
Parameter-Efficient Transfer Learning for NLP

Neil Houlsby 1 Andrei Giurgiu 1 * Stanisław Jastrzȩbski 2 * Bruna Morrone 1 Quentin de Laroussilhe 1
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Abstract

Fine-tuning large pre-trained models is an effec-

tive transfer mechanism in NLP. However, in the

presence of many downstream tasks, fine-tuning

is parameter inefficient: an entire new model is

required for every task. As an alternative, we

propose transfer with adapter modules. Adapter

modules yield a compact and extensible model;

they add only a few trainable parameters per task,

and new tasks can be added without revisiting

previous ones. The parameters of the original

network remain fixed, yielding a high degree of

parameter sharing. To demonstrate adapter’s ef-

fectiveness, we transfer the recently proposed

BERT Transformer model to 26 diverse text clas-

sification tasks, including the GLUE benchmark.

Adapters attain near state-of-the-art performance,

whilst adding only a few parameters per task. On

GLUE, we attain within 0.4% of the performance

of full fine-tuning, adding only 3.6% parameters

per task. By contrast, fine-tuning trains 100% of

the parameters per task.

1. Introduction

Transfer from pre-trained models yields strong performance

on many NLP tasks (Dai & Le, 2015; Howard & Ruder,

2018; Radford et al., 2018). BERT, a Transformer network

trained on large text corpora with an unsupervised loss,

attained state-of-the-art performance on text classification

and extractive question answering (Devlin et al., 2018).

In this paper we address the online setting, where tasks

arrive in a stream. The goal is to build a system that per-

forms well on all of them, but without training an entire new

model for every new task. A high degree of sharing between

tasks is particularly useful for applications such as cloud

services, where models need to be trained to solve many
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Figure 1. Trade-off between accuracy and number of trained task-

specific parameters, for adapter tuning and fine-tuning. The y-axis

is normalized by the performance of full fine-tuning, details in

Section 3. The curves show the 20th, 50th, and 80th performance

percentiles across nine tasks from the GLUE benchmark. Adapter-

based tuning attains a similar performance to full fine-tuning with

two orders of magnitude fewer trained parameters.

tasks that arrive from customers in sequence. For this, we

propose a transfer learning strategy that yields compact and

extensible downstream models. Compact models are those

that solve many tasks using a small number of additional

parameters per task. Extensible models can be trained in-

crementally to solve new tasks, without forgetting previous

ones. Our method yields a such models without sacrificing

performance.

The two most common transfer learning techniques in NLP

are feature-based transfer and fine-tuning. Instead, we

present an alternative transfer method based on adapter

modules (Rebuffi et al., 2017). Features-based transfer in-

volves pre-training real-valued embeddings vectors. These

embeddings may be at the word (Mikolov et al., 2013), sen-

tence (Cer et al., 2019), or paragraph level (Le & Mikolov,

2014). The embeddings are then fed to custom downstream

models. Fine-tuning involves copying the weights from a

pre-trained network and tuning them on the downstream

task. Recent work shows that fine-tuning often enjoys better

performance than feature-based transfer (Howard & Ruder,

2018).
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Both feature-based transfer and fine-tuning require a new

set of weights for each task. Fine-tuning is more parameter

efficient if the lower layers of a network are shared between

tasks. However, our proposed adapter tuning method is even

more parameter efficient. Figure 1 demonstrates this trade-

off. The x-axis shows the number of parameters trained per

task; this corresponds to the marginal increase in the model

size required to solve each additional task. Adapter-based

tuning requires training two orders of magnitude fewer pa-

rameters to fine-tuning, while attaining similar performance.

Adapters are new modules added between layers of a

pre-trained network. Adapter-based tuning differs from

feature-based transfer and fine-tuning in the following way.

Consider a function (neural network) with parameters w:

φw(x). Feature-based transfer composes φw with a new

function, χv, to yield χv(φw(x)). Only the new, task-

specific, parameters, v, are then trained. Fine-tuning in-

volves adjusting the original parameters, w, for each new

task, limiting compactness. For adapter tuning, a new

function, ψw,v(x), is defined, where parameters w are

copied over from pre-training. The initial parameters v0

are set such that the new function resembles the original:

ψw,v0
(x) ≈ φw(x). During training, only v are tuned.

For deep networks, defining ψw,v typically involves adding

new layers to the original network, φw. If one chooses

|v| ≪ |w|, the resulting model requires ∼ |w| parameters

for many tasks. Since w is fixed, the model can be extended

to new tasks without affecting previous ones.

Adapter-based tuning relates to multi-task and continual

learning. Multi-task learning also results in compact models.

However, multi-task learning requires simultaneous access

to all tasks, which adapter-based tuning does not require.

Continual learning systems aim to learn from an endless

stream of tasks. This paradigm is challenging because net-

works forget previous tasks after re-training (McCloskey

& Cohen, 1989; French, 1999). Adapters differ in that the

tasks do not interact and the shared parameters are frozen.

This means that the model has perfect memory of previous

tasks using a small number of task-specific parameters.

We demonstrate on a large and diverse set of text classifica-

tion tasks that adapters yield parameter-efficient tuning for

NLP. The key innovation is to design an effective adapter

module and its integration with the base model. We propose

a simple yet effective, bottleneck architecture. On the GLUE

benchmark, our strategy almost matches the performance of

the fully fine-tuned BERT, but uses only 3% task-specific

parameters, while fine-tuning uses 100% task-specific pa-

rameters. We observe similar results on a further 17 public

text datasets, and SQuAD extractive question answering. In

summary, adapter-based tuning yields a single, extensible,

model that attains near state-of-the-art performance in text

classification.

2. Adapter tuning for NLP

We present a strategy for tuning a large text model on several

downstream tasks. Our strategy has three key properties:

(i) it attains good performance, (ii) it permits training on

tasks sequentially, that is, it does not require simultaneous

access to all datasets, and (iii) it adds only a small number

of additional parameters per task. These properties are

especially useful in the context of cloud services, where

many models need to be trained on a series of downstream

tasks, so a high degree of sharing is desirable.

To achieve these properties, we propose a new bottleneck

adapter module. Tuning with adapter modules involves

adding a small number of new parameters to a model, which

are trained on the downstream task (Rebuffi et al., 2017).

When performing vanilla fine-tuning of deep networks, a

modification is made to the top layer of the network. This is

required because the label spaces and losses for the upstream

and downstream tasks differ. Adapter modules perform

more general architectural modifications to re-purpose a pre-

trained network for a downstream task. In particular, the

adapter tuning strategy involves injecting new layers into

the original network. The weights of the original network

are untouched, whilst the new adapter layers are initialized

at random. In standard fine-tuning, the new top-layer and

the original weights are co-trained. In contrast, in adapter-

tuning, the parameters of the original network are frozen

and therefore may be shared by many tasks.

Adapter modules have two main features: a small number

of parameters, and a near-identity initialization. The adapter

modules need to be small compared to the layers of the orig-

inal network. This means that the total model size grows

relatively slowly when more tasks are added. A near-identity

initialization is required for stable training of the adapted

model; we investigate this empirically in Section 3.6. By

initializing the adapters to a near-identity function, original

network is unaffected when training starts. During training,

the adapters may then be activated to change the distribution

of activations throughout the network. The adapter mod-

ules may also be ignored if not required; in Section 3.6 we

observe that some adapters have more influence on the net-

work than others. We also observe that if the initialization

deviates too far from the identity function, the model may

fail to train.

2.1. Instantiation for Transformer Networks

We instantiate adapter-based tuning for text Transformers.

These models attain state-of-the-art performance in many

NLP tasks, including translation, extractive QA, and text

classification problems (Vaswani et al., 2017; Radford et al.,

2018; Devlin et al., 2018). We consider the standard Trans-

former architecture, as proposed in Vaswani et al. (2017).
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Figure 2. Architecture of the adapter module and its integration

with the Transformer. Left: We add the adapter module twice

to each Transformer layer: after the projection following multi-

headed attention and after the two feed-forward layers. Right: The

adapter consists of a bottleneck which contains few parameters rel-

ative to the attention and feedforward layers in the original model.

The adapter also contains a skip-connection. During adapter tun-

ing, the green layers are trained on the downstream data, this

includes the adapter, the layer normalization parameters, and the

final classification layer (not shown in the figure).

Adapter modules present many architectural choices. We

provide a simple design that attains good performance. We

experimented with a number of more complex designs, see

Section 3.6, but we found the following strategy performed

as well as any other that we tested, across many datasets.

Figure 2 shows our adapter architecture, and its application

it to the Transformer. Each layer of the Transformer contains

two primary sub-layers: an attention layer and a feedforward

layer. Both layers are followed immediately by a projection

that maps the features size back to the size of layer’s input.

A skip-connection is applied across each of the sub-layers.

The output of each sub-layer is fed into layer normalization.

We insert two serial adapters after each of these sub-layers.

The adapter is always applied directly to the output of the

sub-layer, after the projection back to the input size, but

before adding the skip connection back. The output of

the adapter is then passed directly into the following layer

normalization.

To limit the number of parameters, we propose a bottle-

neck architecture. The adapters first project the original

d-dimensional features into a smaller dimension, m, apply

a nonlinearity, then project back to d dimensions. The total

number of parameters added per layer, including biases, is

2md + d + m. By setting m ≪ d, we limit the number

of parameters added per task; in practice, we use around

0.5 − 8% of the parameters of the original model. The

bottleneck dimension, m, provides a simple means to trade-

off performance with parameter efficiency. The adapter

module itself has a skip-connection internally. With the

skip-connection, if the parameters of the projection layers

are initialized to near-zero, the module is initialized to an

approximate identity function.

Alongside the layers in the adapter module, we also train

new layer normalization parameters per task. This tech-

nique, similar to conditional batch normalization (De Vries

et al., 2017), FiLM (Perez et al., 2018), and self-

modulation (Chen et al., 2019), also yields parameter-

efficient adaptation of a network; with only 2d parameters

per layer. However, training the layer normalization pa-

rameters alone is insufficient for good performance, see

Section 3.4.

3. Experiments

We show that adapters achieve parameter efficient transfer

for text tasks. On the GLUE benchmark (Wang et al., 2018),

adapter tuning is within 0.4% of full fine-tuning of BERT,

but it adds only 3% of the number of parameters trained by

fine-tuning. We confirm this result on a further 17 public

classification tasks and SQuAD question answering. Analy-

sis shows that adapter-based tuning automatically focuses

on the higher layers of the network.

3.1. Experimental Settings

We use the public, pre-trained BERT Transformer network

as our base model. To perform classification with BERT,

we follow the approach in Devlin et al. (2018). The first

token in each sequence is a special “classification token”.

We attach a linear layer to the embedding of this token to

predict the class label.

Our training procedure also follows Devlin et al. (2018).

We optimize using Adam (Kingma & Ba, 2014), whose

learning rate is increased linearly over the first 10% of the

steps, and then decayed linearly to zero. All runs are trained

on 4 Google Cloud TPUs with a batch size of 32. For each

dataset and algorithm, we run a hyperparameter sweep and

select the best model according to accuracy on the validation

set. For the GLUE tasks, we report the test metrics provided

by the submission website1. For the other classification

tasks we report test-set accuracy.

We compare to fine-tuning, the current standard for transfer

of large pre-trained models, and the strategy successfully

1https://gluebenchmark.com/
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used by BERT. For N tasks, full fine-tuning requires N×
the number of parameters of the pre-trained model. Our

goal is to attain performance equal to fine-tuning, but with

fewer total parameters, ideally near to 1×.

3.2. GLUE benchmark

We first evaluate on GLUE.2 For these datasets, we trans-

fer from the pre-trained BERTLARGE model, which con-

tains 24 layers, and a total of 330M parameters, see Devlin

et al. (2018) for details. We perform a small hyperparam-

eter sweep for adapter tuning: We sweep learning rates

in {3 · 10−5, 3 · 10−4, 3 · 10−3}, and number of epochs

in {3, 20}. We test both using a fixed adapter size (num-

ber of units in the bottleneck), and selecting the best size

per task from {8, 64, 256}. The adapter size is the only

adapter-specific hyperparameter that we tune. Finally, due

to training instability, we re-run 5 times with different ran-

dom seeds and select the best model on the validation set.

Table 1 summarizes the results. Adapters achieve a mean

GLUE score of 80.0, compared to 80.4 achieved by full

fine-tuning. The optimal adapter size varies per dataset. For

example, 256 is chosen for MNLI, whereas for the smallest

dataset, RTE, 8 is chosen. Restricting always to size 64,

leads to a small decrease in average accuracy to 79.6. To

solve all of the datasets in Table 1, fine-tuning requires 9×
the total number of BERT parameters.3 In contrast, adapters

require only 1.3× parameters.

3.3. Additional Classification Tasks

To further validate that adapters yields compact, performant,

models, we test on additional, publicly available, text clas-

sification tasks. This suite contains a diverse set of tasks:

The number of training examples ranges from 900 to 330k,

the number of classes ranges from 2 to 157, and the av-

erage text length ranging from 57 to 1.9k characters. We

supply statistics and references for all of the datasets in the

appendix.

For these datasets, we use a batch size of 32. The datasets

are diverse, so we sweep a wide range of learning rates:

{1 · 10−5, 3 · 10−5, 1 · 10−4, 3 · 10−3}. Due to the large

number of datasets, we select the number of training epochs

from the set {20, 50, 100} manually, from inspection of the

validation set learning curves. We select the optimal values

for both fine-tuning and adapters; the exact values are in the

appendix.

2 We omit WNLI as in Devlin et al. (2018) because the no
current algorithm beats the baseline of predicting the majority
class.

3 We treat MNLIm and MNLImm as separate tasks with individ-
ually tuned hyperparameters. However, they could be combined
into one model, leaving 8× overall.

We test adapters sizes in {2, 4, 8, 16, 32, 64}. Since some

of the datasets are small, fine-tuning the entire network

may be sub-optimal. Therefore, we run an additional base-

line: variable fine-tuning. For this, we fine-tune only

the top n layers, and freeze the remainder. We sweep

n ∈ {1, 2, 3, 5, 7, 9, 11, 12}. In these experiments, we use

the BERTBASE model with 12 layers, therefore, variable

fine-tuning subsumes full fine-tuning when n = 12.

Unlike the GLUE tasks, there is no comprehensive set of

state-of-the-art numbers for this suite of tasks. Therefore, to

confirm that our BERT-based models are competitive, we

collect our own benchmark performances. For this, we run

a large-scale hyperparameter search over standard network

topologies. Specifically, we run the single-task Neural Au-

toML algorithm, similar to Zoph & Le (2017); Wong et al.

(2018). This algorithm searches over a space of feedfor-

ward and convolutional networks, stacked on pre-trained

text embeddings modules publicly available via TensorFlow

Hub4. The embeddings coming from the TensorFlow Hub

modules may be frozen or fine-tuned. The full search space

is described in the appendix. For each task, we run AutoML

for one week on CPUs, using 30 machines. In this time

the algorithm explores over 10k models on average per task.

We select the best final model for each task according to

validation set accuracy.

The results for the AutoML benchmark (“no BERT base-

line”), fine-tuning, variable fine-tuning, and adapter-tuning

are reported in Table 2. The AutoML baseline demon-

strates that the BERT models are competitive. This baseline

explores thousands of models, yet the BERT models per-

form better on average. We see similar pattern of results to

GLUE. The performance of adapter-tuning is close to full

fine-tuning (0.4% behind). Fine-tuning requires 17× the

number of parameters to BERTBASE to solve all tasks. Vari-

able fine-tuning performs slightly better than fine-tuning,

whilst training fewer layers. The optimal setting of variable

fine-tuning results in training 52% of the network on average

per task, reducing the total to 9.9× parameters. Adapters,

however, offer a much more compact model. They intro-

duce 1.14% new parameters per task, resulting in 1.19×
parameters for all 17 tasks.

3.4. Parameter/Performance trade-off

The adapter size controls the parameter efficiency, smaller

adapters introduce fewer parameters, at a possible cost to

performance. To explore this trade-off, we consider different

adapter sizes, and compare to two baselines: (i) Fine-tuning

of only the top k layers of BERTBASE. (ii) Tuning only the

layer normalization parameters. The learning rate is tuned

using the range presented in Section 3.2.

4https://www.tensorflow.org/hub
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Total num

params

Trained

params / task
CoLA SST MRPC STS-B QQP MNLIm MNLImm QNLI RTE Total

BERTLARGE 9.0× 100% 60.5 94.9 89.3 87.6 72.1 86.7 85.9 91.1 70.1 80.4
Adapters (8-256) 1.3× 3.6% 59.5 94.0 89.5 86.9 71.8 84.9 85.1 90.7 71.5 80.0
Adapters (64) 1.2× 2.1% 56.9 94.2 89.6 87.3 71.8 85.3 84.6 91.4 68.8 79.6

Table 1. Results on GLUE test sets scored using the GLUE evaluation server. MRPC and QQP are evaluated using F1 score. STS-B is

evaluated using Spearman’s correlation coefficient. CoLA is evaluated using Matthew’s Correlation. The other tasks are evaluated using

accuracy. Adapter tuning achieves comparable overall score (80.0) to full fine-tuning (80.4) using 1.3× parameters in total, compared to

9×. Fixing the adapter size to 64 leads to a slightly decreased overall score of 79.6 and slightly smaller model.

Dataset
No BERT

baseline

BERTBASE

Fine-tune

BERTBASE

Variable FT

BERTBASE

Adapters

20 newsgroups 91.1 92.8± 0.1 92.8± 0.1 91.7± 0.2
Crowdflower airline 84.5 83.6± 0.3 84.0± 0.1 84.5± 0.2
Crowdflower corporate messaging 91.9 92.5± 0.5 92.4± 0.6 92.9± 0.3
Crowdflower disasters 84.9 85.3± 0.4 85.3± 0.4 84.1± 0.2
Crowdflower economic news relevance 81.1 82.1± 0.0 78.9± 2.8 82.5± 0.3
Crowdflower emotion 36.3 38.4± 0.1 37.6± 0.2 38.7± 0.1
Crowdflower global warming 82.7 84.2± 0.4 81.9± 0.2 82.7± 0.3
Crowdflower political audience 81.0 80.9± 0.3 80.7± 0.8 79.0± 0.5
Crowdflower political bias 76.8 75.2± 0.9 76.5± 0.4 75.9± 0.3
Crowdflower political message 43.8 38.9± 0.6 44.9± 0.6 44.1± 0.2
Crowdflower primary emotions 33.5 36.9± 1.6 38.2± 1.0 33.9± 1.4
Crowdflower progressive opinion 70.6 71.6± 0.5 75.9± 1.3 71.7± 1.1
Crowdflower progressive stance 54.3 63.8± 1.0 61.5± 1.3 60.6± 1.4
Crowdflower US economic performance 75.6 75.3± 0.1 76.5± 0.4 77.3± 0.1
Customer complaint database 54.5 55.9± 0.1 56.4± 0.1 55.4± 0.1
News aggregator dataset 95.2 96.3± 0.0 96.5± 0.0 96.2± 0.0
SMS spam collection 98.5 99.3± 0.2 99.3± 0.2 95.1± 2.2

Average 72.7 73.7 74.0 73.3

Total number of params — 17× 9.9× 1.19×
Trained params/task — 100% 52.9% 1.14%

Table 2. Test accuracy for additional classification tasks. In these experiments we transfer from the BERTBASE model. For each task

and algorithm, the model with the best validation set accuracy is chosen. We report the mean test accuracy and s.e.m. across runs with

different random seeds.

Figure 3 shows the parameter/performance trade-off ag-

gregated over all classification tasks in each suite (GLUE

and “additional”). On GLUE, performance decreases dra-

matically when fewer layers are fine-tuned. Some of the

additional tasks benefit from training fewer layers, so per-

formance of fine-tuning decays much less. In both cases,

adapters yield good performance across a range of sizes two

orders of magnitude fewer than fine-tuning.

Figure 4 shows more details for two GLUE tasks: MNLIm

and CoLA. Tuning the top layers trains more task-specific

parameters for all k > 2. When fine-tuning using a compa-

rable number of task-specific parameters, the performance

decreases substantially compared to adapters. For instance,

fine-tuning just the top layer yields approximately 9M train-

able parameters and 77.8%± 0.1% validation accuracy on

MNLIm. In contrast, adapter tuning with size 64 yields ap-

proximately 2M trainable parameters and 83.7% ± 0.1%

validation accuracy. For comparison, full fine-tuning attains

84.4%± 0.02% on MNLIm. We observe a similar trend on

CoLA.

As a further comparison, we tune the parameters of layer

normalization alone. These layers only contain point-wise

additions and multiplications, so introduce very few train-

able parameters: 40k for BERTBASE. However this strategy

performs poorly: performance decreases by approximately

3.5% on CoLA and 4% on MNLI.

To summarize, adapter tuning is highly parameter-efficient,

and produces a compact model with a strong performance,

comparable to full fine-tuning. Training adapters with sizes

0.5− 5% of the original model, performance is within 1%
of the competitive published results on BERTLARGE.



Parameter-Efficient Transfer Learning for NLP

GLUE (BERTLARGE) Additional Tasks (BERTBASE)

105 106 107 108 109

Num trainable parameters / task

−25

−20

−15

−10

−5

0

5
A

cc
u

ra
cy

 d
e
lt

a
 (

%
)

Adapters

Fine-tune top layers

105 106 107 108

Num trainable parameters / task

−4

−3

−2

−1

0

1

2

3

A
cc

u
ra

cy
 d

e
lt

a
 (

%
)

Adapters

Fine-tune top layers

Figure 3. Accuracy versus the number of trained parameters, aggregated across tasks. We compare adapters of different sizes (orange)

with fine-tuning the top n layers, for varying n (blue). The lines and shaded areas indicate the 20th, 50th, and 80th percentiles across

tasks. For each task and algorithm, the best model is selected for each point along the curve. For GLUE, the validation set accuracy is

reported. For the additional tasks, we report the test-set accuracies. To remove the intra-task variance in scores, we normalize the scores

for each model and task by subtracting the performance of full fine-tuning on the corresponding task.

MNLIm(BERTBASE) CoLA (BERTBASE)

104 105 106 107 108

Num trainable parameters / task

76

78

80

82

84

86

V
a
lid

a
ti

o
n

 a
cc

u
ra

cy
 (

%
)

Layer Norm.

Adapters

Fine-tune top layers

104 105 106 107 108

Num trainable parameters / task

74

76

78

80

82

84

86

V
a
lid

a
ti

o
n

 a
cc

u
ra

cy
 (

%
)

Layer Norm.

Adapters

Fine-tune top layers

Figure 4. Validation set accuracy versus number of trained parameters for three methods: (i) Adapter tuning with an adapter sizes 2n

for n = 0 . . . 9 (orange). (ii) Fine-tuning the top k layers for k = 1 . . . 12 (blue). (iii) Tuning the layer normalization parameters only

(green). Error bars indicate ±1 s.e.m. across three random seeds.

3.5. SQuAD Extractive Question Answering

Finally, we confirm that adapters work on tasks other than

classification by running on SQuAD v1.1 (Rajpurkar et al.,

2018). Given a question and Wikipedia paragraph, this task

requires selecting the answer span to the question from the

paragraph. Figure 5 displays the parameter/performance

trade-off of fine-tuning and adapters on the SQuAD valida-

tion set. For fine-tuning, we sweep the number of trained lay-

ers, learning rate in {3·10−5, 5·10−5, 1·10−4}, and number

of epochs in {2, 3, 5}. For adapters, we sweep the adapter

size, learning rate in {3 · 10−5, 1 · 10−4, 3 · 10−4, 1 · 10−3},

and number of epochs in {3, 10, 20}. As for classification,

adapters attain performance comparable to full fine-tuning,

while training many fewer parameters. Adapters of size 64
(2% parameters) attain a best F1 of 90.4%, while fine-tuning

attains 90.7. SQuAD performs well even with very small

adapters, those of size 2 (0.1% parameters) attain an F1 of

89.9.

3.6. Analysis and Discussion

We perform an ablation to determine which adapters are

influential. For this, we remove some trained adapters and

re-evaluate the model (without re-training) on the valida-

tion set. Figure 6 shows the change in performance when

removing adapters from all continuous layer spans. The

experiment is performed on BERTBASE with adapter size 64
on MNLI and CoLA.

First, we observe that removing any single layer’s adapters

has only a small impact on performance. The elements on
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Figure 5. Validation accuracy versus the number of trained param-

eters for SQuAD v1.1. Error bars indicate the s.e.m. across three

seeds, using the best hyperparameters.

the heatmaps’ diagonals show the performances of removing

adapters from single layers, where largest performance drop

is 2%. In contrast, when all of the adapters are removed

from the network, the performance drops substantially: to

37% on MNLI and 69% on CoLA – scores attained by

predicting the majority class. This indicates that although

each adapter has a small influence on the overall network,

the overall effect is large.

Second, Figure 6 suggests that adapters on the lower layers

have a smaller impact than the higher-layers. Removing

the adapters from the layers 0− 4 on MNLI barely affects

performance. This indicates that adapters perform well

because they automatically prioritize higher layers. Indeed,

focusing on the upper layers is a popular strategy in fine-

tuning (Howard & Ruder, 2018). One intuition is that the

lower layers extract lower-level features that are shared

among tasks, while the higher layers build features that are

unique to different tasks. This relates to our observation that

for some tasks, fine-tuning only the top layers outperforms

full fine-tuning, see Table 2.

Next, we investigate the robustness of the adapter modules

to the number of neurons and initialization scale. In our

main experiments the weights in the adapter module were

drawn from a zero-mean Gaussian with standard deviation

10−2, truncated to two standard deviations. To analyze the

impact of the initialization scale on the performance, we

test standard deviations in the interval [10−7, 1]. Figure 6

summarizes the results. We observe that on both datasets,

the performance of adapters is robust for standard deviations

below 10−2. However, when the initialization is too large,

performance degrades, more substantially on CoLA.

To investigate robustness of adapters to the number of neu-

rons, we re-examine the experimental data from Section 3.2.

We find that the quality of the model across adapter sizes is

stable, and a fixed adapter size across all the tasks could be

used with small detriment to performance. For each adapter

size we calculate the mean validation accuracy across the

eight classification tasks by selecting the optimal learning

rate and number of epochs5. For adapter sizes 8, 64, and

256, the mean validation accuracies are 86.2%, 85.8% and

85.7%, respectively. This message is further corroborated

by Figures 4 and 5, which show a stable performance across

a few orders of magnitude.

Finally, we tried a number of extensions to the adapter’s

architecture that did not yield a significant boost in perfor-

mance. We document them here for completeness. We

experimented with (i) adding a batch/layer normalization to

the adapter, (ii) increasing the number of layers per adapter,

(iii) different activation functions, such as tanh, (iv) inserting

adapters only inside the attention layer, (v) adding adapters

in parallel to the main layers, and possibly with a multi-

plicative interaction. In all cases we observed the resulting

performance to be similar to the bottleneck proposed in

Section 2.1. Therefore, due to its simplicity and strong per-

formance, we recommend the original adapter architecture.

4. Related Work

Pre-trained text representations Pre-trained textual rep-

resentations are widely used to improve performance on

NLP tasks. These representations are trained on large cor-

pora (usually, but not always, unsupervised), and fed as

features to downstream models. In deep networks, these fea-

tures may also be fine-tuned on the downstream task. Brown

clusters, trained on distributional information, are a classic

example of pre-trained representations (Brown et al., 1992).

Turian et al. (2010) show that pre-trained embeddings of

words outperform those trained from scratch. Since the

deep-learning era, word embeddings have been widely used,

and training strategies these have arisen (Mikolov et al.,

2013; Pennington et al., 2014; Bojanowski et al., 2017).

Embeddings of longer texts, sentences and paragraphs, have

also been developed (Le & Mikolov, 2014; Kiros et al.,

2015; Conneau et al., 2017; Cer et al., 2019).

To encode context in these representations, features are

extracted from internal representations of sequence models,

such as MT systems (McCann et al., 2017), and BiLSTM

language models, as used in ELMo (Peters et al., 2018). As

with adapters, ELMo exploits the layers other than the top

layer of a pre-trained network. However, this strategy only

reads from the inner layers. In contrast, adapters write to

the inner layers, re-configuring the processing of features

through the entire network.

Fine-tuning Fine-tuning an entire pre-trained model has

become a popular alternative to features (Dai & Le, 2015;

5 We treat here MNLIm and MNLImm as separate tasks. For
consistency, for all datasets we use accuracy metric and exclude
the regression STS-B task.
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Figure 6. Left, Center: Ablation of trained adapters from continuous layer spans. The heatmap shows the relative decrease in validation

accuracy to the fully trained adapted model. The y and x axes indicate the first and last layers ablated (inclusive), respectively. The

diagonal cells, highlighted in green, indicate ablation of a single layer’s adapters. The cell in the top-right indicates ablation of all adapters.

Cells in the lower triangle are meaningless, and are set to 0%, the best possible relative performance. Right: Performance of BERTBASE

using adapters with different initial weight magnitudes. The x-axis is the standard deviation of the initialization distribution.

Howard & Ruder, 2018; Radford et al., 2018) In NLP, the

upstream model is usually a neural language model (Ben-

gio et al., 2003). Recent state-of-the-art results on ques-

tion answering (Rajpurkar et al., 2016) and text classi-

fication (Wang et al., 2018) have been attained by fine-

tuning a Transformer network (Vaswani et al., 2017) with a

Masked Language Model loss (Devlin et al., 2018). Perfor-

mance aside, an advantage of fine-tuning is that it does not

require task-specific model design, unlike representation-

based transfer. However, vanilla fine-tuning does require a

new set of network weights for every new task.

Multi-task Learning Multi-task learning (MTL) involves

training on tasks simultaneously. Early work shows that

sharing network parameters across tasks exploits task reg-

ularities, yielding improved performance (Caruana, 1997).

The authors share weights in lower layers of a network,

and use specialized higher layers. Many NLP systems have

exploited MTL. Some examples include: text processing

systems (part of speech, chunking, named entity recogni-

tion, etc.) (Collobert & Weston, 2008), multilingual mod-

els (Huang et al., 2013), semantic parsing (Peng et al., 2017),

machine translation (Johnson et al., 2017), and question an-

swering (Choi et al., 2017). MTL yields a single model

to solve all problems. However, unlike our adapters, MTL

requires simultaneous access to the tasks during training.

Continual Learning As an alternative to simultaneous

training, continual, or lifelong, learning aims to learn from a

sequence of tasks (Thrun, 1998). However, when re-trained,

deep networks tend to forget how to perform previous tasks;

a challenge termed catastrophic forgetting (McCloskey &

Cohen, 1989; French, 1999). Techniques have been pro-

posed to mitigate forgetting (Kirkpatrick et al., 2017; Zenke

et al., 2017), however, unlike for adapters, the memory is

imperfect. Progressive Networks avoid forgetting by instan-

tiating a new network “column” for each task (Rusu et al.,

2016). However, the number of parameters grows linearly

with the number of tasks, since adapters are very small, our

models scale much more favorably.

Transfer Learning in Vision Fine-tuning models pre-

trained on ImageNet (Deng et al., 2009) is ubiquitous when

building image recognition models (Yosinski et al., 2014;

Huh et al., 2016). This technique attains state-of-the-art per-

formance on many vision tasks, including classification (Ko-

rnblith et al., 2018), fine-grained classifcation (Hermans

et al., 2017), segmentation (Long et al., 2015), and de-

tection (Girshick et al., 2014). In vision, convolutional

adapter modules have been studied (Rebuffi et al., 2017;

2018; Rosenfeld & Tsotsos, 2018). These works perform

incremental learning in multiple domains by adding small

convolutional layers to a ResNet (He et al., 2016) or VGG

net (Simonyan & Zisserman, 2014). Adapter size is lim-

ited using 1× 1 convolutions, whilst the original networks

typically use 3 × 3. This yields 11% increase in overall

model size per task. Since the kernel size cannot be further

reduced other weight compression techniques must be used

to attain further savings. Our bottleneck adapters can be

much smaller, and still perform well.

Concurrent work explores similar ideas for BERT (Stickland

& Murray, 2019). The authors introduce Projected Atten-

tion Layers (PALs), small layers with a similar role to our

adapters. The main differences are i) Stickland & Murray

(2019) use a different architecture, and ii) they perform mul-

titask training, jointly fine-tuning BERT on all GLUE tasks.

Sina Semnani (2019) perform an emprical comparison of

our bottleneck Adpaters and PALs on SQuAD v2.0 (Ra-

jpurkar et al., 2018).
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