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Abstract 

As low-stakes testing contexts increase, low test-taking effort may serve as a serious validity 
threat. One common solution to this problem is to identify noneffortful responses and treat them 
as missing during parameter estimation via the Effort-Moderated IRT (EM-IRT) model. 
Although this model has been shown to outperform traditional IRT models (e.g., 2PL) in 
parameter estimation under simulated conditions, prior research has failed to examine its 
performance under violations to the model’s assumptions. Therefore, the objective of this 
simulation study was to examine item and mean ability parameter recovery when violating the 
assumptions that noneffortful responding occurs randomly (assumption #1) and is unrelated to 
the underlying ability of examinees (assumption #2). Results demonstrated that, across 
conditions, the EM-IRT model provided robust item parameter estimates to violations of 
assumption #1. However, bias values greater than 0.20 SDs were observed for the EM-IRT 
model when violating assumption #2; nonetheless, these values were still lower than the 2PL 
model. In terms of mean ability estimates, model results indicated equal performance between 
the EM-IRT and 2PL models across conditions. Across both models, mean ability estimates were 
found to be biased by more than 0.25 SDs when violating assumption #2. However, our 
accompanying empirical study suggested that this biasing occurred under extreme conditions that 
may not be present in some operational settings. Overall, these results suggest that the EM-IRT 
model provides superior item and equal mean ability parameter estimates in the presence of 
model violations under realistic conditions when compared to the 2PL model.  
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Parameter Estimation Accuracy of the Effort-Moderated IRT Model  

Under Multiple Assumption Violations 

 The assumption underlying all educational and psychological assessments is that a score 

reflects the ability, skills, or proficiencies assessed. However, such an assumption is violated 

when students fail to employ maximal effort to correctly answer test items to the best of their 

ability (hereon referred to as low test-taking effort). In such instances, low test-taking effort can 

be viewed as a source of construct-irrelevant variance, as it typically leads to an underestimation 

of an examinee’s true ability (e.g., Rios et al., 2017). The issue of low test-taking effort has been 

shown to be a particular threat for group-based accountability testing programs across the United 

States (e.g., the National Assessment of Educational Progress [NAEP]) and internationally (e.g., 

Programme for International Student Assessment [PISA]). In these assessment contexts, 

inferences are made at an aggregate-level (e.g., state or country) and thus have no personal 

consequences for examinees (i.e., the testing context is low-stakes; in most cases, scores are not 

even provided to individual examinees; Goldhammer et al., 2016). However, results from these 

assessments have real-world implications for educational policymakers, as they are used for 

prescribing reform related to teaching and student learning. Thus, there is the potential for low 

test-taking effort to lead to inaccurate inferences for stakeholders concerned with educational 

accountability (Wainer, 1993). This has led some researchers to suggest that low test-taking 

effort is “…one of the most vexing assessment problems that we face today” (Erwin & Wise, 

2002, p. 71). 

To assist practitioners in making valid inferences from assessments in which low test-

taking effort is present among examinees, a small number of Item Response Theory (IRT) 

models have been proposed (for a discussion, see Wise & Kingsbury, 2016). To date, the 
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approach that has received the most attention in the literature consists of two stages. First, 

noneffortful responses (i.e., invalid item responses that are provided with disregard to the item 

content due to low-testing effort) are generally identified by relying on response time and/or 

accuracy data to detect examinee responses that do not reflect the examinees’ underlying 

knowledge, abilities, or skills, due to a failure to expend full effort (for a greater discussion on 

classifying noneffortful response using response time and/or accuracy data see Wise, 2017).1 

Second, data are purified by either removing individual examinees found to engage in 

noneffortful responding (examinee-level filtering; see Hong et al., 2020) or noneffortful 

responses are treated as missing data and ability is essentially estimated based solely on item 

responses judged to be effortful (response-level filtering). Rios et al. (2017) compared these two 

approaches and found that the former led to greater bias in ability estimates when noneffortful 

responding was related to examinees’ underlying ability. Thus, the latter approach has become 

increasingly popular as it both provides more robust estimates under certain conditions and 

avoids deleting a potentially large percentage of the sample.  

In research, the most widely used and thoroughly validated model that follows this two-

step approach is likely the Effort-Moderated IRT (EM-IRT) model proposed by Wise and 

DeMars (2006). The EM-IRT model is common in research for two reasons. First, it is less 

computationally demanding than some of the proposed mixture model approaches that can 

simultaneously identify noneffortful responses and estimate parameters (e.g., Lu et al., 2020; 

Wang & Xu, 2015; Wang et al., 2018). Second, it outperforms traditional IRT models (i.e., 

                                                           
1 This term is also referred to as “rapid guessing” (see Wise, 2017); however, we refrain from the use of this 
terminology as new response time threshold procedures have begun to classify noneffortful responses based on a 
combination of response time and accuracy data. As a result, item responses classified as invalid are no longer based 
on the assumption that responses are provided rapidly. In fact, the opposite may be true. Some examinees may spend 
an exorbitant amount of time in providing a noneffortful response, due to off-task behaviors (e.g., daydreaming). 
Thus, the term “rapid guessing” may be inappropriate in these contexts.  
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models that do not filter invalid responses) in terms of item parameter, person parameter, and test 

information estimation accuracy when its underlying assumptions are met (Kong, 2007; Wise & 

DeMars, 2006; Wise & Kingsbury, 2016).  

Despite the prevalence of the EM-IRT model, major gaps in our understanding of its 

performance under different conditions remain. For example, its ability to recover measurement 

parameters is unknown when its basic assumptions are not satisfied. This gap in the literature is 

problematic given research calling into question the tenability of the assumptions that are 

fundamental to the EM-IRT model (e.g., Rios et al., 2017). To address this gap, we examine how 

well the EM-IRT model performs when its assumptions are violated. 

The EM-IRT Model 

In the EM-IRT model, it is assumed that any response classified as noneffortful is an 

invalid indicator of test taker ability. This assumption is operationalized through an extension of 

the two-parameter logistic (2PL) model2: 

𝑃𝑃𝑖𝑖𝑖𝑖(θ) = �𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖� �
1

1+𝑒𝑒𝑒𝑒𝑒𝑒 {−1.7𝑎𝑎𝑖𝑖�𝜃𝜃𝑗𝑗−𝑏𝑏𝑖𝑖�}
� + �1 − 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖� �

1
𝑑𝑑𝑖𝑖
�.                     (1) 

In this model, 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 is a dichotomous indicator specifying whether an item response is considered 

effortful or noneffortful and is defined as follows: 

𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 = {1 𝑖𝑖𝑖𝑖 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 ≥  𝑅𝑅𝑖𝑖, 0  𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒},                                    (2) 

where 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 is the response time threshold3 for item i and test-test taker j, and 𝑅𝑅𝑖𝑖 is the threshold 

limit for item i indicating the maximum response time for classification of noneffortful 

responses. So, if 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 = 1,𝑃𝑃𝑖𝑖𝑖𝑖(θ) = � 1
1+exp {−1.7𝑎𝑎𝑖𝑖�θ𝑗𝑗−𝑏𝑏𝑖𝑖�}

�, where 𝑎𝑎𝑖𝑖 is the discrimination 

                                                           
2 The EM-IRT model can be extended to other IRT models, such as the Rasch, one-parameter, and three parameter 
logistic models. 
3 For a review of threshold procedures, the reader is referred to Wise (2017). 
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parameter for item i, 𝑏𝑏𝑖𝑖 is the difficulty parameter for item i, and θ𝑖𝑖 is the ability parameter for 

person j. If 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 = 0, 𝑃𝑃𝑖𝑖𝑖𝑖(θ) = 1
𝑑𝑑𝑖𝑖

, where 𝑑𝑑𝑖𝑖 is roughly equal to the number of response options 

for item i.4 When 𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 = 0, noneffortful responses add a constant across all levels of the theta 

continuum to the log-likelihood function, and thus, do not influence the maximum of the 

function. This would imply that when a noneffortful response is provided, the probability of 

correctly responding to item i does not depend on the examinee’s ability. Therefore, scoring 

under the EM-IRT model excludes noneffortful responses because they are considered to be 

uninformative to parameter estimation (Wise & DeMars, 2006).  

The appropriate application of the EM-IRT model depends on fulfilling a number of 

assumptions. First, the approach to defining noneffortful responses in this model requires that 

the probability of a correct response from non-effortful responding is irrelevant to neither the 

characteristics of items nor the ability levels of examinees and that noneffortful responses can be 

correctly identified. Although prior literature has proposed methods for identifying noneffortful 

responses in survey data (e.g., Hong et al., 2020; Meade et al., 2012), the EM-IRT model has 

been predominately applied to computer-administered cognitive assessments comprised of 

multiple-choice questions, due to the availability of both keyed-responses and log file 

information (response time and response accuracy data).   

Second, the conceptualization of noneffortful responding in the EM-IRT model relies on 

two important and, at times, unstated assumptions related to the characteristics of noneffortful 

responses. For one, the model assumes that noneffortful responding occurs randomly within test 

                                                           
4 Prior research has shown that in certain contexts the correct rates of noneffortful responses may be beyond the 
chance level due to a function of the location of the correct answers on the assessments (see Pastor, Ong & 
Strickman, 2019). For example, Attali and Bar-Hillel (2003) have shown that examinees tend to guess by choosing 
the middle response options. If this is the case and the correct answers were middle response options, the chance rate 
would be expected to be higher than 1 divided by the number of response options.  
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takers as the test progresses (said differently, noneffortful responding is independent from item 

parameters). Under this assumption, valid responses should be representative of the test’s content 

and varied item difficulty; thus, providing an accurate estimate of how well a test taker would 

have performed on the entire test if giving full effort. However, if this assumption is not met, an 

estimate of ability would be biased based on the test content and item difficulties that induced an 

examinee to respond noneffortfully. An additional underlying assumption of the EM-IRT model 

when estimating mean ability is that noneffortful responding is unrelated to examinees’ true 

ability (said differently, noneffortful responding is independent from person parameters). If this 

assumption is violated, the mean ability estimates will be either under/overestimated depending 

on the ability characteristics of the unmotivated examinees. The degree of under/overestimation 

is expected to increase as the difference between examinees’ underlying ability and the item 

difficulties to which noneffortful responses were given increases.  

Rationale for Current Study 

As noted, prior research has demonstrated the superiority of the EM-IRT over traditional 

IRT models (e.g., 2PL model) in parameter recovery when noneffortful responding is present. 

However, all studies to date have assumed that noneffortful responding occurs at random within 

and between persons (i.e., adhering to the assumptions underlying the EM-IRT model). Yet, 

these assumptions may be untenable in operational testing contexts. As an example, Wise and 

Kingsbury (2016) demonstrated that test takers can employ a multitude of noneffortful 

responding patterns that are nonrandom (i.e., related to item parameters). Furthermore, there 

have been a number of studies that demonstrated nonnegligible ability differences between 

examinees who did and did not engage in noneffortful responding (e.g., Rios et al., 2017). Thus, 
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little is known about the performance of the EM-IRT model when noneffortful responding is 

related to item and person parameters. 

The aims of this study were therefore twofold. First, we investigated how much bias is 

introduced into person and item parameter estimates using the EM-IRT model when its 

assumptions are violated. Second, under these violations, we compared the bias detected between 

the EM-IRT and 2PL models. In so doing, we looked to provide evidence on whether the EM-

IRT model outperforms the 2PL model under less than ideal circumstances. We pursued these 

two aims using simulation and empirical studies. In the first study, data were simulated for a 

testing context in which ability inferences were made at the group-level (i.e., ability estimates 

were aggregated at the total sample level; hereon person/ability parameters refer to the mean 

sample ability), reflecting accountability testing programs, such as Smarter Balanced, in which 

low test-taking effort is a concern. In this simulation study, the following research questions 

were investigated:  

1. How robust are EM-IRT item and person parameter estimates to violations of the 

underlying model assumptions that: (a) within persons, noneffortful responding occurs 

randomly over the course of a test; (b) between persons, noneffortful responding is 

unrelated to true ability?  

2. Do results to the first question change dependent on the number of examinees who show 

low effort and the proportion of items on which they are unmotivated? 

3. When the underlying assumptions of the EM-IRT model are violated, does it still 

outperform the 2PL model in terms of item and person parameter recovery?    

To investigate the tenability of the EM-IRT model’s assumptions in practice, Study 2 utilized 

multiple empirical datasets to examine the following research questions: 
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4. How prevalent is noneffortful responding? Specifically, what proportion of students 

noneffortfully respond on at least one item? Among those students, what is the 

distribution of noneffortful responses?  

5. What patterns of noneffortful responding are observed for examinees over the course of a 

test?  

6. Is noneffortful responding related to estimated ability in each sample? 

Results from these studies have the potential to inform researchers and test developers about the 

effectiveness of the EM-IRT model in providing robust parameter estimates under model 

violations when compared to traditional approaches used extensively in operational settings that 

ignore low effort.  

Study 1 - Simulation 

Method 

Data Generation  

To evaluate the EM-IRT model under varying patterns of noneffortful responding, data 

were generated for a 50-item test using the unidimensional 2PL model. Simulee abilities were 

sampled from a normal distribution (more detail is provided in the next section) and generating 

item parameters were taken from an operational administration of a low-stakes college learning 

outcomes assessment of critical thinking and reading. The mean discrimination and difficulty 

parameters employed were 1.00 (SD = 0.35, min = 0.18, max = 1.78) and 0.02 (SD = 0.67, min = 

-1.50, max = 1.42), respectively, indicating that data were generated for a moderately difficult 

and adequately discriminating assessment, assuming a standard normal ability distribution. Data 

generation was performed in R, version 3.5.0 (R Development Core Team, 2018).   

Simulation conditions  
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Five independent variables were examined: (a) sample size (500, 5,000); (b) percentage 

of unmotivated simulees in the total sample (10%, 30%, 50%); (c) percentage of noneffortful 

responses provided by each unmotivated simulee (10%, 30%, 50%, 70%); (d) the relationship 

between noneffortful responding and true ability (related [unmotivated mean ability = 0] and 

unrelated [unmotivated mean ability = -0.5 or -1]); (e) noneffortful responding pattern over the 

course of the test (random, difficulty-based, location-based, and decreasing effort). These five 

independent variables and their respective levels were fully crossed, which resulted in a 2 x 3 x 4 

x 3 x 4 design for a total of 288 conditions. To minimize sampling error, each condition was 

replicated 200 times. Below, the rationale for each condition is discussed. 

Sample Size. Sample size was included as an independent variable to investigate its 

impact on parameter estimation, particularly when considering the presence of noneffortful 

responses in the data matrix. Two sample sizes were inspected: 500 and 5,000. The former was 

included as it both represents a minimal sample size for obtaining stable parameter estimates for 

the 2PL model (Hulin et al., 1982) and is a realistic sample size for many small-scale testing 

programs in which low test-taking effort may be a concern (e.g., formative assessments used in 

schools). The latter level was incorporated into the design to represent a sample size that was ten 

times greater in magnitude, and thus, could be viewed as a comparatively large sample size.  

Percentage of Unmotivated Simulees. The percentage of unmotivated examinees 

observed in operational settings has been found to range from 0-25% (e.g., Rios et al., 2014; 

Rios & Guo, 2020; Rios et al., 2017; Soland, 2018). To account for this variability, prior 

simulation studies have examined various percentages of unmotivated simulees that are well 

within the range observed in operational settings (10%, 25%, 30%), while also examining more 

extreme cases of low effort (e.g., 50%; Rios et al., 2017; Wise & DeMars, 2006). Following 
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previous simulation research, the levels examined in this study were: 10%, 30%, and 50%. Thus, 

in this simulation study, unmotivated simulees were operationalized based on noneffortfully 

responding on a minimum of 10% of items or more.5 

 Percentage of Noneffortful Responses. In operational analyses, the percentage of 

noneffortful responses that have been observed for unmotivated examinees has ranged from 1% 

to 100% (e.g., DeMars & Wise, 2010). Previous simulation analyses examining noneffortful 

responding have manipulated percentages to range from 2.3% to 50% within unmotivated 

simulees (DeMars & Wise, 2010; Rios et al., 2017; Wise & DeMars, 2006). The percentages of 

noneffortful responses (constrained equal across all unmotivated simulees to conform to prior 

simulation designs) investigated in this study were 10%, 30%, 50%, and 70% of the items seen 

by the simulee. These percentages reflect those of previous simulations, but also add a condition 

with extreme noneffortful responding (70%). Fully crossing this condition with the percentage of 

unmotivated simulees led to the percentage of noneffortful responses in the complete data matrix 

across all simulees to range from 1% to 35%.  

The Relationship between Noneffortful Responding and True Ability. Studies have 

shown that individuals with low prior achievement and academic attainment are inclined to 

respond noneffortfully more often and on more items than their higher-achieving counterparts, 

suggesting that there may be a relationship between noneffortful responding and true ability 

(Kuhfeld & Soland, 2020; Rios et al., 2017; Soland et al., 2019). One theoretical argument for 

this finding is that low ability test takers engage in noneffortful responding to minimize negative 

self-perceptions by attributing their failure to not trying (Jagacinski & Nicholls, 1990; Thompson 

et al., 1995). However, some researchers maintain that such a relationship is minimal enough to 

                                                           
5 Prior research has classified unmotivated examinees based on the criterion that they provide noneffortful responses 
on 10% of items or more (e.g., Wise & Kong, 2005). 
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be trivial when making assumptions about why students rapidly guess (see Wise, 2015, for a 

discussion).  

Given this debate, we included simulation conditions in which noneffortful responding 

was, and was not, related to true ability. This condition was created by separately sampling 

ability parameters for motivated and unmotivated simulees. For the former group, ability 

parameters were randomly sampled from a standard normal distribution across all conditions. 

Similarly, in the condition where ability and effort were unrelated, unmotivated simulees’ ability 

parameters were randomly sampled from a standard normal distribution. In the condition 

assuming a relationship between ability and effort, disengaged simulees’ ability parameters were 

randomly sampled from a normal distribution with a variance of 1 and a mean that was either  

-0.50 or -1. The former mean was chosen because Rios et al. (2017) found an average 

performance difference on a prior ability measure between motivated and unmotivated simulees 

equal to approximately 0.50 standard deviations (favoring motivated examinees). The latter 

mean served as an extreme ability difference between motivated and unmotivated simulees. 

Drawing from a different normal distribution for unmotivated simulees in the related condition 

meant that most noneffort occurred for low ability simulees.   

Noneffortful Responding Pattern. Wise and Kingsbury (2016) have suggested that 

there are four patterns of noneffortful responding for keyed multiple-choice items, all of which 

were examined in our own study: (a) random (examinees noneffortfully respond randomly across 

the test); (b) difficulty-based (noneffortful responses occur only when examinees perceive the 

item to be too difficult); (c) changing state (at some point on a test, examinees become 

unmotivated and then only provide noneffortful responses thereafter); (d) decreasing effort 

(examinees generally become less motivated as the test progresses). Across all four patterns, 



Estimation Accuracy of the EM-IRT Model  13 

noneffortful responses were given a probability of being correct equal to chance, or 𝑃𝑃𝑖𝑖(θ) = .25 

(assuming each item possessed four response options). Condition (a) was produced by randomly 

replacing known probabilities of correctly responding to an item obtained from the 2PL model 

for simulees identified as being unmotivated with the chance rate (Rios et al., 2017; Wise & 

DeMars, 2006).  

To simulate difficulty-based noneffortful responding (option [b] above), known 

probabilities of successfully responding to an item for each unmotivated simulee were rank 

ordered (ties were randomly ordered). Based on the specified proportion of noneffortful item 

responses, the items with the lowest probability of success were replaced with the chance rate, 

meaning that noneffort occurred for the most difficult items. 

Turning to (c), known probabilities of success for unmotivated simulees for the final x 

percentage of the items on the test were replaced with the chance rate depending on the level of 

noneffortful responding stipulated. This approach was taken to mimic an examinee switching 

from a motivated to unmotivated state. For example, an examinee who was noneffortful on 10% 

of the items would switch into a noneffortful state with 10% of the items on the test remaining, at 

which point probabilities of a correct response were replaced with the chance rate.  

The final noneffortful responding pattern, (d), was simulated to reflect the occurrence of 

test takers engaging in less effortful responding as the test progresses, which has been 

demonstrated to occur across a number of operational testing contexts (e.g., Pastor et al., 2019; 

Penk & Richter, 2017; Wise & Kingsbury, 2016). Such a phenomenon might occur if, say, 

students become cognitively fatigued as the test progresses, but do not simply quit trying 

altogether at a point in the test as simulated in (c). To reflect this pattern of behavior, three steps 

were taken. First, the 50 items on the assessment were split into five bins of 10 items each (i.e., 
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items 1-10, 11-20, etc.). Second, the number of noneffortful responses within each bin was 

specified. These numbers, which progressively increased across bins of items for most 

conditions, were driven by the overall percentage of within-simulee noneffortful responding 

(described above). As an example, when unmotivated simulees were specified to noneffortfully 

respond on 50% of items, the number of invalid responses in each of the five bins was 3, 4, 5, 6, 

and 7, respectively.6 In this example, simulees were noneffortful on seven of the ten items in bin 

5. Third, after identifying the number of low-effort responses within each item bin, items were 

randomly selected (in accordance with the number of disengaged responses in that bin) and 

invalid responses were then simulated. In the example, seven out of the ten items in bin five were 

randomly selected to be noneffortful responses. 

Analyses  

Item and ability parameters were estimated based on two unidimensional IRT models 

using the mirt R package (Chalmers, 2012): (a) a 2PL model that ignores noneffortful responses 

and (b) the EM-IRT model, which treats all noneffortful responses as missing. For the latter 

model, we assumed that noneffortful responses were known, which is in accordance with prior 

simulation studies (e.g., Rios et al., 2017; more detail on this choice is provided in the limitations 

section). In the mirt package, data were fit using a maximum likelihood item factor analysis 

model for dichotomous data under the IRT paradigm, with an expectation-maximization (EM) 

algorithm. The EM convergence threshold was .0001 using the Broyden-Fletcher-Goldfarb-

                                                           
6 The number of noneffortful responses in each of the five bins for the 10% condition was 0, 0, 0, 2, and 
3, while for the 30% condition it was 1, 2, 3, 4, and 5. Finally, for the 70% condition, the distribution of 
noneffortful responses was 5, 6, 7, 8, and 9 across the five item bins. We acknowledge that there was a 
multitude of ways to disperse noneffortful responses across the test, however, our decision was meant to 
reflect a progressive decrease in an examinee’s test-taking effort. 
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Shannor optimization algorithm with the maximum number of cycles set to 500. Ability 

parameters were obtained via expected a posteriori (EAP) proficiency estimation using the 

standard normal distribution as a prior with 21 θ values and 61 quadrature points ranging from -4 

to 4. EAP was chosen for ability estimation as it has been shown to be one of the most robust 

IRT estimators to atypical response behaviors (Kim & Moses, 2016). Upon estimating the model, 

item and ability parameter estimates were compared with known parameters based on 

standardized bias, which was calculated for each replication as: 

 
�
∑ �𝑦𝑦�𝑖𝑖  − 𝑦𝑦�𝑛𝑛
𝑖𝑖=1

𝑛𝑛 �

𝑒𝑒𝑑𝑑(𝑦𝑦�𝑖𝑖  − 𝑦𝑦)
, 

(3) 

where 𝑦𝑦� is the estimated parameter, 𝑦𝑦 is the known parameter, and n is the number of 

observations. Thus, bias values were standardized based on the standard deviations of their 

sampling distributions, which allowed for comparisons across parameters with different units. In 

addition, the averaged root mean square error (RMSE) was calculated for each replication to 

provide a standard deviation of the residuals: 

 
�∑ (𝑦𝑦�𝑖𝑖−𝑦𝑦)2𝑛𝑛

𝑖𝑖=1
𝑛𝑛

. 
(4) 

In terms of ability parameter recovery, both bias and RMSE were calculated for the total sample 

as well as low (simulees with true ability below the 25th percentile), middle (simulees with true 

ability between the 25th and 75th percentiles), and high (simulees with true ability above the 75th 

percentile) ability simulees separately. We report on results for all and low ability simulees, with 

the latter being a focus based on prior research suggesting that unmotivated examinees are 

inclined to be below average students (e.g., Debeer et al., 2014; Rios et al., 2017). Furthermore, 

as the trends between bias and RMSE tended to be very similar, only the former is reported in 
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the results section; however, for interested readers, the latter index can be obtained via online 

supplementary information.  

To assist in making sense of the results for the large number of conditions, the effects of 

study factors on bias were estimated via a linear regression model. In this model, bias served as 

the dependent variable, while the five factors investigated (sample size, percentage of 

unmotivated simulees, percentage of noneffortful responses, relationship between noneffortful 

responding and ability, and responding pattern) were included as independent variables. Each 

main effect was treated as a categorical variable, with a sample size of 5,000, 10% unmotivated 

simulees, 10% noneffortful responses, no relationship between noneffortful responding and true 

ability, and random noneffortful responding serving as the reference groups. Statistical 

significance for factors with more than two levels was evaluated based on the Wald Test, and 

post-hoc comparisons between levels was investigated using multiple contrasts. To control for 

familywise error rate, the Benjamini-Hochburg procedure was employed to test for statistical 

significance based on a false discovery rate of 10% (for details of this procedure, readers are 

referred to Benjamini & Hochberg, 1995). Variance-explained was evaluated based on the 

multiple R2 value, and the analysis was conducted using the lm function in R. 

Results 

 Table 1 presents model results for the regression of study factors on item and ability 

parameter estimation recovery. Across conditions, results demonstrated that neither sample size 

nor noneffortful responding pattern had a large influence on the outcomes under investigation. 

As an example, across dependent variables, the absolute difference between sample size 

conditions was less than 0.05 SDs, while the same difference was noted for nearly every 

comparison between responding patterns. Therefore, we focus on the regression results for the 
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other main and interaction effects and present descriptive results aggregated by sample size and 

pattern conditions separately by item and person parameter recovery below.  

Item Parameter Recovery 

A Parameter Estimates 

 The main effects model accounted for 60% of variance in a parameter estimate bias. All 

two-way interactions accounted for less than 1% of variance, except for the interactions between 

IRT model and percentages of unmotivated simulees and noneffortful responses. Including these 

interactions into the final model led to an additional 21% of variance explained (the combined 

main and two-way interactions accounted for 81% of variance). As our analysis excludes 

discussion of sample size and responding pattern due to their limited impact, we focus on the 

main effect for the relationship between noneffortful responding and true ability as well as the 

interaction effects. In terms of the former, a parameter bias was found to be greater for 

conditions in which the unmotivated simulees possessed a mean ability that was lower than 

motivated simulees. Specifically, compared to conditions with equal mean ability between 

motivation groups, the average bias for mean ability differences of 0.5 and 1 SDs was greater by 

0.07 and 0.20 SDs, respectively. As the main effects of the percentages of unmotivated simulees 

and noneffortful responses were found to be dependent on their association with the IRT models, 

we turn to the interaction effects. Specifically, in comparing models, the regression results 

indicated that, across all conditions, the average bias in a parameter estimates was greater for the 

EM-IRT model by as much as 0.44 and 0.57 SDs when the percentage of noneffortful responses 

and simulees was equal to 70% and 50% (both compared to a reference of 10%), respectively 

(Table 1). Though the regression results suggested increased bias for the EM-IRT model, the 

descriptive results illustrated in Figure 1 provide a more nuanced understanding of the results.  
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Figure 1 shows a plot for the a parameter estimates, with standardized bias on the vertical 

axis and different combinations of the percentages of unmotivated simulees and noneffortful 

responses on the horizontal. Whereas the top panel is for the condition in which ability and effort 

were uncorrelated, the bottom two panels are for conditions in which they were related. As the 

figure shows, while 2PL estimates were biased when effort and ability were unrelated (estimates 

showed bias between -0.13 and -0.54 SDs when 30% of simulees disengaged), the EM-IRT 

estimates had virtually no bias across all conditions in which the mean ability was equal between 

motivated and unmotivated simulees. Similarly, in conditions where the unmotivated mean was -

0.5 SDs, the EM-IRT model still outperformed the 2PL model, but EM-IRT estimates also 

displayed overestimation of the a parameter. However, the degree of bias for the EM-IRT 

estimates across all conditions was less than 0.10 SDs (Figure 1).  

Under the extreme condition of a 1 SD mean ability difference between motivation 

groups, mixed findings were observed. For instance, the EM-IRT model outperformed the 2PL 

model under large degrees of noneffortful responding in the data matrix (e.g., when the 

percentage of noneffortful responses ranged from 15% to 35%). Though, under conditions with 

less noneffortful responses, the degree of overestimation detected for the EM-IRT model 

surpassed the degree of underestimation for the 2PL model. One reason for this finding is that, 

for the EM-IRT model, bias in the a parameter was found to decrease as the percentage of 

noneffortful responses increased. Although counterintuitive, this finding reflects an artifact of 

our sampling procedure. Specifically, as the unmotivated simulees were predominately of lower 

ability, noneffortful responding may have been beneficial in some cases, as it increased the 

probability of a correct item response, particularly at lower rates of noneffortful responding. 

However, as the percentage of noneffortful responses increased, across all items, the average 
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probability of success for these responses approached chance, and thus, more accurately reflected 

unmotivated simulees’ true probability and provided less biased a parameter estimates.  

B Parameter Estimates 

Similar to the a parameter estimates, the inclusion of the two-way interaction effects 

between IRT models and percentages of unmotivated simulees and noneffortful responses along 

with the main effects accounted for 81% of variance in b parameter estimate bias (all other two-

way interaction effects were not included due to their accounting for less than 1% of variance). 

Focusing on the main effect for the relationship between noneffortful responding and true ability, 

significant differences were noted between levels. Specifically, across conditions, the average 

amount of bias was greater for conditions in which the unmotivated simulees were of lower 

ability than their motivated counterparts by 0.18 and 0.35 SDs for ability differences of 0.5 and 1 

SDs. Turning to the interaction effects, when compared to the 2PL model, the EM-IRT model 

was found to be associated with a decrease in b parameter bias by an average of 0.31 and 0.38 

SDs in conditions in which the percentages of unmotivated simulees and noneffortful responses 

were equal to 50% and 70% (both compared to a reference of 10%), respectively. Descriptive 

results shown in Figure 2 further indicate that the EM-IRT model outperformed the 2PL model 

across all conditions. In general, the former model showed little bias when ability and effort were 

unrelated.  

However, when ability and effort were related (unmotivated mean abilities of -0.5 and -1 

SDs), the EM-IRT estimates showed bias that increased as the proportion of low-effort simulees 

increased. For instance, when the mean ability difference between motivation groups was 0.5 

SDs, the EM-IRT model overestimated the b parameter by nearly 0.20 and 0.33 SDs for 

unmotivated simulee percentages of 30% and 50%, respectively. Meanwhile, for the 2PL model, 
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bias for these conditions was equal to 0.41 and 0.72 SDs. As noted, bias in b parameter estimates 

was found to increase as the disparity in mean ability between motivation groups grew. As an 

example, for the EM-IRT model, when ability disparities between motivation groups was 1 SD, 

the average bias for conditions with 30% unmotivated simulees was 0.40 compared to 0.20 SDs 

for a mean ability difference of 0.5 SDs. In the same condition, bias was 0.58 compared to 0.41 

SDs for the 2PL model. Overall, these results suggested that the EM-IRT model led to reduced 

overestimation of difficulty parameters; however, both models were susceptible to increased bias 

as the percentage of unmotivated simulees and the disparity in mean ability between motivation 

groups increased.    

Ability Parameter Recovery 

All Simulees 

 The main effects model accounted for 61% of variance in ability parameter bias. Only a 

single two-way interaction was found to account for variance in the dependent variable beyond 

1%, which was the interaction between the percentage of unmotivated simulees and the 

relationship between noneffortful responding and ability. Including this interaction into the final 

model with the main effects led to an R2 equal to .93, indicating that the interaction effect 

accounted for an additional 32% of variance. Examining the main effect for the percentage of 

noneffortful responses suggested that there was a negligible increase in bias across levels. For 

instance, across conditions, the average difference in bias between 10% and 70% noneffortful 

response levels was <0.01 SDs. Similarly, across all conditions, model results indicated that the 

difference in mean ability parameter bias between the 2PL and EM-IRT models was near zero 

(Table 1). This is further corroborated in the boxplots found in Figure 3.  
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Two likely reasons for the negligible difference between IRT models was that bias was 

both robust to high rates of noneffortful responses and largely influenced by the relationship 

between noneffortful responding and ability. The former factor suggests that the 2PL model, 

which does not account for noneffortful responding, can perform well when unmotivated 

simulees disengage on a large percentage of items, while the latter factor clearly violates one of 

the major assumptions underlying the EM-IRT model. As shown in Figure 3, both models 

performed well when motivated and unmotivated simulees possessed equal mean abilities; 

however, as the percentage of unmotivated simulees in the sample who possessed below-average 

ability grew, the bias was found to increase across both models (Table 1; Figure 3). As an 

example, across IRT models and under conditions where the ability difference between 

motivation groups was 0.5 SDs, the average degree of bias increased by 0.10 and 0.21 SDs when 

30% and 50% of simulees were unmotivated compared to no difference in mean ability between 

motivation groups (Table 1). For these same percentages of unmotivated simulees, the degree of 

bias grew to 0.21 and 0.43 SDs when increasing the group mean ability difference to 1 SD. In 

short, when ability and effort were related, both models performed equally poorly in estimating 

mean ability for all simulees, particularly as the percentage of unmotivated simulees increased. 

Low Ability Simulees 

Focusing on disaggregating bias for low ability simulees (i.e., simulees with true ability 

below the 25th percentile) produced a different finding. Specifically, when regressing study 

factors on ability bias using the same model as for all simulees, significant differences between 

models was observed, with the EM-IRT model possessing an average bias across all conditions 

that was 0.20 SDs lower than the 2PL model (Table 1). As can be seen in Figure 4, the EM-IRT 

model generally overestimated ability to a lesser degree across all conditions. However, test 
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users should be aware that ability estimates for this simulee group can be greatly influenced by 

the association between noneffortful responding and true ability as well as the percentages of 

unmotivated simulees and noneffortful responses (Table 1). For instance, contrasted to 

conditions in which motivation groups were matched on their mean theta, ability was 

overestimated by an average of 0.15 and 0.36 SDs more when unmotivated simulees possessed a 

mean ability that was 0.5 and 1 SD lower than their motivated counterparts. Furthermore, 

compared to conditions in which 10% of the sample was comprised of unmotivated simulees, 

bias increased by 0.08 and 0.15 SDs as unmotivated simulees made up 30% and 50% of the 

sample. Finally, low ability bias was found to significantly increase as the percentage of 

noneffortful responses increased. Specifically, bias grew by 0.08, 0.18, and 0.32 SDs for 

conditions with 30%, 50%, and 70% noneffortful responses (compared to 10%). Overall, these 

findings suggest that the EM-IRT model generally outperformed the 2PL model in estimating 

ability for simulees that fall below the 25th percentile; however, across both models, bias was 

amplified as the difference in mean ability between motivation groups and the percentages of 

unmotivated simulees and noneffortful responses increased. As can be seen in Figure 4, the 

degree of bias in many contexts is so great that it would be unadvisable to report disaggregated 

ability estimates for this group.  

Study 2 - Empirical 

Simulation results suggest that the EM-IRT model provides robust estimates of item and 

ability parameters under all conditions, except when noneffortful responding was related to 

ability and the percentage of unmotivated simulees in the sample was ≥ 30%. Thus, in the 

empirical study, we provide evidence on the percentage of unmotivated examinees and the 

association between estimated ability and noneffort for two operational tests.   
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      Methods 

Sample and Measures 

 The two operational tests we used were the Measures of Academic Progress (MAP) 

Growth test of reading and the Office for Economic Cooperation and Development (OECD) Test 

for Schools, which are both described below.  

MAP Growth  

The MAP Growth assessments are low-stakes item-level computer-adaptive tests 

typically administered three times a year in the fall, winter, and spring. MAP Growth tests begin 

with a question appropriate for the student’s grade level, and then adapt throughout the test in 

response to the student’s performance. Test scores are reported on the Rasch Unit (RIT) scale, 

which is 200 + 10 × θ (θ refers to the logit scale units of the Rasch item response theory 

model). The sample consisted of 854,437 students in 3rd through 8th grade from the United 

States who took the test as many as three times (fall, winter, and spring) in the 2017-18 school 

year, resulting in over two million test records.  

 OECD Test for Schools  

The OECD Test for Schools is an assessment used by schools to support research, 

benchmarking, and academic improvement. The test measures the knowledge of 15-year-old 

students in reading and mathematics on scales comparable to the main PISA scales. All item 

parameters and scoring methods were drawn directly from PISA. The OECD Test for Schools is 

fixed-form, which means students often receive items that are difficult relative to their estimated 

achievement. Our sample consisted of approximately 4,400 10th grade students from the United 

States who took the test in the 2016-17 school year. For this assessment, research questions were 

examined separately for math and reading. 



Estimation Accuracy of the EM-IRT Model  24 

Analytic Approach 

 The methodological approach generally consisted of descriptive statistics. Analyses were 

conducted using all test events for a student (e.g., including both scores from a student who 

tested in fall and spring), as well as limiting results only to the spring administration. For 

Question 1, the proportion/percentage of students who produced noneffortful responses on one or 

more items is reported by test along with the proportion/percentage of items on which those 

students were noneffortful. Across tests, noneffortful responses were identified using the 

response time threshold procedure proposed by Wise and Ma (2012). For an item of interest, this 

procedure classifies any response provided in less than 10% of the average response time as a 

noneffortful response with a maximum threshold of 10 seconds.7  

For question 2, the proportion of noneffortful responses was plotted against the student’s 

estimated ability. One problem with such plots is that noneffort likely leads to an understatement 

of estimated achievement (Rios et al., 2017). As a result, estimated ability is likely to be more 

correlated with noneffortful responding than with true ability. While there is no perfect solution 

to this confounding of estimated ability with noneffortful responding, we take an approach used 

by Kuhfeld and Soland (2020), who examined the association between rates of noneffortful 

responding and EM-IRT estimates of ability. In so doing, one can investigate the relationship 

                                                           
7 Perhaps the most difficult technical challenge associated with identifying noneffortful is setting a response time 
threshold separating effortful and noneffortful responses (Guo et al., 2016; Wise, 2015; Wise & Kong, 2005). In 
plain terms, how fast does a student need to respond in order to conclude that the content of the item was not fully 
understood? Approaches to setting thresholds include visually inspecting response time distributions (Wise & Kong, 
2005), comparing response times for a single item response to the overall distribution of response times for that item 
(Wise & Ma, 2012), and setting the threshold at the response time below which students get the item right at a rate 
no better than chance (Guo et al., 2016). We compared a subset of items deemed rapid under the Wise and Ma 
(2012) method to the one developed by Guo et al. (2016), but found very high overlap, likely because the frequency 
with which students answer an item correctly was used as a criterion to validate the thresholds set using the Wise 
and Ma (2012) approach. These results suggest that the inferences made in the empirical study are largely robust to 
the response time threshold applied to classify noneffortful responding. 
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between noneffortful responding and an estimate of ability that accounts for noneffortful 

responding (if imperfectly, as our simulation study shows).   

      Results 

 Results are presented for all test events (not just spring test events) because the 

conclusions drawn were not affected by including students in the sample more than once. 

What is the Percentage of Unmotivated Examinees for Each Test? 

 Table 2 presents counts of examinees by proportion of responses that were noneffortful. 

As the table indicates, rates of examinees who were deemed unmotivated on one or more items 

were about 9% for OECD math, 11% for OECD reading, and 20% for MAP Growth reading. 

Most of those examinees were unmotivated on relatively few items. For example, across all three 

tests, about half of the students who rapidly guessed at least once did so on 5% or fewer of the 

items. Further, while some students did show low effort on half or more of the items, the 

percentages of students who did so was only 3% on OECD math, 5% on OECD reading, and 1% 

on MAP Growth reading. 

Is There a Relationship between Estimated Ability and Noneffortful Responding? 

 Figure 5 plots the proportion of item responses that were noneffortful responses on the 

vertical axis and estimates of ability on the horizontal axis for OECD and MAP Growth reading 

tests. Note that the MAP Growth results are presented in RITs and the OECD results in logits. 

On both tests, there is a steady decline in items that were responded to rapidly as ability 

increases. Note that the proportion of items that were responded to rapidly reaches about .20 for 

low ability examinees on the OECD test, but only .08 on MAP Growth. These differences could 

be due to the fact that MAP Growth is computer adaptive, which means students are less likely to 
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see items that are very difficult relative to their ability. Results were similar when EM-IRT 

scores were used on the horizontal axis.  

Discussion 

 The EM-IRT model has been shown to better recover item and person parameters relative 

to the 2PL model when its assumptions are met. As a result, the EM-IRT model is used often in 

research to address noneffortful responding. Yet, there is a dearth of evidence regarding its 

performance when its underlying assumptions are unmet, particularly when compared to 

extensively used models, such as the 2PL model. The objective of this study was to investigate 

the item and ability parameter estimation accuracy of the EM-IRT model under violations of its 

underlying assumptions. Overall, in regard to item parameter recovery, results demonstrated that 

this model outperformed the 2PL model across nearly all conditions and outcomes. However, 

though still an improvement over the 2PL model, the EM-IRT model produced bias in item 

parameter estimates when violating the assumption that noneffortful responding is unrelated to 

ability. This result was especially pronounced when the percentage of unmotivated simulees in 

the sample was greater than or equal to 30%. Furthermore, when estimating the a parameter 

under conditions in which the mean ability of the unmotivated simulees was lower by 1 SD when 

compared to motivated simulees, the EM-IRT model actually performed worse for certain 

percentages of unmotivated simulees and noneffortful responses.   

In regard to estimation accuracy of ability parameters, the 2PL and EM-IRT models were 

found to perform nearly identically. Across all conditions, approximately no bias in ability 

estimates was observed when noneffortful responding was unrelated to ability. However, when 

unmotivated simulees were predominantly of low ability, both models tended to overestimate 

ability parameters, with greater bias observed as the percentage of unmotivated simulees in the 
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sample increased. In general, when this percentage was ≤ 30%, bias was ≤ 0.16 SDs. This 

finding of bias on ability estimates has been supported by a number of applied analyses (e.g., 

Kuhfeld & Soland, 2020; Rios et al., 2017; Soland, 2018). Although the two models performed 

equally well when estimating ability for the total sample, the EM-IRT model was found to 

produce less bias for low ability simulees (simulees with ability below the 25th percentile), 

though this advantage largely disappeared for other ability groupings (e.g., middle ability). 

However, it should be noted that these findings are in the context of simultaneous estimation of 

both item and person parameters. Thus, the degree of bias that we observed in ability estimates is 

likely greater than employing fixed item parameter ability estimation in which the item 

parameters are first estimated based on a filtered sample (i.e., all noneffortful responses are 

treating as missing). Examining the utility of employing such an approach to improve ability 

parameter estimation accuracy in the EM-IRT model is a direction for future research. 

To examine if the conditions associated with increased bias in item and person 

parameters are present in practice, two operational testing programs were examined. Our applied 

analyses demonstrated that examinees with lower ability were found to noneffortfully respond at 

increased rates when compared to their higher ability counterparts. However, the percentages of 

unmotivated examinees (i.e., examinees engaging in one or more noneffortful responses) in our 

samples that noneffortfully responded on more than 5% of items did not exceed 10%. Thus, our 

results suggest that, although there is the potential for estimation bias of item parameters when 

employing the EM-IRT model under violations to its underlying assumption that noneffortful 

responding and ability are unrelated, the degree of bias in practice may be small.  

Limitations and Future Research Directions  
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A limitation of the simulation analysis was our treatment of noneffortful responses as 

known. Although this was an approach taken in prior simulation studies (e.g., Rios et al., 2017), 

the accuracy of the EM-IRT model parameter estimates assumes that noneffortful responses can 

be correctly classified. Consequently, our simulation analysis ignored potential violations to this 

assumption, and the findings in this paper should be interpreted as the best-case performance for 

the EM-IRT model. It is unknown how misclassifying noneffortful responses will impact 

parameter estimates for this model. This is a clear area for future research.  

An additional set of limitations was related to our manipulation of two factors in the 

simulation study. First, we constrained all unmotivated simulees to noneffortfully respond on the 

same percentage of items. Such a scenario is unlikely given that prior research has demonstrated 

a large variance in the number of noneffortful responses that examinees provide in operational 

settings (Wise & Kingsbury, 2016). Although the intended aim of this approach was to control 

for this factor in an effort to isolate its underlying effect on the study outcomes, it may have led 

to simulation contexts in which the percentage of noneffortful responses observed on each item 

was higher than what is seen in practice. As a consequence, when examining item parameter 

recovery, the results may reflect a greater degree of bias than what may be present in operational 

settings. It is recommended that future research examining this factor and others in this study 

include sampling methods that create greater degrees of randomness in simulees’ noneffortful 

responding patterns, which may better reflect reality (e.g., see Wang et al., 2018). 

Finally, our simulation study only compared two IRT models that were selected based on 

their computational simplicity and popularity in the literature. However, as noted earlier, there 

have been recent applications of mixture modeling to simultaneously account for noneffortful 

responding while also estimating item and ability parameters (e.g., Lu et al., 2020; Wang & Xu, 
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2015; Wang et al., 2018). As a result, there is a need for a study comparing the two-stage 

approach (i.e., first identifying noneffortful responding, and then accounting for those responses 

prior to parameter estimation) to the mixture-model approach in terms of parameter recovery and 

computation time. As our findings showed that there is a clear need to improve estimation 

accuracy of ability parameters when unmotivated simulees are predominantly of low ability, this 

comparative study should also investigate if the mixture-modeling approach provides less bias in 

parameter recovery compared to the EM-IRT when motivation groups differ in their underlying 

mean ability. 

Turning to the empirical analysis, as with the use of any applied data, our study is limited 

in the degree of generalizability that is permissible based on our evaluation of noneffortful 

responding in two testing contexts. Although we included a large-scale sample that consisted of 

over two million testing records for the MAP Growth assessment, limiting sampling error, both 

testing programs in this study consisted of students from the United States in grades K-12. Thus, 

the degree of noneffortful responding observed does not generalize to other testing contexts and 

populations. In particular, MAP Growth is an adaptive test, which tends to be more robust to 

noneffortful testing issues (Wise, 2014). Due to the limitations associated with the empirical 

samples and tests used, we would recommend that future research continue to examine 

characteristics of noneffortful responding patterns and rates, as well as characteristics of 

unmotivated examinees across different testing contexts.  

Conclusion 

This study provides two main takeaways. First, failing to handle noneffortful responses 

may affect item calibration by making items appear to be more difficult and less discriminating 

than they are. These inaccuracies can be largely mitigated by applying the EM-IRT model, which 
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has been shown to provide robust item parameter estimates under violations to its underlying 

assumptions for realistic conditions in practice. Therefore, it is recommended that when 

evaluating item properties during the pilot test phase, practitioners should apply the EM-IRT 

model to mitigate incorrect inferences about item quality, particularly as these data are often 

collected from examinees in low-stakes contexts. This strategy may be of particular benefit 

during new test or item pool construction.  

Second, our simulation analyses demonstrated that mean ability estimates are robust to 

large percentages of noneffortful responding and unmotivated simulees, particularly when 

noneffortful responding is unrelated to ability. However, we did find a tendency for both the 2PL 

and EM-IRT models to overestimate mean ability when noneffortful responding and ability are 

related. Nonetheless, bias > 0.25 SDs was only detected when the percentage of unmotivated 

simulees was 50% and mean ability differences between motivation groups was 0.5 SD or more, 

which may occur somewhat infrequently in practice. Therefore, if estimating mean ability for a 

total sample, employing either the 2PL or EM-IRT models will often produce comparable 

results, including similar degrees of bias. However, if the focus of score reporting is to 

disaggregate data for low ability examinees, potentially to help make remediation decisions or 

subgroup comparisons, practitioners may benefit from employing the EM-IRT model, 

particularly in conditions in which motivation groups are matched in their underlying ability and 

the percentages of unmotivated simulees and noneffortful responses are low. 
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Table 1 

Model Results for Regressing Study Factors on Item and Ability Parameter Bias 

 A Parameter 
R2 = .81  

B Parameter 
R2 = .81  

Theta 
(All) 

R2 = .93 

Theta 
(Low Ability) 

R2 = .93 
Factor Estimate Estimate Estimate Estimate 

Intercept 0.10*** -0.17*** -0.00*** 0.25*** 
Sample Size 0.04*** -0.02*** -0.00*** -0.01*** 
30% Unmotivated Simulees -0.20*** 0.29*** 0.00*** 0.08*** 
50% Unmotivated Simulees -0.49*** 0.58*** 0.00* 0.15*** 
NER Pattern: Difficulty -0.04*** -0.09*** 0.00 -0.04*** 
NER Pattern: Changing State 0.03*** -0.01*** 0.00 0.01*** 
NER Pattern: Progressive <0.01 0.01*** 0.00 0.01*** 
30% NER -0.20*** 0.11*** 0.00* 0.08*** 
50% NER -0.37*** 0.22*** 0.00*** 0.18*** 
70% NER -0.47*** 0.34*** 0.00*** 0.32*** 
Unmotivated Mean: -0.5 0.07*** 0.18*** 0.05*** 0.15*** 
Unmotivated Mean: -1 0.20*** 0.35*** 0.10*** 0.36*** 
30% Unmotivated Simulee x 
Unmotivated Mean: -0.5 ---- ---- 0.10*** 0.28*** 

50% Unmotivated Simulee x 
Unmotivated Mean: -0.5 ---- ---- 0.21*** 0.55*** 

30% Unmotivated Simulee x 
Unmotivated Mean: -1 ---- ---- 0.21*** 0.68*** 

50% Unmotivated Simulee x 
Unmotivated Mean: -1 ---- ---- 0.43*** 1.26*** 

Model -0.14*** 0.11*** 0.00** -0.20*** 
30% NER x Model 0.19*** -0.11*** ---- ---- 
50% NER x Model 0.36*** -0.24*** ---- ---- 
70% NER x Model 0.44*** -0.38*** ---- ---- 
30% Unmotivated Simulee x 
Model 0.25*** -0.16*** ---- ---- 

50% Unmotivated Simulee x 
Model 0.57*** -0.31*** ---- ---- 

Note. NER = noneffortful responding or noneffortful responses. All parameters had standard 
errors <.01.  ***p<.001; ** p<.01; *p<.05 
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Table 2 
 

 
  

   
Counts of Examinees by Proportion of Responses that were Noneffortful      

 OECD - Math  OECD - Reading  MAP Growth - Reading 
Prop. 
Rapid  

Freq. Proportion 
 

Freq. Proportion 
 

Freq. Proportion 

0  4,033 .913  3,887 .886  1,621,229 .793 
.05  176 .040  214 .049  226,313 .111 
.10  72 .016  84 .019  76,535 .037 
.15  50 .011  63 .014  44,151 .022 
.20  34 .008  39 .009  24,718 .012 
.25  18 .004  22 .005  14,752 .007 
.30  9 .002  18 .004  12,527 .006 
.35  10 .002  20 .005  7,050 .003 
.40  5 .001  8 .002  5,565 .003 
.45  0 .000  8 .002  4,077 .002 
.50  4 .001  13 .003  2,482 .001 
.55  1 .000  4 .001  1,713 .001 
.60  0 .000  3 .001  984 .000 
.65  2 .000  2 .000  722 .000 
.70  0 .000  2 .000  419 .000 
.75  0 .000  1 .000  265 .000 
.80  0 .000  0 .000  101 .000 
.85  0 .000  0 .000  59 .000 
.90  1 .000  0 .000  26 .000 
.95  1 .000  0 .000  6 .000 
1  3 .001  1 .000  2 .000 
    4,419 1.000   4,389     2,043,696   

Note. Test lengths varied but were typically between 20-30 items.     
 

 

 

 

 

 

 

 

 

 



Estimation Accuracy of the EM-IRT Model  37 

Figure 1 

A Parameter Bias 

 
Note. S = proportion of unmotivated simulees in sample; R = proportion of noneffortful responses. The lighter color boxplots 
represent the results for the EM-IRT model. 
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Figure 2 
 
B Parameter Bias 

 
Note. S = proportion of unmotivated simulees in sample; R = proportion of noneffortful responses. The lighter color boxplots 
represent the results for the EM-IRT model. 



Estimation Accuracy of the EM-IRT Model  39 

Figure 3 

Ability Parameter Bias (All Simulees) 

 
Note. S = proportion of unmotivated simulees in sample; R = proportion of noneffortful responses. The lighter color boxplots 
represent the results for the EM-IRT model. 



Estimation Accuracy of the EM-IRT Model  40 

Figure 4 

Ability Parameter Bias (Low Ability Simulees) 

 
Note. Low ability simulees were classified based on possessing a true ability < 25th Percentile. S = proportion of unmotivated simulees 
in sample; R = proportion of noneffortful responses. The lighter color boxplots represent the results for the EM-IRT model. 
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Figure 5  

Plots of Proportion of Noneffortful Responses versus Estimated Ability 

 

                    MAP Growth Reading                       OECD Reading 

Note. MAP Growth estimates fall much closer to the fitted function due to substantively larger 
sample sizes compared to the OECD sample. 

 


