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Summary. The issue of setting the values of various parameters of an evolutionary
algorithm is crucial for good performance. In this paper we discuss how to do this,
beginning with the issue of whether these values are best set in advance or are best
changed during evolution. We provide a classification of different approaches based
on a number of complementary features, and pay special attention to setting para-
meters on-the-fly. This has the potential of adjusting the algorithm to the problem
while solving the problem.

This paper is intended to present a survey rather than a set of prescriptive details
for implementing an EA for a particular type of problem. For this reason we have
chosen to interleave a number of examples throughout the text. Thus we hope to
both clarify the points we wish to raise as we present them, and also to give the
reader a feel for some of the many possibilities available for controlling different
parameters.

1 Introduction

Finding the appropriate setup for an evolutionary algorithm is a long standing
grand challenge of the field [21, 25]. The main problem is that the descrip-
tion of a specific EA contains its components, such as the choice of repre-
sentation,selection, recombination, and mutation operators, thereby setting a
framework while still leaving quite a few items undefined. For instance, a sim-
ple GA might be given by stating it will use binary representation, uniform
crossover, bit-flip mutation, tournament selection, and generational replace-
ment. For a full specification, however, further details have to be given, for
instance, the population size, the probability of mutation pm and crossover
pc, and the tournament size. These data – called the algorithm parame-

ters or strategy parameters – complete the definition of the EA and are
necessary to produce an executable version. The values of these parameters
greatly determine whether the algorithm will find an optimal or near-optimal
solution, and whether it will find such a solution efficiently. Choosing the right
parameter values is, however, a hard task.
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Globally, we distinguish two major forms of setting parameter values: pa-

rameter tuning and parameter control. By parameter tuning we mean
the commonly practised approach that amounts to finding good values for the
parameters before the run of the algorithm and then running the algorithm
using these values, which remain fixed during the run. Later on in this section
we give arguments that any static set of parameters having the values fixed
during an EA run seems to be inappropriate. Parameter control forms an al-
ternative, as it amounts to starting a run with initial parameter values that
are changed during the run.

Parameter tuning is a typical approach to algorithm design. Such tuning
is done by experimenting with different values and selecting the ones that give
the best results on the test problems at hand. However, the number of possible
parameters and their different values means that this is a very time-consuming
activity. Considering four parameters and five values for each of them, one has
to test 54 = 625 different setups. Performing 100 independent runs with each
setup, this implies 62,500 runs just to establish a good algorithm design.

The technical drawbacks to parameter tuning based on experimentation
can be summarised as follows:

• Parameters are not independent, but trying all different combinations sys-
tematically is practically impossible.

• The process of parameter tuning is time consuming, even if parameters
are optimised one by one, regardless of their interactions.

• For a given problem the selected parameter values are not necessarily
optimal, even if the effort made for setting them was significant.

This picture becomes even more discouraging if one is after a “generally
good” setup that would perform well on a range of problems or problem in-
stances. During the history of EAs considerable effort has been spent on find-
ing parameter values (for a given type of EA, such as GAs), that were good
for a number of test problems. A well-known early example is that of [18], de-
termining recommended values for the probabilities of single-point crossover
and bit mutation on what is now called the DeJong test suite of five functions.
About this and similar attempts [34, 62], it should be noted that genetic algo-
rithms used to be seen as robust problem solvers that exhibit approximately
the same performance over a wide range of problems [33, page 6]. The contem-
porary view on EAs, however, acknowledges that specific problems (problem
types) require specific EA setups for satisfactory performance [12]. Thus, the
scope of “optimal” parameter settings is necessarily narrow. There are also
theoretical arguments that any quest for generally good EA, thus generally
good parameter settings, is lost a priori, such as the No Free Lunch theorem
[83].

To elucidate another drawback of the parameter tuning approach recall
how we defined it: finding good values for the parameters before the run of the
algorithm and then running the algorithm using these values, which remain
fixed during the run. However, a run of an EA is an intrinsically dynamic,
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adaptive process. The use of rigid parameters that do not change their values
is thus in contrast to this spirit. Additionally, it is intuitively obvious, and
has been empirically and theoretically demonstrated, that different values of
parameters might be optimal at different stages of the evolutionary process
[6, 7, 8, 16, 39, 45, 63, 66, 68, 72, 73, 78, 79].

To give an example, large mutation steps can be good in the early gener-
ations, helping the exploration of the search space, and small mutation steps
might be needed in the late generations to help fine-tune the suboptimal
chromosomes. This implies that the use of static parameters itself can lead to
inferior algorithm performance.

A straightforward way to overcome the limitations of static parameters
is by replacing a parameter p by a function p(t), where t is the generation
counter (or any other measure of elapsed time). However, as indicated earlier,
the problem of finding optimal static parameters for a particular problem is
already hard. Designing optimal dynamic parameters (that is, functions for
p(t)) may be even more difficult. Another possible drawback to this approach
is that the parameter value p(t) changes are caused by a “blind” deterministic
rule triggered by the progress of time t, without taking any notion of the actual
progress in solving the problem, i.e., without taking into account the current
state of the search. A well-known instance of this problem occurs in simulated
annealing [49] where a so-called cooling schedule has to be set before the
execution of the algorithm.

Mechanisms for modifying parameters during a run in an “informed” way
were realised quite early in EC history. For instance, evolution strategies
changed mutation parameters on-the-fly by Rechenberg’s 1/5 success rule
using information on the ratio of successful mutations. Davis experimented
within GAs with changing the crossover rate based on the progress realised
by particular crossover operators [16]. The common feature of these and simi-
lar approaches is the presence of a human-designed feedback mechanism that
utilises actual information about the search process for determining new pa-
rameter values.

Yet another approach is based on the observation that finding good para-
meter values for an evolutionary algorithm is a poorly structured, ill-defined,
complex problem. This is exactly the kind of problem on which EAs are often
considered to perform better than other methods. It is thus a natural idea
to use an EA for tuning an EA to a particular problem. This could be done
using two EAs: one for problem solving and another one – the so-called meta-
EA – to tune the first one [32, 34, 48]. It could also be done by using only
one EA that tunes itself to a given problem, while solving that problem. Self-
adaptation, as introduced in Evolution Strategies for varying the mutation
parameters, falls within this category. In the next section we discuss various
options for changing parameters, illustrated by an example.
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2 A case study: Evolution Strategies

The history of Evolution Strategies (ES) is a typical case study for parameter
tuning, as it went through several successive steps pertaining to many of the
different approaches listed so far.

Typical ES work in a real-valued search space (typically IRn, or a subset
of IRn, for some integer n).

2.1 Gaussian mutations

The main operator (and almost the trademark) of ES is the Gaussian mu-
tation, that adds centered normally distributed noise to the variables of the
individuals. The most general Gaussian distribution in IRn is the multivariate
normal distribution N (m,C), with mean m and covariance matrix C, a
n×n positive definite matrix, that has the following Probability Distribution
Function

Φ(X) =
exp(− 1

2 (X − m)tC−1(X − m))
√

(2π)n|C|

where |C| is the determinant of C.
It is then convenient to write the mutation of a vector X ∈ IRn as

X → X + σN(0, C)

i.e. to distinguish a scaling factor σ, also called the step-size, from the
directions of the Gaussian distribution given by the covariance matrix C.

For example, the simplest case of Gaussian mutation assumes that C is the
identity matrix in IRn (the diagonal matrix that has only 1s on the diagonal).
In this case, all coordinates will be mutated independently, and will have
added to them some Gaussian noise with variance σ2.

Tuning an ES algorithm therefore amounts to tuning the step-size and
the covariance matrix – or simply tuning the step-size in the simple case
mentioned above.

2.2 Adapting the step-size

The step-size of the Gaussian mutation gives the scale of the search. To make
things clear, suppose that you are minimizing x2 in one dimension, running
a (1+1)-ES (one parent gives birth to one offspring, and the best of both is
the next parent) with a fixed step-size σ. Then the average distance between
parent and successful offspring is proportinal to σ. This has two consequences:
first, starting from distance d0 from the solution, it will take an average of
d0/σ steps to reach a region close to the optimum. On the other hand, when
hovering around the optimum, the precision you can hope is again proportional



Parameter Control in Evolutionary Algorithms 5

to σ. Those arguments naturally lead to the optimal adaptive setting of the
step-size for the sphere function: σ should be proportional to the distance to
the optimum. Details can be found in the studies of the so-called progress
rate: early work was done by Schwefel [66], completed and extended by Beyer
and recent work by Auger [5] gave a formal global convergence proof of this
... impractical algorithm: indeed, the distance to the optimum is not known
real situations!

But another piece of information is always available to the algorithm: the
success rate ( the proportion of successful mutations, where the offspring is
better than the parent). This can indirectly give information about the step-
size: this was Rechenberg’s main idea to propose the first practical method for
an adaptive step-size, the so-called one-fifth rule: if the success rate over some
time window is larger than the success rate when the step-size is optimal (0.2,
or one-fifth!), the the step-size should be increased (the algorithm is making
too many small steps); on the other hand, if the success rate is smaller than
0.2, then the step-size should be decreased (the algorithm is constantly missing
the target, because it shoots too far). Though formally derived from studies
on the sphere function and the corridor function (a bounded linear function),
the one-fifth rule was generalized to any function.

However, there are many situtations where the one-fifth rule can be mis-
lead. Moreover, it does not in any way handle the case of non-isotropic func-
tions, where a non-diagonal covariance matrix is mandatory. Hence, it is no
longer used today.

2.3 Self-Adaptive ES

The next big step in ESs was the invention of the self-adaptive mutation:
the parameters of the mutation (both the step-size and the covariance matrix)
are attached to each individual, and are subject to mutation, too. Those per-
sonal mutation parameters range from a single step-size, leading to isotropic
mutation, where all coordinates are mutated independently with the same
variance, to the non-isotropic mutation, that use a vector of n “standard de-
viations” σi, equivalent to a diagonal matrix C with σi on the diagonal, and
to the correlated mutations, where a full covariance matrix is attached to each
individual. Mutating an individual then amounts to first mutating the muta-
tion parameters themselves, and then mutating the variables using the new
mutation parameters. Details can be found in [66, 13].

The rationale for SA-ES are that algorithm relies on the selection step to
keep in the population not only the best fit individuals, but also the individuals
with the best mutation parameters – according to the region of the search
space they are in. Indeed, although the selection acts based on the fitness, the
underlying idea beneath Self-Adaptive ES (SA-ES) is that if two individuals
starts with the same fitness, the offspring of one that has “better” mutation
parameters will reach regions of higher fitness faster than the offspring of the
other: selection will hence keep the ones with the good mutation parameters.
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This is what has often been stated as “mutation parameters are optimized for
free” by the evolution itself. And indeed, SA-ES have long been the state-of-
the-art in parametric optimization [9].

But what are “good” mutation parameters? The issue has already been dis-
cussed for the step-size in previous section, and similar arguments can be given
for the covariance matrix itself. Replace the sphere model (min

∑

x2
i ≡ XtX)

with an elliptic function (min 1
2XtHX for some positive definite matrix H).

Then it is clear that the mutation should progress slower along the directions
of steepest descent of H: the covariance matrix should be proportional to H−1.
And whereas the step-size actually self-adapts to quasi-optimal values [9, 19],
the covariance matrix that is learned by the correlated SA-ES is not the actual
inverse of the Hessian [4].

2.4 CMA-ES: a clever adaptation

Another defect of SA-ES is the relative slowness of adaptation of the mutation
parameters: even for the simple case of the step-size, if the initial value is not
the optimal one (proportional to the distance to the optimum in the case of
the sphere function), it takes some time to reach that optimal value and to
start being efficient.

This observation led Hansen and Ostermeier to propose deterministic
schedules to adapt the mutation parameters in ES, hence heading back to
an adaptive method for parameter tuning. Their method was first limited
to the step-size [38], and later addressed the adaptation of the full covariance
matrix [36]. The complete Covariance Matrix Adaptation (CMA-ES) algo-
rithm was finally detailed (and its parameters carefully tuned) in [37] and an
improvement for the update of the covariance matrix was proposed in [35].

The basic idea in CMA-ES is to use the path followed by the algorithm to
deterministically update the different mutation parameters, and a simplified
view is given by the following: suppose that the algorithm has made a series
of steps in colinear directions; then the step-size should be increased, to allow
larger steps and increase speed. Similar ideas undermine the covariance matrix
update(s).

Indeed, using such clever learning method, CMA-ES proved to outperform
most other stochastic algorithms for parametric optimization, as witnessed by
its success in the 2005 contest that took place at CEC’2005.

2.5 Lessons learned

This brief summary of ES history witnesses that

• Static parameters are not only hard but can be impossible to tune: there
doesn’t exist any good static value for the step-size in Gaussian mutation

• Adaptive methods use some information about the current state of the
search, and are as good as the information they get: the success rate is a



Parameter Control in Evolutionary Algorithms 7

very raw information, and lead to the “easy-to-defeat” one-fifth rule, while
CMA-ES uses high-level information to cleverly update all the parameters
of the most general Gaussian mutation

• Self-adaptive methods are efficient methods when applicable, i.e. when the
only available selection (based on the fitness) can prevent bad parameters
from proceeding to future generations. They outperform basic static and
adaptive methods, but are outperformed by clever adaptive methods.

3 Case Study: Changing the Penalty Coefficients

Let us assume we deal with a numerical optimisation problem to minimise

f(x) = f(x1, . . . , xn),

subject to some inequality and equality constraints

gi(x) ≤ 0, i = 1, . . . , q,

and
hj(x) = 0, j = q + 1, . . . ,m,

where the domains of the variables are given by lower and upper bounds
li ≤ xi ≤ ui for 1 ≤ i ≤ n.

For such a numerical optimisation problem we may consider an evolution-
ary algorithm based on a floating-point representation, where each individ-
ual x in the population is represented as a vector of floating-point numbers
x = 〈x1, . . . , xn〉.

In the previous section we described different ways to modify a parameter
controlling mutation. Several other components of an EA have natural para-
meters, and these parameters are traditionally tuned in one or another way.
Here we show that other components, such as the evaluation function (and
consequently the fitness function) can also be parameterised and thus var-
ied. While this is a less common option than tuning mutation (although it is
practised in the evolution of variable-length structures for parsimony pressure
[84]), it may provide a useful mechanism for increasing the performance of an
evolutionary algorithm.

When dealing with constrained optimisation problems, penalty functions
are often used. A common technique is the method of static penalties [60],
which requires fixed user-supplied penalty parameters. The main reason for
its widespread use is that it is the simplest technique to implement: it requires
only the straightforward modification of the evaluation function as follows:

eval(x) = f(x) + W · penalty(x),

where f is the objective function, and penalty(x) is zero if no violation oc-
curs, and is positive,5 otherwise. Usually, the penalty function is based on the

5 For minimisation problems.
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distance of a solution from the feasible region, or on the effort to “repair” the
solution, i.e., to force it into the feasible region. In many methods a set of
functions fj (1 ≤ j ≤ m) is used to construct the penalty, where the function
fj measures the violation of the jth constraint in the following way:

fj(x) =

{

max{0, gj(x)} if 1 ≤ j ≤ q,
|hj(x)| if q + 1 ≤ j ≤ m.

(1)

W is a user-defined weight, prescribing how severely constraint violations are
weighted. In the most traditional penalty approach the weight W does not
change during the evolution process. We sketch three possible methods of
changing the value of W .

First, we can replace the static parameter W by a dynamic parameter,
e.g., a function W (t). Just as for the mutation parameter σ, we can develop a
heuristic that modifies the weight W over time. For example, in the method
proposed by Joines and Houck [46], the individuals are evaluated (at the
iteration t) by a formula, where

eval(x) = f(x) + (C · t)α · penalty(x),

where C and α are constants. Since

W (t) = (C · t)α,

the penalty pressure grows with the evolution time provided 1 ≤ C,α.
Second, let us consider another option, which utilises feedback from the

search process. One example of such an approach was developed by Bean and
Hadj-Alouane [14], where each individual is evaluated by the same formula as
before, but W (t) is updated in every generation t in the following way:

W (t + 1) =











(1/β1) · W (t) if b
i ∈ F for all t − k + 1 ≤ i ≤ t,

β2 · W (t) if b
i ∈ S−F for all t − k + 1 ≤ i ≤ t,

W (t) otherwise.

In this formula, S is the set of all search points (solutions), F ⊆ S is a set of all

feasible solutions, b
i
denotes the best individual in terms of the function eval

in generation i, β1, β2 > 1, and β1 6= β2 (to avoid cycling). In other words,
the method decreases the penalty component W (t + 1) for the generation
t + 1 if all best individuals in the last k generations were feasible (i.e., in
F), and increases penalties if all best individuals in the last k generations
were infeasible. If there are some feasible and infeasible individuals as best
individuals in the last k generations, W (t + 1) remains without change.

Third, we could allow self-adaptation of the weight parameter, similarly
to the mutation step sizes in the previous section. For example, it is possible
to extend the representation of individuals into

〈x1, . . . , xn,W 〉,
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where W is the weight. The weight component W undergoes the same changes
as any other variable xi (e.g., Gaussian mutation and arithmetic recombina-
tion).

To illustrate this method,which is analogous to using a separate σi for each
xi, we need to redefine the evaluation function. Let us first introduce penalty
functions for each constraint as per Eq. (1). Clearly, these penalties are all
non-negative and are at zero if no constraints are violated. Then consider a
vector of weights w = (w1, . . . , wm), and define

eval(x) = f(x) +
m

∑

j=1

wjfj(x),

as the function to be minimised and also extend the representation of indi-
viduals into

〈x1, . . . , xn, w1, . . . , wm〉.
Variation operators can then be applied to both the x and the w part of
these chromosomes, realising a self-adaptation of the constraint weights, and
thereby the fitness function.

It is important to note the crucial difference between self-adapting mu-
tation step sizes and constraint weights. Even if the mutation step sizes are
encoded in the chromosomes, the evaluation of a chromosome is independent
from the actual σ values. That is,

eval(〈x, σ〉) = f(x),

for any chromosome 〈x, σ〉. In contrast, if constraint weights are encoded in
the chromosomes, then we have

eval(〈x,w〉) = fw(x),

for any chromosome 〈x,W 〉. This could enable the evolution to “cheat” in the
sense of making improvements by minimising the weights instead of optimising
f and satisfying the constraints. Eiben et al. investigated this issue in [22] and
found that using a specific tournament selection mechanism neatly solves this
problem and enables the EA to solve constraints.

3.1 Summary

In the previous sections we illustrated how the mutation operator and the eval-
uation function can be controlled (adapted) during the evolutionary process.
The latter case demonstrates that not only can the traditionally adjusted
components, such as mutation, recombination, selection, etc., be controlled
by parameters, but so can other components of an evolutionary algorithm.
Obviously, there are many components and parameters that can be changed
and tuned for optimal algorithm performance. In general, the three options
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we sketched for the mutation operator and the evaluation function are valid
for any parameter of an evolutionary algorithm, whether it is population size,
mutation step, the penalty coefficient, selection pressure, and so forth.

The mutation example above also illustrates the phenomenon of the scope

of a parameter. Namely, the mutation step size parameter can have different
domains of influence, which we call scope. Using the 〈x1, . . . , xn, σ1, . . . , σn〉
model, a particular mutation step size applies only to one variable of a single
individual. Thus, the parameter σi acts on a subindividual, or component,
level. In the 〈x1, . . . , xn, σ〉 representation, the scope of σ is one individual,
whereas the dynamic parameter σ(t) was defined to affect all individuals and
thus has the whole population as its scope.

These remarks conclude the introductory examples of this section. We
are now ready to attempt a classification of parameter control techniques for
parameters of an evolutionary algorithm.

4 Classification of Control Techniques

In classifying parameter control techniques of an evolutionary algorithm, many
aspects can be taken into account. For example:

1. What is changed? (e.g., representation, evaluation function, operators, se-
lection process, mutation rate, population size, and so on)

2. How the change is made (i.e., deterministic heuristic, feedback-based
heuristic, or self-adaptive)

3. The evidence upon which the change is carried out (e.g., monitoring per-
formance of operators, diversity of the population, and so on)

4. The scope/level of change (e.g., population-level, individual-level, and so
forth).

In the following we discuss these items in more detail.

4.1 What is Changed?

To classify parameter control techniques from the perspective of what com-
ponent or parameter is changed, it is necessary to agree on a list of all major
components of an evolutionary algorithm, which is a difficult task in itself.
For that purpose, let us assume the following components of an EA:

• Representation of individuals
• Evaluation function
• Variation operators and their probabilities
• Selection operator (parent selection or mating selection)
• Replacement operator (survival selection or environmental selection)
• Population (size, topology, etc.)
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Note that each component can be parameterised, and that the number of
parameters is not clearly defined. For example, an offspring v produced by an
arithmetical crossover of k parents x1, . . . , xk can be defined by the following
formula:

v = a1x1 + . . . + akxk,

where a1, . . . , ak, and k can be considered as parameters of this crossover. Pa-
rameters for a population can include the number and sizes of subpopulations,
migration rates, and so on for a general case, when more then one population
is involved. Despite the somewhat arbitrary character of this list of compo-
nents and of the list of parameters of each component, we will maintain the
“what-aspect” as one of the main classification features, since this allows us
to locate where a specific mechanism has its effect.

4.2 How are Changes Made?

As discussed and illustrated in the two earlier case studies, methods for chang-
ing the value of a parameter (i.e., the “how-aspect”) can be classified into one
of three categories.

• Deterministic parameter control

This takes place when the value of a strategy parameter is altered by
some deterministic rule. This rule modifies the strategy parameter in a
fixed, predetermined (i.e., user-specified) way without using any feedback
from the search. Usually, a time-varying schedule is used, i.e., the rule is
used when a set number of generations have elapsed since the last time
the rule was activated.

• Adaptive parameter control

This takes place when there is some form of feedback from the search that
serves as inputs to a mechanism used to determine the direction or magni-
tude of the change to the strategy parameter. The assignment of the value
of the strategy parameter may involve credit assignment, based on the
quality of solutions discovered by different operators/parameters, so that
the updating mechanism can distinguish between the merits of compet-
ing strategies. Although the subsequent action of the EA may determine
whether or not the new value persists or propagates throughout the pop-
ulation, the important point to note is that the updating mechanism used
to control parameter values is externally supplied, rather than being part
of the “standard” evolutionary cycle.

• Self-adaptive parameter control

The idea of the evolution of evolution can be used to implement the self-
adaptation of parameters (see [10] for a good review). Here the parameters
to be adapted are encoded into the chromosomes and undergo mutation
and recombination. The better values of these encoded parameters lead to
better individuals, which in turn are more likely to survive and produce
offspring and hence propagate these better parameter values. This is an
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important distinction between adaptive and self-adaptive schemes: in the
latter the mechanisms for the credit assignment and updating of different
strategy parameters are entirely implicit, i.e., they are the selection and
variation operators of the evolutionary cycle itself.

This terminology leads to the taxonomy illustrated in Fig. 1.

before the run during the run

Parameter setting

Parameter tuning Parameter control

Deterministic Adaptive Self−adaptive

Fig. 1. Global taxonomy of parameter setting in EAs

Some authors have introduced a different terminology. Angeline [2] dis-
tinguished “absolute” and “empirical” rules, which correspond to the “un-
coupled” and “tightly-coupled” mechanisms of Spears [76]. Let us note that
the uncoupled/absolute category encompasses deterministic and adaptive
control, whereas the tightly-coupled/empirical category corresponds to self-
adaptation. We feel that the distinction between deterministic and adaptive
parameter control is essential, as the first one does not use any feedback from
the search process. However, we acknowledge that the terminology proposed
here is not perfect either. The term “deterministic” control might not be the
most appropriate, as it is not determinism that matters, but the fact that
the parameter-altering transformations take no input variables related to the
progress of the search process. For example, one might randomly change the
mutation probability after every 100 generations, which is not a deterministic
process. The name “fixed” parameter control might provide an alternative
that also covers this latter example. Also, the terms “adaptive” and “self-
adaptive” could be replaced by the equally meaningful “explicitly adaptive”
and “implicitly adaptive” controls, respectively. We have chosen to use “adap-
tive” and “self-adaptive” for the widely accepted usage of the latter term.

4.3 What Evidence Informs the Change?

The third criterion for classification concerns the evidence used for determin-
ing the change of parameter value [67, 74]. Most commonly, the progress of
the search is monitored, e.g., by looking at the performance of operators, the
diversity of the population, and so on. The information gathered by such a
monitoring process is used as feedback for adjusting the parameters. From
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this perspective, we can make further distinction between the following two
cases:

• Absolute evidence

We speak of absolute evidence when the value of a strategy parameter is
altered by some rule that is applied when a predefined event occurs. The
difference from deterministic parameter control lies in the fact that in de-
terministic parameter control a rule fires by a deterministic trigger (e.g.,
time elapsed), whereas here feedback from the search is used. For instance,
the rule can be applied when the measure being monitored hits a previ-
ously set threshold – this is the event that forms the evidence. Examples
of this type of parameter adjustment include increasing the mutation rate
when the population diversity drops under a given value [53], changing
the probability of applying mutation or crossover according to a fuzzy rule
set using a variety of population statistics [52], and methods for resizing
populations based on estimates of schemata fitness and variance [75]. Such
mechanisms require that the user has a clear intuition about how to steer
the given parameter into a certain direction in cases that can be specified
in advance (e.g., they determine the threshold values for triggering rule
activation). This intuition may be based on the encapsulation of practi-
cal experience, data-mining and empirical analysis of previous runs, or
theoretical considerations (in the order of the three examples above), but
all rely on the implicit assumption that changes that were appropriate to
make on another search of another problem are applicable to this run of
the EA on this problem.

• Relative evidence

In the case of using relative evidence, parameter values are compared ac-
cording to the fitness of the offspring that they produce, and the better
values get rewarded. The direction and/or magnitude of the change of
the strategy parameter is not specified deterministically, but relative to
the performance of other values, i.e., it is necessary to have more than
one value present at any given time. Here, the assignment of the value of
the strategy parameter involves credit assignment, and the action of the
EA may determine whether or not the new value persists or propagates
throughout the population. As an example, consider an EA using more
crossovers with crossover rates adding up to 1.0 and being reset based
on the crossovers performance measured by the quality of offspring they
create. Such methods may be controlled adaptively, typically using “book-
keeping” to monitor performance and a user-supplied update procedure
[16, 47, 64], or self-adaptively [7, 29, 51, 65, 71, 76] with the selection
operator acting indirectly on operator or parameter frequencies via their
association with “fit” solutions.
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4.4 What is the Scope of the Change?

As discussed earlier, any change within any component of an EA may affect
a gene (parameter), whole chromosomes (individuals), the entire population,
another component (e.g., selection), or even the evaluation function. This is
the aspect of the scope or level of adaptation [2, 40, 74]. Note, however, that
the scope or level is not an independent dimension, as it usually depends
on the component of the EA where the change takes place. For example, a
change of the mutation step size may affect a gene, a chromosome, or the entire
population, depending on the particular implementation (i.e., scheme used),
but a change in the penalty coefficients typically affects the whole population.
In this respect the scope feature is a secondary one, usually depending on the
given component and its actual implementation.

It should be noted that the issue of the scope of the parameter might be
more complicated than indicated in Sect. 3.1. First of all, the scope depends
on the interpretation mechanism of the given parameters. For example, an
individual might be represented as

〈x1, . . . , xn, σ1, . . . , σn, α1, . . . , αn(n−1)/2〉,

where the vector α denotes the covariances between the variables σ1, . . . , σn.
In this case the scope of the strategy parameters in α is the whole individual,
although the notation might suggest that they act on a subindividual level.

The next example illustrates that the same parameter (encoded in the
chromosomes) can be interpreted in different ways, leading to different al-
gorithm variants with different scopes of this parameter. Spears [76], follow-
ing [30], experimented with individuals containing an extra bit to determine
whether one-point crossover or uniform crossover is to be used (bit 1/0 stand-
ing for one-point/uniform crossover, respectively). Two interpretations were
considered. The first interpretation was based on a pairwise operator choice: If
both parental bits are the same, the corresponding operator is used; otherwise,
a random choice is made. Thus, this parameter in this interpretation acts at
an individual level. The second interpretation was based on the bit distribu-
tion over the whole population: If, for example, 73% of the population had bit
1, then the probability of one-point crossover was 0.73. Thus this parameter
under this interpretation acts on the population level. Spears noted that there
was a definite impact on performance, with better results arising from the in-
dividual level scheme, and more recently Smith [69] compared three versions of
a self-adaptive recombination operator, concluding that the component-level
version significantly outperformed the individual or population-level versions.

However, the two interpretations of Spears’ scheme can be easily combined.
For instance, similar to the first interpretation, if both parental bits are the
same, the corresponding operator is used, but if they differ, the operator is
selected according to the bit distribution, just as in the second interpretation.
The scope/level of this parameter in this interpretation is neither individual
nor population, but rather both. This example shows that the notion of scope
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can be ill-defined and very complex. This, combined with the arguments that
the scope or level entity is primarily a feature of the given parameter and only
secondarily a feature of adaptation itself, motivates our decision to exclude it
as a major classification criterion.

4.5 Summary

In conclusion, the main criteria for classifying methods that change the values
of the strategy parameters of an algorithm during its execution are:

1. What component/parameter is changed?
2. How is the change made?
3. Which evidence is used to make the change?

Our classification is thus three-dimensional. The component dimension
consists of six categories: representation, evaluation function, variation oper-
ators (mutation and recombination), selection, replacement, and population.
The other dimensions have respectively three (deterministic, adaptive, self-
adaptive) and two categories (absolute, relative). Their possible combinations
are given in Table 1. As the table indicates, deterministic parameter con-
trol with relative evidence is impossible by definition, and so is self-adaptive
parameter control with absolute evidence. Within the adaptive scheme both
options are possible and are indeed used in practice.

Deterministic Adaptive Self-adaptive

Absolute + + –

Relative – + +

Table 1. Refined taxonomy of parameter setting in EAs: types of parameter con-
trol along the type and evidence dimensions. The – entries represent meaningless
(nonexistent) combinations

5 Examples of Varying EA Parameters

Here we review some illustrative examples from the literature concerning all
major components. For a more comprehensive overview the reader is referred
to [21].

5.1 Representation

The choice of representation forms an important distinguishing feature be-
tween different streams of evolutionary computing. From this perspective GAs
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and ES can be distinguished from (historical) EP and GP according to the
data structure used to represent individuals. In the first group this data struc-
ture is linear, and its length is fixed, that is, it does not change during a run
of the algorithm. For (historical) EP and GP this does not hold: finite state
machines and parse trees are nonlinear structures, and their size (the number
of states, respectively nodes) and shape can change during a run. It could be
argued that this implies an intrinsically adaptive representation in traditional
EP and GP. On the other hand, the main structure of the finite state machines
does not change during the search in traditional EP, nor do the function and
terminal sets in GP (without automatically defined functions, ADFs). If one
identifies “representation” with the basic syntax (plus the encoding mecha-
nism), then the differently sized and shaped finite state machines, respectively
trees, are only different expressions in this unchanging syntax. Based on this
view we do not consider the representations in traditional EP and GP intrin-
sically adaptive.

We illustrate variable representations with the delta coding algorithm of
Mathias and Whitley [82], which effectively modifies the encoding of the func-
tion parameters. The motivation behind this algorithm is to maintain a good
balance between fast search and sustaining diversity. In our taxonomy it can
be categorised as an adaptive adjustment of the representation based on ab-
solute evidence.

The GA is used with multiple restarts; the first run is used to find an
interim solution, and subsequent runs decode the genes as distances (delta
values) from the last interim solution. This way each restart forms a new
hypercube with the interim solution at its origin. The resolution of the delta
values can also be altered at the restarts to expand or contract the search
space. The restarts are triggered when population diversity (measured by
the Hamming distance between the best and worst strings of the current
population) is not greater than one. The sketch of the algorithm showing the
main idea is given in Fig. 2.

Note that the number of bits for δ can be increased if the same solution
INTERIM is found. This technique was further refined in [57, 58] to cope with
deceptive problems.

5.2 Evaluation function

Evaluation functions are typically not varied in an EA because they are often
considered as part of the problem to be solved and not as part of the problem-
solving algorithm. In fact, an evaluation function forms the bridge between
the two, so both views are at least partially true. In many EAs the evaluation
function is derived from the (optimisation) problem at hand with a simple
transformation of the objective function. In the class of constraint satisfaction
problems, however, there is no objective function in the problem definition
[20]. Rather, these are normally posed as decision problems with an Boolean
outcome φ denoting whether a given assignment of variables represents a valid
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BEGIN

/* given a starting population and genotype-phenotype encoding */
WHILE ( HD > 1 ) DO

RUN GA with k bits per object variable;

OD

REPEAT UNTIL ( global termination is satisfied ) DO

save best solution as INTERIM;

reinitialise population with new coding;

/* k-1 bits as the distance δ to the object value in */
/* INTERIM and one sign bit */
WHILE ( HD > 1 ) DO

RUN GA with this encoding;

OD

OD

END

Fig. 2. Outline of the delta coding algorithm

solution. One possible approach using EAs is to treat these as minimisation
problems where the evaluation function is defined as the amount of constraint
violation by a given candidate solution. This approach, commonly known as
the penalty approach, can be formalised as follows. Let us assume that we
have constraints ci (i = {1, . . . ,m}) and variables vj (j = {1, . . . , n}) with the
same domain S. The task is to find one variable assignment s̄ ∈ S satisfying
all constraints. Then the penalties can be defined as follows:

f(s̄) =
m

∑

i=1

wi × χ(s̄, ci),

where

χ(s̄, ci) =

{

1 if s̄ violates ci,
0 otherwise.

Obviously, for each s̄ ∈ S we have that φ(s̄) = true if and only if f(s̄) = 0,
and the weights specify how severely the violation of a certain constraint is
penalised. The setting of these weights has a large impact on the EA perfor-
mance, and ideally wi should reflect how hard ci is to satisfy. The problem
is that finding the appropriate weights requires much insight into the given
problem instance, and therefore it might not be practicable.

The stepwise adaptation of weights (SAW) mechanism, introduced by
Eiben and van der Hauw [26] as an improved version of the weight adaptation
mechanism of Eiben, Raué, and Ruttkay [23, 24], provides a simple and effec-
tive way to set these weights. The basic idea behind the SAW mechanism is
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that constraints that are not satisfied after a certain number of steps (fitness
evaluations) must be difficult, and thus must be given a high weight (penalty).
SAW-ing changes the evaluation function adaptively in an EA by periodically
checking the best individual in the population and raising the weights of those
constraints this individual violates. Then the run continues with the new eval-
uation function. A nice feature of SAW-ing is that it liberates the user from
seeking good weight settings, thereby eliminating a possible source of error.
Furthermore, the used weights reflect the difficulty of constraints for the given
algorithm on the given problem instance in the given stage of the search [27].
This property is also valuable since, in principle, different weights could be
appropriate for different algorithms.

5.3 Mutation

A large majority of work on adapting or self-adapting EA parameters concerns
variation operators: mutation and recombination (crossover). As we discussed
above, the 1/5 rule of Rechenberg constitutes a classical example for adaptive
mutation step size control in ES. In the same paper we also showed that
self-adaptive control of mutation step sizes is traditional in ES.

Hesser and Männer [39] derived theoretically optimal schedules within GAs
for deterministically changing pm for the counting-ones function. They sug-
gest:

pm(t) =

√

α

β
× exp

(

−γt
2

)

λ
√

L
,

where α, β, γ are constants, L is the chromosome length, λ is the population
size, and t is the time (generation counter). This is a purely deterministic
parameter control mechanism.

A self-adaptive mechanism for controlling mutation in a bit-string GA is
given by Bäck [6]. This technique works by extending the chromosomes by
an additional 20 bits that together encode the individuals’ own pm. Mutation
then works by:

1. Decoding these bits first to pm

2. Mutating the bits that encode pm with mutation probability pm

3. Decoding these (changed) bits to p′m
4. Mutating the bits that encode the solution with mutation probability p′m

This approach is highly self-adaptive since even the rate of variation of the
search parameters is given by the encoded value, as opposed to the use of an
external parameters such as learning rates for step-sizes. More recently Smith
[70] showed theoretical predictions, verified experimentally, that this scheme
gets “stuck” in suboptimal regions of the search space with a low, or zero,
mutation rate attached to each member of the population. He showed that a
more robust problem-solving mechanism can simply be achieved by ignoring
the first step of the algorithm above, and instead using a fixed learning rate as
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the probability of applying bitwise mutation to the encoding of the strategy
parameters in the second step.

5.4 Crossover

The classical example for adapting crossover rates in GAs is Davis’s adaptive
operator fitness. The method adapts the rates of crossover operators by re-
warding those that are successful in creating better offspring. This reward is
diminishingly propagated back to operators of a few generations back, who
helped setting it all up; the reward is a shift up in probability at the cost
of other operators [17]. This, actually, is very close in spirit to the “implicit
bucket brigade” credit assignment principle used in classifier systems [33].

The GA using this method applies several crossover operators simultane-
ously within the same generation, each having its own crossover rate pc(opi).
Additionally, each operator has its “local delta” value di that represents the
strength of the operator measured by the advantage of a child created by us-
ing that operator with respect to the best individual in the population. The
local deltas are updated after every use of operator i. The adaptation mech-
anism recalculates the crossover rates after K generations. The main idea is
to redistribute 15% of the probabilities biased by the accumulated operator
strengths, that is, the local deltas. To this end, these di values are normalised
so that their sum equals 15, yielding dnorm

i for each i. Then the new value for
each pc(opi) is 85% of its old value and its normalised strength:

pc(opi) = 0.85 · pc(opi) + dnorm
i .

Clearly, this method is adaptive based on relative evidence.

5.5 Selection

It is interesting to note that neither the parent selection nor the survivor se-
lection (replacement) component of an EA has been commonly used in an
adaptive manner, even though there are selection methods whose parameters
can be easily adapted. For example, in linear ranking there is a parameter s
representing the expected number of offspring to be allocated to the best in-
dividual. By changing this parameter within the range of [1 . . . 2] the selective
pressure of the algorithm can be varied easily. Similar possibilities exist for
tournament selection, where the tournament size provides a natural parame-
ter.

Most existing mechanisms for varying the selection pressure are based on
the so-called Boltzmann selection mechanism, which changes the selection
pressure during evolution according to a predefined “cooling schedule” [55].
The name originates from the Boltzmann trial from condensed matter physics,
where a minimal energy level is sought by state transitions. Being in a state
i the chance of accepting state j is
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P [accept j] =

{

1 if Ei ≥ Ej ,

exp
(

Ei−Ej

Kb·T

)

if Ei < Ej ,

where Ei, Ej are the energy levels, Kb is a parameter called the Boltz-
mann constant, and T is the temperature. This acceptance rule is called the
Metropolis criterion.

We illustrate variable selection pressure in the survivor selection (replace-
ment) step by simulated annealing (SA). SA is a generate-and-test search
technique based on a physical, rather than a biological analogy [1]. Formally,
however, SA can be envisioned as an evolutionary process with population
size of 1, undefined (problem-dependent) representation and mutation, and a
specific survivor selection mechanism. The selective pressure changes during
the course of the algorithm in the Boltzmann style. The main cycle in SA is
given in Fig. 3.

BEGIN

/* given a current solution i ∈ S */
/* given a function to generate the set of neighbours Ni of i */
generate j ∈ Ni;

IF (f(i) < f(j)) THEN

set i = j;

ELSE

IF ( exp
(

f(i)−f(j)
ck

)

> random[0, 1)) THEN

set i = j;

FI

ESLE

FI

END

Fig. 3. Outline of the simulated annealing algorithm

In this mechanism the parameter ck, the temperature, decreases accord-
ing to a predefined scheme as a function of time, making the probability of
accepting inferior solutions smaller and smaller (for minimisation problems).
From an evolutionary point of view, we have here a (1+1) EA with increasing
selection pressure.

A successful example of applying Boltzmann acceptance is that of Smith
and Krasnogor [50], who used it in the local search part of a memetic algorithm
(MA), with the temperature inversely related to the fitness diversity of the
population. If the population contains a wide spread of fitness values, the
“temperature” is low, so only fitter solutions found by local search are likely
to be accepted, concentrating the search on good solutions. However, when
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the spread of fitness values is low, indicating a converged population which
is a common problem in MAs, the “temperature” is higher, making it more
likely that an inferior solution will be accepted, thus reintroducing diversity
and offering a potential means of escaping from local optima.

5.6 Population

An innovative way to control the population size is offered by Arabas et
al. [3, 59] in their GA with variable population size (GAVaPS). In fact, the
population size parameter is removed entirely from GAVaPS, rather than
adjusted on-the-fly. Certainly, in an evolutionary algorithm the population
always has a size, but in GAVaPS this size is a derived measure, not a con-
trollable parameter. The main idea is to assign a lifetime to each individual
when it is created, and then to reduce its remaining lifetime by one in each
consecutive generation. When the remaining lifetime becomes zero, the indi-
vidual is removed from the population. Two things must be noted here. First,
the lifetime allocated to a newborn individual is biased by its fitness: fitter in-
dividuals are allowed to live longer. Second, the expected number of offspring
of an individual is proportional to the number of generations it survives. Con-
sequently, the resulting system favours the propagation of good genes.

Fitting this algorithm into our general classification scheme is not straight-
forward because it has no explicit mechanism that sets the value of the popu-
lation size parameter. However, the procedure that implicitly determines how
many individuals are alive works in an adaptive fashion using information
about the status of the search. In particular, the fitness of a newborn indi-
vidual is related to the fitness of the present generation, and its lifetime is
allocated accordingly. This amounts to using relative evidence.

5.7 Varying Several Parameters Simultaneously

One of the studies explicitly devoted to adjusting more parameters (and also
on more than one level) is that of Hinterding et al. on a “self-adaptive GA”
[41]. This GA uses self-adaptation for mutation rate control, plus relative-
based adaptive control for the population size.6 The mechanism for controlling
mutation is similar to that from Bäck [6], (Sect. 5.3), except that mutating the
bits encoding the mutation strength is not based on the bits in question, but is
done by a universal mechanism fixed for all individuals and all generations. In
other words, the self-adaptive mutation parameter is only used for the genes
encoding a solution. As for the population size, the GA works with three sub-
populations: a small, a medium, and a large one, P1, P2, and P3, respectively

6 Strictly speaking, the authors’ term “self-adaptive GA” is only partially correct.
However, this paper is from 1996, and the contemporary terminology distinguish-
ing dynamic, adaptive, and self-adaptive schemes as we do it here was only pub-
lished in 1999 [21].
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(the initial sizes respectively being 50, 100, and 200). These populations are
evolved in parallel for a given number of fitness evaluations (an epoch) inde-
pendently by the same GA setup. After each epoch, the subpopulations are
resized based on some heuristic rules, maintaining a lower and an upper bound
(10 and 1000) and keeping P2 always the medium-sized subpopulation. There
are two categories of rules. Rules in the first category are activated when
the fitnesses in the subpopulations converge and try to move the populations
apart. For instance, if P2 and P3 have the same fitness, the size of P3 is dou-
bled. Rules from another set are activated when the fitness values are distinct
at the end of an epoch. These rules aim at maximising the performance of
P2. An example of one such rule is: if the performance of the subpopulations
ranks them as P2 < P3 < P1 then size(P3) = (size(P2) + size(P3))/2. In
our taxonomy, this population size control mechanism is adaptive, based on
relative evidence.

Lis and Lis [54] also offer a parallel GA setup to control the mutation
rate, the crossover rate, and the population size during a run. The idea here
is that for each parameter a few possible values are defined in advance, say
lo, med, hi, and only these values are allowed in any of the GAs, that is, in
the subpopulations evolved in parallel. After each epoch the performances of
the applied parameter values are compared by averaging the fitnesses of the
best individuals of those GAs that use a given value. If the winning parameter
value is:

1. hi, then all GAs shift one level up concerning this parameter in the next
epoch;

2. med, then all GAs use the same value concerning this parameter in the
next epoch;

3. lo, then all GAs shift one level down concerning this parameter in the
next epoch.

Clearly, the adjustment mechanism for all parameters here is adaptive, based
on relative evidence.

Mutation, crossover, and population size are all controlled on-the-fly in
the GA “without parameters” of Bäck et al. in [11]. Here, the self-adaptive
mutation from [6] (Sect. 5.3) is adopted without changes, a new self-adaptive
technique is invented for regulating the crossover rates of the individuals,
and the GAVaPS lifetime idea (Sect. 5.6) is adjusted for a steady-state GA
model. The crossover rates are included in the chromosomes, much like the
mutation rates. If a pair of individuals is selected for reproduction, then their
individual crossover rates are compared with a random number r ∈ [0, 1] and
an individual is seen as ready to mate if its pc > r. Then there are three
possibilities:

1. If both individuals are ready to mate then uniform crossover is applied,
and the resulting offspring is mutated.

2. If neither is ready to mate then both create a child by mutation only.
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3. If exactly one of them is ready to mate, then the one not ready creates a
child by mutation only (which is inserted into the population immediately
through the steady-state replacement), the other is put on the hold, and
the next parent selection round picks only one other parent.

This study differs from those discussed before in that it explicitly com-
pares GA variants using only one of the (self-)adaptive mechanisms and the
GA applying them all. The experiments show remarkable outcomes: the com-
pletely (self-)adaptive GA wins, closely followed by the one using only the
adaptive population size control, and the GAs with self-adaptive mutation
and crossover are significantly worse. These results suggest that putting ef-
fort into adapting the population size could be more effective than trying to
adjust the variation operators. This is truly surprising considering that tra-
ditionally the on-line adjustment of the variation operators has been pursued
and the adjustment of the population size received relatively little attention.
The subject certainly requires more research.

6 Discussion

Summarising this paper a number of things can be noted. First, parameter
control in an EA can have two purposes. It can be done to avoid suboptimal
algorithm performance resulting from suboptimal parameter values set by the
user. The basic assumption here is that the applied control mechanisms are
intelligent enough to do this job better than the user could, or that they can do
it approximately as good, but they liberate the user from doing it. Either way,
they are beneficial. The other motivation for controlling parameters on-the-
fly is the assumption that the given parameter can have a different “optimal”
value in different phases of the search. If this holds, then there is simply no
optimal static parameter value; for good EA performance one must vary this
parameter.

The second thing we want to note is that making a parameter (self-
)adaptive does not necessarily mean that we have an EA with fewer para-
meters. For instance, in GAVaPS the population size parameter is eliminated
at the cost of introducing two new ones: the minimum and maximum life-
time of newborn individuals. If the EA performance is sensitive to these new
parameters then such a parameter replacement can make things worse. This
problem also occurs on another level. One could say that the procedure that
allocates lifetimes in GAVaPS, the probability redistribution mechanism for
adaptive crossover rates (Sect. 5.4), or the function specifying how the σ
values are mutated in ES are also (meta) parameters. It is in fact an assump-
tion that these are intelligently designed and their effect is positive. In many
cases there are more possibilities, that is, possibly well-working procedures
one can design. Comparing these possibilities implies experimental (or the-
oretical) studies very much like comparing different parameter values in a
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classical setting. Here again, it can be the case that algorithm performance is
not so sensitive to details of this (meta) parameter, which fully justifies this
approach.

Finally, let us place the issue of parameter control in a larger perspec-
tive. Over the last 20 years the EC community shifted from believing that
EA performance is to a large extent independent from the given problem in-
stance to realising that it is. In other words, it is now acknowledged that EAs
need more or less fine-tuning to specific problems and problem instances. Ide-
ally, it should be the algorithm that performs the necessary problem-specific
adjustments. Parameter control as discussed here is a step towards this.
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