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Abstract Many physical situations involve chaotic

systems implemented in hardware. Among them one-

dimensional piecewise linear maps are popular candi-

dates for such applications because of their property of

generating robust chaos. In physical implementations,

the control parameter of these maps may deviate from

its ideal value due to hardware imprecision. Since the

dynamics of a chaotic map is completely defined by

its control parameter, one needs to know the value of

the parameter in a hardware realisation. In this paper,

we show that it is possible to determine the parameter,

through the realisation of the unstable fixed point of

the map, by utilising noise that is always present in the

system. We present this in the form of an algorithm and

demonstrate its efficacy through simulated results. We

also determine the bounds on the signal-to-noise ratio

required for successful parameter estimation. The pro-

posed approach is expected to be beneficial to the exist-

ing noise reduction techniques and time series recovery

algorithms that require a reasonably accurate knowl-

edge of the map.
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1 Introduction

Chaotic maps have found use in applications like data

encryption, cipher key generation in communication,

dynamical systems synchronisation and control, and

signal processing, to name a few. One-dimensional

(1D) piecewise linear (PWL) maps, a sub-class of

chaotic functions, are especially popular in practi-

cal applications owing to their simplicity and ease of

implementation in the physical domain. In particular,

certain maps belonging to this class are extensively

studied and applied for their uniformly dense chaotic

behaviour over a wide range of parametric values,

referred to as ‘robust chaos’ [1]. Such maps have there-

fore received considerable attention for use in applica-

tions involving physical implementations [2–6].

The control parameter is one of the central elements

of the chaotic functions, whose estimation is necessary

for the specific knowledge of the resultant dynamical

behaviour. There are some robust techniques available

that use either time series trajectories [7,8] or the equiv-

alent symbolic sequences [9] to decipher the dynamic

behaviour of the map, thereby determining the control

parameter that result in such behaviour. However, such

techniques often do not consider the inevitability of the

noise introduced in certain implemented scenarios that

results into complete digression of system trajectories
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from the expected one [10]. In fact, in some cases, the

severity of the noise can lead to outcomes bearing lit-

tle or no resemblance to the actual system behaviour

[11,12].

Distinguishing meaningful information from the

distorted dynamics is crucial and can be computation-

ally intensive. The contributions in [13–15] offer signif-

icant reduction of the noise with efficient reconstruction

of the dynamical phase space manifolds, consistently

highlighting the importance of either determining the

noise level in the system or approximating the source

function as a priori information so that either of the

two information can be utilised to distinguish the other.

In this paper, we study the dynamics of noise-affected

1D PWL maps and propose an innovative technique

utilising Cartesian coordinate geometry to identify the

control parameter of the map, consequently this knowl-

edge of the control parameter can significantly reduce

the computational steps involved in approximation of

the source function.

Many studies have been conducted to broadly under-

stand the effect of noise on the chaotic dynamics [16–

18]. Noise and chaotic trajectories are both wideband

signals; therefore, linear filtering techniques (e.g. low-

pass, bandpass filters) or classical Fourier approaches

cannot be applied to reduce noise, as meaningful tra-

jectories might also be barred by the filtration [19,20].

Thus, eliminating noise in order to discern the actual

system trajectories is a non-trivial problem and is

approached algorithmically.

Works by Kostelich [21], Schreiber [13] and Grass-

berger et al. [15] formed the basis of the subse-

quent developments in the noise treatment approaches

and have been well summarised by Kostelich and

Schreiber in [22] through a qualitative comparison

assessing the suitability of the most prevalent tech-

niques for various application scenarios. One such tech-

nique is source function approximation which uses

least squares approach for local linear approximations

(Eckmann–Ruelle linearisation) [23] of the dynamics

at each point of the attractor. The accuracy of such

approaches depends on how appropriately the dynam-

ics can be described by the chosen linear function. Sim-

ilar approximation techniques like global function fits

also depend on the appropriate choice of the basis func-

tions [22,24].

Adaptive thresholding is also a commonly used

approach that uses threshold functions to determine

wavelet coefficients of the noisy signal, depending on

the energy distributions in each set of samples, since

energies of chaotic segments are comparable to noise.

Such a method has been described in [25] that applies

different threshold coefficients adaptively according

to the detailing of the decomposed signal-scale coef-

ficients. Adaptive thresholds can also be estimated

with optimisation techniques like genetic algorithm as

shown by Han and Chang [26].

Another popular approach is to determine maximum

likelihood, where the noisy trajectories are compared

with a noise free reference orbit, as demonstrated by

Marteau and Abarbanel in [27]. Similarly works by

Schweizer and Schimming [28] shows how least square

estimates between the expectation and the observa-

tion can be used as likelihood cost function. How-

ever, to determine the expectation, the knowledge of

either the actual trajectory or the noise level in the sys-

tem is necessary. Also, most of the noise reduction

and phase space reconstruction problems are simul-

taneously addressed through multidimensional delay

embedding techniques that are fundamentally based on

Takens’ embedding theorem [19], which is only appli-

cable to the systems with higher (greater than two)

Euclidean dimensions [11,29].

From the mentioned techniques, it is understood that

a number of the approaches depend either on good

approximation of the source function, or determination

of the thresholds between noisy and deterministic data

that involve several layers of pre-processing stages,

thus may add to the cost of computation as a trade-off.

On the other hand, the likelihood estimation approaches

demand prior information of the noise level or complete

knowledge of the source function where by “complete

knowledge” it is expected of one to know the chaotic

system in full detail including the control parameter.

Hence, if the information of the control parameter can

be extracted from the noisy trajectories, then a con-

siderable amount of information regarding the actual

dynamics and the initial conditions can be successfully

retrieved and it can be of additional support to the exist-

ing noise reduction techniques to improve accuracy.

In this paper, we investigate the behaviour of the

noisy dynamics of 1D PWL maps under different para-

metric conditions. From the collective observations of

highly distributed trajectories over the state space, as

is the case with the noise-affected dynamics, we notice

a unique dynamical property demonstrated by the iter-

ates originating within a wide neighbourhood of the

fixed point of the map. Knowing the magnitude and

123



Parameter estimation for 1D PWL chaotic maps 2981

time coordinates of the iterative samples, we propose

a geometric view of the iterates on a two-dimensional

Cartesian coordinate system. We apply linear construc-

tions between consecutive iterates within the set of col-

lected samples whose solutions correspond to a unique

point that we mathematically establish as having direct

correspondence with the fixed point and control param-

eter of the map. Hence, the property can be utilised to

determine the system parameter from the collection of

noisy dynamics of the system.

In Sect. 2, we present the contextual overview of

1D PWL maps and suitable sampling techniques that

will be required for the observations regarding the noisy

dynamics. In Sect. 3, we show in detail how the dynam-

ical noise within the system affects the trajectories and

makes them spread all over the state space through the

dynamics of tent map considering it as a typical exam-

ple of 1D PWL maps. We establish the observed prop-

erties in Sect. 4, which we further utilise in Sect. 5 to

formulate a method to estimate the parameter of the

maps considered. We verify the efficacy of the pro-

posed technique for the candidates of 1D PWL maps

through simulation results. In Sect. 6, we add some final

comments and concluding remarks about the proposed

technique.

2 Context

1D PWL maps given by f are composed of a set

of linear functions defined over segments of a one-

dimensional state space. Each of the linear segments

is limited by contiguous restrictions that together con-

stitute the invariant interval or the state space I . The

dynamics of f (xn) = xn+1 ∈ I ⊂ R is an

iterative self-map such that f : I → I , whose

resulting discrete time series is given by X =
{xn | n = 0, 1, . . . , N − 1} for N iterations and can

be treated as the trajectory of the map over time.

Among the 1D PWL maps, the tent map (both sym-

metric and skew), the zigzag map and Bernoulli shift

map are the are the common examples, as these maps

are widely used in various areas of application. First,

we consider symmetric tent map T (xn) [3] to observe

the behaviour of noise-affected chaotic dynamics and

investigate the properties of the noisy iterates reflecting

upon the maps fixed points and the parameter. Later we

adapt the estimation technique for the other 1D PWL

maps. The tent map is defined by (1) over I = [0, 1]

and the dynamics of T depends on the height or the

control parameter of the map, given by µ ∈ [0, 1],
and critical point of T is xc = 0.5 ∈ I .

xn+1 = T (xn) =
{

2µxn 0 ≤ xn ≤ xc

2µ (1 − xn) xc < xn ≤ 1
(1)

T (xn) exhibits chaotic behaviour for µ ∈ (0.5, 1]. The

discrete time trajectory of an input or initial condition

x0 ∈ I has the following properties.

1. x0 = T 0(x0)

2. xn+1 = T n+1(x0) = T (T n(x0)) = T (xn)

3. T (0) = T (1) = 0

4. Tmax = T (xc) = 2µxc = µ ≤ 1, where Tmax is

the maximum height of the map, for 0.5 < µ ≤ 1

5. x f = T (x f ) = 2µ
(

1 − x f

)

, where x f is the

nonzero fixed point

There are two fixed points in the state space I such

that xn+1 = xn . One such fixed point is evidently

T (0) = 0. The other is the nonzero fixed point is

given by

x f = 2µ/(1 + 2µ) (2)

The folding nature of the tent map ensures that every

point in the invariant interval I maps arbitrarily close

to every other point in I [30]. When chaotic maps are

implemented physically, the feedback process of the

original dynamics of X trajectories becomes signifi-

cantly affected by the noise induced through the sys-

tem hardware. Noise-affected chaotic trajectories con-

sist of a deterministic part and a random part, intrinsic

to the physical system that affects the entire dynam-

ics at every iterative state. Such types of noise can be

described as dynamical noise [10], whose evolution is

given by ïn+1 = T (ïn) + ón , where ón is the uncor-

related random perturbations at every step of iteration.

The trajectory of such noisy dynamics is defined as

η = ï0, ï1, ï2, . . . , ïN−1.

The distribution of the random variables ón from

an unknown source can be best emulated by Gaussian

distribution, commonly referred to as additive white

Gaussian noise (AWGN) due to its intrinsically additive

nature. The AWGN with a zero mean is characterised by

signal-to-noise ratio (SNR) of 10 log10 (σ 2
x /σ 2

ó ) mea-

sured in dB, with σx and σó as the standard devia-

tions of the signal and the noise, respectively. To inves-

tigate the behaviour of the noisy dynamics, we col-

lect M samples of η trajectories. Therefore, each of

the sampled trajectories (as shown in Fig. 1) can be
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Fig. 1 Dynamics of T

getting affected by noise in

every stage of iteration and

are sampled for each n

successively; the noisy

trajectory thus generated are

sampled M times

represented as ηm = ï
m
0 , ï

m
1 , ï

m
2 , . . . , ï

m
N−1 where

m = 0, 1, . . . , M − 1. For any m, we record each

nth iterate through all the N iterations and then for

the next (m + 1)th sample, we start from ï
m+1
0 again

through to ï
m+1
N−1.

As summarised in [22], a noise reduction method

must estimate the dynamical quantities of the func-

tion under operation. Even when the chaotic function

is known, the true dynamics of the system can only be

ascertained when some knowledge about the control

parameter is also available.

3 Behaviour of the chaotic trajectories when

affected by noise

For any perturbed point xn + �n iterative transforma-

tion xn+1 + �n+1 = f(xn + �n) leads to diverging

paths, that is further deviated from the actual xn+1 =
f(xn), at the rate given by the Lyapunov exponent

λ = ln(
∣

∣�n+1

∣

∣ /
∣

∣�n

∣

∣). For the tent map, as long as

the control parameter belongs within its ergodic range,

i.e. µ ∈ (0.5, 1] and
∣

∣�n+1

∣

∣ >
∣

∣�n

∣

∣ i.e. λ is positive,

the trajectories will be divergent in nature, similar to

what is also experienced when random perturbations

ón is introduced in every iteration. Figure 2 shows this

divergence within a short length (N = 5) trajectory

of an arbitrary initial condition for M = 10 samples.

The ηm sample trajectories diverge away from each

other and the ï
m
n points become eventually distributed

over the state space I = [0, 1]. As can be seen from

Fig. 3, when larger set of M trajectories are observed

collectively for a higher N , the ηm are found to be

densely distributed over I . We notice that when con-

secutive iterates ï
m
n−1 and ïm

n are connected by straight

lines, dense clusters of intersections appear in a con-

Fig. 2 Collective view of divergent noisy trajectories of an initial

condition x0 = 0.3234 iterated through T up to N =5 with an

arbitrary choice of µ = 0.825. Also, noise level of SNR=30 dB

was added to every iterate and ηm trajectories were collected for

M = 10 observations

centrated neighbourhood between the majority of the

nth and (n + 1)th iterates.

We find that such clusters of intersections (or

crossovers) majorly appear at about the same level on

the Y -axis, conveniently around the nonzero fixed point

x f . We also verified that any variation in µ is reflected

on the positions of the clusters. Figure 4 shows that

the positions of the intersection clusters have appeared

at different levels for the two cases of µ, simulated

for the same x0 perturbed with same level of noise

(SNR = 25 dB). Based on these observations, we study

the intersections of the straight lines that are formed

between the iterates and investigate their appearance
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Fig. 3 The ηm trajectories

for, x0 = 0.3234,

µ = 0.825, N = 20,

SNR=30 dB and M = 50

are shown

Fig. 4 For two different

values of µ with same level

of noise 25 dB in the system

for the same x0 = 0.3234,

the clusters have appeared

around the corresponding

fixed point x f , marked with

dashed lines, a for

µ = 0.825 around

x f = 0.6226 and b for

µ = 0.625 around

x f = 0.5745, respectively

around the neighbourhood of the nonzero fixed point

x f .

4 Dynamics in the neighbourhood of the nonzero

fixed point

In order to realise the properties of the intersection

clusters (crossovers), we explore the dynamics of the

map around x f . For any parameter µ ∈ (0.5, 1],
there exists a preimage of x f (apart from T(x f ) =
x f ), given by x p = x f /2µ. We identify four inter-

vals [0, xp), [xp, xc), [xc, x f ) and [x f , 1], with distinc-

tive mapping characteristics centred around x f . For

any xn ∈ [0, xp) ⊂ I , the corresponding xn+1

will not exceed x f , thus resulting into the mapping

T : [0, xp) �→ [0, x f ). On the contrary, for any

xn ∈ [xp, 1] ⊂ I , the corresponding xn+1 will map

past x f on either sides, as given by the mappings

T : [xp, xc) �→ [x f , µ), T : [xc, x f ) �→ [x f , µ)

and T : [x f , 1] �→ [0, x f ].

If we have access to any (xn, xn+1) pair, we can also

represent the points through a two-dimensional carte-

sian coordinate system XY, where the X -axis represents

n and n + 1, and the Y -axis represents xn and xn+1,

and one can construct a straight line through coordi-

nates (n, xn) and (n + 1, xn+1). We therefore observe,

how the straight lines formed by each corresponding

pair of xn and xn+1 interact, for all the xn points orig-

inating within I . We show the line plots for a few

points xn ∈ [0, 1] and their corresponding xn+1 iter-

ates in Fig. 5a. Evidently, the mapping T : [0, xp) �→
[0, x f ) has no contribution in the crossovers that form

around x f . Based on T : [xc, x f ) �→ [x f , µ) and

T : [x f , 1] �→ [0, x f ], and from the observation in

Fig. 5a, it can be stated that the straight lines connecting

xn ∈ [xc, 1] ∈ I and their corresponding xn+1 inter-

sect at a single point (that is the x f of the map), on the

Y -axis. For the remaining xn ∈ [x p, xc) points, even

though the corresponding xn+1 maps beyond x f , any

intersections with them are spread over a wide range on

123



2984 D. Dutta et al.

Fig. 5 a Straight lines formed by the originating points xn ∈
[0, xp), xn ∈ [xp, xc), xn ∈ [xc, x f ), xn ∈ [x f , 1] and their

corresponding xn+1 points. The lines formed by xn ∈ [xc, 1]
intersect at a single point, whereas the remaining intersections

formed by other xn are spread over. b Similarly, straight lines

formed by joining the coordinates of two arbitrary points xn =
(xc + d) ∈ [xc, 1] and x ′

n = (1 − d ′) ∈ [xc, 1]

the XY-plane instead of being concentrated on a single

one.

To validate our statement, we consider a further

generic situation. Let there be two arbitrary points

xn ∈ [xc, 1] ∈ I and x ′
n ∈ [xc, 1] ∈ I , with their

corresponding next iterates given by xn+1 = T (xn) and

x ′
n+1 = T

(

x ′
n

)

. If we construct two straight lines by

connecting the coordinates (n, xn) with (n + 1, xn+1)

and (n,x ′
n) with (n + 1, x ′

n+1) on the XY-plane, then

we can propose the following:

Theorem 1 For any two points xn ∈ [xc, 1] and x ′
n ∈

[xc, 1] such that xn �= x ′
n , and their respective iterates

xn+1 and x ′
n+1, suppose n and n + 1 are plotted on the

X-axis and xn , xn+1, x ′
n , and x ′

n+1 are plotted on the Y -

axis. Then the lines joining the coordinates (n, xn) with

(n + 1, xn+1), and (n, x ′
n) with (n + 1, x ′

n+1) always

intersect each other at a point whose Y -coordinate will

be equal to the value of x f , the nonzero fixed point.

Proof Let there be two points xn = (xc+ d) and x ′
n =

(1−d ′); arbitrary distances d and d ′ away from xc and 1,

respectively, such that xn ∈ [xc, 1], x ′
n ∈ [xc, 1] and

xn �= x ′
n . Therefore, the iterates of the chosen points

will be, xn+1 = T (xc + d) = µ − 2µd, and x ′
n+1 =

T (1 − d ′) = 2µd ′ from the properties of the tent map

described in Sect. 2.

We represent the pairs of the points on a two-

dimensional cartesian coordinate system (X, Y ) as,

((n, xc + d), (n + 1, µ− 2µd)), and ((n, 1 − d ′), (n +
1, 2µd ′)). Joining the pairs of nth and the correspond-

ing (n + 1)th points as shown in Fig. 5b, the equations

representing the two straight lines are given by (3) and

(4).

Y − (xc + d)

(µ − 2µd) − (xc + d)
=

X − n

n + 1 − n
(3)

Y −
(

1 − d ′)

2µd ′ − (1 − d ′)
=

X − n

n + 1 − n
(4)

Since the ordinate value of the point, where the straight

lines intersect, gives us the view of the phenomenon,

solving only for Y solutions will suffice for our purpose.

Equating (3) and (4), we can write

Y − (xc + d)

(µ − 2µd) − (xc + d)
=

Y −
(

1 − d ′)

2µd ′ − (1 − d ′)
(5)

Putting xc = 1/2 in (5) and solving for Y

⇒
Y −

(

1
2

+ d
)

(µ − 2µd) −
(

1
2

+ d
) =

Y −
(

1 − d ′)

2µd ′ − (1 − d ′)

⇒ Y =
2µ

1 + 2µ
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Fig. 6 Distribution of Y k

solutions between n and

corresponding n + 1 time

steps for ηm trajectories

have been shown a for

n = 16 whose mean

Ȳ16 = 0.588973039 and

standard deviations

D16 = 0.090581987, b for

n = 20 with

Ȳ20 = 0.588029146 and

D20 = 0.079790657 are

the close approximations of

the x f = 0.5884770

corresponding to the chosen

case of µ = 0.715

from (2) we can write

Y =
2µ

1 + 2µ
= x f

Hence, the proof is complete.

It is thus confirmed that for xn ∈ [xc, 1] ∈ I , i.e.

50% of the possible points within the state space I , will

have the straight lines formed with their corresponding

xn+1 intersecting at the same point x f .

5 Parameter estimation from the noisy trajectories

From Theorem 1 and previous observations, it is now

evident that location of the nonzero fixed point of the

map can be identified from the intersections (Y solu-

tions of (5)) exhibited by straight lines formed between

ï
m
n and ï

m
n+1 samples of the noisy distribution of tra-

jectories. We apply the proposed idea to determine the

parameter from the noisy dynamics of the tent map and

eventually adapt it for the other maps.

For the tent map, we intend to determine a point

within the concentrated neighbourhood of crossovers,

as the closest estimate of x f , which in turn, is indicative

of the map parameter as given by (2). To determine the

intersections of the straight lines formed between the

nth and (n + 1)th iterates, we select the set of points,

Hn = {ïm
n ∈ [xc, 1]}. For any Hn , let the total number

of selected points out of M samples be M ′ ≤ M imply-

ing that M ′ number of straight lines can be formed with

each element in Hn with their corresponding (n + 1)th

iterates. We can therefore solve for the intersections

between straight lines formed by the unique pairs of

points ï
i
n, ï

i
n+1 and ï

j
n, ï

j
n+1 for the M ′ selected cases.

Thus, for all i and j such that i �= j , there will be

M ′(M ′ − 1)/2 number of intersections whose solu-

tions of the ordinate value Y k is given by rewriting (5)

in terms of ï
i
n, ï

i
n+1 and ï

j
n, ï

j
n+1

Y k − ï
i
n

ï
i
n+1 − ïi

n

=
Y k − ï

j
n

ï
j
n+1 − ï

j
n

(6)

where k = 1, 2, . . ., M ′(M ′ − 1)/2.

The Y k solutions form a cluster of the points of inter-

section between the lines joining the n and (n + 1) time

steps. To determine a central point within such a unidi-

mensional cluster, we calculate the arithmetic mean Ȳn

of all the Y k solutions between each n and (n + 1) time

steps. Despite the selection criterion ï
m
n ∈ [xc, 1], in

order to have at least one Y k solution for an intersec-

tion, there must be at least two elements in Hn ; hence,

we exclude any such |Hn| < 2.

To illustrate the concentration of crossovers, we con-

sider the case: x0 = 0.383, iterated for N = 50 with

µ = 0.715 and the iterates were perturbed by AWGN

with a noise level of SNR = 20 dB, and M = 200

samples of ηm trajectories were collected. We show the

distribution of Y k through histograms for n = 16 and

n = 20, respectively, in Fig. 6a, b, with calculated

mean Ȳn and standard deviation Dn .

For our chosen case of µ = 0.715, the correspond-

ing x f = 2µ/(1 + 2µ) = 0.5884770. It has been

noticed that all the Ȳn values are the close approxima-

tions of the said x f . Hence, we can determine a single

point ξ by calculating the arithmetic mean of the col-

lection of Ȳn values, to derive the closest estimate of x f .

Using ξ, we therefore estimate the control parameter of

the tent map. The estimated parameter µ′ is given by

rewriting (2) in terms of ξ and µ′
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Fig. 7 Skew tent map with

a ν = 0.3 and b ν = 0.7

showing the nonzero fixed

point x f

Fig. 8 Crossovers in the

time series of S (xn) with

x0 = 0.8633 for ν = 0.3

and SNR = 20 dB

µ′ = ξ/2(1 − ξ) (7)

For the above-mentioned case, we determined the ξ =
0.5888251 and standard deviation SD = 0.0086253

for the collection of Ȳn values, and we find the estimated

µ′ = 0.7160277 which is significantly close to the

actual µ = 0.715.

Next, we explore the effectiveness of the technique

further by applying it to the asymmetric (skew) tent

map, zigzag map and Bernoulli shift map which are

more practical and widely implemented cases of 1D

PWL maps.

5.1 Skew tent map

Skew tent map S (xn) can be defined [4] as

xn+1 = S (xn) =

⎧

⎪

⎨

⎪

⎩

xn

ν
xn ≤ ν

(1 − xn)

(1 − ν)
ν < xn

(8)

where ν ∈ (0, 1) defines the map partition that con-

trols the position of the peak—and thereby the slope on

either side of the partition—causing the map to appear

as skewed or asymmetric when ν �= 0.5 as given in

Fig. 7.

In Fig. 8, we show the crossovers for the first 20 itera-

tions within the noisy time series (having SNR = 20 dB)

of the skew tent map for parameter ν = 0.3 and

arbitrarily chosen initial condition x0 = 0.8633. The

parameter estimation method was applied on M = 50

samples of N = 50 iterations. As an illustration,

in Fig. 9 we show the concentration of Y k solutions

(crossovers) between iterations 17 and 18 in a scat-

terplot matrix, where the histogram for the set of Y k

solutions can be seen. The concentration appeared

in the close neighbourhood of the actual fixed point

x f = 0.5882353 (for ν = 0.3) as ensured by the

average Ȳ17 = 0.5779640 having standard deviation

D17 = 0.1368260.

The map fixed point was estimated as ξ =
0.5878647 from the average of all Ȳn points for all
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Fig. 9 Concentration of Y k solutions around x f shown through

scatterplot histograms, between iterations 17 and 18, with higher

concentration of Y k solutions at Ȳ17 = 0.5779640 with D17 =
0.1368260

n. For skew tent map, the relationship between the

nonzero fixed point and the map parameter is given

by x f = (1−x f )

(1−ν)
, in which the x f was substituted by

estimated fixed point ξ and solved to determine the

map parameter as ν′ = 2ξ−1
ξ

= 0.2989283. It can be

noticed that the estimated parameter value is in close

agreement with the chosen parameter value ν = 0.3

for the experiment, with error approximately 0.1%.

Hence, it ensures that the proposed technique can be

successfully adapted for the skew tent map.

5.2 Zigzag map

The zigzag map Z (xn) is defined [5] as

xn+1 = Z (xn)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−ω
(

xn + 2
|ω|

)

−1 ≤ xn ≤ − 1
|ω|

ωxn − 1
|ω| < xn ≤ 1

|ω|

−ω
(

xn − 2
|ω|

)

1
|ω| < xn ≤ 1

(9)

where ω is the parameter of the map ranging from

ω ∈ [−3, 3], and the dynamical state space of xn being

[−1, 1].
In the zigzag map, the map parameter ω can vary

within the range of positive and negative values. In

case of a positive parameter, along with the fixed

point x f Z = 0, the map has a pair of nonzero fixed

points: x f N = − 2
(1+ω)

for the negative domain and

x f P = 2
(1+ω)

for the positive domain as shown in

Fig. 10a. When ω is negative, the map intersects the

diagonal only at x f Z (shown in Fig. 10b). As a result,

for +ω, the crossovers between the iterates appear at

both negative [−1, 0) and positive [0, 1] ranges of the

map (Fig. 11a), while that in case of −ω appear only

around zero, as can be seen in Fig. 11b. Such crossovers

around zero, however, are rendered ineffective for our

purpose because, when the parameter is changed, the

resulting function simply readjusts the slope of the map

about zero, and hence, no change in parameter values

is reflected by the position of x f Z .

This problem can be resolved by addressing the

fact that the negative parameter reverses the sign

in every odd count of the map iteration [5]. As a

result, −ω causes ∓xn+1 = Z(± xn) and ∓xn+3 =
Z(Z(Z(± xn))) for odd counts, while generating

± xn+2 = Z(Z (± xn)) for the even count. Therefore,

the trajectory generated with −ω can be transformed

into its positive equivalent by force-reversing the signs

of the odd count of iterates. This can be verified through

Fig. 12, where the time series of an arbitrary initial con-

dition iterated with ω = −2 has been shown; every

alternating iterate was multiplied by −1 for the forced-

reversal, effectively converting the recorded time series

to be congruent to the dynamics by Z (xn) for ω = 2.

As a result, in case of noisy dynamics, the meaningful

crossovers around x f P and x f N can re-emerge when the

signs of the alternate iterate in the time series gener-

ated by negative parameter is reversed. Since, whether

the actual parameter is positive or negative will not

be known—to be able to suitably adapt the proposed

parameter estimation approach for the zigzag map—

we record the original samples of the noisy dynamics

and also produce an alternately inverted copy of the

recorded data. In either of the two datasets, the desired

crossovers will emerge about the nonzero fixed points

depending on the sign of the parameter. If the nonzero

crossover solutions are found in the inverted data set,

then it can be assured that the parameter was negative,

and the magnitude of ω can be determined.

The simultaneous presence of x f P and x f N may

instigate further modifications to enhance the perfor-

mance of the proposed method. From the map defini-

tion in Eq. (9), it is seen that
∣

∣x f P

∣

∣ =
∣

∣x f N

∣

∣ (Fig. 10a)

which results into symmetrically mirrored crossovers

around x f P and x f N in the noisy dynamics. Therefore,
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Fig. 10 Zigzag map with a

ω = 2.5 showing the fixed

points x f N , x f Z , x f P and b

ω = −2.5 with only x f Z

Fig. 11 The crossovers

appearing in the noisy

(SNR = 20 dB) time series

of Z (xn) around the fixed

points in case of a ω = 2.5

at x f P and x f N at

± 0.5714285, respectively,

and for b ω = −2.5 at

x f Z = 0

the negative Y k solutions generated around x f N can

be inverted and remapped to the positive half in order

to reinforce the concentration of Y k solutions on the

positive side.

As an example, we apply the parameter estimation

technique on the noisy time series (SNR = 20 dB)

generated with initial condition x0 = −1 and param-

eter ω = 2.5, for N = 50 and sampled for M = 50;
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Fig. 12 Inverting the sign of the alternate iterates of the original

trajectory generated with ω = −2 produces the same trajectory

as generated by ω = 2

Fig. 13 Crossover points of the Z (xn) between iterations 15

and 16 with the histogram showing the Y k count around the

fixed point
∣

∣x fN

∣

∣

the initial 20 iterations are shown in Fig. 11a. In

Fig. 13, we show the concentration of Y k solutions

(crossovers) between iterations 15 and 16, The con-

centration appeared in the neighbourhood of the actual

fixed point x f P = 0.5714285, as determined by the

average Ȳ15 = 0.5677584 with standard deviation

D15 = 0.1830033.

Since the Y k solutions are generated on both pos-

itive and negative domain, the negative solutions are

inverted before calculating the respective Ȳn average.

Once the Ȳn points for all n have been computed, the

positive fixed point of the map was estimated as ξ =
0.5694459. Replacing x f P with ξ in x f P = 2

(1+ω)
, the

parameter is estimated to be ω′ = 2−ξ
ξ

= 2.5121858,

which is in close agreement with the chosen ω = 2.5

with −1.2% estimation error.

When the parameter is negative, the nonzero Y k

solutions are found in the force-reversed dataset. For

a case chosen with ω = −2.5, the fixed point

was estimated from the alternately reversed dataset as

ξ = 0.5684757. As a result, the sign of the parame-

ter that has been determined must be reversed back,

and therefore, the estimated parameter is given by

ω′ = − 2−ξ
ξ

= − 2.5181797.

5.3 Bernoulli shift map

The Bernoulli shift map B(xn) is defined [6] by (10).

xn+1 = B(xn) =
{

2βxn + 0.5 xn ≤ 0

2βxn − 0.5 xn > 0
(10)

where β is the parameter of the map, which has a

chaotic range of β ∈ [0.7, 1] while xn ∈ [− 0.5, 0.5].
In case of Bernoulli shift map, it does not intersect

the diagonal anywhere except at 0 and 1; therefore, the

desired cluster of crossovers within the noisy trajecto-

ries do not appear in the neighbourhood of any dynam-

ical fixed point, as given by the map definition which

can also be verified from Fig. 14a. However, invert-

ing the sign of the alternate iterates results in the map

behaving as −B(xn), where it intersects the diagonal

at the points x f P = 0.5
1+2β

and x f N = −0.5
1+2β

, shown in

Fig. 14b.

As a result, prominent crossovers appear at x f P and

x f N in the noisy samples when odd iterates are inverted,

which can be treated in a similar fashion as the zigzag

map.

To demonstrate, M = 50 samples of noisy (SNR =
20 dB) time series for the Bernoulli map is generated

with initial condition x0 = − 0.23684 and parameter

β = 0.85, for N = 50 iterates, and the initial 20

iterations (after inverting the odd iterates) are shown in

Fig. 15. The ± Y k solutions are found, from which the

−Y k solutions are inverted to reinforce the +Y k values.

The concentration of Y k between iterations 12 and 13

is shown in Fig. 16 and the average Ȳ12 = 0.1652176

with standard deviation D12 = 0.0865524. The esti-

mated fixed point ξ = 0.1844331, determined from
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Fig. 14 Bernoulli map with

a β = 1 and b intersection

with diagonal appearing for

−B (xn) with β = 1

Fig. 15 Noisy trajectory of

B (xn) for SNR = 20 dB

with x0 = − 0.23684 and

β = 0.85

the reversed dataset, is then used to evaluate the param-

eter β ′ = − 0.5−ξ
2ξ

= −0.8555043, where the sign

must be inverted back (to 0.8555043) to suit the origi-

nal map.

5.4 Confidence interval

In many cases, the harsher conditions of dynamical

noise can cause the system to depart from normal distri-

bution [10], as it may introduce some systematic error

in the statistical estimates. Therefore, to further ensure

the efficacy of the approach, the estimation experi-

ment has been repeated for the individual maps over

a range of SNR values in order to determine the error

bar for each case of SNR. For each case of the maps,

we notice that the estimated parameter values at SNR

values 10 dB or less, are quite apart from the chosen

test parameters. However, better results are achieved

for slightly improved SNR values as relatively lower

Fig. 16 Crossover solutions in the noisy trajectory of B (xn)

between iterations 12 and 13 with the histogram showing the

concentration of Y k solutions around the fixed point
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Fig. 17 The proposed estimation method is attempted for 25

independent trials for each case of noise within the range of

SNR = [15, 30] dB for a tent map, b skew tent map, c zigzag map

and d Bernoulli shift map, with an arbitrarily chosen parameters

for each map µ = 0.85, ν = 0.25, ω = 3, and β = 0.9,

respectively. It shows the mean value of the estimated µ′ for all

25 attempts with 95% confidence intervals for each SNR condi-

tion

noise may still preserve the qualitative properties of

the trajectories [31]. We show in Fig. 17a–d the error

bar estimates for tent map (µ = 0.85), skew tent

(ν = 0.25), zigzag (ω = 3) and Bernoulli maps

(β = 0.9), respectively, with the corresponding mean

of parameter estimates.

Let us say for tent map, µ′
mean = 1

Q

∑Q
q=1 µ′

q of

Q = 25 independent estimation attempts; µ′
q for

q = 1, 2, . . . , Q is computed for each case of noise

over a range of SNR values 15–30 dB. To estimate the

standard error bar, we calculate the upper and lower

bound with 95% confidence interval given by µ′
mean ±
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1.96
(

µ′
SD√
Q

)

, respectively, where µ′
SD is the standard

deviation of Q estimation attempts. Similarly, we deter-

mine the standard error bars ν′
mean ± 1.96

(

ν′
SD√
Q

)

,

ω′
mean ± 1.96

(

ω′
SD√
Q

)

and β ′
mean ± 1.96

(

β ′
SD√
Q

)

for the

skew tent, zigzag and Bernoulli shift maps, respec-

tively. It can be seen that the estimated outcomes in the

chosen cases of the maps start to improve from SNR

15 dB onwards.

6 Conclusion

In this paper, we proposed a method to estimate the

control parameter of the 1D PWL maps from noisy

dynamics of the system. Due to the inherent noise in

physically implemented chaotic systems the dynami-

cal behaviour of the function becomes greatly affected.

Even a small amount of noise distorts the map trajec-

tories to a great extent. For the effective retrieval of the

meaningful trajectories, existing noise reduction tech-

niques require additional information about either the

dynamical system definition or the noise level within

the system. Given the computational complexity that

it might add while approximating the system model

or determining the noise level, we chose to estimate

the control parameter of the system, whose value fully

defines the behaviour of the map.

We have shown that the iterates of the dynami-

cal time series can be treated as points on a two-

dimensional Cartesian coordinate system. As the tra-

jectories become highly distributed over the state space

due to the presence of dynamical noise in the sys-

tem, we show that the straight lines connecting the

(X, Y ) coordinates of the consecutive iterates of all

the sampled time series form a cluster of intersections

between the nth and (n + 1)th iterates. We have shown

that such clusters appear in the close neighbourhood

of the unstable nonzero fixed point of the maps (tent

map, skew tent map, zigzag map and Bernoulli shift

map) considered. We have established the fact that the

straight lines connecting the points (for tent map origi-

nating from [0.5, 1]) with their consecutive iterates will

always intersect each other at the nonzero fixed point.

Utilising this property, we have shown how the value of

the fixed point can be estimated from the clusters and

the parameter of the 1D PWL maps can be determined.

The effectiveness of the proposed method has been

studied through numerical simulations where the esti-

mations have been tried with various cases of parame-

ters and noise levels for each case of 1D PWL maps. We

have conducted a statistical analysis for the behaviour

of the algorithm by showing the consistency of the

estimated outcomes through numerous attempts, for

a range of SNR values for each map described. We

have shown for a range of SNR values (e.g. 15–30), the

parameter estimates are satisfactorily close and that can

further improve the system approximations through the

mentioned noise reduction techniques.
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