 88
15 828 96
50 1327 100
90 2051 87
150 3657 172
200 4785 186
250 4735 150
300 3608 113
350 2255 82
400 1567 52
450 1728 79
500 2198 86
550 2348 74
600 2052 76
650 1693 51
700 1663 79
750 1987 131
800 2305 122
850 2257 93
900 1816 107
950 1282 93
1000 982 46
1200 1029 69
1500 686 60

Figure 6. Likelihood contours for the equation of state of the vacuum energy
parameter w against the Hubble constant h. Dashed contours are for CMB
+ 2dFGRS data, solid contours include also the HST key project constraint.
Contours correspond to changes in the likelihood from the maximum of
2� lnL= 2.3, 6.0, 9.2. Formally, this results in a 95 per cent confidence
limit of w < −0.52.

7 S U M M A RY A N D D I S C U S S I O N

Following recent releases of CMB angular power spectrum measure-
ments from VSA and CBI, we have produced a new compilation of
data that estimates the true power spectrum at a number of nodes,
assuming that the power spectrum behaves smoothly between the
nodes. The best-fitting values are not convolved with a window func-
tion, although they are not independent. The data and Hessian matrix
are available from http://www.roe.ac.uk/∼wjp/CMB/. We have used
these data to constrain a uniform grid of ∼ 2 × 108 flat cosmological
models in seven parameters jointly with 2dFGRS large-scale struc-
ture data. By fully marginalizing over the remaining parameters we
have obtained constraints on each, for the cases of CMB data alone,
and CMB + 2dFGRS data. The primary results of this paper are the
resulting parameter constraints, particularly the tight constraints on
h and the matter density �m: combining the 2dFGRS power spec-
trum data of Percival et al. (2001) with the CMB data compilation
of Section 2, we find h = 0.665 ± 0.047 and �m = 0.313 ± 0.055
(standard rms errors), for scalar-only models, or h = 0.700 ± 0.053
and �m = 0.275 ± 0.050, allowing a possible tensor component.

We have also discussed in detail how these parameter constraints
arise. Constraining �tot = 1 does not fully break the geometrical de-
generacy present when considering models with varying �tot, and
models with CMB power spectra that peak at the same angular posi-
tion remain difficult to distinguish using CMB data alone. A simple
derivation of this degeneracy was presented, and models with con-
stant peak locations were shown to closely follow lines of constant
�m h3.4. We can note a number of interesting phenomenological
points from this analysis.

(i) The narrow CMB �m–h likelihood ridge in Fig. 4 derives pri-
marily from the peak locations, therefore it is insensitive to many of
the parameters affecting peak heights, e.g. tensors, ns, τ , calibration
uncertainties, etc. Of course it is strongly dependent on the flatness
assumption.

(ii) This simple picture is broken in detail as the current CMB
data obviously place additional constraints on the peak heights. This
changes the degeneracy slightly, leading to a likelihood ridge near
constant �m h3.

(iii) The high power of h3 means that adding an external h con-
straint is not very powerful in constraining �m, but an external �m

constraint gives strong constraints on h. A 10 per cent measurement
of �m (which may be achievable, for example, from evolution of
cluster abundances) would give a 4 per cent measurement of h.

(iv) When combined with the 2dF power spectrum shape
(which mainly constrains �mh), the CMB + 2dFGRS data
gives a constraint on �m h2 = 0.1322 ± 0.0093 (including ten-
sors) or �m h2 = 0.1361 ± 0.0096 (scalars only), which is con-
siderably tighter from the CMB alone. Subtracting the baryons
gives �c h2 = 0.1096 ± 0.0092 (including tensors) or �c h2 =
0.1151 ± 0.0091 (scalars only), accurate results that may be valuable
in constraining the parameter space of particle dark matter models
and thus predicting rates for direct-detection experiments.

(v) We can understand the solid contours in Fig. 4 simply
as follows: the CMB constraint can be approximated as a one-
dimensional stripe �m h3.0 = 0.0904 ± 0.0092 (including tensors)
or �m h3.0 = 0.0876 ± 0.0085 (scalars only), and the 2dF con-
straint as another stripe �mh = 0.20 ± 0.03. Multiplying two Gaus-
sians with the above parameters gives a result that looks quite
similar to the fully marginalized contours. In fact, modelling
the CMB constraint simply using the location of the peaks
to give �m h3.4 = 0.081 ± 0.012 (including tensors) or �m h3.4 =
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Figure 7. Upper panel: the grey-shaded region shows our prediction of the CMB angular power spectrum with 1σ errors (see the text); points show the data of
Table 1. The lower panel shows fractional errors: points are the current data, dashed line is the errors on our prediction, and the three solid lines are expected
errors for the MAP experiment (Page 2002) for �� = 50 and the 6-month, 2- and 4-yr data (top to bottom). The dotted line shows the expected cosmic variance,
again for �� = 50, assuming full sky coverage (the MAP errors assume 80 per cent coverage). As can be seen, the present CMB and LSS data provide a strong
prediction over the full �-range covered by MAP.

0.073 ± 0.010 (scalars only) also produces a similar result, demon-
strating that the primary constraint of the CMB data in the (�m, h)
plane is on the apparent horizon angle.

In principle, accurate non-CMB measurements of both �m and
h can give a robust prediction of the peak locations assuming flat-
ness. If the observed peak locations are significantly different, this
would give evidence for either non-zero curvature, quintessence
with w �= −1 or some more exotic failure of the model. Using the
CMB data to constrain the horizon angle, and 2dFGRS data to con-
strain �mh, there remains a degeneracy between w and h. This can be
broken by an additional constraint on h; using h = 0.72 ± 0.08 from
the HST key project (Freedman et al. 2001), we find w < −0.52 at
95 per cent confidence. This result is comparable to that found by
Efstathiou (1999) who combined the supernovae sample of
Perlmutter et al. (1999) with CMB data to find w < −0.6.

In Section 6 we considered the constraints that combining the
CMB and 2dFGRS data place on the CMB angular power spectrum.
This was compared with the predicted errors from the MAP satellite
in order to determine where MAP will improve on the present data
and provide the strongest constraints on the cosmological model.

It will be fascinating to see whether MAP rejects these predictions,
thus requiring a more complex cosmological model than the simplest
flat CDM-dominated universe.

Finally, we announce the public release of the 2dFGRS power
spectrum data and associated covariance matrix determined by
Percival et al. (2001). We also provide code for the numerical cal-
culation of the convolved power spectrum and a window matrix for
the fast calculation of the convolved power spectrum at the data val-
ues. The data are available from either http://www.roe.ac.uk/∼wjp/
or from http://www.mso.anu.edu.au/2dFGRS; as we have demon-
strated, they are a critical resource for constraining cosmological
models.
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