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Parameter Design Methodology for Chemical Processes Using a 
Simulator 

Urmila M. Diwekar' and Edward S. Rubin 
Environmental Institute and Department of Engineering and Public Policy, Carnegie Mellon University, 
Pittsburgh, Pennsylvania 15213 

Parameter design is a method popularized by the Japanese quality expert G. Taguchi, for designing 
products and manufacturing processes that are robust in the face of uncontrollable variations. At 
the design stage, the goal of parameter design is to identify design settings that make the product 
performance less sensitive to the effects of manufacturing and environmental variations and 
deterioration. Because parameter design reduces performance variation by reducing the influence 
of the sources of variation rather than by controlling them, it is a cost-effective technique for 
improving quality. A recent study on the application of parameter design methodology for chemical 
processes reported that the use of Taguchi's method was not justified and a method based on Monte 
Carlo simulation combined with optimization was shown to be more effective. However, this method 
is computationally intensive as a large number of samples are necessary to  achieve the given accuracy. 
Additionally, determination of the number of sample runs required is based on experimentation 
due to  a lack of systematic sampling methods. In  an attempt to  overcome these problems, the use 
of a stochastic modeling capability combined with an optimizer is presented in this paper. The 
objective is that of providing an effective means for application of parameter design methodologies 
to chemical processes using the ASPEN simulator. This implementation not only presents a 
generalized tool for use by chemical engineers a t  large but also provides systematic estimates of the 
number of sample runs required to  attain the specified accuracy. The stochastic model employs 
the technique of Latin hypercube sampling instead of the traditional Monte Carlo technique and 
hence has a great potential to  reduce the required number of samples. The methodology is illustrated 
via an example problem of designing a chemical process. 

1. Introduction 

When the Ina tile company of Japan found that the 
uneven temperature profile of its kiln was causing unac- 
ceptable variation in tile size, it could have attempted to 
solve the problem with expensive modification of kilns. 
Instead, it chose to make an inexpensive change in the 
settings of the tile design parameters to reduce sensitivity 
to temperature variation. Using a statistically planned 
experiment, the company found that increasing lime 
content of the clay from 1% to 5% reduced the tile size 
variation by a factor of 10 (Taguchi and Wu, 1980). A 
technique such as this that reduces the variation by 
reducing the sensitivity of an engineering design to the 
sources of variation rather than by controlling them is 
called parameter design. 

In order to minimize deviations from product specifi- 
cations, the usual approach has been to design an automatic 
control system which keeps the process output specifi- 
cations on target, despite changes in the process input. In 
such an approach, the control engineer is often presented 
with difficult control problems that may require extensive 
and expensive modifications to both process and control 
system hardware to obtain satisfactory performance of 
the control system. Furthermore, the effectiveness of the 
control system is highly dependent upon the nominal 
values of the operating variables and the mechanical design 
which are set by the designer of the processing unit. The 
high degree of interactions among these design problems 
is now widely recognized, and current research trends have 
been aimed at  designing the unit and the control system 
concurrently. A recent article by Sheffield (1992) high- 
lights the importance of such an integrated approach at 
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the design stage which helps to avoid difficult control 
problems at the end of the line. Parameter design 
methodology is an off-line quality control method, pop- 
ularized by Dr. G. Taguchi, for designing products and 
processes that are robust to uncontrollable variation at  
the design stage. 

Taguchi has outlined a three-step approach to off-line 
quality control namely, system design, parameter design, 
and tolerance design. System design is the process of 
applying scientific and engineering knowledge to produce 
a basic functional prototype design. The prototype model 
defines the initial settings of product or process design. 

Parameter design is an investigation conducted to 
identify settings that minimize (or at least reduce) the 
performance variation. This is a key step to achieve high 
quality without increasing the cost. 

Tolerance design is the last step and is only employed 
if the reduced variation obtained through parameter design 
is not sufficient. It involves tightening tolerances on 
product parameters or process factors whose variations 
impart large influence on the output variation. 

The rapid growth of interest in the Taguchi approach 
over the last few years led to a great expansion in the 
number of published case studies relating to different areas 
of industrial activities (Bendell et al., 1989). Although 
the popularity of Taguchi approach seems to be pervasive 
in all engineering branches, application of this procedure 
to chemical industries has not been widely reported. 
Boudriga (1990) presented one of the first systematic 
studies of using different statistical approaches to the 
problem of off-line quality control for chemical processes. 

Chemical industries are well served in the area of System 
design by process simulators such as FLOWTRAN, PRO/ 
11, CHEMSHARE, and ASPEN. Although these simu- 
lators are based on a deterministic framework, a recent 
work by us on the addition of a generalized stochastic 
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(SQP) technique to the public version of the ASPEN 
simulator in the form of a unit operation block. The 
modular nature of both the stochastic modeling and 
optimization capabilities allowed the development of the 
generalized framework for a parameter design method 
around a chemical process simulator. The structure of 
the framework and its use are briefly described below. 

The optimization block provides the stochastic block 
with the optimal values of the decision variables in terms 
of the nominal values of the uncertain variables. The 
deviations in the input variables are expressed in terms 
of the standard deviation and mean given by 

modeling capability (Diwekar and Rubin, 1991) around 
the public version of ASPEN simulator opened up new 
areas of research and analysis and provided an important 
tool for design research. This paper presents a method- 
ological approach to parameter design of chemical pro- 
cesses which centers around the ASPEN simulator and is 
based on the stochastic modeling capability. The paper 
also analyzes different sampling techniques and provides 
an insight into the stochastic optimization problem 
underlying the parameter design methodology. The 
methodology is discussed and illustrated using an example 
problem of a chemical process flowsheet. 

2. Taguchi Approach to Parameter Design 
In parameter design, Taguchi’s stated objective is to 

find settings of the product or process design parameters 
which minimize an average quadratic loss function defined 
as the average standard deviation of the response from a 
target value. In order to select the settings of the design 
parameters, a set of measures called signal-to-noise ratio 
(SN) needs to be maximized. Taguchi uses the so-called 
orthogonal-array designs to arrive at  the optimal settings. 
Recently, several statisticians (Kacker, 1985; Hunter, 1985; 
Leon et al., 1987) tried to establish the relation between 
loss function and the SN measure and provided insights 
into the Taguchi approach which was surrounded by a 
mystique that few could unveil. 

Kacker (1985), in an introduction to the methods of 
Taguchi, presented the philosophy and terminologies 
behind the Taguchi approach. In the same article, he 
explains the concept of orthogonal arrays which are 
essentially statistical experiments with smaller runs. Both 
Kacker (1985) and Hunter (1985) suggested that the use 
of orthogonal arrays could be misleading. Leon et al. (1987) 
provided the relation between SN ratio and the loss 
function. They showed that by using the signal-to-noise 
ratio, a logarithmic transformation was performed on the 
raw data. The objective of this transformation is to make 
the mean and the variance independent. However, in 
many situations this transformation does not eliminate or 
reduce the coupling of mean and variance. In short, all 
these studies indicate that the Taguchi approach is very 
efficient and useful only when the objective function has 
a quadratic form and no interactions exist between the 
mean and the variance. Therefore, a functional relation- 
ship between the output and input is required a priori to 
decide whether the Taguchi approach should be used or 
not, and such a relationship may not be available for many 
real-world problems. 

Boudriga (1990) explored different approaches to pa- 
rameter design for chemical processes and also arrived at  
the foregoing conclusion. It was stated that for a gener- 
alized application of parameter design strategy, Taguchi’s 
approach of using orthogonal arrays to maximize the signal- 
to-noise ratio is not justified and one has to resort to 
stochastic optimization techniques. Boudriga used Monte 
Carlo simulations along with nonlinear optimization 
techniques to minimize the variance. Boudriga’s work on 
parameter design of chemical processes and the recently 
developed stochastic modeling capability around a chem- 
ical process simulator (Diwekar and Rubin, 1991) forms 
the basis for ageneralized framework for parameter design 
methodology described in the next section. 

3. A Generalized Framework for the Parameter 
Design of Chemical Processes 

The present approach involves adding an optimization 
capability based on the successive quadratic programming 

where E is the error level, and ai and pi are, respectively, 
the standard deviation and the mean value of input variable 
i. The stochastic block characterizes this information in 
terms of probability distributions and analyzes their effect 
on the selected output variables. The stochastic block is 
linked with the flowsheet on one side and with the 
optimization block on the other side. This type of 
stochastic optimization framework can be used for pa- 
rameter design methodology which involves (1) Identifying 
the key decision variables, (2) specifying input uncer- 
tainties or variabilities in terms of percentage deviations 
and types of error distribution, (3) specifying the corre- 
lation structure of the interdependent parameters, if any, 
(4) sampling the distributions of the specified parameters 
in an iterative fashion, (5) propagating the effect of 
uncertainties through the process flowsheet and collecting 
the outputs of interest, and (6) solving the following 
optimization problem. 

N 
minimize a: = Chi - 912 (2) 

p j ,  j = 1, ..., nv F l  

where yi is the output of the sample i and uo2 is the variance 
of the output. 

The optimization block invokes the stochastic block with 
the set of nominal values of the parameters. The stochastic 
block assigns a probability distribution based on the 
nominal values and the specified error levels. The 
distributions are selected from the set of eight types of 
distributions (normal, lognormal, uniform, loguniform, 
modified uniform, beta, and triangular) available in the 
stochastic block or from user-defined distributions. Sub- 
sequently, it uses either Latin hypercube sampling or 
random sampling topass the values of each uncertain input 
variable to the flowsheet. After the flowsheet simulation 
is run, the output variables of interest are collected. The 
stochastic simulation cycle is then repeated for a new set 
of samples selected from the probabilistic distributions. 
A fortran block, STCREC, is used to control the cycling 
of the stochastic block, and another block, called STC- 
TAIL, is used to access and assign samples to the model 
parameters. 

After all the samples or observations have gone through 
the cycle for a specified number of times, the stochastic 
block analyzes the output and provides information on 
the sample variance to the optimization block, either as 
a single value or in the form of a response surface. A 
response surface could be used as a crude model to study 
the influence of several independent variables on the 
response of dependent variable. The stochastic block has 
a feature to generate the response surface using step-wise 
regression and is based on the method outlined by Iman 
et al. (1981a, b). The information about variance, together 
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Figure 1. Generalized framework for the parameter design of chemical processes. 

with the partial derivatives of the objective function with 
respect to decision variables, is utilized by the optimization 
block to update the values of the decision variables. The 
partial derivatives are calculated by the optimization block 
by perturbing the values of the decision variables and 
observing the corresponding changes to the objective 
function. The iterative sequence is carried out until the 
optimality conditions are satisfied. 

Figure 1 shows the use of the stochastic optimization 
framework for the parameter design of a chemical process. 
The cycle for the parameters consists of (a) the optimi- 
zation block, OPTM, (b) the stochastic block, STOCHA, 
for assigning parameter uncertainty distributions and 
passing the information about variance to the optimization 
block, (c) the Fortran block, STCTAIL, for accessing 
variables and assigning sampled values, and (d) the Fortran 
recycle block, STCREC, for data output collection and 
recycling. 

4. Latin Hypercube Sampling and Random Monte 
Carlo Simulations 

There are two sampling methods available within the 
stochastic unit operations block-random Monte Carlo 
sampling (MCS) and Latin hypercube sampling (LHS). 
Although our earlier paper (Diwekar and Rubin, 1991) 
describes these techniques in brief, it was found essential 
to discuss these two methods in detail in this paper because 
the sampling will be used in the context of stochastic 
optimization where computational efficiency as well as 
precision plays an important role. 

Random Monte Carlo simulation is the well-known and 
simplest sampling method and is most widely used. In a 
crude Monte Carlo analysis, a value is drawn at  random 
from the distributions of each input. A sample defined 
by a set of random values for each input, is used by the 
model to compute the output values. Boudriga (1990) 
used the Random Monte Carlo Simulations to compute 
the variance of the output in the application of the 
parameter design methodology to their problem. I t  is often 
not realized that the primary value of Monte Carlo methods 
is not the randomness of the sampling but the resulting 
equidistribution properties of the sets of points in the 
parameter space. Once this is recognized, the other 
systematic or stratified sampling techniques become more 
appealing (Morgan and Henrion, 1990). 

In a stratified sampling technique, the sample space for 
an input parameter is divided into strata, and input values 
are obtained by sampling separately from each stratum, 
instead of from the distribution as a whole. Latin 
hypercube sampling (LHS) represents one class of strat- 
ified sampling (Iman and Shortencarier, 1984). In the 
LHS method, a distribution is divided into N intervals of 

Interval Random no. Scaled Probability Corresponding 
m Rni p, Observation 
1 0.080 0.016 1.529 

2 0.610 0.322 4.252 

3 0.525 0.505 5.021 

4 0.935 0.787 6.288 

I 5  0.620 0.924 7.319 

Figure 2. Interval endpoints used with a LHS with size 5 (top) and 
specific values selected through the inverse of the distribution function 
(bottom) (Iman and Shortencarier, 1984). 

equal probability, where N represents the number of 
samples, and one sample is taken at  random from within 
each interval. LHS guarantees that the values from the 
entire range of the distribution are sampled in proportion 
to the probability density of the distribution. 

Figure 2 shows the procedure for selecting five samples 
using Latin hypercube sampling for a normal distribution. 
To get the specific values, 5 random numbers are selected 
between 0 and 1. These numbers (I?,, m = 1, ..., 5) are 
then scaled to obtain the following probabilities. 

(3) 
This ensures that exactly one probability, Pm will fall within 
each interval as shown on the probability axis. The values 
ofP, are then used to obtain the inverse of the distribution 
function to generate the specific values used in LHS (Figure 
2). Note that the values generated for each input are in 
the ascending order of probability. The final step in 

P, = R,(1.0/5) + ( m  - 1)(1.0/5), m = 1, ..., 5 
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Table 1. Parameters and Their Values Used in the Study 

parameter value unita 
8.4 X 106 min-1 ki kB 7.6 X 10' min-1 

HRA -2.12 x 104 Jlmol 
HRE -6.36 X 10' Jlmol 
EA 3.64 X 10' Jlmol 
EB 3.46 X 10' Jlmol 
CP 3.2 x 103 Jlkg K 
R 8.314 Jlmol K 
P 1180 kg/m3 

1 1 " -  I I  

Figure 3. The nonisothermal CSTR. 

sampling involves pairing the selected values, done either 
randomly or using the restricted technique of Iman and 
Conover (1982), where the user-specified correlations are 
used. 

Since the LHS technique samples the distributions over 
the entire range of probable values, the number of samples 
required to adequately represent a distribution is normally 
much less than that required in Monte Carlo Techniques. 
However, the number of samples required for an accurate 
simulation is harder to compute (using statistical analysis) 
for LHS than for Monte Carlo Simulations. 

5. Sampling Accuracy 
Before starting the stochastic optimization runs, the 

accuracy of the sampling process is evaluated. The 
example of a continuous stirred tank reactor (CSTR) from 
Boudriga (1990) is used for this purpose. The system 
investigated in their study consists of a first-order se- 
quential reaction, A - B - C, taking. place in a 
nonisothermal CSTR. The process and the associated 
variables are illustrated in Figure 3, while the design 
equations are given below. 

7 = V/F (4) 

Q = FPC,(T - Ti) + V(rAHm + rBHRB) (5) 

(7) 

where Vis the volume of the reactor, F is the volumetric 
flow rate, cAi and CB~ are the inlet concentrations of A and 
B, CA and CB are the bulk concentrations of A and B. The 
rate of consumption of A and B are given by -rA and -TB 

and k i ,  k: and EA, EB are the pre-exponential Arrhenius 
constants and activation energies respectively. Q is the 
rate of heat removal, Ti is the inlet temperatures of the 
reactants, T is the temperature of the material in the 
reactor, Hm and HRB are the molar heats of the reactions 
which are assumed to be independent of temperature and 
T is the time constant of the CSTR. p and Cp represent 
the density and specific heats of the system which are 
assumed to be same for all processing streams. 

The system parameters are given in Table 1. The design 
objective was to produce 60 mollmin of component B. 
The decision variables are chosen to be the inlet concen- 
tration of A (CAI), the inlet concentration of B (CB~), the 

inlet temperature (Ti), the reactor temperature (59, and 
the volume of the reactor (V). The error variables are 
assumed to be the inlet concentration of A (CAI), the inlet 
concentration of B (CB~), the inlet temperature (Ti), the 
reactor temperature (59, the volume of the reactor (V) 
and the flow rate (F). 

The nominal values of the parameters are calculated 
using the above objectives by solving the six equations 
(eqs 3-9). Boudriga (1990) studied parameter designs for 
this problem at  various error levels using different 
approaches. We are using the same example to show the 
effect of different sampling techniques and number of 
samples on the accuracy of mean and variance predictions. 
Boudriga (1990) reported that in order to obtain reliable 
results for the mean and variance, a sample size of 1600 
was necessary. As mentioned previously, the random 
Monte Carlo simulation technique was adopted in their 
analysis, In this study, we used the stochastic block to 
study the effects of different sampling techniques on the 
precision of the mean and variance of the output. The 
results are plotted in Figures 4 and 5 for the mean and 
variance, respectively. The figures also show the effect of 
differen random seeds. From the figures, it can be seen 
that the LHS technique always requires considerably less 
samples to converge to the right solution. It can also be 
seen that the mean is less affected by the number of 
samples or the sampling tecyhnique than the variance. 
For example, from Figures 4 and 5, it is apparent that to 
obtain consistent results within 2 % of the exact value of 
the mean more than 3600 Monte Carlo samples are 
required unlike LHS which requires less than 100 samples. 
However, the same level of accuracy in variance predictions 
demands more than 1200 samples for LHS and much more 
than 5000 samples for MCS. Furthermore, the random 
seed changes the results of Monte Carlo simulations 
considerably for smaller sample size. This appears to be 
a big disadvantage of Monte Carlo simulations, especially 
for stochastic optimization problems. Normally, the 
random number generators started with a random seed 
automatically update the seed value for the next calcu- 
lations. This means that the different iterations for 
optimization start a t  different random-seed values. If the 
random seeds change the results considerably as observed 
in Figures 4 and 5 for the Monte Carlo simulations, then 
the calculations of partial derivatives become erroneous, 
resulting in a failure of the optimization algorithm. To 
avoid this problem one has to resort to a large number of 
samples. Boudriga (1990) conducted several experiments 
for a specific set of nominal values of the parameters to 
arrive at  the best value of the sample size. However, these 
experiments for one set of nominal values could be 
misleading as can be seen from the following example of 
calculating the precision of the mean. 

An advantage of Monte Carlo techniques is that one 
can apply standard statistical techniques to calculate the 
precision of the estimate of the output distribution. For 
example, the estimate of mean value of the output value 
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Figure 4. Comparison of MCS versus LHS, sample mean prediction. 

0 0 
0 cu 

I 

I " 

mcs rs=5000 
mcs rs=-1234 1 0 - 

0 

0 1000 2000 3000 4000 5000 

Number of Samples 

1 I 
Ihs rs=50 
Ihs rs=5000 

0 0 Ihs rs=-1234 

ffl 

f " 

0 1000 2000 3000 4000 5000 

Number of Samples 

Figure 6. Comparison of MCS versus LHS, sample variance 
prediction. 

y using m sample given by 4 is enclosed in an interval 
@ - c(u/rn1f2), 9 + c(u/m1/2)) with the confidence a, where 
c is the standard deviation enclosing the probability a of 
the unit normal distribution. So, it can be seen that the 
number of samples required to obtain the given precision 
with high (e.g., a = 0.95) confidence are dependent on the 
standard deviation u. For further details on the precision 
calculations, the reader is referred to Morgan and Henrion 
(1990). Therefore, for different nominal values, the 
number of samples needed to predict the same accuracy 
can differ considerably, making it necessary to choose very 
large number of samples for a successful execution of the 
optimization algorithm. The LHS, on the other hand, 
provides a means for circumventing this problem. 

6. Parameter Design of a Simple Flowsheet 
As an illustration of the parameter design methodology, 

a simple flowsheet (Figure 6a) consisting of a compressor 

Natural Gas 

Adiabafic 

5% excess 
COMPRESSOR 

V 
&I) ASPEN Rea resentation 

Natgas 

Comair 
COMPR RGIBBS 

DESIGN Tempxonrrol 
CONTROL 

BLOCK 

For temp. and 
flow conuol 

Figure 6. Process flowsheet of a simple system. 

and a natural gas combustor is considered. In this 
flowsheet, air is first passed through the compressor, and 
then through the combustor where fuel is added and the 
combustion reaction takes place. The reactor is assumed 
to be adiabatic. Figure 6b shows the ASPEN represen- 
tation of the flowsheet along with the parameter design 
framework. The flowsheet uses the compressor block for 
air compression. For the combustor, the ASPEN reactor 
model based on the concept of minimum Gibbs free energy, 
is employed. To simulate adiabatic operation of the 
reactor, a design specification block is used. This block 
adjusts the reactor temperature to achieve zero net heat 
transfer. The air flow is always maintained to supply 5% 
excess oxygen by using an additional design specificatino 
block. 

Three input parameters-the fuel flow rate (FNG), the 
compressor pressure (PCMP) and the combustor pressure 
drop (@)-are assumed to be the error variables as well 
as the decision variables whose nominal values are to be 
adjusted using the parameter design methodology. The 
decision variables are subject to the following inequality 
constraints. 

4.0 lb mol/h I FNG I 10.0 lb mol/h 

100.0 psia I PcMP I 160.0 psia 

-10.0 psia I AP I -4.0 psia 

(10) 

(11) 

(12) 

The air flow rate is chosen as the output parameter 
whose variability needs to be controlled using this off-line 
quality control method. Figure 7 shows the initial 
probability distributions (solid lines) with 8 76 error in the 
variables. It was found that 50 samples were sufficient to 
obtain stable stochastic optimization results for this 
example. Figure 7 shows the resulting distribution (dotted 
lines) after the optimal nominal values are selected by the 
parameter design framework. It may be noted that with 
the proposed framework it was possible to reduce the 
variance of the flow rate from 963 to 142, by merely 
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changing the nominal values of the two sensitive param- 
eters, FNG and PCMP. 

The major bottleneck in stochastic optimization, es- 
pecially for large-scale industrial problems (with the 
current capability, it is possible to solve any large-scale 
problem with maximum of 100 error variables), is the 
enormous computational time required. For example, a 
typical chemical process may have 15-20 noisy or uncertain 
variables demanding at  least 1000-2000 LHS samples per 
optimization run. Although the present approach using 
efficient sampling techniques reduces the computational 
time relative to the other approaches, it still leaves much 
to be attained in terms of an absolute computational 
efficiency. A new algorithm based on the derivative 
information obtained from response surface methodology 
shows promise for reducing the CPU time considerably 
and can provide better partial derivatives to the optimizer 
than the perturbation method. This method will be 
explored in a future work. 

7. Conclusions 
This paper presented a generalized framework for 

implementation of the parameter design method for 
chemical processes. The framework centered around the 
ASPEN chemical process simulator and employed sto- 
chastic optimization techniques. The paper also explored 
the effect of different sampling techniques on the precision 
of the results. It was found that Latin hypercube sampling 
is always preferred in parameter design method because 

of its high precision and consistent behavior. The pa- 
rameter design method was illustrated using a small 
chemical plant flowsheet. A future work will address the 
problem of increasing computational efficiency of the 
stochastic optimization by using the response surface 
method for calculation of derivatives. 
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Nomenclature 

CA = the bulk concentrations of A, mol/m3 
C A ~  = the initial concentrations of A, mourn3 
CB = the bulk concentrations of B, mol/m3 
C B ~  = the initial concentrations of B, mourn3 
C p  = specific heat of the system, J/kg K 
E = the error level, % 
EA = the activation energy of the first reaction, J/mol 
Eg = the activation energy of the second reaction, J/mol 
F = the volumetric flow rate, m3/min 
FNG = the fuel flow rate, Ib moles/h 
Hm = molar heat of the first reaction, J/mol 
HRB = molar heat of the second reaction, J/mol 



298 

k i  = the  preexponential Arrhenius constants for the  first 

k i  = the  pre-exponential Arrhenius constants for the second 

nv = number of decision variables 
N = number of samples 
PCMP = the  compressor pressure, psia 
AP = the  combustor pressure drop, psia 
Q = the  rate of heat  removal, J /min  
-TA = the  rate of disappearance of A, mol/(m3 min) 
-TB = the  rate of disappearance of B, mol/(m3 min) 
T = the  temperature of the material in  the reactor, K 
Ti = the  inlet temperatures of the  reactors, K 
V = the  volume of the reactor, m3 
yi = the  output  variable corresponding t o  sample i 
y = the  average of the  output  values 

Greek Symbols 
li = nominal value of the input  variable i 
p = density of the  system, kg/m3 
ui = standard deviation of t h e  input  variable i 
u, = standard deviation of the  output  
r% = variance of the output  
T = the  time constant of t h e  CSTR, min 
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reaction, min-l 

reaction, min-1 
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