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Abstract—More than a decade after the first extensive overview
on parameter control, we revisit the field and present a survey
of the state of the art. We briefly summarise the development
of the field and discuss existing work related to each major
parameter or component of an evolutionary algorithm. Based
on this overview we observe trends in the area, identify some
(methodological) shortcomings, and give recommendations for
future research.
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I. INTRODUCTION

PARAMETER setting is one of the long standing grand
challenges of the Evolutionary Computing (EC) field [55].

The essence of the problem can be summarized as follows.
• The performance of evolutionary algorithms (EA) greatly

depends on the values of their parameters. For good per-
formance, parameter values have to be carefully chosen.
This is known as the ‘parameter tuning problem’.

• The (near-)optimal parameter values may change over the
run of an EA. For good performance, parameter values
may need to be carefully varied over time. This is known
as the ‘parameter control problem’.

These two problems are clearly related, but bear important
differences. Theoretically speaking, with some oversimplifica-
tion we could say that the tuning problem is the stationary
side, while the control problem is the non-stationary side
of the same coin. From a practical perspective, tuning is an
absolute ‘must’ for EA users, since no EA can be executed
without giving some value to all of its parameters. Meanwhile,
parameter control is more of a neat-to-have than a need-
to-have, since EAs are certainly capable of running without
changing the values of their parameters during the run. Finally,
with a more severe oversimplification, we could say that the
tuning problem has been solved by now. At least, there are very
good parameter tuning methods developed and publicized over
the last decade and the EC community is increasingly adopting
them. For a good state of the art overview we recommend
works by Eiben and Smit [60] and Smit [194].

For parameter control, the situation is quite different. The
control problem is far from being solved although the possible
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advantages of control have been identified already in the past
[47], [55], [65]:

• It allows the EA to use appropriate parameter values in
different stages of the search process. (E.g., search by
big leaps in the beginning, fine tune the near-optimal
solutions by small steps in the last stage of the search.)

• It allows the EA to adjust to the changing fitness land-
scapes when facing dynamic problems.

• It allows the EA to collect information about the fitness
landscape during the search and use the accumulating
information to improve performance in later stages, (see
[47], page 5).

• Using a parameter control mechanism liberates the user
from the task of choosing parameter values. (That is, it
implicitly also solves the tuning problem.)

While this latter argument is frequently articulated, in practice
any controller must have parameters of its own, but these are
frequently hidden behind design decisions. (We will return to
this issue later in Section III and Section VII-B.)

Though there are very promising pieces of work in the
literature on parameter control, there is also a certain lack of
focus. The main purpose of this paper is to give a new impetus
to parameter control research in Evolutionary Computing.
We aim to achieve this goal through the following specific
objectives:

1) Discuss the map of the field from a ‘helicopter view’.
2) Provide an extensive review of related work.
3) Observe main clusters of work and analyze the corre-

sponding research trends.
4) Identify the most prominent challenges for future devel-

opments.
The rest of the paper is organized as follows. The next

section gives a short overview of the development of the field.
In Section III we present a general framework for parameter
setting and discuss the terminology used in this paper. The
actual overview of the state of the art is given in Sections IV,
V, and VI. Section IV discusses control methods for each of
the major parameters / components of an EA. This is followed
by Section V describing approaches that aim at controlling
multiple parameters. Section VI is devoted to parameter in-
dependent methods. After the overview we identify the most
important trends over the last two decades and discuss future
directions in Section VII. Finally, Section VIII concludes the
paper, expressing our hope that the coming period will be
the ‘decade of parameter control’ with algorithmic as well as
methodological advances.
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II. DEVELOPMENT OF THE FIELD

The problem of parameter control in EAs is as old as EAs
themselves. However, it was not noticed in the early years
of the field for a number of reasons. One of those reasons
was the general attitude that perceived and advocated genetic
algorithms (GAs) –that were the best known EAs back in
the 70ies and 80ies– as robust search methods that work
well for a wide range of parameter values. In other words,
even the tuning problem was not recognized widely, although
some authors discussed ‘optimal’ values for population size,
mutation rate, and crossover rate, see e.g. [46], [91], [190].
Concerning the runtime adaptation of parameter values the
research community was divided. Among GA researchers the
issue remained largely unnoticed, with just a few exceptions
[191], and the same was true for Evolutionary Programming.
Meanwhile, the use of self-adaptation mechanisms to change
mutation step sizes on-the-fly was standard practice in Evolu-
tion Strategies [177], [193].

Another problem hindering development was the fragmen-
tation and inconsistency in terminology as illustrated by
the notion of self-adaptation. The term was introduced in
Evolution Strategies to denote the technique of including
parameters of the EA (in particular, the mutation step sizes)
into the chromosomes, thus co-evolving solutions and strategy
parameters. However, some authors used a different name for
the same technique, e.g. [78] used the term “meta-evolution”
for self-adaptation, and some others used the same name for
a different technique, e.g.[58] used the term self-adaptation to
denote an adaptation mechanism that did not encode parameter
values into the chromosomes. By the end of the 90ies the
idea of changing parameter values on-the-fly gained traction
even in the GA community, [196], [198], [211], but there was
no unifying vision and generally adopted terminology. Some
authors recognized the importance of these issues and offered
a (partial) solution, see [9], [197], but these attempts did not
receive the attention they deserved.

The situation changed in 1999 with the publication of [55].
This paper presented a unifying vision, a clear taxonomy by
a list of essential features and the corresponding terminology
that were quickly adopted and became the de facto standard in
the field. It categorized parameter setting methods according
to four aspects:

1) What is changed? (Which parameter?)
2) How the changes are made? (By what kind of mecha-

nism?)
3) The scope/level of the change. (Population-level, indi-

vidual level, sub-individual level.)
4) The evidence that guides the changes.
Furthermore, the types of mechanisms to make changes in

parameter values were clearly defined, distinguishing deter-
ministic, adaptive or self-adaptive methods as follows. Deter-
ministic methods are uninformed, they follow a predetermined
schedule for assigning new parameter values. Adaptive meth-
ods are informed as they receive feedback from the EA run and
assign values based upon that feedback. Self-adaptive methods
encode parameter values in the genome along the solutions
and allow them to co-evolve with the problem solutions. Note

that this notion of self-adaptation is generic. It can concern
any parameter and its use is not limited to denote the specific
strategy used in ES to control the mutation step sizes.

Apart from [55], several other frameworks and views of
the field have been discussed. Here, we provide a list of
relevant PhD Theses in this area, paying special attention to
their contributions to classifying the field by alternative or
complementary taxonomies.

• J.E. Smith, Self Adaptation in Evolutionary Algorithms,
1998 [197] presents its own taxonomy that is very similar
to the one we presented above. However, the evidence
that guides the changes is seen as “perhaps the most
important” dimension (page 18). Later on in a joint
publication, these views were merged [61] (page 142).

• R.K. Ursem, Models for Evolutionary Algorithms and
Their Applications in System Identification and Con-
trol Optimization, 2003 [212] contains a discussion of
methods for parameter control in EAs and a critical
view on existing taxonomies therein. It proposes a novel
taxonomy (page 50) that basically distinguishes “non-
adaptive control” and “adaptive control”, where the first
one lumps together parameter tuning and deterministic
control in the scheme of [55], while the second one is
further divided into “measure-based”, “self-adaptive”, and
“population-structure-based”.

• O. Kramer, Self-adaptive heuristics for evolutionary com-
putation, 2008 [130], [131] is primarily concerned with
self-adaptive forms of parameter control. However, it also
contains an “Extended Taxonomy of Parameter Setting
Techniques” (page 31) that indeed extends the taxonomy
of [55]. It does maintain the 3 types of control methods
(deterministic, adaptive, self-adaptive) and identifies three
types of parameter tuning: “by hand”, by “Design of
Experiments”, and by “metaevolutionary” techniques.

• J. Maturana, General Control of Parameters for Evolu-
tionary Algorithms, 2009 [155] (in French)1 presents a
good model of parameter control that distinguishes the
EA, the controller, and their interactions, thus allowing
for systematic developments (page 44).

• A. Fialho, Adaptive Operator Selection for Optimization,
2010 [76] does not introduce a new classification scheme,
but uses the terms “off-line” or “external” tuning (page
35) and “on-line” or “internal” parameter control (page
38). This terminology emphasises the conceptual similar-
ities with the reactive search perspective where off-line
tuning and on-line tuning coincide with our parameter
tuning and adaptive parameter control, respectively, cf.
page 159 in [24].

• A. Aleti, An Adaptive Approach to Controlling Param-
eters of Evolutionary Algorithms, 2012 [6] focuses on
adaptive parameter control and presents an interesting
model (page 57) that distinguishes the optimization pro-
cess and the control process. This latter is further divided
into four principal steps or strategies for: (i) Feedback
Collection, (ii) Parameter Effect Assessment, (iii) Param-

1see http://www.inf.uach.cl/maturana/files/presentation WEB.pdf for a
good English summary in the form of a presentation
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eter Quality Attribution, (iv) Parameter Value Selection.
These identify the essential components and provide a
natural division of research, i.e., a sub-taxonomy within
the adaptive branch of [55].

The theses listed above cover a very substantial amount of
work related to parameter control and provide valuable insights
about the most specialized experts’ view on the field. One
interesting idea is to shift the main ‘water shed’ from tuning
vs. control to blind (tuning and deterministic) vs. informed
(adaptive and self-adaptive) – rephrased after [212]. The other
notable issue is the possibility to distinguish fine grade details
within the adaptive parameter control category as offered in
[197] and [6]. These details concern the fourth dimension
above regarding the evidence that guides the changes and the
way it is collected and handled.

III. A GENERAL FRAMEWORK AND TERMINOLOGY FOR
PARAMETER SETTING

Before the actual survey we present a conceptual framework
and a corresponding terminology for parameter control in EAs.
To this end, let us recall the framework for parameter tuning
as described in [60]. The essence of this framework is to
distinguish three layers: the application layer (that contains
a problem to be solved), the algorithm layer (that contains an
EA), and the design layer (that contains a method to specify
all details of the given EA –that is, its numeric as well as
symbolic parameters).

(a) (b)

Fig. 1. Control flow (a) and information flow (b) through the three layers in
the hierarchy of parameter tuning, after [60].

As Figure 1 indicates, the whole scheme can be divided
into two optimization problems. The lower one belongs to the
blocks Application + Algorithm. It consists of a problem on
the application layer and an EA on the algorithm layer trying
to find an optimal solution for this problem. The upper one
belongs to the blocks Design + Algorithm and it consists of
an algorithmic design method2 that is trying to find optimal
settings for the EA on the algorithm layer.

This framework is also suited to position parameter control.
The key notion here is a method M that is assigning (good)
values to one or more of EA parameters. Now the structure
reflected in the tuning framework allows us to distinguish two
options:

1) to position the control method M on the design layer,
or

2) to position it on the algorithm layer.

2As opposed to a design method relying on human intuition.

The first option is in line with the taxonomy introduced in
[55] where parameter tuning and parameter control are two
alternative approaches to setting EA parameters. In case of
tuning, M works in an off-line fashion and the parameter
values it specifies remain fixed during the run of the given
EA. In case of control, M works in an on-line fashion,
i.e. parameters are given an initial value when starting the
EA and M changes the values while the EA is running.
Formally, the difference lies in the dependencies, or attributes,
of the method M . In case of a tuning method, the output
of M –an appropriate parameter vector for the given EA–
only depends on the problem at hand and the users actual
definition of algorithm performance.3 For control methods,
however, the output of M also depends on the actual state
of the evolutionary search process. (Note that control methods
solely relying on elapsed time are also covered here, since
time can be seen as a state descriptor/identifier.) We could also
say that a tuning method tries to solve a static optimization
problem, while a control method is concerned with non-
stationary optimization.

The second option amounts to considering the EA and the
control mechanism(s) together as the search algorithm, where
the EA forms the core and the controller is an extra runtime
component to enhance the search. This view fits well with
several algorithms where the bare bone EA and the parameter
control mechanism(s) are deeply integrated; think for instance
of evolution strategies and the self-adaptation of mutation step-
sizes. The rationale behind this option is a temporal workflow
perspective that separates the design time and the runtime of
an algorithm. Adopting this view, parameter control is a part of
the deployed runtime system while tuning is a procedure in the
design phase to tailor the overall system to a specific problem
(class). This view also brings forth another point: a controller
does have parameters of its own (though these are frequently
hidden behind design decisions). Therefore, the controller can
be tuned as part of the integrated search algorithm (instead of
tuning the EA parameters that are subjects to this controller).
Whether or not parameter control and parameter tuning are
used in an evolutionary problem solver can be decided inde-
pendently from one another. Therefore, we obtain four possible
combinations shown in Figure 2.

The combinations in the top row of Figure 2 employ tuning
and have the advantage of tailoring to a specific problem
class. They incur the cost of the time and resources required
for the tuning process. The combinations in the left column
employ control and offer the benefits of dynamically varying
parameter values. The cost of control is more subtle: out-of-
the-box control will have to perform some exploration thus
may slow down the search or apply parameters harmful for
the rest of the search; tuning a controller can increase the
design space of the tuning process as compared to tuning the
static parameters of the EA.

Regardless the positioning of the control mechanism M (at
the design layer or the algorithm layer of Figure 1), the classic
division of deterministic, adaptive, and self-adaptive control is
applicable and we will use it in the following too.

3This is called utility function in [60].
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Fig. 2. The possible combinations of tuning and control.

Furthermore, we also classify control mechanisms as pa-
rameter specific, ensembles or parameter independent. Param-
eter specific strategies are designed for or only applicable to a
specific parameter or component. Ensembles are combinations
of heterogeneous control strategies, each separate strategy
specific to a parameter; these controllers are combined to
create an EA with overall control of multiple parameters.
Parameter independent methods are designed without having
a specific parameter in mind and can be applied to control any
parameter (or at least any numeric parameter). The overview
in the following sections is organized by this division.

IV. PARAMETER AND COMPONENT SPECIFIC METHODS

In this section we present parameter specific strategies that
were designed for a certain parameter or component. Though
some may be considered applicable to other parameters as
well, they are placed in the section dedicated to the parameter
they were originally intended for in literature. The following
subsections describe control designed for the population, se-
lection, variation, fitness function and for parameters related
to parallel EAs.

A. Population

Extensive work has been carried out regarding the popu-
lation size of evolutionary algorithms. Here we present this
work divided in four main categories:

1) Theoretical studies on population size and the benefit of
dynamic population sizing.

2) Approaches that aim at disposing of the population size
parameter all together by introducing a new operator or
concept.

3) Strategies that attempt to approximate a good (minimal
and sufficient) population size during the EA run.

4) Mechanisms that directly control the parameter on-the-
fly.

A literature review on control of the population size is given
by Lobo and Lima [148].

Theoretical studies: The population size as a parameter
has been studied from a theoretical point of view within
the Genetic Algorithms community employing schema and
building block theory. There are two ways to approach the
population size: (i) how large should the population be to have
a sufficient supply of building blocks and (ii) how large should
the population be to cope with errors in selection [103].

Reeves [178] calculated the minimum necessary population
so that every allele is present for binary as well as n-ary
representations. It is suggested that the population is initialized
in a “smart” way so as to cover as much of the search space
as possible. Though having all alleles present in the initial
population is important, it is more crucial that actual building
blocks are also available. Goldberg et al. [87] derive the prob-
ability that all building blocks are present in a population and,
based on that, an equation that calculates a minimum necessary
population size as a function of the alphabet cardinality, the
size and the number of building blocks.

From the selection point of view, Goldberg et al. [85]
used statistical decision theory to derive a formula for the
necessary population size based on the permissible decision
errors between building blocks, the noise caused by selection
and variation and the complexity of the problem. Harik et
al. [103] took an alternative approach to modeling population
size requirements according to selection errors. They use the
theory of random walks and the Gambler’s Ruin model to
approximate selection decisions of a GA with tournament
selection and without mutation.

More recently, Laredo et al. [138] proposed a method
for evaluating GA population control schemes, based on
building block concepts and decomposable functions with
known population dynamics [85]. The authors examine the
assumption that larger populations are useful in the beginning
of the run, while later on, the EA can converge with smaller
population sizes. Their approach is theoretical and limited
only to selectorecombinatorial4 GAs and decomposable trap
functions.

A similar theoretical study on dynamic population sizing
for GAs is given by Lobo [146]. Population size is examined
from the perspective of the building block concept [85] and
the Gambler’s Ruin model for population size [103]. The latter
calculates the minimum requirement for population to solve a
problem with a given probability. It uses the supply of building
blocks and the probability that selection will correctly favor a
building block instead of a competitor. The author derives two
control strategies based on the observation that these factors
of supply and selection do not remain constant during the
run of the GA. The building block supply model provides
an approximation method for the former while the latter is
calculated using a heuristic. These values are used in each
generation with the Gambler’s Ruin model to derive the new
population size.

Removing the population size as a parameter: The ap-
proaches described here remove the population size parameter
mainly by replacing it with a maximum lifetime, by imposing

4A selectorecombinatorial GA uses only selection and recombination, i.e.
it is a GA without mutation.
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a limit on some resource that indirectly limits the population
or by replacing the multi-individual population with a repre-
sentative distribution.

Removing the population size as a parameter firstly ap-
peared with the Genetic Algorithm with Varying Population
Size (GAVaPS) by Arabas et al. [10]. Individuals are assigned
a maximum lifetime which depends on their fitness and the
average or best fitness of the population. When this maximum
lifetime is reached, the individual is removed. The ratio of
offspring to population size is kept constant, thus selective
pressure also remains fixed while the population size varies.
Deciding the maximum lifetime of an individual requires
minimum and maximum bounds, consequently, two new pa-
rameters are introduced.

The lifetime concept of GAVaPS was extended using non-
random mating: niGAVaPS by Fernandes et al. [70] uses
an incest prevention mechanism (inbreeding control) , while
nAMGAVaPS by Fernandes and Rosa [68] selects mating
partners based on phenotypic similarity (assortative mating
control). SRP-EA [69] further extended nAMGAVaPS by
introducing (i) a dynamic threshold of similarity for the as-
sortative mating mechanism and (ii) a probabilistic scheme to
individual removal instead of the fully predetermined lifetimes
in the original GAVaPS and nAMGAVaPS.

Another variation of the GAVaPS lifetime scheme was
described by Bäck et al. [18]. The Adaptive Population GA
(APGA) uses the same lifetime allocation but differs from
GAVaPS in the reproduction cycle and in that, when incre-
menting the ages of individuals in each cycle, the best individ-
ual of that cycle remains unchanged. This adaptive population
strategy is part of an ensemble and is described in more detail
in Section V. This method was also applied to co-operative
co-evolution by Iorio and Li [119]. An analysis of APGA
by Lobo and Lima [147] shows theoretical and experimental
results suggesting an upper bound and a converging population
to a constant size that is determined by the minimum and
maximum lifetime parameters. The authors conclude that the
population is not adapted by the APGA but the size parameter
is in fact replaced by the two lifetime parameters.

Cook and Tauritz [42] suggested two strategies for removing
the population size parameter. FiScIS-EA removes individuals
according to a survival probability, derived by linear scaling
of the individual’s fitness in the range between the minimum
and maximum fitness values present in the population. GC-
EA simply evades choosing a population size by maintaining
a population as large as is allowed by memory limitations.
This requires a well-chosen parent selection mechanism that
scales well while a survival selection operator is still needed
in case the memory boundary is reached during the run. Both
methods aim at resolving the issue of the population size
without introducing new meta-parameters.

Another method for removing the population size parameter
that is particular to Genetic Programming was suggested by
Wagner and Michalewicz [216], [217]. The population size
and maximum tree depth parameters are replaced by two
parameters limiting the maximum total number of nodes in the
population (soft and hard limits) in order to bound resource
consumption. As a result, the number of individuals in the

population varies with time, allowing the natural growth of
good quality complex solutions with the expense of having less
individuals. This approach was used in the DyFor algorithm
[218] that also controls additional parameters and is thus
described in Section V.

Finally, we also mention here two genetic algorithms that
replace the population with a self-adapting probability distribu-
tion. The Population-based Incremental Learning algorithm by
Baluja and Caruana [22] maintains a probability vector to rep-
resent its population. Each component of this vector represents
the proportion of alleles 0/1 in the assumed population. A
similar approach is the Compact Genetic Algorithm by Harik
et al. [105].

Approximating a good population size: The following meth-
ods automate the process often performed by human designers:
running the EA with progressively larger population sizes
to determine how large a population would be sufficient for
solving the problem at hand. They differ mainly in the number
of subpopulations they use and the criteria for terminating
subpopulations.

Harik and Lobo [104] first suggested the Parameter-less
GA.5 It creates and runs separate populations, each new
population is double the size of the previous. Populations are
run in parallel and raced: when a population is outperformed
by a larger one, it is immediately deleted. Smaller populations
are given more evaluations than larger ones. The target is to
find as soon as possible the smallest population capable of
solving the problem.

An adaptation of the Parameter-less GA above is the Greedy
Population Sizing approach (GPS-EA) by Smorodkina and
Tauritz [201]. New subpopulations again have double the size
of the previous. The difference is that GPS-EA runs only two
populations in parallel at any time. The smaller population
expires either if its average fitness becomes worse than that
of the larger or if its best fitness stops improving at a value
better than that reached by its predecessor. When a population
expires, the algorithm proceeds by creating a new one. A rough
theoretical analysis suggests that the GPS-EA should be able
to reach fitness levels comparable to that of a GA with an
optimal static population in no more than double the time.

The IPOP-CMA-ES by Auger and Hansen [13] and the
IPOP-αCMA-ES by Hansen and Ros [102] extend the (µw, λ)-
CMA-ES [98]. The population control simply augments the
existing restart strategy of the algorithm by doubling the
population size with each restart.6 A further extension is
suggested with the BIPOP-CMA-ES by Hansen [97], [96].
With each restart, two interlaced methods for calculating
two options for the new population size are used. A large
population size is doubled every time while a small population
size is proportional to the ratio of the last used large size to the
default size modified by a random factor. The new population
size is the smallest of the two options.

5The authors use the name “Parameter-less” for their algorithm. However,
this name is somewhat misleading, since technically speaking their algorithm
is not parameterless and only concerns population sizes.

6The text refers to the parameter controlled as “population size λ” which
might be confusing since λ usually notes the number of offspring produced
in each generation. This is due to the structure of the CMA-ES, which differs
from the conventional EA loop, and also the fact that it is defined µ = λ

2
.
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Controlling population size on-the-fly: Contrary to other
parameters, control of the population size entails some addi-
tional design choices except for the standard parameter control
components (frequency, amount of change etc.). The additional
components are the procedures by which individuals are cre-
ated or removed when the population grows or shrinks. Costa
et. al. [43] investigate the potential of a simplistic deterministic
control schedule of monotonous growth or shrinking. Different
combinations of creation/removal strategies are tried, however,
the presented experiments are too limited to draw meaningful
conclusions.

Deterministic control can of course be more elaborate than
a monotonous change. The saw-tooth GA by Koumousis
and Katsaras [129] combines a linear decrease schedule with
periodic reinitializations that restore the population to its
maximum size (by inserting random new individuals). An
inverse saw-tooth model of the population size is examined
by Hu et al. [112]. Inspired by a parallel and asynchronous
EA implementation, it gradually increases the population while
mass extinctions occur periodically. Experiments suggest that
these extinctions can trigger increases in the best fitness. De
Vega et al. [50] also used extinctions that are triggered in every
generation and remove a fixed number of the worst individuals.

The simplest form of adaptive population size is based on
intuitive triggers or formulas. PRoFIGA by Eiben et al. [57]
observes the improvement of the best fitness to make adjust-
ments: increasing fitness triggers a proportional growth of the
population, stagnation for a period longer than a predetermined
threshold results in a fixed increase while in all other cases
the population diminishes. The aim is to create appropriate
exploration-exploitation levels in the beginning of the search,
during the hill-climbing process and after the population is
stuck at a (local) optimum respectively. Fernandez et al.[74]
suggested using extinctions that are triggered by events/metrics
defined as policies to be chosen by the algorithm designer.

Smith and Smuda [199] proposed dynamic adaptation of the
population size of GAs based on a theoretical foundation rather
than intuition. Using theory on schemata fitness, schemata
competition and selection error [86], the adaptive control
mechanism continuously estimates the expected fitness loss
due to selection error by performing pairwise competitions
of the common schemata of mating pairs and subsequently
assigns the number of offspring to each mating pair so as to
maintain a loss close to user defined target value. Though
one parameter is replaced with another, the motivation of
the authors is to replace obscure GA parameters with more
intuitive and user-friendly ones.

Using a clustering algorithm, a GA can construct a linkage
model and derive building blocks information (such as the
DSMGA [225]). Yu et al. [226], [227] used this information,
e.g. fitness variance of building blocks and signal size between
competing building blocks, to estimate the necessary popula-
tion size for the next generation. They suggested performing
population growth with random individuals in the beginning
and using crossover in the final stages.

Hinterding et al. [109] combined adaptation using fitness
as feedback and testing multiple subpopulations of different
sizes. The proposed scheme maintains three populations of

different sizes. A run is divided in epochs and, at the end of
each epoch, population sizes are changed according to a set of
simple rules that move the population sizes towards the size
that performed best in the last epoch or expand the range of
used sizes if the subpopulations performed equally. Unlike the
“optimal size approximating” methods of the previous subsec-
tion, this control strategy continuously adapts the population
size based on feedback from the search and can both increase
and decrease it. This strategy is combined with self-adaptive
mutation in the Self-Adaptive Genetic Algorithm described in
V.

Finally, population size has also been self-adapted. Since
it is a global parameter, its value has to be derived from the
individuals’ values. Eiben et al. [66] calculated the population
size of the next generation as the sum of the values of all
individuals. Teo [207] derived the population size by averaging
the individuals’ values and also suggested encoding the rate
of change for the parameter value in the genome instead of
absolute values. We mention that the former study concluded
that self-adaptation of the population size is not promising
while the second had encouraging results. However, they differ
in many aspects, most notably the EA variants used.

B. Selection

A number of control mechanisms have been proposed for
dynamic selection in an EA.

Several deterministic methods draw inspiration from the
Boltzmann distribution which also underlies Simulated An-
nealing as introduced by Kirkpatrick, Gelatt, and Vecchi [128]
and originates from condensed matter physics. In the case
of combinatorial optimization this distribution in combination
with a thermal equilibrium guarantees to have asymptotic
convergence to global optima. The idea is to control selection
in a deterministic way using a function that increases the
selectivity over time. Goldberg [84] was the first to create
a tournament selection in genetic algorithms that results in
the Boltzmann distribution, and as a consequence he was
able to prove convergence to global optima. De la Maza
and Tidor [49] focused on faster convergence and introduced
a scheme which uses a Boltzmann weighting strategy for
selection. They utilize a deterministic scheme which increases
selectivity in a linear fashion. Dukkipati et al. [52] defined
specific Cauchy criteria for a scheme to control the Boltz-
mann selection. Their main criterion is that the differences
between successive selection pressures should decrease as the
evolutionary process proceeds.

Next to approaches that focus on obtaining a Boltzmann dis-
tribution to guarantee a good outcome, several strategies have
been introduced that use a similar scheme to deterministically
adjust the selectivity as the evolutionary process progresses.

Marin and Sole [153] used a similar temperature-based
schedule to control selection in combination with extinction
dynamics. They create a graph-based space for the population
in which individuals are placed and connected via weights
representing differences between fitness values. Selection is
based on the weights and replacement is done either at random
or by selecting the best. The choice is made probabilistically
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with the probability depending on the temperature of the
process. The result is a more likely insertion of the best
individual in the end of a run.

Next to deterministic control, adaptive mechanisms have
also been suggested that monitor the state of the process
and adapt the selection accordingly. Affenzeller [3] introduced
The Segregative Genetic Algorithms (SEGA) that uses a
fixed population size and the amount of offspring generated
depends on the population diversity. It was extended by the
same author to SESEGASA [4] adding a method to detect
premature convergence and a more advanced selective pressure
mechanism. McGinley et al. [15] used the diversity of the
population to adjust the tournament size, resulting in a bigger
tournament size in case of a high diversity and smaller in case
of a low diversity.

Another category of adaptive methods utilize some kind
of spatial structure to enable the adaptation of the selection
mechanism. Mass extinction is applied to obtain adaptive
selection using a spatial structure based on the concept of
self-organized criticality and the sandpile model in the work by
Krink and Thomsen [135]. They organize individuals in a grid
corresponding to the lattice of the sandpile model (for more
information see [21], [20]). As grains are dropped on the grid,
avalanches determine which zones in the grid become extinct.
In these zones new individuals are placed which are mutations
of the currently best individual. Rudolph and Sprave [183]
present an approach consisting of a genetic algorithm which
is placed in a particular cellular space. Each individual has
certain neighbors assigned and is only allowed to mate with
those neighbors. In order for new individuals to be accepted
into the population, they need to be better than a certain
threshold which is dynamically controlled.

An adaptive approach inspired by ants was presented by
Kaveh and Shahrouzi [124]. Their idea is to maintain a
separate population (called the colony) of individuals that
were shown to be promising in order to maintain population
diversity. Individuals are selected and removed from the colony
using a pheromone-based scheme and parents for the next
generation are selected using a combination of the colony and
the regular population.

Self-adaption of selection has been proposed as well. Eiben
et al. [66] self-adaptated the selective pressure by encoding the
tournament size in the genome. Because it is a global parame-
ter, the value is determined by summing up all the individuals’
values. In similar work, Maruo et al. [154] suggested using a
majority vote instead of a summation.

On the other hand, Smorodkina and Tauritz [200] proposed
self-adaptive mate selection. Each individual encodes its own
preferences as a selection mechanism in the form of a tree
(similar to GP). The first parent is selected via a regular
selection method; it then uses its own strategy to select its
mate.

C. Variation

Controlling the various aspects of the variation operators
(i.e. in general crossover and mutation in all their namings,
forms and flavors) is probably the most popular subject and

focus point found in literature on parameter control in EAs.
In this section we present work carried out in the following
main categories:

1) Theoretical studies on the influence of variation oper-
ators’ parameters and attempts to determine theoretic
optimal values for these parameters.

2) Removing variation parameters by using novel mutation
and crossover operators.

3) Control of mutation and crossover rate (commonly noted
as pm and pc respectively - or F and CR in Differential
Evolution).

4) (Self-)Adaptive Operator Selection (AOS). Unlike (3),
studies in this category control the selection of avail-
able operators including several choices, treating them
as alternatives (e.g. choosing among several types of
crossover).

5) Control of the distribution of offspring sampling, a
subject that is particular only to real number encodings
but has been the focus of extensive work.

1) Theoretical studies: Theoretical results on the values and
effect of the mutation probability in Genetic Algorithms were
given by Hesser and Männer [107]. They suggest that mutation
is only necessary for finite populations to compensate with the
loss of building blocks due to errors of the selection process.
In the absence of that risk, i.e. in the hypothetical situation
of infinite population, mutation would act disruptively by de-
stroying already accumulated information and, thus, reducing
the convergence speed. Furthermore, it is suggested that the
probability of mutation should converge to 0 as the genome
length l increases because the probability to destroy good
value combinations increases proportionally with l. Using a
time-requirement model and based on the assumption of a
sufficiently large population and certain absorption probabil-
ities, a formula is derived for calculating optimal mutation
rates. A further heuristic for calculating a good combination
for mutation and crossover rates is proposed but it requires
estimating values that are very difficult to derive. Böttcher
et al. [27] presented another analysis limited to a (1 + 1)-
GA and the LeadingOnes problem showing that the optimal
mutation rate is not the conventional 1

n . They suggest an
equation for adaptive mutation rate that reduces the expected
time to solution .

Jansen and De Jong [120] presented a study on the influence
of the number of offspring λ on the number of evaluations
required to reach the optimum for a (1+λ)-EA. Analysis with
two simple functions (OneMax and LeadingOnes) suggests
that a (1 + λ)-EA cannot outperform a (1 + 1)-EA when
solving unimodal functions, though keeping λ within certain
bounds (proportional to logN - where N is the population
size) will not incur a significant slowdown. Further analysis
with artificial multimodal landscapes shows that a value of
λ larger than one can greatly increase performance when
solving multimodal problems. Since keeping within the bound
of logN does not slow evolution significantly while larger λ
values are beneficial for multimodal landscapes, the authors
conclude with the generic guideline of defining λ = logN
when the characteristics of the fitness function are not known.
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In the field of GAs, crossover is often seen as the main
search operator while mutation is considered as a secondary
operator [111], useful only for the recovery of lost allele values
[107]. Subsequently, traditional practice often involves setting
mutation rate to very small values [46]. Mühlenbein [167]
discussed a different view: mutation is itself a search operator,
especially beneficial when combined with high selective pres-
sure [17]. This latter line of thought suggests that mutation
rate should be set to relatively high values. Bäck [16] used
mutation as the only search operator and studied the success
probability and optimal mutation rate for a simplistic problem
type.

De Jong and Spears [48] examined the disruptiveness of
crossover in Genetic Algorithms and its dependence on the
number of crossover points. They suggested that crossover
disruption is beneficial late in the search when the population
is converging and when the population size is too small
and that an appropriate adaptive crossover operator should
increase its disruptive potential when population homogeneity
increases.

In the area of Differential Evolution (DE), it was originally
suggested that DE is quite robust and that its variation param-
eters (scaling factor and crossover rate) can be easily set to
some “standard” values [205]. However, like with the other
variants of EAs, later studies showed that the performance of
DE is also highly influenced by the values of its parameters
[234], [28], [81]. Reynoso-Meza et al. [179] conducted exper-
iments to find good settings for these parameters when DE is
applied to a multi-objective problem class and concluded that
the choice for the value of the scaling factor is difficult and
case specific.

2) Removing variation parameters: Fernandes et al. [73]
introduced a novel mutation operator based on the nature-
inspired concept of self-organized criticality and the sandpile
model (for more information see [21], [20]). At each genera-
tion, individuals are mapped to a matrix (each row being an
individual and each column a gene). This matrix is used as the
lattice for a sandpile model; whenever an avalanche occurs,
the affected cells (i.e. genes) are mutated. To avoid mutating
highly fit individuals, an avalanche is interrupted at a cell if a
randomly generated value is higher than the normalized fitness
of the individual that the specific cell belongs to. Since the
sandpile mutation must work on evaluated individuals and the
subsequent selection must have up-to-date (i.e. after mutation)
fitness values, that would require two cycles of evaluations per
generation. To avoid this, the sandpile mutation uses the fitness
values of the parents of an individual to derive an expected
normalized fitness, thus requiring evaluations of individuals
only after the mutation procedure is complete [71], [72].

3) Controlling mutation and crossover rates: An adaptive
approach to controlling both mutation and crossover rates
was presented by Srinivas and Patnaik [204]. The goal is to
maintain diversity by increasing variation when the population
converges (which is detected by the mean fitness approaching
the best) while also maintaining good solutions. To achieve
this, every time an offspring is produced, crossover rates are
defined by a linear function proportional to the difference in
parent’s fitness with the best and inversely proportional to the

grade of convergence. A schema analysis suggests that this
adaptive method is better than a static approach in terms of
promoting schemata with higher fitness and rapidly increasing
the fitness of schemata.

Bäck [17] applied self-adaptation to the GA mutation rate
parameter. Bit string genotypes are extended with one or
multiple sections encoding mutation rates. These sections are
decoded into probabilities and used to mutate themselves;
the resulting new mutation rates are then used to mutate
the objective values. This approach differs from the original
ES self-adaptation where mutation parameters are not self-
mutated but instead a static distribution is used. In following
work [19] the same author suggested that the binary encoding
of the mutation rate limits precision and fine-tuning. As an
improvement, mutation rate is attached as a real number to
the genotype. Furthermore, self-mutation of pm is performed
using a lognormal distribution similar to the common practice
in Evolution Strategies. In a different direction, Smith and
Fogarty [198] applied GA self-adaptation to a steady state GA
and investigated the influence of selection and crossover on the
success of self-adaptation.

More recently, Vafaee [213] and Nelson suggested trans-
forming the mutation procedure of a GA into a sampling
process in the {0, 1}n space and, subsequently, controlling this
distribution by adapting a vector of probabilities . The Site-
Specific Rate GA (SSRGA) calculates a probability vector
using a fitness weighted sum of a set of individuals. The
population is split into several subpopulations that occupy
different peaks and the probability vector for each subpop-
ulation is calculated. Individuals are then mutated by setting
their alleles according to the probabilities of the corresponding
vector. Though it is described as mutation by the authors it
is in fact a sampling process that resembles the method of
the CMA-ES [95] (see Section IV-C5). A similar method was
presented by Nadi and Khader [169] with the difference that
the sampling process is merged with crossover: two parents
create two offspring; alleles that are common to both parent
are maintained while the rest are set according to a probability
vector derived from the whole population.

Extensive work has been carried out for the control of
the scaling factor and crossover rate of Differential Evolution
(DE). The simplest methods are based on formulas or rules
according to the authors’ intuition of how the parameters
should vary. Ghosh et al. [82] [83] suggested a strategy where
F decreases (linearly or logarithmically) as the distance of
the target vector’s fitness to the current best fitness decreases
while CR increases as the fitness of the donor vector is
closer to the current best fitness. A formula specific to multi-
objective optimization for adapting F using the numbers of
non dominated solutions and crowding metrics was proposed
by Qian and Li [175]. Liu and Lampinen [144] used fuzzy
logic controllers with fitness and diversity measures as inputs
for the FADE algorithm. The fuzzy memberships are used to
evaluate rules that are hand coded by the authors.

For a more adaptive approach, Zielinski and Laur [231],
[232] used the Design of Experiments method: for the two
variation parameters of DE, a two-by-two factorial design
is used and all combinations are applied for equal numbers
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of trial vectors; when significant differences are detected the
two points of the affected parameter(s) are moved in the
appropriate direction by a predetermined interval. A popular
approach for the adaptive control of the DE variation param-
eters is sampling their values from random distributions and
adapting the characteristics of these distributions. The JADE
algorithm by Zhang and Sanderson [230], [229] samples the
values for the two parameters from two corresponding normal
distributions for each new trial vector created. The values
that lead to a vector better than the parent are saved and
used to calculate the means of the distributions for the next
generation. A similar approach is followed by the ILSDEMO
[223] and SaDE [176] algorithms (which are ensembles and
are described in Section V).

Self-adaptation of the DE variation parameters has also
been explored by multiple authors, the differences lying in
the manner the offspring’s parameter values are calculated.
Abbass [1] used the typical mutation formula of DE, Brest et
al. [28] gave the trial vector the value of the target vector with
90% chance (otherwise random) while the SA-DE algorithm
of Brest et al. [29] averages the parameter values of the
target vector and the three differential vectors and mutates this
average with a factor from a lognormal distribution (following
ES practice).

4) Operator selection: Adaptive Operator Selection (AOS)
deals with the symbolic parameter of the variation operators.
Several alternatives for such operators exist in all EA variants
and AOS aims at the concurrent and adaptive use of several
operators.

Adaptive AOS mechanisms mostly model the problem as
a multi-armed bandit (MAB), a simplified version of the
reinforcement learning problem [206]. Maturana et al. [157]
discuss a comprehensive view of AOS, identifying the com-
ponents of an adaptive operator selection framework. A credit
assignment component uses feedback provided by the EA to
calculate scores of operators. These scores are maintained in
a credit registry and are used by the selection component
in order to select the next operator to be used by the EA.
In a more generic view, the AOS mechanism can also be
complemented by a component that creates and adds new
available operators to the AOS or removes existing ones.

The simplest operator selection method is probability
matching, i.e. softmax selection of operators based on assigned
scores. An operator’s probability to be selected is calculated
as the proportion of the operator’s current score to the total
sum of scores of all operators. This method was applied
by Thierens [210] to GAs, by Gong et al. [89] to DE (the
PM-AdapSS-DE algorithm) and by Qin and Suganthan [176],
Mallipeddi et al. [151] and Xie et al. [223] as part of the SaDE,
EPSDE and ILSDEMO ensembles described in Section V.

A disadvantage of the probability matching approach stems
from the allocation of probabilities directly proportionally to
the rewards; it results in the best known operator not being
exploited maximally because sub-optimal operators are also
applied. The smaller the difference between scores the more
often sub-optimal operators will be applied instead of the best
known. Adaptive pursuit was used by Thierens [209], [210] to
solve this problem. It increases the selection probability of the

best known operator while decreasing all other probabilities.
A third selection method is the Dynamic Multi-Armed

Bandits (D-MAB) suggested by DaCosta et al. [44]. The
Upper Confidence Bound (UCB) algorithm is used, which
will usually select the option that has the highest expected
reward while still maintaining a small probability of selecting
worse options for exploration purposes. However, UCB is not
appropriate for a dynamic environment: if an option becomes
less efficient than another it will take a lot of time for the
corresponding probabilities to adjust accordingly. For this
reason, a Page-Hinkley test is used to detect changes in the
EA and restart the UCB with all operators being equal.

Credit assignment is usually performed by counting the
number of successful applications of an operator, where suc-
cess is defined as creating offspring that are fitter than the
parent(s). This method is followed by most AOS mechanisms
in literature.

The EXtreme value-based Adaptive Operator Selection
(ExAOS) by Fialho et al. [75] uses a credit assignment
method based on a sliding window. Whenever an operator
is applied, the fitness improvement is calculated and added
to the window. The credit assigned to the operator is the
maximum value found in the window. This approach aims at
rewarding operators that contribute with large improvements,
even if they only do so once. It is interesting to note that this
contradicts Gong et al. [89] who concluded that averaging past
rewards is preferable. The ExAOS credit assignment method is
paired with D-MAB selection [44] described above. A sliding
window is also used by Fialho et al. [77]. They suggest
increasing the reward with the time elapsed since the last
application of this operator and decreasing the reward with
the number of times the operator has been applied within the
window. The aim of this method is to adapt quickly to (even
subtle) changes of the dynamic environment. Li et al. [141]
suggested a sliding window that stores the rate of improvement
in the fitness of the offspring as compared to the parent. The
sum of all these rewards in the window is used by a ranking
mechanism to assign credit to the operators.

A different credit assignment mechanism is Compass sug-
gested by Maturana and Saubion [159]. Based on the concepts
found in [160] (see Section VI), an operator’s impact is
evaluated using measures of both fitness and diversity in order
to calculate the exploration-exploitation balance achieved by
the operator. The assigned credit reflects how closely the
achieved balance is to an exploration-exploitation balance that
is required by a user-defined schedule. Other tested credit
assignment methods are based on domination between opera-
tors and Pareto fronts. Compass was paired with probability
matching selection but was also combined with D-MAB in
[156].

Except for the widely used multi-armed bandit approach
discussed so far, AOS has also been treated as a full rein-
forcement learning problem by Sakurai et al. [188], Chen et
al. [39] and Pettinger and Everson [174]. Unlike the previous
approaches, these methods include the notion of state that
is defined using feedback from the EA. For each distinct
state, separate preferences are learned for each operator and
selection of the operator to apply is based on the current state
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of the search.
An important issue with operator selection (as with all

adaptive parameter control) is the feedback used for control.
Veerapen et al. [215] presented and compared various utility
measures for variation operators. These measures are based on
a combination of exploration and exploitation measures and
use Pareto-dominance to evaluate operator utility. In another
study, Whitacre et al. [221] make a distinction between the
source of feedback and any further statistical treatment (a
notion further elaborated in [122]). Several feedback sources
are suggested (including whether the offspring survives or the
number of generations it remains in the population). The data
received by these sources can be treated by averaging them
or by detecting the outliers in the sample. The latter method
intends to award operators that produce “extraordinary” indi-
viduals. Experiments show that the choice of feedback source
has a significant impact on performance while the outlier
detection method is shown to be very promising.

Operator selection has also been approached in a self-
adaptive manner. Spears [202] suggested a simple self-adaptive
operator selection mechanism for GAs where chromosomes
are extended with one bit that selects between two operators.
A local approach is followed, i.e. every time a new individual
is created the operator bits of the parents determine which
crossover is applied. Experiments showed that the performance
of the self-adaptive GA is, in most cases, similar to the best
performing static GA (using one of the two operators). Control
experiments, however, revealed a very interesting fact: the
mere availability of multiple operators was adequate while
actually self-adapting the choice of operator did not have any
additional benefit. In similar work, Riff and Bonnaire [180]
extend each individual with a gene denoting the operator used
to create it. When a new offspring is produced, the operator
of the fittest parent is employed.

Instead of including the operator identifier in the genome, an
alternative is to include probabilities for all available operators.
Gomez [88] implemented self-adaptive operator selection in
this manner with the Hybrid Adaptive Evolutionary Algorithm
(HaEa). He argued that centralized adaptive operator selection
has the disadvantage of the complexity related to calculat-
ing the operators’ global value while self-adaptive operator
selection suffers from the need to define meta-operators for
evolving genes that encode operator rates. The latter problem
of self-adaptation is tackled here by avoiding meta-operators
for the genes that encode operator rates. Instead, random
rewards (or penalties) are added to operator rates when the
offspring is better (or worse) than the parent (in case the
offspring is worse, the parent genome is kept but with the
modified operator rates). Operator rates are used by a roulette
selection scheme to decide which operator is used every time
a child is produced.

Along the same lines, Montero and Riff [165], [166] pro-
pose operator selection self-adaption where the genome is
extended to include the probabilities of the operators. The
probability of the applied operator is given a reward/penalty
which is either random (the ”light-weight” version) or depend-
ing on the ratio of the difference between child and parent’s
fitness to the best/worse operator result in the last generations.

An adaptive version was also suggested that maintains one
global probability per operator and, at each generation, one
single operator is picked to produce all offspring. Success is
measured as the average success over all offspring produced
and the rewards/penalties are calculated as with the self-
adaptive (though here there is no ”light-weight” version).

5) Offspring sampling distribution for real encodings: One
of the best known control strategies is ‘Rechenberg’s 1/5 rule’
[177] for controlling the σ parameter, the variation of the
Gaussian distribution used for mutation. Based on theoretical
results with the sphere and corridor landscapes, Rechenberg
concluded that the optimal success ratio should be 1 out of
5. If greater, σ should be increased and, if less, σ should
be decreased. Rudolph [181] presented an analysis of this
adaptation method suggesting that when used by an elitist
algorithm it will lead to premature convergence.

An extension of the 1/5 rule with reinforcement learning
was suggested by Muller et al. [168]. The temporal difference
learning SARSA algorithm is employed to learn the appropri-
ate action (increase, decrease or maintain the mutation step
size) given the success ratio. Two possible methods of reward
calculation are tested (based on the change of the success
rate or the fitness). The controller showed poor results in the
evaluation of this paper.

Though the 1/5th rule was important as it immediately
introduced the notion of parameter control to the very first
(1 + 1)-ES, the most significant innovation of Evolution
Strategies was the concept of self-adaptation: encoding a
parameter of the algorithm in the genome and allowing it
to undergo evolution [193]. Though self-adaptation has been
applied to several other parameters since (see Section VI), ES
self-adaptation was initially used to control the variance σ of
the Gaussian distribution used to perform mutation.

Ostermeier et al. [170] argued that the original self-
adaptation of mutation step sizes does not work well for small
populations because of the potentially extreme values of the
random mutation and proposed a “derandomized” approach.
The concept of an efficient evolution path motivated the use
of correlation between individual mutation step sizes of the
dimensions of the problem and the adaptation of a covariance
matrix [171], [100]. Based on this, the Covariance Matrix
Adaptation Evolution Strategy (CMA-ES) and its variants
[101], [99], [98], [95], [102], [26], [14], [118] have become
very successful numeric optimizers.

A deterministic control of the mutation step size is described
by Krink et al. [134]. The parameter takes values from a
sequence acquired by a nature-inspired method (the sandpile
model). This is part of a combined control method and is
presented in detail in Section V.

While discussing control of the mutation step sizes for ES,
we mention the works by Rudolph [182] and by Arnold and
MacLeod [12]; both contain comprehensive reviews of such
methods along with their mathematical bases.

Though the parameter addressed in this subsection concerns
mostly Evolution Strategies, some examples are found in other
EA variants as well. Real-coded Evolutionary Programming
involves an identical parameter that regulates the variance
of the normal distribution used for mutation. Self-adaptation
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of this strategy parameter was introduced to Evolutionary
Programming by Fogel et al. [78]. An application of Gaussian
noise to a binary encoded GA with self-adaptation of the
mutation step size was suggested by Hinterding [108]. Gene
values are first decoded into numbers, noise is added and then
encoded back into bit strings. Individuals are extended with
one gene to encode the mutation step size and the sequence
of mutations (first the step size gene is mutated with a fixed
deviation then the new step size is used to mutate the other
genes) is similar to Evolution Strategies.

D. Fitness function

Although not common in all application domains dynamic
fitness functions have been successfully used for various
problems. Here, we present methods for controlling aspects
of the fitness function in two categories:

1) Methods that adapt the weights of penalties in con-
strained optimization.

2) Other strategies applicable to unconstrained problems.
1) Constrained problem approaches: A straightforward

strategy is to gradually increase the weights of unsatisfied
contraints with time. Joines and Houck [121] suggested a
mechanism that increases penalty weights as generations
elapse. The Genecop II by Michaelewicz and Attia [163]
makes such increases only with every restart of the search.
Similar schemes were presented by Kazarlis and Petridis [125]
and Ben Hamida and Schoenauer [94].

Alternating increase and decrease of penalty weights was
suggested by Bean and Hadj-Alouane [25]. A weight vector
determines the penalty of certain candidate solutions. The
values of this vector start very small, increase at first, and
then decrease and increase in an alternating scheme (where
the rate of increase is higher than the rate of decrease).

The Stepwise Adaptation of Weights (SAW) mechanism by
Eiben and van Hemert [63], [62] adjusts the weights of the
penalties in periods of a certain number of fitness evaluations.
The constraints that are violated by the best individual in
the population are identified and the corresponding weights
in the fitness function are increased. Lemonge et al. [140]
proposed a similar scheme but instead of considering only the
best individual they take into account the entire population.

Smith and Coit [195] presented an approach which adjusts
the penalty factors for constraints based on feedback regarding
the severity of the constraint and the overall success of
finding feasible solutions. Wang et al. [220] suggested a fitness
measure which is highly dependent on the composition of the
population. If the population consists only of individuals that
are infeasible (i.e. that do not satisfy all the constraints), the
fitness function only considers the level of satisfaction of the
constraints. If all individuals fulfill the constraints, only the
objective function is used as an evaluation measure. Finally, in
case both feasible and infeasible candidates are present, a com-
bination is taken. Similar methods were proposed by Tessema
and Yen [208], Montemurro, Vicenti and Vannucci [164] and
Farmani and Wright [67].

Co-evolving of the weights along with the solutions was
suggested by Coello Coello [41]. Two separate populations are

used to represent the set of candidate solutions and the weights
that are used by the objective fitness function. Individuals that
represent weights are applied for several generations and are
evaluated by the number of feasible solutions present in the
candidate solution population. Similar co-evolution but with a
predator-pray flavor was used by Paredis [172].

2) Non-constrained problem approaches: Besides adapting
weights of penalties for constrained problems, fitness functions
have also been controlled to enhance performance for general
unconstrained problems. Eggermont and Hemert [54] apply
the SAW-ing adaptive fitness function (with some extensions)
to a Genetic Programming application tasked to solve simple
regression problems. The fitness measure is a weighted sum of
the prediction errors for all points. The weight of each sample
point is updated based on the difficulty of finding the correct
value for that specific sample. The SAW-ing strategy was also
applied to the field of data mining by Eggemont et al. [53].

Sakanashi et al. [187] proposed an adaptive fitness function
that tries to improve the performance of GAs for the so-called
GA hard problems. The fitness function adapts to make sure
that the algorithm explores the search space sufficiently. This
adaptation is based on the average and best performances
compared with a number of generations in the past.

Efficient search is also the purpose of using multiple auxil-
iary fitness functions. Approaches that focus on choosing the
best function using reinforcement learning have been proposed
by Afanasyeva and Buzdalov [2] and Buzdalova and Buzdalov
[31].

E. Parallel EAs

Parallel EAs can either be implemented as several distinct
subpopulations running in parallel with occasional migrations
(island model) or as several distributed evolutionary operations
acting upon a common population asynchronously. In this
section we present work related to:

• controlling the parameters that are particular to dis-
tributed EAs and

• control methods or ensembles for standard parameters
that are designed especially for distributed EAs.

1) Parameters of Parallel EAs: The parameters that are
specific to distributed EAs (the island model in particular)
concern migration (rate, number of immigrants, policies for
selection and replacement) and the topology of the islands
network. Cantu-Paz [32] showed that selection and replace-
ment policies for migration have significant effects in the
convergence and takeover times of parallel GAs. The same
author [33] presented a theoretical analysis of the island size,
the connectivity degree between islands, the migration rate,
the network topology and their interrelations. Arnaldo et al.
[11] also examined the influence of the topology of distributed
EAs. Using β−graphs and NK landscapes, they concluded
that certain topologies (in terms of characteristic path length
and clustering coefficient) are more appropriate depending on
the complexity of the problem.

The simplest approach to varying the migration was sug-
gested by Hiroyasu et al. [110]. Migration occurs in fixed
time intervals but the number of individuals migrating from
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each island is random. The number of immigrants was also
examined by Maeda et al. [150] with an adaptive approach.
Again migration occurs in fixed time intervals but the number
of immigrants each island sends is adapted separately using
fitness based feedback as input to a fuzzy controller. The
membership functions, parameter levels and inference rules
are predetermined and fixed. Instead of fixing the migration
period, Lardeux and Goëffon [137] adapted the probability of
occurrence of migration events. They modeled a distributed
EA as a fully connected directional graph, with each edge
labelled with the probability of migration occurring in the
direction of that edge. When an immigrant makes an improve-
ment in the destination island then the probability of the edge
it followed is increased otherwise it is decreased.

In addition to the amount or rate of immigrants, Zhan and
Zhang [228] also adapted the paths (source and destination
islands), thus in effect controlling the topology of the island
network. Their method sorts islands according to their mean
fitness and all islands send one immigrant to every island that
is higher in the ranking.

2) Methods for Parallel EAs: For the island model, the
existence of several subpopulations running in parallel offers
two important advantages: (a) there are several parameter con-
figurations available at the same time and (b) several parameter
configurations can be evaluated concurrently. The former is
not directly related to control but Gong and Fukunaga [90]
used it by simply setting the parameters of each subpopulation
to different (even random) values. The rationale is that, at
each moment during the search process, there will be at least
one parameter configuration that will be somewhat favorable
for further advance. Along with the effects of migration of
individuals, this approach may allow for more efficient search
than having only one parameter setting. The ability to evaluate
several parameter vectors concurrently was used by Lis and
Lis [143] to control numeric parameters of subpopulations
of a parallel GA. A master is responsible for distributing
populations and parameter vectors to the processors. Each
parameter has a number of allowed value “levels” and at
each point time only three such levels exist in any parameter
vector of all islands. A run is divided in epochs of equal
length (number of evaluations) for each island; at the end of
each epoch, the master receives the best individuals from each
subpopulation and calculates the average best fitness achieved
by each level of each parameter. Then every parameter is
updated by shifting values towards the best (or keeping them
as are if the best was the middle one).

Control of parameters for a distributed EA with asyn-
chronous operations acting on a common population was
explored by Budin at al. [30].

A simple mechanism for controlling the crossover and
mutation probabilities for a parallel GA using fitness based
feedback was presented by Wang at al. [219], however, this
approach is not specific to the features of a distributed EA.

V. CONTROL ENSEMBLES

In this section we present work on evolutionary algo-
rithms with combined (heterogeneous) control mechanisms

put together as an ensemble that controls several parameters
concurrently. These ensembles generally fall in the main
categories of combining variation and population control and
combining variation and selection control in order to balance
exploration and exploitation. Furthermore, extensive work has
been carried out for the control of the numeric variation
parameters combined with operator selection for Differential
Evolution (DE).

Hinterding et al. [109] combined self-adaptation of mutation
with adaptive control of the population for a GA. Mutation
applies Gaussian noise by first decoding the genes into nu-
merical values and then encoding the new values back to bit
strings. A gene encoding the mutation step size is added to
the chromosome and mutated as in Evolution Strategies. The
size of the population is controlled adaptively by maintaining
three subpopulations of different sizes and dividing the run
into epochs. At the end of each epoch populations’ sizes
are adjusted according to a set of simple rules that move
sizes towards the size that performed the best during the last
epoch or expand the range if the subpopulations had equal
performance.

Bäck et al. [18] also combined self-adaption of crossover
and mutation probabilities and dynamic adjustment of the pop-
ulation size. Self-adaptation is typically achieved by encoding
of the operator probability values in the genome. Individual
mutation rates are first mutated and the new values are used
to mutate the rest of the genome. Individual crossover rates
represent the probability of that individual mating. These are
evaluated by random tests separately and if a selected parent
is not willing to mate it creates one offspring by mutation. The
population size adaptation is removed by assigning lifetimes
to individuals at creation. These lifetimes are calculated based
on the new individual’s fitness and the population’s best and
average fitness. This ensemble was applied to co-operative
co-evolution by Iorio and Li [119] with the difference that
the crossover rates of potential parents are averaged and a
common decision for mating is made instead of treating them
separately.

Simple deterministic control of mutation and selection was
presented by Krink et al. [134]. Both controls are based
on a predetermined sequence of numbers acquired based on
concepts of self-organized criticality [20]. Mutation control is
performed simply by using this sequence to set the variance
of Gaussian mutation. The control for selection is based
on extinctions, removing a percentage of the population at
each generation. These percentages follow the same sequence
of numbers described earlier. Individuals to be removed are
chosen randomly while the remaining individuals seed the next
population. It is argued that tournament and roulette selection,
near the end of the run, do not allow new (recombined and/or
mutated) individuals to enter the population, while extinctions,
which have strong evidence in biological evolution, do allow
for this introduction of novelty.

Herrera and Lozano [106] used fuzzy logic controllers to
adapt the choice of the crossover operator and the selective
pressure. The aim to to maintain a good balance between
exploration and exploitation; for that reason the EA employs
two crossover operators, one with exploitative properties and
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one with explorative, with the frequency of application defined
by a real-valued parameter. Selection is preformed with linear
ranking and selective pressure can be controlled by a real
valued parameter as well. These two parameters are controlled
using two fuzzy logic controllers. The inputs are diversity-
based observables (genotypic and phenotypic diversity) while
no fitness-based feedback is used. The output of each con-
troller is a delta factor to increase/decrease the corresponding
parameter value.

ACROMUSE by McGinley et al. [161] is a complete
ensemble with adaptive crossover, mutation and selection. Its
purpose is to maintain a population that is both diverse and fit.
It uses specifically designed crossover and selection operators
and divides the population into exploration and exploitation
sections based on diversity measures. An offspring can be
created in exploration or exploitation mode according to a
probability (this probability is dynamically adapted). Parent
selection uses a tournament with a dynamically adapted size.
The variation and selection controls are combined so that
the exploring (and probably less-fit) individuals created under
exploration mode with aggressive mutation are given fair
chance to survive and reproduce.

In the area of DE, the SaDe algorithm by Qin and Suganthan
[176] combines adaptive control of the amplification factor and
crossover rate with adaptive selection between two operators.
While F values are sampled uniformly from a predefined
range, the CR values are sampled from a normal distribution
and assigned to individual indexes to be used for a number
of generations. During that period, values that create good
offspring are recorded and are then used to calculate the
new mean for the normal distribution used in the following
epoch. Operators are assigned credit according to the number
of surviving offspring they create and are selected for each
new offspring with a softmax process. SaDE was extended
with multiple operators in [115] and was applied to multi-
objective optimization in [113] and with separate objective-
wise parameters in [114]. A study by Zielinski et al. [233]
suggested that the operator selection component of SaDE is
crucial to the algorithm’s success and can also be beneficial
when applied to two other control methods for DE.

A very similar control ensemble is used by the ILSDEMO
algorithm by Xie et al. [223]. A slightly varied approach was
taken by Mallipeddi et al. [151] for the EPSDE. Individuals
are assigned random variation strategies and parameters in
the beginning. When an offspring survives, the associated
parameters are retained and added to a pool. Otherwise, new
parameters are drawn from the pool or are assigned randomly.
Finally, an ensemble for DE was created by Li et al. [142] by
combining JADE [230] (see Section IV-C3) and PM-AdapSS-
DE [89] (see section IV-C4).

Finally, an application specific ensemble is the Dynamic
Forecasting Genetic Program (DyFor GP) model designed
by Wagner et al. [218] to cope with forecasting in dynamic
environments. It controls the size of the training set used and
removes the population size parameter (rather replaces it with
a new one). A sliding window is used for training with the
historical data. The size of the sliding window is controlled
on-line using two values at each step. The best model produced

with each window size is evaluated using a number of future
data points. The size with the best accuracy is kept while the
other is moved symmetrically around the first. The population
size parameter is removed using Natural Non-static Population
Control (NNPC) [216], i.e. imposing a maximum limit for the
sum of the nodes of all solutions in the population. This allows
complex solutions of good quality to grow while keeping
resource consumption within limits.

VI. PARAMETER INDEPENDENT METHODS

In this section we describe generic control methods that
were not designed for a specific parameter and can be applied
to any (numeric) EA parameter.

A simple generic adaptive method can use a small set of
values, adjust them based on simple rules and use feedback
only to calculate rewards for each value (and not to make
informed decisions taking into account the current situation).
Wong et al. [222] proposed a probabilistic rule-driven adaptive
model that maintains three possible values for each parameter.
An EA run is divided into pairs of periods. During the first
period values are chosen randomly (and their effect in terms
of fitness improvement is recorded). In the second period
values are chosen with probabilities proportional to the scores
they achieved in the first period. In the end of the second
period the three values are updated so as to move towards
the best performing one or expand the range if none achieved
performance above a threshold.

Improving the above idea, Aleti and Moser [7] suggested
predicting which value would be best next based on time
series forecasting, instead of using the last known winner.
Continuous parameters are discretized giving a finite amount
of possible values. A run is divided to iterations, at the end
of each iteration the success ratio of every parameter value
is calculated and added to the history list of that parameter
value. Instead of simply translating these success ratios to
selection probabilities for the next iteration, a line is fit to the
recent history of each parameter to predict what its success
ratio will be in the next iteration, thus making the selection
probabilities more relevant. Credit and selection probabilities
are maintained and updated for all values, making this strategy
a multi-armed bandit (MAB) approach. This method was
extended by adapting the discretization ranges on-the-fly: after
each iteration, the best performing value (interval) is split into
two while the worst performing one is merged with its worst
neighbor [8].

Reinforcement learning is another problem independent
approach that can be utilized here [206]. The idea is to use
feedback from the EA that describes the state of the search and
implement actions as changes to parameter values. Eiben et al.
[64] used temporal difference learning to map states of the EA
(described by fitness based metrics) to actions, i.e. parameter
values. The controller algorithm uses a table that maps pairs
of states and actions to estimated rewards. Learning this table
is done using a combination of the Q-learning and the SARSA
algorithms. When doing exploration, random (and potentially
harmful) actions are chosen. For this reason, areas explored
are chosen to be close to the known optimal actions. When
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doing exploitation, the best action for the current state is found
with a separate underlying genetic algorithm that optimizes the
expected reward.

A special case of generic adaptive controllers are designed
to be problem specific and need to be tuned to the problem
at hand to learn a mapping from feedback to parameter
values (they can operate only within the top left box in
Figure 2). Such an approach was suggested by Kee et al.
[126] where the mapping is learned during a training phase
while the exact mechanism implementing this mapping is a
module/design choice. Two alternative methods (table-based
and rule-based) are used to map a state vector composed
of three metrics (fitness change and variance and population
variance) to parameter values. Karafotias et al. [122] employed
neural networks to map diversity and fitness based feedback
to parameter values. The weights of the network are calibrated
off-line using a parameter tuner. Aine et al. [5] suggested
“profiling” algorithms for specific problem types by an off-line
training phase. This training results in tables that map the state
of the EA (described by fitness and diversity measures) to not
only parameter vectors but also the time until the next update
of parameter values. Lee and Takagi [139] used fuzzy logic
controllers instantiated by a meta-GA. Rules are represented
by encoding the centers of the membership functions (which
are fully overlapping) and the ID of a rule (i.e. the combination
of inputs-outputs). Fuzzy logic was also used by Maturana and
Saubion [160], [158] to achieve a balance between exploration
and exploitation. The correlation between parameter values
and the resulting diversity/fitness is learned during an initial
learning phase. After that the parameters are controlled so as
to maintain a certain exploration-exploitation balance which is
dictated by a user-defined schedule (thus this method, besides
the automatic calibration, also requires a hand-tuning process).

Instead of designing a concrete control strategy or a method
for calibrating one, Liu et al. [145] presented a platform for
expressing ad-hoc control strategies through a scripting-like
language (PPCea). The user is provided with several measures
of exploitation and exploration derived from ancestry trees that
record the whole evolutionary process as parents - children
branches.

Finally, we consider self-adaptation as a generic parameter
control method. It entails incorporating parameter values in the
genome and allowing them to undergo evolution, relying on
selection to promote good values that are piggybacked on the
solutions they helped create [65]. Though self-adaptation was
initially coined for controlling the mutation parameter of Evo-
lution Strategies, it could be applied to any parameter (i.e. it is
at least feasible to implement such a control). As an example,
a fully self-adaptive evolutionary algorithm was presented by
Maruo et al. [154]. Probabilities of mutation and crossover,
the mutation step size (for real coded representations), the
crossover operator and the size of the selection tournament are
self-adapted. Values of global parameters (crossover type and
tournament size) are decided by the majority. Self-adaptation
of global parameters was also investigated by Eiben et al.
[66], though here, instead of majority voting, global parameter
values are calculated as the sums of all votes. To keep the
votes within defined bounds, self-adaptive mutation is not used

(instead the static scheme from [19] is employed). Literature
reviews on self-adaptation can be found in the works by
Kramer [132] and Meyer-Nieberg and Beyer [162]. These
reviews convincingly demonstrate the power of self-adaptation
(mainly mutation parameters), especially in real-coded search
spaces and in environments with uncertain or noisy fitness in-
formation. Meanwhile, they also point out that self-adaptation
techniques may suffer from premature convergence and a
(near-)optimal mutation strength is not always realized. This
latter effect has also been observed in Artificial Life settings
for digital organisms with discrete genotype spaces [40].

VII. SOME TRENDS AND SUGGESTIONS FOR FURTHER
DEVELOPMENT

In this section we make some observations about the trends
we identified in the literature and put forward some sugges-
tions we deem relevant for future work in the field.

A. Trends

Figure 3 presents the number of publications in a histogram
form in bins of 4 year periods split by the categories parameter
specific (that is further split by parameter), ensembles, and
generic. A plot of the total amount of publications on a
cumulative scale is shown in Figure 4. It seems that the interest
in parameter control modestly increases, while the drop at
the end can be attributed to the dissemination delay of new
publications.
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Fig. 3. The number of publications in 4 year periods for each parameter
category described in this paper. For each period, bars denote (from left
to right) population, variation, fitness, selection, distributed EAs, ensembles,
generic. NB. Data for 2013 concerns the January-May period only.

As we can see parameters belonging to variation operators
have received by far the most attention. Population related
parameters are much less popular and parameters related
to selection have received even less attention. Furthermore,
ensembles for combined control of multiple parameters and
generic control methods that can be applied to any parameter



15

1990 1995 2000 2005 2010
0

50

100

150

200

 

 

population

variation

selection

fitness

distributed

ensembles

generic

Fig. 4. The total number of publications on parameter control on a cumulative
scale after 1990. Greyscale levels indicate the parameter addressed in the
papers.

have been explored to very little extent (but they seem to gain
traction lately).

The modest number of generic control methods implies
what we call ‘the patchwork problem’: if one is to control more
(all) parameters of an EA, then for each parameter she has to
choose from a parameter specific set of existing methods and
mix them into one system. Unfortunately, little is known about
the joint effects of control mechanisms, thus there are no good
guidelines about how to create good combinations. Therefore,
the resulting mix is necessarily ad hoc and likely suboptimal.
The work of Bäck et al. [18] is a good illustration for this
as it mixes 3 different mechanisms to control 3 different
parameters in an eclectic system without much justification.
An encouraging exception is the ensemble by McGinley et al.
[161] which is well orchestrated with controllers designed to
work in cooperation.

Considering the methods and mechanisms used for adaptive
parameter control, we can identify several categories that are
relatively frequent in the literature:

• Formulas that calculate a parameter value using certain
feedback from the EA. Such formulas may be based on
theoretical results (e.g. [199], [84] ) or the intuition of
the designer (e.g. [204]).

• Rules triggered by certain events/thresholds concerning
feedback from the search. They specify responding ac-
tions to these events, usually according to the designer’s
intuition (e.g. [57]).

• Fuzzy Logic controllers whose input is feedback from the
search. Their output may be used to trigger hand-coded
rules (in which case there is an overlap with the above
category, e.g. [144], [150]) or they may directly output
parameter values (e.g. [106]).

• Value Sets that are adapted, i.e. multiple (two or three)
values are tested and the best one is used in the next phase
while the others are adjusted accordingly. The testing
phase is then repeated again (e.g. [143] [222] [218]).

• Multi-Armed Bandit strategies that treat each value as a
separate arm and adapt their selection probabilities by
learning expected rewards. This approach is very popular
with Adaptive Operator Selection (e.g. [210], [44]).

• The full Reinforcement Learning approach that uses feed-
back from the search as descriptors to define states and
maps actions to parameter values (e.g. [64], [168], [2]).

Regarding the field of parameter control in EAs as a whole,
we can note a disappointing lack of impact. To be specific,
many of the related papers report promising experimental
results, however, no parameter control method or strategy has
been widely adopted by the community or has became part
of the common practice toolkit of evolutionary computing –
a problem that was also noted by De Jong [47]. Perhaps this
is caused by the lack of convincing evidence of the added
value of control techniques. Putting it differently, despite the
existence of important pieces of related work, it seems that
most of the papers published make but a limited contribution
to the field. All too often, such a paper (including ours!) has
a limited scope and focuses on a simplistic control of a single
specific parameter based on the author’s intuition of how the
parameter should vary. Typically, the paper does not analyze
and explain the resulting behavior of the parameter and the EA,
nor does it properly evaluate the added value of the control
strategy based on good benchmarks.

B. Suggestions for Further Development

In this section we make suggestions for research directions
that can help parameter control prove its value on a larger
scale and become more relevant for evolutionary computing.
Needless to say, we do not have clear recipes to this end, but
we identify a number of issues (i.e., the ‘what’) and, where
possible, give some hints regarding the ‘how’.

Our first suggestion is perhaps the easiest: work on reduc-
ing the patchwork problem mentioned above. For instance,
carry out investigations about the combination of different
control mechanisms and try to understand their joined effects.
Additionally, more research could be done on controlling
parameters that have received relatively little attention in the
past. Furthermore, developing generic control mechanisms that
work on any –or at least many– parameters could be helpful
here.

As a second suggestion we note that identifying relevant EA
behavior descriptors (sometimes called observables or moni-
tors) can offer direct advantages for developing better param-
eter control mechanisms. In particular, it can help designing
mechanisms for adaptive control, because these are based on
using information (feedback) from the evolutionary search
process. Being able to identify the most relevant information
(EA behavior descriptors) can obviously improve the decisions
made about new parameter values based on that information.
This research line could benefit from data mining techniques
that disclose the correlations between various EA behavior
descriptors over time and the links between such descriptors
and (the online dynamics of) solution quality.

Furthermore, we advocate research concerning the niche for
parameter control in general, and that of specific parameter
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control mechanisms in particular. In other words, we should
try to understand for which problems and EA performance
requirements is a given method advantageous. A related ques-
tion we frequently receive is: “Is parameter control better than
parameter tuning?”, or “When should I do parameter tuning
and when should I do parameter control?”. For a solid answer
based on quantitative evidence there is a lack of experimental
data (with very few exceptions e.g. [80]) and –even more
importantly– a lack of a decent research methodology.7 A
possibly useful angle to this end is to consider the application
scenario as an important dimension. Using the categories of
Eiben and Smith in [61], Chapter 13, it could be argued that
for repetitive problems parameter tuning is worth the extra
effort, whereas parameter control is the logical choice for one-
off problems, applications with dynamic fitness functions, and
on-line adaptation, e.g. robotics [51], [92]. Nevertheless, extra
research and discussions are needed to back up solid answers
to this and similar questions.

Progress towards a better research methodology could be
made along several lines. For instance, the EC community
should agree on sound measures for ‘effort’ in order to
make fair comparisons between different techniques. This is
a nontrivial problem, because tuning effort occurs during the
design stage before the real EA run, while the computational
overhead caused by control mechanisms manifests itself during
a run. Furthermore, while there are software and hardware
independent measures for tuning effort, these are based on
counting fitness evaluations, see e.g. [194]. However, the extra
work that parameter control mechanisms perform may be
hidden from such a counter. Using computing time for this
seems an easy solution, but that may raise other issues, as
discussed by Eiben and Jelasity in [56].

Another essential prerequisite for sound assessments of
control techniques is a good benchmarking practice. This issue
reaches further than the composition of a good test suite.
The added value of a parameter control technique will prove
different when comparing it to different alternatives. This is
a relevant and nontrivial question, because there are several
justifiable options here, including:

• Comparison with the same EA without parameter control
– with commonly used (‘default’) parameter values, or
– with optimized (tuned) parameter values.

• Comparison with the same EA with a blind control
mechanism, i.e. randomly varying the parameter values,
see Karafotias et al. [123].

• Comparison with the same EA using another mechanism
to control the same parameters.

Which of these and other possible options is appropriate for a
good assessment should be investigated and widely discussed.

There is also much to gain in insights and algorithm
performance through studying the parameters of parameter
control mechanisms. There is a widespread opinion among
parameter control researchers that even though a parameter
control mechanism introduces new parameters of its own, the
extended system (EA + parameter controller) is less sensitive

7The weakness of experimental methodology is in fact a problem for the
whole EC field, as noted by Eiben and Jelasity [56].

to these parameters than the original EA to its own parameters.
The skeptical observation, however, is that there is little real
evidence to back up this belief, with the σ’s and τ ’s in
evolution strategies being the only well-known exception. A
natural way to address this issue is to study parameters of
parameter control mechanisms. For instance, using sensitivity
analysis [189] can help verify or refute the aforementioned
fundamental assumption. Furthermore, these studies can lead
to better control mechanisms, simply because their working
does depend on their parameters, even if a control mechanism
is more robust than the bare-bone EA it regulates.

Last but not least, let us mention the admittedly rather
general issue of a deeper understanding of parameter control
mechanisms. Similarly to the main body of work within
EC, most publications about a parameter control mechanism
simply show that it works. Usually, there is no or very little
discussion about why it works and how it works. In this
respect, major improvements are possible through developing
the know-how of monitoring the dynamics of the controlled
parameter(s) and the whole EA over time. This requires the
identification of relevant behavior descriptors for EAs, such
as the extent of exploration and exploitation (a concept that
is itself difficult to define but very relevant [214], [59]),
population diversity, solution quality, and many more. Such
improvements will also contribute to the design of more
powerful adaptive controllers as was explained in our second
suggestion above.

VIII. CONCLUDING REMARKS

In this paper we presented an extensive survey of work
concerning parameter control in evolutionary algorithms. This
overview revealed a great number of interesting publications
with promising results. Meanwhile, we also noted a disap-
pointing discrepancy. In theory, parameter control mechanisms
have a great potential to improve evolutionary problem solvers.
In practice, however, the evolutionary computing community
did not adopt parameter control techniques as part of the
standard machinery – controlling EA parameters on-the-fly is
still a rather esoteric option, with self-adaptation in evolution
strategies being the exception that confirms the rule.

In an attempt to help close this gap we also discussed a
number of ideas about important issues for further research.
We certainly do not claim that we cover all possibly interesting
ideas. But we hope to initiate a fruitful discussion in the
community and on the long run, to improve the quality of
control methods and to collect convincing evidence regarding
their added value. This will hopefully help adoption of control
methods on a larger scale, thus realizing their full potential.

As a final remark, let us note that the EC community could
draw inspiration from other fields as well. For instance, there
are significant advancements in the field of local search using
techniques that automatically adjust the parameters of the
search methods on-the-fly [24], [93].
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