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Abstract

Differential equation (DE) models are widely used in many scientific fields that include engineering,
physics and biomedical sciences. The so-called “forward problem”, the problem of simulations and
predictions of state variables for given parameter values in the DE models, has been extensively
studied by mathematicians, physicists, engineers and other scientists. However, the “inverse
problem”, the problem of parameter estimation based on the measurements of output variables, has
not been well explored using modern statistical methods, although some least squares-based
approaches have been proposed and studied. In this paper, we propose parameter estimation methods
for ordinary differential equation models (ODE) based on the local smoothing approach and a pseudo-
least squares (PsLS) principle under a framework of measurement error in regression models. The
asymptotic properties of the proposed PsLS estimator are established. We also compare the PsLS
method to the corresponding SIMEX method and evaluate their finite sample performances via
simulation studies. We illustrate the proposed approach using an application example from an HIV
dynamic study.
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1. Introduction

Differential equations are widely used to describe dynamic systems in many scientific fields
including physics, engineering, economics, and biomedical sciences. The studies of differential
equations have mainly focused on the so-called forward problem, i.e., simulation and analysis
of the behavior of state variables for a given system. However, the inverse problem, using the
measurements of state variables to estimate the parameters that characterize the system, has
not been well studied particularly from statistical perspectives. Statistical methods for
estimating parameters in differential equation models are very sparse in the statistical literature.
In this paper, we intend to propose new statistical estimation methods for a general ordinary
differential equation (ODE) model that can be written as:
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(1.1)

where X(t) = { X1(t), …, Xk(t)}
T is an unobserved state vector, β = (β1, …, βm)T is a vector of

unknown parameters, and F(·) = {F1(·), …, Fk(·)}
T is a known linear or nonlinear function

vector. In practice, we may not observe X(t) directly, but we can observe its surrogate Y(t).
For simplicity, here we assume an additive measurement error model to relate X(t) to the
surrogate Y(t), i.e.,

(1.2)

where the measurement error e(t) is independent of X(t) with a covariance matrix Σe.

Parameter estimation for ODE models has been investigated using the least squares principle
by mathematicians (Hemker, 1972; Bard, 1974; Li, Osborne and Prvan, 2005), computer
scientists (Varah, 1982), and chemical engineers (Ogunnaike and Ray, 1994; Poyton et al.,
2006). Mathematicians have focused on the development of efficient and stable algorithms to
solve the least squares problem. Recently statisticians have started to develop various statistical
methods to estimate dynamic parameters in ODE models. For example, Putter et al. (2002),
Huang and Wu (2006), and Huang, Liu and Wu (2006) have developed hierarchical Bayesian
approaches to estimate dynamic parameters in HIV dynamic models for longitudinal data. Li
et al. (2002) proposed a spline-based approach to estimate time-varying parameters in ODE
models. Ramsay (1996) proposed a technique named principal differential analysis (PDA) for
estimation of differential equation models (see a comprehensive survey in Ramsay and
Silverman, 2005). The basic idea of PDA is to fit the discrete measurements of the output
variables Y(t) using a spline approach, and to obtain the estimated derivative curves. These
estimated values are then substituted into the ODEs, and the estimated differential equation
parameters can be obtained by a simple least squares procedure. Ramsay et al. (2007) applied
a penalized spline method to estimate the constant dynamic parameters in ODE models. Chen
and Wu (2008a, 2008b) proposed a two-step approach to estimate time-varying parameters in
ODE models. Miao et al (2008a) explored the identifiability, global optimization techniques,
model selection, and multi-model inference under the framework of the nonlinear least squares
approach for ODE models. Overall the statistical literature for ODE models is generally sparse.
Many statistical inference issues for ODE models have not been well addressed. In addition,
there are some drawbacks with the existing estimation methods. First, the standard nonlinear
least squares (NLS) method needs to minimize the error sum of squares which requires
numerically solving the ODEs repeatedly. The initial values of the state variables of the ODEs
need to be known and given. The conventional gradient-based optimization methods such as
the Gauss-Newton method, the Levenberg-Marquardt method and the quasi-Newton method
may fail to converge or may converge to a local minima if the initial values of the state variables
and unknown parameters are not close enough to the true values. Thus, the computationally-
intensive global optimization method may need to be used to solve the problem. The parameter
estimates from the NLS method are also sensitive to the initial values of state variables which
are not available in many biomedical applications. Second, the spline smoothing-based
approaches (Varah, 1982; Ramsay and Silverman, 2005; Poyton et al, 2006; Ramsay et al.,
2007) may not be flexible enough to deal with the complicated local features of the data. The
rigorous asymptotic properties of these estimators have not been established. The PDA method
and penalized spline approaches (Ramsay and Silverman, 2005; Ramsay et al., 2007) also need
more efficient optimization techniques and complicated iterative computation algorithms to
obtain an estimator. The convergence of the computational algorithms needs to be justified
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(Ramsay et al., 2007). Third, the computational cost is high for most existing methods due to
repeatedly solving the ODEs numerically or complicated optimization algorithms.

In this paper we attempt to develop a local kernel smoothing-based method as an alternative
approach to estimate the unknown parameters β for the general ODE model (1.1). At the same
time, we expect that our new method can ease the aforementioned problems of the existing
methods. In Section 2, we formulate the estimation problem of the ODE model into a
framework of measurement error in linear or nonlinear regression models. We also introduce
a local polynomial smoothing procedure for estimation of the state function X(t) and its
derivative that will be used to derive the main results in Section 3. In Section 2, we also briefly
introduce the SIMEX approach to deal with measurement error in nonlinear regression models.
We present our proposed method and main theoretical results in Section 3. We consider two
examples for numerical illustration and compare our proposed method to the SIMEX method
via Monte Carlo simulation studies in Section 4. In Section 5, an application to HIV dynamics
data from an AIDS clinical trial is presented to illustrate the usefulness of the proposed method.
We conclude the paper with some discussions in Section 6.

2. Estimation Procedure under a Framework of Measurement Error in

Regression Models

Since the model (1.2) assumes that the state variables X(t) are observable with noise, we are
able to estimate both X(t) and its derivative X′(t) = dX(t)/dt. Suppose X ̂′(t) is an estimator of
X′(t). Substituting the estimates X ̂′(ti), i = 1, …, n, in the dynamic equation (1.1), we obtain a
regression model:

(2.1)

where Δ(ti) denotes the substitution error vector, that is Δ(ti) = X ̂′(ti)− X′(ti). If X ̂′(ti) is an
unbiased estimator of X′(ti), Δ(ti) are errors with mean zero but are not independent. However,
if the estimator X ̂′(ti) is a biased estimator (e.g., the local polynomial estimator in our case),
Δ(ti) are not mean zero errors. Thus, Δ(ti) are different from the conventional measurement
error. This complexity makes it challenging to study the properties of the proposed estimator
for β.

In the regression model (2.1), the predictor X(t) is not directly observed, and instead one
observes Y(t) = X(t) + e(t), which adds another complexity to model (2.1). We need to deal
with the problem of linear/nonlinear regression with measurement error in covariates.
Otherwise, if we naively replace X(t) by Y(t) in the model (2.1), the parameter estimates are
biased (Carroll, Ruppert, Stefanski, and Crainiceanu, 2006). An alternative choice is to replace
X(t) by its estimate. This idea is essentially similar to the regression calibration technique in
measurement error models, i.e., the error-prone covariate is replaced by an estimator from the
regression on its surrogate. For details on regression calibration methods, see Carroll et al.
(2006).

In this paper, the covariate or predictor X(t) is a solution to the ODE models and is assumed
to be a smooth function of time t. Thus, we propose replacing the error-prone variable X(t) by
its estimator obtained from a nonparametric smoothing method. Another alternative method
for nonlinear regression models with measurement error in covariates is the simulation
extrapolation (SIMEX) algorithm (Cook and Stefanski, 1994; Carroll et al., 2006). In the
following two subsections, we briefly introduce the local polynomial smoothing method for
the estimation of X(t) and its derivative and the SIMEX algorithm.
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2.1. Local polynomial estimation of X(t) and X′(t)
To estimate the parameters of interest in the ODE model (1.1) under the framework of
measurement errors in a nonlinear regression model, we first need to estimate the state variable
X(t) and its derivative X′(t). For notational simplicity, we consider the univariate state variable
case (k = 1) in the following methodology development and denote X(t) and Y(t) by X(t) and
Y(t), respectively. Extension to the multivariate case (k > 1) is straightforward although
cumbersome.

Let (Y1, …, Yn) be the observations at the time points t1, …, tn. Rewriting (1.2) as

where (e1, e2, …, en) are independent with mean zero and finite variance σ2(ti). This is a
traditional nonparametric regression model, and conventional regression techniques such as
local polynomial regression, smoothing spline, and regression spline, among others, can be
used to estimate X(t) and X′(t). Here we employ the local polynomial approach.

In this paper we use local linear regression to estimate X(t) and local quadratic regression to
estimate X′(t). It is noteworthy that the higher degree polynomial kernel methods can also be
employed to estimate X(t) and X′(t). We chose the local linear and local quadratic smoothers
due to their simplicity and efficiency as suggested by Fan and Gijbels (1996). Also the
bandwidth (smoothing parameter) selection is more critical than the degrees of polynomial
smoother.

For presentation completeness, we briefly summarize the local polynomial regression
procedure. We assume that the third derivative of X(t) exists. For each given time point t0, we
approximate the function X(ti) locally by a pth-order polynomial; that is,

, for ti, i = 1, …, n,
in a neighborhood of the point t0, where αj(t0) = X (j)(t0) for j =0, 1, …, p. Following the local
polynomial fitting (Fan and Gijbels, 1996), the estimators X̂(ν)(t) of X(ν)(t) (ν= 0, 1 in our case)
can be obtained by minimizing the locally weighted least-squares criterion,

where K(·) is a symmetric kernel function, Kh(·) = K(·/h)/h, and h is a proper bandwidth.

Assuming that the matrix  is not singular, the standard weighted least squares theory
leads to the solution

where Y = (Y1, …, Yn)T is the vector of responses, here p = 1 or 2, and

Liang and Wu Page 4

J Am Stat Assoc. Author manuscript; available in PMC 2009 December 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



is an n × (p + 1) design matrix and

is an n × n diagonal matrix of kernel weights. As a consequence, the estimators X̂(t) and X̂′(t)
can be expressed as

where ξ1 is the 2 × 1 vector having 1 in the first entry and zero in the 2nd entry, while ξ2 is the
3 ×1 vector having 1 in the 2nd entry and zeros in the other entries. Note that X̂′(t) is actually
the slope of the local quadratic fit.

The asymptotic biases and the variances of the local linear estimator of X̂(t) and the local
quadratic estimator of X̂′(t), under Assumption A in Section 3, are given below (see Fan and
Gijbels (1996) for detailed derivation of these results).

(2.2)

(2.3)

(2.4)

(2.5)

where and below f(t) is the density of t, and  for ℓ = 0, 1 … 4. These results
will be used to derive the asymptotic properties of our proposed estimator in the next section.
Note that the estimator of X′(t) achieves the second-order kernel bias rate of order h2 which is
the same as that of the estimator of X̂(t). However, the asymptotic variance rate of the estimator
X̂′(t) is higher than that of X̂(t) (i.e., the order h−2). We also noticed (as pointed out by one
referee) that the local quadratic estimator of X′(t) improves its local linear estimator. The orders
of the bias and the variance of the local quadratic estimator of X′(t) are the same as those of
the local linear estimator of X′(t), but an extra constant in the bias expression of the local
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quadratic estimator of X′(t) creates an opportunity for significant bias reduction especially in
the boundary and highly clustered design regions (although the order of the convergence rate
of the two estimators are the same). This argument is similar to that the local linear estimator
is preferable compared to the local constant estimator for estimating the original function (Fan
and Gijbels, 1996, Section 3.3).

2.2. The SIMEX algorithm

The SIMEX algorithm is a useful tool for dealing with measurement error in covariates for
nonlinear regression models. It is a functional method which can be applied without making
any assumption about the distribution of unobservable covariates. We have formulated the
parameter estimation problem for the ODE model into a framework of measurement error in
a nonlinear regression model (2.1). Thus, we can directly apply the SIMEX approach to our
model (2.1), which will be used to serve as a comparison basis for the PsLS method that will
be proposed in the next section. The SIMEX method was initially proposed by Cook and
Stefanski (1994). A detailed description of this method can be found in Carroll et al. (2006).
Here we briefly outline the algorithm based on the SIMEX principle.

Assume that there is a function  for estimating β when X(t) is measured without error, and
we call this estimator a naive estimator of β and it is denoted by β ̂naive = (X). Also the
measurement error variance Σe is assumed to be known exactly. The first step of the algorithm
is to create additional data sets via simulations by adding increasingly large measurement error
(1 + ψ)Σe for ψ ≥0. For B simulated data sets with a theoretical measurement error (1 + ψ)Σe

for each data set, we compute the average estimates of β ̂. For each of the data sets b = 1, …,

B, we define , where , and the Vi,b are independently

generated from a normal distribution with mean 0 and variance Σe. Define 
and the extrapolant function (ψ) = β ̂ψ as a function of ψ. Note that (0) = β ̂ (naive). The
extrapolation step extrapolates the function (ψ) back to ψ = −1, i.e., (−1) is the SIMEX
estimator of β. More details on how to select the extrapolant function and the implementation
of the SIMEX method can be found in Carroll et al. (2006).

3. Pseudo-LS Estimator and Main Results

In this section, we propose a straightforward idea to estimate the unknown parameters in model
(2.1). First we substitute a smoothing estimate of X(t) in model (2.1), and then use the least
squares principle to obtain the estimates of unknown parameters. Denote Δ(t) = X̂′(t) − X′(t),
then we have X̂′(t) = F{X(t), β}+ Δ(t) and Δ(t) can be regarded as the “error.” The estimator
of β is defined as the value of β which minimizes

(3.6)

subject to β ∈ Ωβ (parameter space). Note that in this objective function, {X̂(ti), X̂′(ti); i = 1,
…, n} are not the observed data and measured covariates, instead they are the smoothing
estimates of the state variable X(t) and its derivative which are not independently distributed.
Thus, the estimator obtained by minimizing this objective function is not the true least squares
(LS) estimator, instead we call this estimator the pseudo-least squares (PsLS) estimator denoted
by β ̂n. In addition, the “error” term Δ(ti) is neither independent nor mean zero as in a
conventional nonlinear least squares (NLS) regression model. As a consequence, the study of
the asymptotic properties for the proposed estimator is not trivial.
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Implementation for obtaining the PsLS estimator is simple. If F(·, ·) is a linear function, an
ordinary least squares procedure for linear regression models can be used to get the estimate
of β. Similarly, for a nonlinear function of F(·, ·), the nonlinear regression procedure from
standard statistical packages such as SAS, Splus or R can be used to obtain the PsLS estimates.
However, we need to set the smoothing estimate of the derivative function X̂′(t) as the response
variable and the smoothing estimate of the state variable X̂(t) as the covariate at the observation
time points t = t1, t2, …, tn.

Although the idea of the PsLS estimate is simple, it is critical to show that the PsLS estimator
has good asymptotic properties such as consistency and asymptotic normality. For the standard
nonlinear least-squares (NLS) estimator, the asymptotic properties have been established
(Jennrich, 1969; Malinvaud, 1970; Wu, 1981). Similar ideas can be used to study the
asymptotic properties of the proposed PsLS estimator. However, since the PsLS estimator is
based on the nonparametric kernel estimator of the state variable and its derivative, the
asymptotic results from the nonparametric kernel estimation need to be used. Here we present
the asymptotic results of the proposed PsLS estimator, while a sketch of the main ideas of the
proofs for these results is given in the Appendix. Let

The strong law of large numbers for iid random variables implies that Bn(β1, β2)/n converges
to a function, say B(β1, β2), for all β1, β2 uniformly, and then Dn(β1, β2)/n converges to D(β1,
β2) = B(β1, β1) + B(β2, β2) − 2B(β1, β2). Now we give the following assumptions that are
standard in NLS regression and local linear kernel estimation.

Assumption A

i. The function X(3)(t) is continuous on [0, 1].

ii. The kernel function K is symmetric about zero and is supported on [−1, 1].

iii. The bandwidth h = hn = n−2/7 an is a sequence satisfying h →0 as n → ∞, where an

is a sequence tending to 0 slower than log−1 n.

iv. ti are iid and have a common compact support and their density function, f(t), is
bounded away from zero and has bounded and continuous second derivatives.

Assumption B

i. F(x, β) is a continuous function of β for β ∈Ωβ.

ii. Ωβis a closed, bounded compact subset of ℝm.

iii. D(β1, β2) = 0 if and only if β1 = β2.

Assumption C

i.

The first and second partial derivatives, , exist and are
continuous for all β ∈Ωβ, x ∈ χ, and
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for some 0 < ζ ≤ 1.

ii.

The first partial derivative  is continuous for x ∈ χ and satisfy:

We present our main results on the consistency and the asymptotic distribution of the proposed
PsLS estimator as follows (the proofs are relegated in the Appendix).

Theorem 1—Under Assumptions A–C, the PsLS estimator β ̂n of β is strongly consistent.

Theorem 2—Under Assumptions A–C, nh3/2(β ̂n − β) asymptotically follows a normal
distribution with mean zero and covariance matrix given in (A.10).

Remark 1—Note that in the proof of Theorem 2, we need to deal with the local polynomial
estimators of X(t) and X′(t) which make it different and more complex compared to the proof
of the asymptotic normality of the standard NLS estimator. It is also noteworthy that if F(X,
β) is a linear function, say F(X, β) = XTβ, the assumptions (B) and (C) are satisfied. As a
consequence, the corresponding linear LS estimator β̂n is n−1h−3/2-consistent and

asymptotically normal with the asymptotic covariance .

Remark 2—Theorem 2 shows that the proposed PsLS estimator of β is still asymptotically
normal. However, the convergence rate of the PsLS estimator is not root–n as that of the
standard NLS estimator (Jennrich, 1969; Malinvaud, 1970; Wu, 1981; Seber and Wild,
1989), instead the convergence rate is n−1h−3/2, which is faster than the conventional root–n.
The reason for this interesting result is because the variance of the error term Δ(ti) in the
regression model (2.1) is not a constant, instead it goes to zero with the rate of (nh)−1, which
is a consequence of data smoothing from the first step. This smaller variance results in a faster
convergence rate of the estimator of β compared to the standard root–n convergence rate of
the nonlinear least squares estimate.

Remark 3—Bandwidth selection is critical in local polynomial regression. The bandwidths
for smoothing X(t) and X′(t) in the first step of our estimation procedure need to satisfy some
conditions in order to guarantee the consistency and asymptotic normality of the PsLS
estimator. Note that, for the standard local linear estimator, the optimal bandwidth for
estimating X(t) can be obtained using the data-driven cross-validation method or the
substitution method based on the asymptotic mean integrated squared error (Ruppert, Sheather
and Wand, 1995). This optimal bandwidth, ĥopt, is of order n−1/5. However, the order of this
optimal bandwidth does not satisfy the Assumption A (iii) for Theorems 1 and 2 which requires
the bandwidth h = hn = n−2/7an, where an is a sequence tending to 0 slower than log−1 n. This
assumption is needed to stabilize the asymptotic variance in Theorem 2. In addition, we need
to select a bandwidth which lets the asymptotic bias of the PsLS estimator approach zero as
fast as possible. Thus, we need to undersmooth the data in the first step. For example, we may
select the bandwidth h = ĥopt ×n−3/35an which will satisfy the Assumption A (iii), where an can
be selected as log−r n with r being a positive fractional number. This result only provides an
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ad hoc guidance for bandwidth selection since the constant in the asymptotic results cannot be
determined. The data-driven approach for bandwidth selection is complicated under our model
setting and is a worthy topic for future research.

4. Simulation Studies

FitzHugh (1961) and Nagumo et al. (1962) simplified the Hodgkin-Huxley model (1952) for
the behavior of spike potentials in the giant axon of squid neurons. They reduced the original
Hodgkin-Huxley model from four variables to two variables so that phase plane techniques
could be used for the analysis of the model. The FitzHugh-Nagumo model can be described
by the following two equations:

(4.1)

where α, β, and γ are the parameters of interest, while x1(t) and x2(t) are the state variables
indicating the voltage across an axon membrane and outward currents respectively. This model
has been widely used due to its simplicity and flexibility. This model is flexible in its ability
to reproduce many qualitative characteristics of electrical impulses along nerve and cardiac
fibers, such as the existence of an excitation threshold, relative and absolute refractory periods,
and the generation of pulse trains under the action of external currents. It is also very useful in
genetics, biology, and heat and mass transfer systems.

The study of HIV viral dynamics over the past decade has led to a good understanding of the
pathogenesis of HIV infection (Ho et al., 1995; Perelson et al., 1996, 1997; Notermans et al.,
1998, Wu et al., 1999). Ordinary differential equation (ODE) models were originally proposed
to describe the interactions between HIV virus and immune cellular response. See Perelson
and Nelson (1999), Nowak and May (2000) and Tan and Wu (2005) for recent reviews of these
models.

One popular HIV dynamic model can be written as

(4.2)

(4.3)

(4.4)

where TU (t) is the concentration of uninfected target cells, TI(t) is the concentration of infected
cells and V(t) is the concentration of plasma virus (viral load) at time t; λ represents the rate at
which new T cells are continuously generated; ρ is the death rate of uninfected T cells; η(t) is
the time-varying infection rate of T cells which depends on antiviral drug efficacy; δ is the
death rate of infected cells; c is the clearance rate of free virions; N is the number of virions
produced from each infected cell. The functions V(t), TU (t) and TI(t) are state variables and
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(c, δ, λ, ρ, N, η(t))T are unknown dynamic parameters. Similar HIV dynamic models have been
proposed and studied by many investigators since the early 1990’s (Ho et al., 1995; Perelson
and Nelson, 1999; Nowak and May, 2000, Tan and Wu, 2005).

In this section, we present the results from simulation experiments generated from models
(4.2)–(4.4) and (4.1) for studying the finite sample properties of the proposed methods, the
PsLS estimates and the SIMEX estimates. In local polynomial smoothing, we used the kernel
function K(u) = 3/4(1 − u2)I(|u|≤1). We selected the bandwidth using the strategy given in
Remark 3. We first obtained the standard optimal bandwidth, hopt, using the substitution
method based on the asymptotic mean integrated squared error (Ruppert, Sheather and Wand,
JASA, 1995). Then we used the result, h = ĥopt×n−3/35 an, where an was selected as an =
log−1/16 n based on our experience. In implementing the SIMEX algorithm, we use the
quadratic extrapolating function and take ψ= 0, 0.2, …, 2 and B = 100. For each configuration
below, we ran 500 replications. To evaluate the performance of different methods, we define
the average relative estimation error (ARE) of a parameter θ as

where θ ̂ is the estimate of θ and N is the number of simulation runs (here N = 500).

Example 1

First we perform simulations for the FitzHugh-Nagumo equations. We generated the data from
the FitzHugh-Nagumo equation (4.1). Our true parameter values are taken as α0 = 0.34, β0 =

0.2, and γ0 = 3, and initial conditions {x1, x2} are (0, 0.1). We selected , and  as 0.05, 0.06,
…, 0.10 respectively. Our data were obtained by solving the equations (4.1) at every 0.1 time
units on the interval [0, 20], and then measurement errors were added as follows.

where ε1i and ε2i are independently normally distributed with mean 0 and standard deviations
σ1 and σ2 respectively. We therefore have a total of 36 scenarios of different variance parameter
combinations and each simulation data set has 201 observations.

We applied the proposed PsLS and SIMEX methods to the simulated data sets to estimate the
unknown parameters (α, β, γ) in the FitzHugh-Nagumo equations. We report the averages of
the estimated values, associated errors and coverage probabilities of the PsLS estimates and
SIMEX estimates for all 36 scenarios in Table 1, and the associated AREs in Table 2. Table 1
shows that the point estimates of the parameters are reasonably close to the true values and the
coverage probabilities are close to the nominal level for both methods. From Table 2, we can
see that the AREs of the estimates for α and β are quite similar between the PsLS method and
SIMEX method. However, the AREs of the estimate for γ from the PsLS method are
consistently smaller than those from the SIMEX method for all cases.

To evaluate the goodness-of-fit, we obtained the predicted (fitted) values of X1(t) and X2(t) and
their derivatives by solving the ODEs (4.1) with the estimated parameter values. We present

the predicted curves of X1(t) and X2(t) and their derivatives for the case of  from
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the two methods, PsLS and SIMEX, as well as the corresponding true curves (by solving the
ODEs using the true parameter values) in Figure 1, in which the associated 95% pointwise
confidence intervals, i.e., the 2.5% and 97.5% quantiles of the estimates from the 500
replications, of these state variables and their derivatives are also delineated. Although the
presented results in Figure 1 are from the case with the largest measurement errors, we can see
that the predicted curves of X1(t) and X2(t) and their derivatives have good agreement with the
corresponding true curves for both estimation methods.

Example 2

In the HIV dynamic example, we generated data from models (4.2)–(4.4) with the initial values
(TU0, TI0, V0) = (600, 30, 105) and the true values of parameters (λ0, ρ0, N0, δ0, c0) = (36, 0.108,
103, 0.5, 3) and the time-varying parameter η(t) = 9 *10−5{1 − 0.9 cos(πt/1000)}.

In AIDS clinical studies or clinical practice, only plasma viral load V(t) and the total CD4+ T
cell counts T(t) = TI(t) + TU (t) can be measured. We therefore combine equations (4.2) and
(4.3), and obtain

Notice that T(t) = TI(t) + TU (t) and substitute TU (t) = T(t) − TI(t) in the above equation, we
obtain

Denote T′ = dT(t)/dt and from the above equation, we can get

Substitute this into equation (4.4) and let  and , we have

(4.5)

where V(t) and T(t) for t = t1, t2, …, tn are measurements from AIDS clinical studies. If we
obtain the estimates of (α0, α1, α2), we can derive the estimates of important viral dynamic
parameters using the relationships:

Here we assume that the parameters δ and c are known and can be obtained from the literature
(Perelson et al., 1996; Perelson et al., 1997; Wu, Ding, and DeGruttola, 1998; Wu and Ding,
1999; Fitgerald et al., 2002; Wu, 2005; Han and Chaloner, 2004). Our primary interest is to
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estimate parameters (α0, α1, α2) or (λ, ρ, N) which have never been estimated from clinical
data.

Note that our observation (measurement) models for this example are

In our simulations, we assumed that (ε1i, ε2i) are independent and follow normal distributions

with mean zero and variances  and  respectively. The simulated
data were generated by numerically solving equations (4.2)–(4.4) and two output schedules
were used: (i) at every 0.1 time units on the interval [0, 20], and (ii) at every 0.2 time units on
the interval [0, 20] which correspond to two sample size cases, 200 and 100 respectively.
Measurement noise was then added to the numerically generated data based on the above
observation equations.

First we employed a local smoothing method to obtain the estimates of V′(t), V(t), T′(t), and T
(t), say, V̂′(t), V̂(t), T ̂′(t), and T ̂(t), respectively, then we have

(4.6)

We applied the proposed PsLS and SIMEX methods in Sections 2 and 3 to estimate the
parameters (α0, α1, α2) or (λ, ρ, N). We report the averages of the estimated values, associated
errors and coverage probabilities of the PsLS estimates and SIMEX estimates for all 18
scenarios in Table 3, and the associated AREs in Table 4.

Table 3 shows that the point estimates of the parameters are close to the true values and the
coverage probabilities are close to the nominal level. Table 4 shows that the average relative
errors of the estimates of parameter N from both PsLS and SIMEX methods is reasonably
small, while the estimates of λ and ρ are less accurate, in particular for the small sample size
case. However, from Table 4 we can clearly see that the AREs of the proposed PsLS method
are smaller for the estimates of parameters λ and ρ. For comparisons, we present the fitted
curves and the associated 95% pointwise confidence intervals (dashed lines from the PsLS
method and dotted lines from the SIMEX method) for the case of

 and sample size n=200 superimposed on the corresponding true curves of the
state variables and their derivatives (solid lines) in Figure 2. We can see that the PsLS method
also fitted the true curve better.

5. Applications

The experimental data for the FitzHugh-Nagumo equations are rarely available (Ramsay et al.,
2007). But in the study of HIV dynamics, extensive clinical data have been collected from
many clinical trials. A clinical trial was designed to monitor HIV dynamics frequently by one
of the authors of this paper and his clinical collaborators. In this study, HIV-1 infected patients
were recruited to be treated by antiviral therapies and immune-based treatment. This study
measured HIV viral load at hours 0, 1, 2, 3, 4, 6, 8, 10, 12, 14, 16, 18, 20, 24, 28, 32, 40, 46,
52, 58, 64, 70, 144, 240, and 336 during the first two weeks of treatment, and then at weeks 3,
4, 6, 8, 10, 12, 14, 16, 20, 24, 28, 32, 36, 40, 44 and 48 during treatment. At most weekly
clinical visits, total CD4 T cell counts were also measured.
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Similar to the simulation study example, we fitted model (4.5) to the viral load data using the
proposed PsLS and SIMEX methods. Similar bandwidth selection method was used, i.e., the
formula h = ĥopt × n−3/35 log−1/16 n was employed. To save space, we present the parameter
estimation results from two patients as follows (the delta method was used to obtain the standard
error of the kinetic parameters):

1. Patient #1

a. PsLS: λ = 47.4 (s.e. 14.3), ρ= 0.085 (s.e. 0.057), N = 623 (s.e. 17.4), c = 0.074
(s.e. 0.003)

b. SIMEX: λ = 43.2 (s.e. 25.1), ρ= 0.075 (s.e. 0.082), N = 598 (s.e. 24.51), c =
0.136 (s.e. 0.104)

2. Patient #2

a. PsLS: λ = 45.6 (s.e. 12.4), ρ= 0.071 (s.e. 0.004), N = 469 (s.e. 47.6), c = 0.083
(s.e. 0.004)

b. SIMEX: λ = 39.3 (s.e. 20.3), ρ= 0.094 (s.e. 0.005), N = 512 (s.e. 36.5), c =
0.103 (s.e. 0.004)

The fitted (predicted) curves of viral load and total CD4 T cell counts and their derivatives are
shown in Figure 3. From this figure, we can see that the fitted curves compare well to the
observed data. The estimates of the derivatives of the viral load and CD4 T cell counts are
reasonably estimated. These estimation results may provide important information for
clinicians to make treatment decisions for individual AIDS patients.

6. Discussion

Formal statistical estimation methods for parameters in ordinary differential equation (ODE)
models are relatively new in statistical literature (Li et al., 2002; Huang and Wu, 2006; Huang,
Liu and Wu, 2006; Ramsay et al., 2007; Chen and Wu 2008a, 2008b; Miao et al. 2008a). In
this paper, we have proposed a PsLS method to deal with this problem under the framework
of measurement error models. We also compared our PsLS method to a popular method for
dealing with measurement errors in nonlinear regression models, the SIMEX method. We
found out that the performance of the proposed PsLS method is as good as the SIMEX method
for most cases, and is better than the SIMEX method for some other cases based on our
simulation studies although we did not expect this. What we expected was that the proposed
PsLS method should be comparable to the SIMEX method in the sense of estimation error, but
should achieve significant benefits in computational cost, which is true based on our simulation
studies and real data applications (the PsLS method is more than 20 times faster than the SIMEX
method). The proposed methods do not require numerically solving the ODEs, but instead use
local smoothing methods to estimate the state functions and their derivatives. We also
established the consistency and asymptotic normality of the proposed PsLS estimator.

Note that the intention of the proposed PsLS method is not to try to improve the existing
methods such as the standard nonlinear LS (NLS) method (Seber and Wild 1989 and Bates
and Watts 1988) and penalized spline method (Ramsay 1996, Ramsay et al. 2007) in the sense
of estimation efficiency or accuracy, but instead our method provides an alternative estimation
approach for ODE models in the framework of measurement error models to avoid some critical
problems of these existing methods that include: i) the requirement and sensitivity of initial
values of the state variables for ordinary differential equation (ODE) models on the parameter
estimation, in particular for the NLS method; ii) the convergence problem of the NLS method
and other existing methods; iii) high computational cost due to iteratively solving the ODEs
numerically in the estimation procedure; and iv) high computational cost due to complicated
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optimization techniques. However, there is a cost associated with the proposed method. Our
PsLS method does alleviate these problems, but pays a price in terms of efficiency (the
estimation error will be a little bit larger as we expected). Another limitation of the proposed
method is that it requires frequent measurement data of state variables since the first step of
the proposed method is to apply local smoothing methods to estimate the state variables and
their derivatives. In particular, reliable estimates of derivative functions require a relatively
large sample size.

In summary, the proposed PsLS estimation method has several advantages compared to the
existing methods although it may not improve the performance of the existing methods in the
sense of estimation accuracy. These advantages include: 1) computational efficiency; 2) easing
of the convergence problem; 3) the initial values of the state variables of the differential
equations not required; and 4) providing good initial estimates of the unknown parameters for
other computationally-intensive methods to further refine the estimates rapidly. We are
currently investigating how to combine the proposed PsLS method with other existing methods
(e.g. the NLS method) to overcome the computational problems of the existing methods, while
at the same time also improve the estimation efficiency (accuracy). We hope to report some
promising results along this line in the near future.

In this paper, we also assumed that the parameters in the ODE models are uniquely identifiable.
The ODE model identifiability is another interesting topic, but beyond scope of this paper.
Some references for nonlinear ODE model identifiability, including HIV dynamic models, can
be found in Conte, Moog and Perdon (1999), Tunali and Tarn (1987), Diop and Fliess
(1991), Ljung and Glad (1994), Xia and Moog (2003), Jeffrey and Xia (2005), Miao et al.
(2008a), Miao et al. (2008b), and Wu et al. (2008). Another interesting extension of the
proposed methods is to incorporate mixed-effects modeling idea to deal with longitudinal data
(Huang and Wu, 2006; Huang, Liu and Wu, 2006). This will be the next focus of our research.
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Appendix: Proofs

Before we prove Theorems 1 and 2, we state the following lemma for the proofs of the main
results.
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Lemma 1

Under Assumptions A and C,

where bn = h2 + n−1/2h−3/2 log n and cn = h2 + n−1/2h−1/2 log n.

Proof

The proof of this lemma is similar to that in Mack and Silverman (1982). See Stone (1982) for
a detailed discussion on uniform convergence rates for nonparametric estimation.

From Lemma 1, we have

(A.1)

Proof of Theorem 1—The key step of the proof of the consistency is to show that β0, the
true value of the m–dimensional parameter vector β, uniquely minimizes limn→∞ Sn(β). Note
that

(A.2)

The second term is order of ( ) from (A.1), while the order of the third term is lower than
that of the first term based on the Cauchy-Schwarz inequality if β ≠ β0. Now we consider the
first term which can be decomposed as

By Assumption C(ii) and Lemma 1, we know that the second term from above is bounded as
follows:

(A.3)
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In a similar argument, we know that, if, β0 ≠ β,

(A.4)

The strong law of large number yields, if β0 ≠ β,

(A.5)

Combining (A.3)–(A.5), we can see that the first term of (A.2) is dominated by the term

which has a unique minimum at β0 by Assumption B (iii) when n is large enough. Therefore
the PsLS estimator defined in (3.6) is strongly consistent.

Note that the results (A.3)–(A.5) in the above proof utilized the asymptotic properties of the
local linear estimators which are critical for establishing the consistency of the proposed PsLS
estimator. More discussions on the assumptions of NLS estimators and the proofs can be found
in Seber and Wild (1989) or Bates and Watts (1988).

Proof of Theorem 2—Note that, under the assumptions that continuous derivatives exist
and using the mean-value theorem, we have

where  represents  evaluated at β = β̃, and  lies between β ̂n and β0. Then we
have

(A.6)

We first study the derivative , which can be expressed as:
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By Assumption C(ii) and Lemma 1, we obtain that

Note that I2n can be expressed as

(A.7)

The first term is bounded by

Write  for j = 1 ~ n, and . The second summand of (A.7)
can be expressed as

Using the notation in Section 2.1, let  and , then
we have

Recall the expression of bias given in (2.4) for X′ (t). A direct calculation yields that

(A.8)

where Q1 is a constant independent of n.

Furthermore,  is a sum of weighted independent variables {ei, i = 1,…, n} with mean
zero and covariance matrix of the form:
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Note that the (i, j)th entry of , denoted by ζij, can be expressed as

By direct calculations similar to deriving the bias and variance of X̂ (t), we have that

where A3 = diag(1, h, h2), N3, Q3, S3 and 1 are all 3 × 3 matrices whose (i, j) entry are
μi+j−2(K), μi+j−1(K), μi+j−2(K2), and 1, respectively. Then

A simplification yields that

As a result,

(A.9)

where A⊗2 = AAT. On the other hand, we have

Using an argument similar to (A.2) and Assumption C, we know that the first term of 

is o(1), while the second term converges to . Combining (A.6)–(A.9) and
recalling Assumption A(iii) on the bandwidth h, we may apply the Lindeberg central limit
theorem and obtain
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in distribution, where μβ= limn→∞ Q1nh2nh3/2n−1 = 0 from (A.8), and

(A.10)
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Figure 1.

The trajectories of state variables X1(t) and X2(t) with their derivatives for the simulated data
from example 1. The solid lines indicate the true curves, and the dashed and dotted lines indicate
the average fitted curves and the associated 95% pointwise confidence intervals obtained by
the PsLS and SIMEX estimation procedures respectively.
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Figure 2.

The trajectories of state variables TU (t), TI(t) and V(t) with their derivatives for the simulated
data from example 2. The solid lines indicate the true curves, and the dashed and dotted lines
indicate the average fitted curves and the associated 95% pointwise confidence intervals
obtained by the PsLS and SIMEX estimation procedures respectively.
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Figure 3.

The fitted curves of T(t) and V(t) with their derivatives for two patients from an HIV dynamics
study. Dots indicate the observations. The solid and dotted lines are the fitted curves by the
PsLS and SIMEX methods.
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