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Parameter Convergence in Nonlinearly
Parameterized Systems
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Abstract—A large class of problems in parameter estimation
concerns nonlinearly parametrized systems. Over the past few
years, a stability framework for estimation and control of such
systems has been established. We address the issue of parameter
convergence in such systems in this paper. Systems with both
convex/concave and general parameterizations are considered. In
the former case, sufficient conditions are derived under which pa-
rameter estimates converge to their true values using a min–max
algorithm as in a previous work by Annaswamy, et al. In the latter
case, to achieve parameter convergence a hierarchical min–max
algorithm is proposed where the lower level consists of a min–max
algorithm and the higher level component updates the bounds on
the parameter region within which the unknown parameter is
known to lie. Using this hierarchical algorithm, a necessary and
sufficient condition is established for global parameter conver-
gence in systems with a general nonlinear parameterization. In
both cases, the conditions needed are shown to be stronger than
linear persistent excitation conditions that guarantee parameter
convergence in linearly parametrized systems. Explanations and
examples of these conditions and simulation results are included
to illustrate the nature of these conditions. A general definition
of nonlinear persistent excitation that leads to parameter conver-
gence is proposed at the end of this paper.

Index Terms—Author, please supply your own keywords or send
a blank e-mail to keywords@ieee.org to receive a list of suggested
keywords..

I. INTRODUCTION

RECENTLY, a stability framework has been established for
studying estimation and control of nonlinearly parameter-

ized (NLP) systems in [1]–[8]. In [1]–[7], various NLP systems
were considered and the conditions for global stability, regu-
lation and tracking were derived using a min–max algorithm,
while in [8], stability and parameter convergence in a class of
discrete-time systems was considered. In this paper, we consider
parameter convergence in a class of continuous-time dynamic
systems. We begin with systems that have convex/concave pa-
rameterization and derive sufficient conditions under which pa-
rameter convergence can occur in such systems. These condi-
tions are related to linear persistent excitation (LPE) conditions
relevant for convergence in linearly parameterized systems [9],
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and are shown to be stronger, with the additional complexity
being a function of the underlying nonlinearity.

We also propose a new hierarchical min–max algorithm in
this paper in order to relax the sufficient conditions for param-
eter convergence. The lower level of this algorithm consists of
the same min–max algorithm as in [1] and [6]. An additional
higher level component is included in the hierarchical algorithm
that consists of updating the bounds on the parameter region
that the unknown parameter is assumed to belong to. We then
show, using the hierarchical algorithm, that parameter conver-
gence can be accomplished globally under a necessary and suffi-
cient condition on the system variables and the underlying non-
linearity . Examples of functions that satisfy such a condition,
which we denote as a condition of nonlinear persistent exci-
tation (NLPE), and relations to LPE are also presented in this
paper.

The paper is organized as follows. Section II gives the state-
ment of the problem, the estimator based on the min–max algo-
rithm and the properties. In Section III, parameter estimation in
functions that are concave/convex is considered, and a sufficient
condition for parameter convergence is derived. In Section IV, a
hierarchical min–max algorithm is proposed and necessary and
sufficient conditions for parameter convergence are proposed.
Examples and relation to LPE are also presented in this section.
Simulation results are included in Section V. Summary and con-
cluding remarks are stated in Section VI. Proofs of all proper-
ties, lemmas, and theorems can be found in Appendix A.

II. STATEMENT OF THE PROBLEM

The problem considered is the estimation of unknown param-
eters in a class of nonlinear systems of the form

(1)

where are bounded unknown parameters,
are input and output respectively, and the functions and

are given by and .
We make the following assumptions regarding and .
Assumption 1: The function is Lipschitz in so

that

Assumption 2: is Lipschitz with respect to its arguments,
i.e.,
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Assumption 3: is a bounded, continuous function of
its arguments, and is bounded and continuous.

Assumption 4: The system in (1) has bounded solutions if
is bounded.

Assumption 5: , and is a known compact
set.

Let a set be defined as follows:

if (2)

We introduce the definition of an identifiable function which is
necessary for parameter convergence.

Definition 1: A function is identifi-
able over parameter region with respect to if there does
not exist and such that

Definition 1 implies that identifiability follows if the system
of equations:

(3)

has a unique solution for any . Equation (3)
suggests a procedure for constructing such that for a given

, can become identifiable over . That is, the number
and the value , for must be chosen such that (3)
has a unique solution.

We also note that for a given , identifiability of is depen-
dent on the choice of . For example, if is linear, then is
identifiable over any if elements of span the entire
space of ; for a nonlinear , identifiability may be possible
even if these elements span only a subspace. We notice that if
is not identifiable with respect to , it implies that we have no
way of identifying using any input in .

In Sections II-A–C, we propose a min–max parameter esti-
mation algorithm, and its properties. For simplicity, we omit the
arguments of , and note that it is a measurable continuous func-
tion of time that satisfies Assumption 1.

A. Min–Max Parameter Estimation Algorithm

The dynamics of parameter estimation algorithm that we pro-
pose is the same as the min–max algorithm in [1] and is as fol-
lows:

(4)

where

(5)

is an arbitrary positive number, denotes the saturation
function and is given by if and

if and and come from the solu-
tion of an optimization problem

(6)

The choices of and imply the following inequality:

(7)

We define

and rewrite the dynamics of the whole parameter estimation al-
gorithm as

(8)

Let . The problem is therefore to determine the
conditions on under which the system (8) has uniform asymp-
totic stability in the large (u.a.s.l.) at .

B. Solutions of and

In [1] and [6], closed form solutions to (6) when is a con-
cave/convex function of and when is a general function of

were derived, respectively. In both [1] and [6], these solutions
were derived under the assumption that . In this paper,
results are extended to the case when this assumption is omitted.
For ease of exposition, we present the results for the cases when
a) is a scalar, and is a general function of and b) is a
vector, and is a convex/concave function of . We define a
convex set which is constructed as follows: If
is the convex hull, which is the smallest convex set in that
contains , then is the projection of

on which contains . Such a convex set is needed
since i) the hierarchical algorithm discussed in Section IV-C can
allow the parameter estimate to wander outside , and ii) the
solutions to the min–max algorithm differ depending whether
lies within this convex set or outside.

a) , and is a general function of : In this
case, Same as in [6], the following two
definitions are useful.

Definition 2: A point if and

(9)

where .
Definition 3: , where denotes the com-

plement of .
We now state the solutions to (6) in case a), when . The

solutions when can be derived in a similar manner using
the concave cover.
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Denoting , as in [6],
we obtain

if

if

if

(10)
and if , (11), shown at the bottom of the page, holds,
and if , (12), shown at the bottom of the page, holds.

b) , is a concave function of : The solutions
to (6) are easier to find when is a simplex, and are presented
first.

Case i): is a simplex: Very similar to [1], we have the
following solutions:

where , ,

...
...

...

are the vertices of , and
.

Case ii) is a compact set in : We define a polygon
which contains , whose vertices are given by

. Denoting , we note that

hyperplanes can be constructing using a combination of

points from the vertices of the polygon. Denoting the vertices
of the th hyperplane as , and as the slope
of this hyperplane, we choose as a set of the hyperplanes
such that

We can derive the solutions to (6) as

where

The solutions for the case when is a convex function of
can be derived in a similar manner.

c) , is a general function of : Using the
above two cases, and in particular, a combination of concave
and convex covers, convex hull, and polygons, the solutions to
(6) can be found.

C. Properties of the Min–Max Estimator

In [1], the min–max estimator and therefore the resulting error
model in (8) was shown to be stable. The stability properties of
this error model are summarized in Properties 1 and 2 below. In
what follows, the quadratic function is useful:

(13)

Property 1 summarizes the stability properties of (8).

if

otherwise
(11)

if

otherwise
(12)
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Property 1:

(14)

Property 1 implies that the min–max estimator is stable. How-
ever, whether the parameter estimates will converge to their true
values, that is, whether will converge to the origin is yet to be
established. To facilitate parameter convergence discussions, an
additional property of the min–max estimator is stated in Prop-
erty 2.

Property 2: If in (8)

(15)

then

(16)

where , ,
and

(17)

Property 2 implies that for parameter convergence to occur,
must become periodically large. For this in turn to occur, exam-
ining the dynamics in (8) and defining

, i) must be large when is large and ii)
must be small compared to . Condition i) is re-

lated to persistent excitation, and is similar to parameter conver-
gence conditions in linearly parameterized systems. Condition
ii) is specific to the min–max algorithm. In order to facilitate the
latter, a few properties of are worth deriving, and are enumer-
ated below in Properties 3 and 4.

Noting that is defined as in (6), we denote

if

if

It follows that and are well defined functions of and
. We establish the following properties about , and

.
Property 3:

Suppose for a given , retains its curvature as varies.
We define

if is convex
if is concave

(18)

Property 4: For and defined as in (6) and (18), respec-
tively, the following holds:

i) if ii) if

(iii) for any (19)

Both Properties 3 and 4 are used in Section III for the proof
of Theorem 1.

III. PARAMETER CONVERGENCE IN SYSTEMS WITH

CONVEX/CONCAVE PARAMETERIZATION

We first focus on parameter convergence of the system (8)
when is convex/concave for any . For the sake of
completeness, we include the definition of a concave/convex
function.

Definition 4: A function is said to be i) convex on if
it satisfies the inequality

and ii) concave if it satisfies the inequality

where .
We make a few qualitative comments regarding the solutions

of (8) and their convergence properties before establishing the
main result. The main difficulty in establishing parameter con-
vergence is due to the presence of the time-varying function
in (8). As shown in Properties 3–4 in Section II-C, the mag-
nitude of changes with the curvature of . As mentioned in
Section II-C, in order to establish parameter convergence, in ad-
dition to being large when is large has to re-
main small. Property 3 shows that for any nonzero value of ,

can periodically take the value zero if switches periodi-
cally between concavity and convexity. This in turn implies that

can periodically become small if continues to change its
curvature, that is, changes from 1 to 1. As will be shown
in Section III-A, the conditions for parameter convergence not
only require that become large for a large but also require

to switch between convexity and concavity over any given in-
terval.

Yet another feature of the min–max algorithm is the use of
the error for adjusting the parameter instead of the tradi-
tional estimation error . This was introduced in the estimation
algorithm to ensure a continuous estimator in the presence of a
discontinuous solution that can be obtained from the min–max
optimization problem. The introduction of a nonzero can cause
the parameter estimation to stop if becomes smaller than .
As a result, the trajectories are shown to converge to a neighbor-
hood of the origin rather the origin itself.

In Section III-A, we state and prove the convergence result. In
Section III-B, we discuss the sufficient condition that results in
parameter convergence, specific examples of and counterex-
amples, and the relation to persistent excitation conditions that
guarantee parameter convergence in the case of linear parame-
terization.

A. Proof of Convergence

The first convergence result in this paper is stated in Theorem
1.

Theorem 1: If i) is convex (or concave) on for
any , and ii) for every , there exist positive
constants , and a time instant such that
for any

(20)
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where is defined as in (18), then all trajectories of (8)
will converge uniformly to

(21)

where

(22)

is defined as in (8), is given by (20), and are defined
as in Assumptions 1 and 2, and is the bound on in (4) so
that

(23)

The proof of Theorem 1 follows by showing that if and
are such that condition (20) is satisfied, then becomes

large at some time over the interval . Once
becomes large, it follows from Property 2 that decreases
over the interval by a finite amount.

Remark 1: If is concave (or convex) and if satisifes the
inequality in (20), we shall define that satisfies the convex per-
sistent excitation (CPE) condition with respect to . Theorem 1
implies that if satisfies the CPE condition with respect to ,
then parameter convergence to a desired precision follows.

Remark 2: From the definition of , it automatically fol-
lows that as , all trajectories converge to the region
and hence u.a.s.l. follows.

B. Sufficient Condition for Parameter Convergence

The CPE condition specifies certain requirements on in
order to achieve parameter convergence. For a given , The-
orem 1 does not state how should behave over time in order
to satisfy (20). In this section, we state some observations and
examples of that satisfies (20) for a general .

Equation (20) consists of two separate requirements. De-
noting the first requirement is that the
magnitude of must be large. The second requirement is that

must have the same sign as . The first component states that
for a large parameter error, there must be a large error in . It is
straightforward to demonstrate that this condition is equivalent
to linear persistent excitation condition in [10], and is shown in
Section III-B.2. The second requirement states what the sign of

should be in relation to the convexity/concavity of . If is
convex, should be positive, and conversely, if is concave,
should be negative.

The coupling of convexity/concavity and the sign of the in-
tegral of has the following practical implications. To ensure
parameter convergence, must be such that one of the following
occurs: At least at one instant .

a) For the given , must change in such a way that the sign
of is reversed, while keeping the convexity/concavity of

the same.
b) Or, for the given , must reverse the convexity/concavity

of , while preserving the sign of
1) Examples: We illustrate the aforementioned comments

using specific examples of . Suppose

(24)

where , . It can be checked
that given in (24) is always convex with respect to for all

. Therefore, option b) is not possible. Hence, must be such
that can switch sign for any as required by option (a). One
example of such an is if for any , there exists
such that

(25)

where is any unit vector in . Another example which sat-
isfies condition (20) is given by

It is easy to show that for such an , condition b) is satisfied if
switches between and where and .
The previous examples show that the condition on that sat-

isfies (20) varies with .
2) Relation to Conditions of Linear Persistent Excitation

: The relation between CPE and LPE is worth exploring. For
this purpose, we consider a linearly parameterized system,
which is given by (1) with

where . In this case, it is well known that the corre-
sponding estimator is given by (4) with and [9].
The resulting error equations are summarized by

(26)

In [10], it is shown that u.a.s.l. of (26) follows under an LPE
condition. For the sake of completeness, we state this condition
now.

Definition (LPE): is said to be linearly persistently ex-
citing (l.p.e.) if for every , there exists positive constants

, , and a subinterval such that

(27)

We now show the relation between the LPE condition and the
CPE condition in (20). When , if Assumption
1 holds, it can be shown that the LPE condition is equivalent to
the following inequality: For every and , there exists
positive constants , and a time instant
such that

(28)

Since a linear function can be considered to be either convex or
concave, the inequality in (28) is equivalent to the CPE condi-
tion in (20). This equivalence is summarized in the following
lemma:

Lemma 1: When , if Assumption 1 holds,
the CPE condition in (20) is equivalent to the LPE condition in
(27).

It should be noted that for a general nonlinear , the CPE
condition becomes more restrictive than the LPE condition. For
example, for as in (24), the CPE condition implies that must
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satisfy (25). On the other hand, if , even if is such that
is periodically large, the LPE condition is satisfied.

3) Counterexample: For a general function , it may not be
possible to find a that satisfies either condition a) or b) previ-
ously mentioned. A simple example is

where and . We note that
is concave and monotonically decreasing for any with

. Hence, neither a) nor b) is satisfied. That is, it is possible
for the parameter estimate of the min–max algorithm to get
“stalled” in a region in . This motivates the need for an im-
proved min–max algorithm, and is outlined in Section IV.

IV. PARAMETER CONVERGENCE IN SYSTEMS WITH A

GENERAL PARAMETERIZATION

In Section III, we showed that if a function is convex
(or concave), and if and satisfy the CPE condition, then
parameter convergence follows. However, as we saw in Sec-
tion III-B-III, not all convex/concave functions can satisfy the
CPE condition. In this section, we present a new algorithm
which not only allows the persistent excitation condition to be
relaxed but also enables parameter convergence for nonconvex
and nonconcave functions.

The algorithm we present in this section is hierarchical in na-
ture, and consists of a lower level and a higher level. In the lower
level, for a given unknown parameter region , the parameter
estimate is updated using the min–max algorithm as in (4). In
the higher level, using information regarding the parameter es-
timate obtained from the lower level, the unknown parameter
region is updated as . Iterating between the lower and higher
levels, the overall hierarchical algorithm guarantees a sequence
of parameter region . The properties of these two levels are
discussed in Sections IV-A and B, respectively. In Section IV-D,
we discuss conditions under which converges to . Using
these conditions, the definition of persistent excitation for non-
linearly parameterized systems is introduced. In Section IV-E,
we present examples of such an NLPE. The relation between
NLPE and CPE is discussed in Section IV-F.

A. Lower Level Algorithm

The lower level algorithm consists of the min–max param-
eter estimation as in (4) with the unknown parameter .
We show in this section that when this algorithm is used,
becomes small in a finite time, which is denoted as lower level
convergence. Once this occurs, the parameter estimate , de-
rived from the lower level convergence, remains nearly steady.
This estimate, in turn, is used in the higher level part of hierar-
chical algorithm to update the unknown parameter region from

to . The convergence of is stated in Lemma 2, and the
characterization of the unknown parameter is stated in Lemma
3.

Lemma 2: For the system in (1) and the estimator in (4),
given any positive and , there exists a finite time such
that

for (29)

We note that for every specific , a time that satisfies (29)
exists. However, the value of will depend on the choice of

. Since our goal is parameter convergence, we require to
assume distinct values, i.e., persistently span a set of interest.
This is stated in the definition later.

Let be defined as in (2).
Definition 5: is said to persistently span if for any

and any , there exist a finite and such that

(30)

Definition 5 implies that periodically visits all points in .
Let

(31)

where , and are defined in Assumption 1, Assumption
2 and (23) and is any positive number. If we choose as

where is given by (30), then Lemma 2 implies that there exists
a finite time such that

(32)

When satisfies (32), we refer to it as lower level convergence.
If persistently spans , then Definition 5 and the choice of

implies that at , , .
The parameter estimate at time instances are defined as

and are denoted as low-level convergent estimates. We charac-
terize the region where the unknown parameters lie in lLemma
3 using these lower level convergent estimates.

Lemma 3: For the system in (1) and the estimator in (4), let
be the unknown parameter region and , be

the lower level convergent estimates. If the input persistently
spans , then

where

(33)

and as in (31).
Lemma 3 implies that the unknown parameter lies in

for a given . It should be noted that in general, need not be
smaller than . However other properties of are useful for
characterizing the convergence behavior of the min–max algo-
rithm. These are enumerated as follows.
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P1) For , if , then reduces to the
manifold

P2) Property P3) implies that if i) is p.e. in , ii) is
identifable w.r.t. , iii) , and iv)

, then

These properties are made judicious use of in designing the
higher level algorithm in Section IV-B.

B. Higher Level Algorithm

We now present the higher level component of the hierar-
chical algorithm. Here, our goal is to start from a known param-
eter region that the unknown parameter lies in, and update
it as using all available information from the lower level
component. In particular, we use defined in (33) to update

. In order to reduce the parameter uncertainty, different ’s
are computed by varying , . The resulting
is, therefore, chosen as

(34)

C. Hierarchical Algorithm

The complete hierarchical algorithm is stated in Table I.
It should be noted that Steps 2) and 3) correspond to the lower

level and the higher level parts of the hierarchical algorithm, re-
spectively. Also, we note that Step 2) requires the closed-form
solutions of and which can be found as outlined in Sec-
tion II-A.

In order to obtain parameter convergence using the hierar-
chical algorithm, what remains to be shown is whether is
a strict subset of .

D. Parameter Convergence With the Hierarchical Algorithm

We now address the parameter convergence of the hierar-
chical algorithm. We introduce a definition for a “stalled” pa-
rameter region :

For any , define and as

(35)

Then, we define to be a “stalled” estimate-region of as

and (36)

where

(37)

TABLE I
COMPLETE HIERARCHICAL

ALGORITHM

We prove a property of which explains why it corre-
sponds to a “stalled” region in .

Lemma 4: For some , if , , then

In order to establish parameter convergence, we first char-
acterize the region that the parameter estimate converges to
in Lemma 5, and then establish the conditions under which
simply coincides with the true parameter in Theorem 2. The
set is defined as follows:

(38)

where is a box that contains any set and is defined as

(39)

Lemma 5: For the system in (1) and estimator in (4), under
Assumptions 1–4, the hierarchical algorithm outlined in Table I
guarantees that

(40)

Since and are arbitrary positive numbers, they can be
chosen to be as small as possible. When , , it fol-
lows directly from (36), (39), and (38) that

with

(41)
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where

and (42)

with and defined as in (35). From (41), we have the fol-
lowing theorem.

Theorem 2: For the system in (1) and the estimator in (4),
under Assumptions 1–4

(43)

if and only if for any where

or (44)

where denotes the null set and is defined as in (42).
Theorem 2 gives us a method to check if the hierarchical algo-

rithm can estimate the true parameters to any desired precision
when we set and small enough for a specific problem. We
note that is a continuous function of and , and that
as and becomes small, becomes arbitrarily close to the set

. Hence, the parameter estimate converges to the true value
with a desired precision.

Remark 3: If is identifiable over with respect to
, persistently spans , and satisfies the inequality (44),

we shall define that satisfies the NLPE condition with respect
to . Theorem 2 implies that NLPE of with respect to is nec-
essary and sufficient for parameter convergence to take place.

Remark 4: The requirement on for to satisfy the NLPE
can sometimes be less stringent than that on for LPE. An
example of this fact is for the parameter , and the
cases (i) , and (ii) where
and are the elements of . Clearly, for a such that

, where is a constant, does not satisfy , but does
satsify NLPE with respect to . As shown in Section III-B-I,
NLPE can impose more stringent conditions on as well.

Remark 5: It should be noted that the NLPE condition guar-
antees parameter convergence for any general nonlinear func-
tion that is identifiable. This implies that the min–max algo-
rithm outlined in [6], which is applicable for even a nonconvex
(or a nonconcave) function, can be used to establish parameter
convergence. We include simulation results of such an example
in Section V.

Remark 6: It should be noted that a fairly extensive treat-
ment of conditions of persistent excitation has been carried out
in [11], [12]for a class of nonlinear systems. The systems under
consideration in this paper do not belong to this class. The most
distinct features of the system (1) is the presence of the quantity

and the quantity , where the former can
introduce equilibrium points other than zero and the latter is not
Lipschitz with respect to . As a result, an entirely different
set of conditions and properties have had to be derived to estab-
lish parameter convergence.

Remark 7: The closed-form solutions of and can be
calculated as shown in Section II-A. It should be noted that

these solutions have been derived without requiring that ,
thereby expanding the results of [1]. Since can lie anywhere,
subsequent iterations of the hierarchical algorithm can be car-
ried out during which time the corresponding min–max solu-
tions can be derived.

As is evident from (44), (35), and (42), to check if indeed the
NLPE condition is satisfied for every for a given and
is a difficult task. In Section IV-E, we show that when ,
if is monotonic function of , identifiable with respect to ,
and is convex/concave, then the NLPE condition is satisfied.

E. Parameter Convergence When : An Example

When , the following lemma provides suf-
ficient conditions for (44) to hold and, hence, for the hierarchical
algorithm to guarantee convergence.

Lemma 6: For system in (1), the estimator in (4) where
, let and be identifiable over with respect to
. If

i) is convex (or concave) over all in

(45)

ii) is monotonic with respect to in

(46)

then (44) holds for any where .
The reader is refered to [13] for the proof.

F. Relation Between NLPE and CPE

In what follows, we compare the NLPE and the CPE condi-
tions. In order to facilitate this comparison, we restate the CPE
condition in a simpler form.

Definition 6: is said to satisfy the condition with
respect to if i) is convex (or concave) for any

, and ii) is persistently spanning with respect to , and
(iii) for any , there exists such that

(47)

We note that the only distinction between the inequalities in
(20) and (47) is in the value taken by for some in the
interval . In (47) it implies that assumes one of
the finite values in while in (20), the corresponding
can consist of infinite values. If is “ergodic” in nature so that
it visits all typical values that it will assume for all over one
interval, then it implies that the two conditions (20) and (47) are
equivalent. We shall assume in the following that the input is
“ergodic.”

Lemma 7: Let be convex (or concave) for all
, then the condition implies the NLPE condition.

Remark 8: Lemma 7 shows that the condition is suffi-
cient for the NLPE to hold if is convex (or concave). Clearly,
the condition is not necessary, as shown by the counterex-
ample in Section III-B-III. The NLPE condition therefore repre-
sents the most general definition of persistent excitation in non-
linearly parameterized systems.
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Fig. 1. Nonconcave (and nonconvex) function f(�; u) versus �, for
u = 1; 0;�1. f(�; 1):—-, f(�;�1): - - -, f(�; 0):.

Fig. 2. Output error ~y (t) with t using the hierarchical algorithm. � = 0:001
and � = 0:02.

Fig. 3. Parameter estimate �̂(t) with t using the hierarchical algorithm. True
parameter value � = 2.

V. SIMULATION RESULTS

We consider the system in (1) and the estimator in (4) to eval-
uate the performance of the hierarchical algorithm. The system
parameters are chosen as follows:

where is an unknown parameter that belongs to a known in-
terval . System variable is chosen as a sinusoidal
function and the true unknown parameter
equals 2. We note that the function is nonconvex (and non-
concave), whose values are shown in Fig. 1 for . It
can be shown that is identifable with respect to and that
is persistently spanning with respect to . The
hierarchical algorithm in Table I was implemented to estimate

. The parameters and . Since is a si-
nusoid, the parameter was set to the corresponding period .
The resulting output error , parameter estimate , and the up-
date of the parameter region are shown in Figs. 2–4, respec-
tively. The evolutions of the lower and upper bounds and

, with respect to are also shown in Fig. 5. A
similar convergence was observed to occur for any in .
These figures show that the update of is not necessarily
periodic. Once becomes smaller than over an interval ,
the corresponding parameter estimates and the upper and lower
bounds on and therefore the unknown parameter region are
computed. It was also observed that just the min–max algorithm
without the higher level component did not result in parameter
convergence.

VI. SUMMARY

In this paper, the problem of parameter estimation in systems
with general nonlinear parameterization is considered. In sys-
tems with convex/concave parameterization, sufficient condi-
tions are derived under which parameter estimates converge to
their true values using a min–max algorithm as in [1]. In sys-
tems with a general nonlinear parameterization, a hierarchical
min–max algorithm is proposed where the lower level consists
of a min–max algorithm and the higher level component up-
dates the bounds on the parameter region within which the un-
known parameter is known to lie. Using this algorithm, a nec-
essary and sufficient condition is established for parameter con-
vergence in systems with a general nonlinear parameterization.
In both cases, the conditions needed are shown to be stronger
than linear persistent excitation conditions that guarantee pa-
rameter convergence in linearly parametrized systems, thereby
leading to a general definition of NLPE.

The results in this paper establish parameter estimation in a
system of the form (1). Even though the output is a scalar, as is
shown in [6], a wide variety of adaptive control and estimation
problems can be reduced to an error model of the form of (1).
As a result, the persistent excitation conditions presented in this
paper are applicable to all of these problems.
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Fig. 4. Evolution of the parameter region 
 with t, using the hierarchical
algorithm. Note that 
 is updated at instants t such that j~y (t)j � � for
t 2 [t � T; t ].

Fig. 5. Upper-bounds f and lower bounds f of f(�; u ) with t using the
hierarchical algorithm, for u = 1;�1;0. f , f :—-, f , f : - - -, f , f :….

APPENDIX

A. Proof of Property 1

From (8) and (13), it follows that

(48)

When , it follows that and, hence, .
When , it follows that . Then, (48)
is transformed into

(49)

Combining (7) and (49), Property 1 is established.

B. Proof of Property 2

To prove Property 2, the following sublemma is needed.
Sublemma 2:1: For given systems

where and

if

then where

The proof of the sublemma is straight forward and is omitted.
Now, let us prove Property 2.

Without loss of generality, we assume that

(50)

From (8), it follows that

(51)

where is defined as in (17). From Assumption 2, because
is bounded, , and therefore are

also bounded, with bounded by . Let be spec-
ified as the solution of the following differential equation for

:

(52)

From (50), (51), and (52), Sublemma 2.1 implies that

and
(53)

From (52), it follows that

We note that is a concave function of for
. From properties of concave functions, it can be shown that

satisfies the inequality

(54)

From (53) and (54), we obtain that

for (55)

For , we can verify easily from (55) that

From (55), we have that
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Integrating (14) over , we have that

For

we can obtain a similar result. This proves Property 2.

C. Proof of Property 3

Let us first prove that

(56)

Since , it follows that for at least one value of
in , This proves

(57)

If , from (57), (56) holds. If , it follows that

Similarly, we can prove and Property 3 is estab-
lished.

D. Proof of Property 4

Since , is concave. It follows from the solu-
tions of the min–max algorithm in Section II-A that

if (58)

which proves Property 4-i). When , it follows from the so-
lutions of the min–max algorithm that is nonnegative, hence

if (59)

When , proceeding in the same manner as before, it
follows that

if and (60)

and

if and (61)

prove Property 4-ii) and 4-iii).

E. Proof of Theorem 1

For any and , it follows from (20) that there exists
such that

(62)
Without loss of generality, we assume that which
means that is convex (or linear) over . The proof
can be given in a similar manner if . When

, (62) can be rewritten as

(63)

where

(64)

If , we note that for all , since
is a Lyapunov function. Hence, we assume that . It
follows from the definition of in (13) that either

i) or ii) (65)

If (65)-ii) holds, it is easy to show that decreases. If (65)-i)
holds, we show below that will become large for some

. Using the definitions of in (22), it follows from (64)
and (65)-i) that

(66)

We shall show that if (66) holds, there exists
such that

(67)

where (68) and (69), shown at the bottom of the page, hold.
From (66), we can verify easily that both and are positive
numbers. We prove (67) by contradiction.

Suppose (66) holds and (67) is not true. Then, it follows that

(a) and (b) (70)

for any . From (8) and (70) b), it follows that

(71)

We prove that must become large over by
establishing lower bounds on the bracketed term and the last
term on the right-hand side of (71).

(68)

(69)
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It follows from (4), (70) b), Assumption 2, and the fact that
, that

(72)

Combining (63) and (72), we have that

(73)

From Assumption 1, it follows that

(74)

For , since from (70) (a), by inte-
grating (4) over , we obtain that

(75)

By combining (74), (75), and Assumption 2, it follows that

(76)

which can be rewritten as

(77)

where

(78)

Combining (73) and (77), it follows that for any

(79)

which establishes a lower bound for the bracketed term in (71).
We now derive a lower bound for the third term in (71). For

any , using the same procedure as for (76), it can be shown that

(80)

where are defined in (78). It follows from (75) that

(81)

We know that at , because , it follows from Property
4-ii) that

(82)

From the definition of , and the optimization problem in (6),
we obtain that

(83)

where are defined as in (78). Because is the
value that result in the minimum value of

, it follows that

(84)

Combining (83) and (84), it follows that

(85)

where are defined in (78). From (81), (85), and (80), it
follows that

(86)

Combining (82) and (86), it follows that

(87)

It follows from (87) and Property 3 that for all

(88)

which establishes a lower bound on the last term on the
right-hand side of (71).

Using (79) and (88), (71) leads to the inequality

(89)

Integrating both sides of (89) over where is
defined in (69), we have

which can be simplified as

(90)
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Since (70) holds for all , we have that

(91)

It follows from the definition of in (68) that

(92)
Equation (92) can be rewritten as

(93)

It follows from (90) and (91) that

(94)

From (93), (94) can be simplified as

(95)

Equation (95) implies which contradicts (70).
Thus, we have shown that (67) must hold.

In summary, we have shown that if , then either

i) or

ii) (96)

where . From Property 2 , it follows that if (96)-i)
holds, then there exists such that

(97)

Similarly, if (96)-ii) holds, then

(98)

where . Because is nonin-
creasing, it follows from (97) and (98) that for any

(99)

where

This implies that decreases by a finite amount over erery
interval until trajectories reach . This proves Theorem 1.

F. Proof of Lemma 2

For any , if

(100)

we are done. Otherwise, it means there exists
such that

It follows from Property 2 that there exists
such that

This implies that everytime when , Lyapunov func-
tion will decrease a small amount. Now, that is finite,
these kind of situation can only happen finite times. It means
that we can find a finite such that

This establishes Lemma 2.

G. Proof of Lemma 3

We shall prove by contradiction that Lemma 3 holds. Assume
that for some That is

i) or ii)

for some . Suppose is true. Since , case
implies that

(101)
From (8), Property 3 and the fact , it follows that

(102)

where

(103)

represents the lower bound of . Combining (101) and (103), it
follows that

(104)

From the definition of , and the optimization problem in (6),
we obtain that

(105)

where

(106)

Because is the value that result in the minimum value
of , it follows that

(107)
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Combining (105) and (107), it follows that

(108)

where and are defined as in (1). From Assumption 1, it
follows that

(109)

Since , by integrating (4) over , we
obtain that

(110)

By combining (109), (110), and Assumption 2, it follows that

(111)

where and are defined as in (106). From (110), (111), and
(108), we get

(112)

Incorporating (111) and (112) into (103), we have that

which can be simplified using (31) and (104) as

(113)

It follows from (102) and (113) that

(114)

Integrating both sides of (114) over where
,

(115)

Since , we can rewrite (115) as

(116)

Equation (116) implies

and this contradicts the fact that over .
Thus, we conclude that the assumption (i) that for some

is not true and, hence

(117)

In the same manner, we can prove that

(118)

Equations (117) and (118) conclude the proof of Lemma 3.

H. Proof of Lemma 4

This proof follows directly from the definition of in (36)
and the construction of in (34).

I. Proof of Lemma 5

We start with the hierarchical algorithm shown in Table I.
Because , there exists such that

(119)

Corresponding to , if the lower level convergent estimate of
is given by , it follows that

(120)

Suppose (40) does not hold, it implies that

(121)

Then, there exists an such that

(122)

where with . We can prove (122) by
contradiction. We assume that

Because

combining the defintion of in (38), it follows that

which is a contradiction to (121). Thus, (122) must be true if
(40) does not hold.

Let and be lower and upper bounds in specified as

If we define

where is defined as in (37), (122) together with the def-
inition of , imply that

or (123)
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Equation (123) implies that tighter bounds or can be found
for for which implies that a smaller set
can be found using or . This contradicts the assumption in
(119) and Lemma 5 is proved.

J. Proof of Theorem 5

Sufficiency follows directly from Lemma 5 and (41).
To prove necessity, we assume that (44) does not hold. That

is, there exists where such that

i) and

ii) (124)

It implies that there exists some and
. Assume that at iteration , the unknown parameter region

and the lower level convergent parameter estimate at
this iteration is given by . Then, condition ii) in (124)
implies that

since is not empty. From Lemma 4 , it follows
that

and will remains at always. Since , the parameter
estimate will not converge to even and approaches 0. This
implies that (44) is a necessary condition for (43).

K. Proof of Lemma 7

For any where , if (44) does not hold, it follows
that

and (125)

From (125), it follows that there exists such that

(126)

For this choice of , from (47) we have that there exists a
such that

(127)

Without loss of generality, we assume that . It follows
from Property 4-i) that

(128)

It follows from (128) and the definition of in (42) that

(129)

From the definition of in (35) and the fact that , it
follows that

(130)

Combining (129) and (130), it follows that

(131)

which is a contradiction to (127) since . This proves
Lemma 7.
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[5] A. Kojić, A. M. Annaswamy, A.-P. Loh, and R. Lozano, “Adaptive con-
trol of a class of nonlinear systems with convex/concave parameteriza-
tion,” Syst. Control Lett., vol. 37, pp. 267–274, 1999.

[6] A. P. Loh, A. M. Annaswamy, and F. P. Skantze, “Adaptation in the pres-
ence of a general nonlinear parametrization: An error model approach,”
IEEE Trans. Automat. Contr., vol. 44, pp. 1634–1652, Sept. 1999.

[7] M. S. Netto, A. M. Annaswamy, R. Ortega, and P. Moya, “Adaptive con-
trol of a class of nonlinearly parametrized systems using convexifica-
tion,” Int. J. Control, vol. 73, pp. 1312–1321, 2000.

[8] F. P. Skantze, A. Kojic, A. P. Loh, and A. M. Annaswamy, “Adaptive es-
timation of discrete-time systems with nonlinear parametrization,” Au-
tomatica, vol. 36, pp. 1879–1887, 2000.

[9] K. S. Narendra and A. M. Annaswamy, Stable Adaptive Sys-
tems. Upper Saddle River, NJ: Prentice-Hall, 1989.

[10] A. P. Morgan and K. S. Narendra, “On the stability of nonautonomous
differential equations _x = [A + B(t)]x with skew-symmetric matrix
B(t),” SIAM J. Control Optim., vol. 15, pp. 163–176, Jan. 1977.

[11] E. Panteley, A. Loria, and A. Teel, “Relaxed persistency of excitation for
uniform asymptotic stability,” IEEE Trans. Automat. Contr., vol. 46, pp.
1874–1888, Dec. 2001.

[12] Y. Zhang, P. Ioannou, and C. Chien, “Parameter convergence of a new
class of adaptive controllers,” IEEE Trans. Automat. Contr., vol. 41, pp.
1489–1493, Oct. 1996.

[13] C. Cao, A. M. Annaswamy, and A. Kojic, “Active and adaptive control
lab,” Mass. Inst. Technol., Cambridge, MA, 2002.

Chengyu Cao received the B.E. degree in informa-
tion and control engineering from Xi’an Jiaotong
University, P.R. China, and the M.S. degree in
manufacturing engineering from Boston University,
Boston, MA, in 1995 and 1999, respectively. He
is currently working towards the Ph.D. degree
in the Mechanical Engineering Department, the
Massachusetts Institute of Technology, Cambridge,
MA.

Between 1995 and 1997, he was a Graduate
Student in the System Engineering Institute of Xi’an

Jiaotong University, P.R. China. His main research interests are in the fields of
adaptive control, control and identification of nonlinear systems, and neural
networks.



IE
EE

Pr
oo

f

16 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 3, MARCH 2003

Anuradha M. Annaswamy (S’82–M’85–SM’01–
F’02) received the Ph.D. degree in electrical engi-
neering from Yale University, New Haven, CT, in
1985.

She has been a member of the faculty at Yale
University, Boston University, Boston, MA, and the
Massachusetts Institute of Technology, Cambridge,
MA, where she is currently the Director of the
Active-Adaptive Control Laboratory and a Principal
Research Scientist in the Department of Mechanical
Engineering. Her research interests pertain to

adaptive control, active control of resonant thermo-fluid systems including
combustion processes and supersonic flows, and neural networks. She has
authored numerous journal and conference papers and coauthored a graduate
textbook on adaptive control.

Dr. Annaswamy has received several awards including the Alfred Hay Medal
from the Indian Institute of Science in 1977, the Stennard Fellowship from Yale
University in 1980, the IBM Postdoctoral Fellowship in 1985, the George Ax-
elby Outstanding Paper Award from the IEEE Control Systems Society in 1988,
and the Presidential Young Investigator award from the National Science Foun-
dation in 1991. Dr. Annaswamy is a Member of AIAA.

Aleksandar Kojic (S’01–A’01) was born in 1974
and is a native of Kragujevac, Yugoslavia. He
received the B.Sc. degree from the Mechanical En-
gineering Department, the University of Kragujevac,
Kragujevac, Yugoslavia, and the M.S.M.E. and
Ph.D. degrees from the in Mechanical Engineering
Department, the Massachusetts Institute of Tec-
nology, Cambridge, MA, in 1995, 1998, and 2001,
respectively.

He is currently a Senior Research Engineer at the
Robert Bosch Corporation, Palo Alto, CA. His re-

search interests are in the area of identification and control of nonlinearly pa-
rameterized systems.


