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This paper deals with parameter estimation for stochastic volatility models. We consider a two-

dimensional diffusion process (Yt, Vt). Only (Yt) is observed at n discrete times with a regular

sampling interval. The unobserved coordinate (Vt) rules the diffusion coef®cient (volatility) of (Yt)

and is an ergodic diffusion depending on unknown parameters. We build estimators of the parameters

present in the stationary distribution of (Vt), based on appropriate functions of the observations.

Consistency is proved under the asymptotic framework that the sampling interval tends to 0, while the

number of observations and the length of the observation time tend to in®nity. Asymptotic normality

is obtained under an additional condition on the rate of convergence of the sampling interval.

Examples of models from ®nance are treated, and numerical simulation results are given.
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1. Introduction

Many recent contributions in the ®eld of ®nance are devoted to modelling stock prices. The

seminal Black±Scholes (1973) model assumes that stock prices follow a geometric Brownian

motion with constant volatility, but several empirical works have rejected the shortcomings of

the Black±Scholes model, and new models have been introduced (see, for example, for a

survey, Ghysels et al. (1996)). Among these, the so-called stochastic volatility models have

been proposed (see, for example, Hull and White (1987), Chesney and Scott (1989) and

Heston (1993)). These models include stochastic volatility in such a way that the couple

(stock price, volatility) behaves as a two-dimensional diffusion process, depending on

unknown parameters. The problem of estimating these parameters from stock prices is not

clearly addressed in all these studies. Indeed, this raises a dif®culty since only the stock price

is observable, while the volatility is unobservable. It leads to a new problem in the statistics

of diffusion processes.

In the case where all coordinates are observed, the estimation of drift and diffusion

coef®cients is now classical. Among many references, let us quote Kutoyants (1984),

Bernoulli 5(5), 1999, 855±872

1350±7265 # 1999 ISI/BS



Dacunha-Castelle and Florens-Zmirou (1986), Donahl (1987), LareÂdo (1990), Genon-Catalot

and Jacod (1993), Bibby and Sùrensen (1995) and Kessler (1997). These papers do not

answer the estimation problem raised by stochastic volatility models.

Let us now come to the precise model investigated here. Assume that (Yt) is the

logarithm of the price process of some stock and that it is ruled by

dYt � ì(ó 2
t ) dt � ó t dBt, Y0 � 0:

Here, (ó t) is the positive volatility of the stock price, (Bt) a Brownian motion and ì some

real function. Assume also that Vt � ó 2
t is another diffusion process, whose coef®cients

depend on an unknown multidimensional parameter è, and which is de®ned by

dVt � b(è, Vt) dt � a(è, Vt) dWt, V0 � ç:

We assume that (Bt, Wt) t>0 is a two-dimensional standard Brownian motion, (Vt) is a

positive diffusion process and ç is a positive random variable independent of (Bt, Wt) t>0.

The sample path (Yt) is discretely observed at regularly spaced times ti � iÄ, i � 1, . . . , n.

Our concern here is to give a general methodology for estimating è from the observations

(Yt1
, . . . , Yt n

) only. For the statistical study, the key assumption is that the diffusion (Vt) has

to be a strictly stationary positive process with stationary distribution ðè having at least a

second-order moment. Apart from this assumption, the diffusion model for (Vt) can be quite

general. Thus, our results will apply to most of the speci®c models proposed in the ®nancial

literature.

As is always the case in the statistics of diffusion processes based on discrete

observations, the likelihood function is untractable. Our approach is to construct appropriate

and explicit functions of the observations to replace either the log-likelihood or the score

function. We study the asymptotic properties of the estimators built using these functions.

Our results rely on limit theorems proved in a previous paper (Genon-Catalot et al. 1998)

which concern the empirical distribution of the increments (Yti
ÿ Ytiÿ1

, i � 1, . . . , n), and

are obtained in the following asymptotic framework. The number of observations n tends to

in®nity, the sampling interval Ä � Än tends to zero and the length of the observation time

nÄn tends to in®nity. As a result of the previous paper, the function ì cannot be estimated

in this framework and behaves as a nuisance parameter. Moreover, it can be set equal to 0

without modifying the estimators (see Section 7). Therefore, this paper is devoted to the

case ì � 0. Also, the only relevant parameters in ®nance are those of the volatility.

The paper is organized as follows. Assumptions and preliminary results are presented in

Section 2. The essential property is that the random variables Äÿ1=2
n (Yti

ÿ Ytiÿ1
) behave

asymptotically like a sample of Qè, de®ned as the distribution of Eç1=2, where (E, ç) has the

law N (0, 1)
 ðè. Thus, Qè is a variance mixture of Gaussian laws, the mixing distribution

being the stationary distribution of the unobservable diffusion (Vt). In Section 3, we study

estimators based on the minimization of functions such as

U n(è) � 1

n

Xn

i�1

u(è, Äÿ1=2
n (Yti

ÿ Ytiÿ1
)),

where u(è, x) is a real function satisfying appropriate conditions. The minimum-contrast
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estimators are proved to be consistent and, under the additional condition nÄ2
n ! 0,

asymptotically normal with rate (nÄn)1=2. Section 3.3 is devoted to the special case

u(è, x) � ÿlog q(è, x) where q(è, x) is the probability density of the mixture distribution Qè.

It is especially well ®tted to the problem and possesses the following noteworthy feature: all

the assumptions required to get identi®ability, consistency and asymptotic normality can be

expressed in terms of conditions on the stationary distribution ðè of the (Vt) model. Another

classical approach in situations where the likelihood is untractable is to de®ne estimators

from estimating equations. This is done in Section 4. A consequence is that empirical

moment estimators are included in this approach. Both methods only provide estimators of

the parameters present in the stationary distribution of (Vt). However, these parameters may

come from its drift or diffusion coef®cient. In Section 5, examples of parametric models

commonly used in ®nance are fully treated. In Section 6, numerical results based on

simulations are presented. Section 7 discusses extensions and gives concluding remarks.

2. Assumptions and preliminary results

2.1. The model

Let (Yt, Vt) t>0 be a two-dimensional diffusion process de®ned by

dYt � ó t dBt, Y0 � 0, (1)

Vt � ó 2
t and dVt � b(è, Vt) dt � a(è, Vt) dWt, V0 � ç: (2)

We assume that

(a) (Bt, Wt) t>0 is a standard Brownian motion of R2 de®ned on a probability space

(Ù, A, P) and

(b) ç is a random variable de®ned on Ù, independent of (Bt, Wt) t>0.

Equation (2) de®nes a one-dimensional diffusion process whose coef®cients depend on an

unknown parameter è 2 È � Rd. We make now the standard assumptions on functions

b(è, v) and a(è, v) ensuring that the solution of (2) is a positive recurrent diffusion on

(0, �1) and a strictly stationary ergodic process.

(A1) For all è 2 È, b(è, v) and a(è, v) are continuous (in v) real functions on R, and C1

functions on (0, �1) such that

9k . 0, 8v . 0, b2(è, v)� a2(è, v) < k(1� v2) and 8v . 0, a(è, v) . 0:

For v0 . 0, de®ne the derivative of the scale function of diffusion (Vt):

s(è, v) � exp ÿ2

�v

v0

b(è, u)

a2(è, u)
du

 !
: (3)

(A2) For all è 2 È,
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�
0�

s(è, v) dv � �1,

��1
s(è, v) dv � �1,

��1
0

dv

a2(è, v)s(è, v)
� Mè ,�1:

Let

ð(è, v) � 1

Mè

1

a2(è, v)s(è, v)
1(v . 0): (4)

(A3) For all è 2 È, the initial random variable ç has distribution ðè (dv) � ð(è, v) dv.

(A4) There exists ã > 2 such that, 8è 2 È,
��1

0
vãð(è, v) dv ,�1.

Assumptions (A1) and (A2) ensure existence and uniqueness of the solution of (2)

together with the positive recurrence on (0, �1). In particular, Vt . 0 almost surely, for all

t > 0. Assumption (A3) provides the strict stationarity property and the ergodicity (see, for

example, Rogers and Williams (1987)). Moreover, note that, for each t > 0, Vt has the

distribution ðè and, under (A4), EV
ã
t ,1.

From now on, let (C, C , (Yt, Vt) t>0, Pè) be the canonical diffusion solution of (1), (2),

where C � C(R�, R2) is the space of continuous functions on R� and R2-valued, C is the

Borel ó-®eld associated with the uniform topology on each compact subset of R�,

(Yt, Vt) t>0 is the canonical process, and Pè is the distribution on (C, C ) of the solution of

(1), (2).

2.2. Observations

We assume that (Yt) is observable but at n discrete times only with regular sampling interval

Ä. We denote by ti � iÄ, i � 1, . . . , n, these observation times. Our results are obtained

under the assumption that

Ä � Än ! 0 and nÄn ! �1: (5)

Let us set

X i � X n
i �

1

Ä1=2
n

(Yti
ÿ Ytiÿ1

) and ti � tn
i � iÄn, i � 1, . . . , n: (6)

Conditionally on G � ó (Vt, t > 0), the random variables X i are independent and X i has

distribution N (0, Vi) with

Vi � 1

Ä

� t i

t iÿ1

Vs ds: (7)

Thus, under the model (1), (2), the X i are variance mixtures of Gaussian distributions, and

the likelihood function is untractable because the joint distribution of (V1, . . . , Vn) is not

explicitly known. So, the alternative approach is to construct appropriate and explicit

functions of the observations to replace either the log-likelihood or the score function. The

statistical study relies on limit theorems concerning the empirical distribution of the sample

(X i, i < n), which are presented below.
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Remark 2.1. The problem of estimating è from a discrete observation of the sample path (Vt)

itself has been investigated under different asymptotics. To obtain consistent estimators of

parameters in the diffusion coef®cient of (Vt), it is assumed that the sampling interval

Ä � Än tends to 0 while the time interval T � nÄn where observations are available, remains

®xed (Donahl 1987; Genon-Catalot and Jacod 1993). It is worth noting that these results

cannot be applied to obtain estimators of è in our model. Indeed, a discrete Ä-sampling

observation of (Yt) on a ®xed length time interval [0, T ] leads to a pointwise estimation (V̂ t)

of (Vt), t 2 [0, T ], which is not uniform on [0, T ]. This is not enough to derive consistent

estimators of è. To go further, we have to use the ergodicity properties of (Vt), and so let

T � nÄn tend to in®nity.

2.3. Preliminary results

We recall some results proved by Genon-Catalot et al. (1998). We have investigated, for j
belonging to a class of functions, the asymptotic behaviour of

P̂n(j) � 1

n

Xn

i�1

j(X n
i ):

For j: R! R, let us consider when de®ned the function hj: R� ! R

hj(v) �
�

R

j(xv1=2)n(x) dx, (8)

where n(x) � f1=(2ð)1=2gexp(ÿx2=2) is the N (0, 1) density.

Let p > 0, and F p be the class of functions satisfying the following two conditions (C1)

and (C2).

(C1) j 2 C1(R) and 9K1 . 0 8x 2 R jj(x)j < K1(1� jxj p).

(C2) hj 2 C1[0, �1) and 9K2 . 0, 8v > 0, jh9j(v)j < K2(1� v p=2).

Let us consider the probability density and the distribution de®ned on R by

q(è, x) �
��1

0

1

(2ðv)1=2
exp ÿ x2

2v

� �
ð(è, v) dv and Qè (dx) � q(è, x) dx: (9)

The probability Qè is the distribution of åç1=2 where (å, ç) follows a N (0, 1)
 ðè. For

k < ã, let us de®ne the kth moment of the stationary distribution ðè by mè(k) � E(çk). Note

that �
R

jxjáQè (dx) � Cámè
á

2

� �
, (10)

is well de®ned for á=2 < ã, where Cá is the áth absolute moment of the law N (0, 1).

Remark 2.2. Set j(x) � ø(x2); j belongs to F p if ø 2 C1[0, �1) and satis®es

9K . 0, 8u > 0, jø(u)j � jø9(u)j < K(1� u p=2):
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For j belonging to F ã, with ã given in (A4), let Qè(j) � �
R
j(x)Qè dx, which is well

de®ned (see (10)). For functions j, j1 and j2, let us introduce (see (8) and (A2))

Aj(è, v) �
�v

0

fhj(u)ÿ Qè(j)gð(è, u) du, v > 0, (11)

Vè(j1, j2) � 4Mè

��1
0

s(è, v)Aj1
(è, v)Aj2

(è, v) dv: (12)

We can give now the main result concerning the asymptotic behaviour of P̂n(j).

Theorem 2.1. Assume (A1)±(A4), and let Än ! 0 and nÄn ! �1.

(a) Let j belong to F ã, with ã given in (A4), for all è 2 È,

P̂n(j) ÿ!
n!�1Qè(j) in Pè probability:

(b) Let (j1, . . . , jk) belong to F ã. Let è 2 È and assume that Vè(ji, ji) ,1, for

i � 1, . . . , k. If moreover nÄ2
n ! 0, then

(nÄn)1=2

P̂n(j1)ÿ Qè(j1)

..

.

P̂n(jk)ÿ Qè(jk)

0B@
1CA !D

n!�1N k(0, V (è)) under Pè,

where V (è) is the matrix given by V (è)ij � Vè(ji, j j), 1 < i, j < k.

3. Minimum-contrast estimation

3.1. The method

Hereafter, we propose explicit estimators of è, based on the minimization of suitable

functions of the observations, called contrasts. We refer to Dacunha-Castelle and Du¯o

(1983, Chapter 3) for a general account on this notion. Set (see (6))

U n(è) � 1

n

Xn

i�1

u(è, X i), (13)

where u(è, x) is a real function de®ned on È 3 R satisfying conditions to be de®ned

precisely below. Let us stress the fact that U n(è) is equal to P̂n(j) with j(x) � u(è, x). We

study the associated minimum-contrast estimators è̂n de®ned as any solution of

è̂n � arg inf
è2È

Un(è): (14)
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3.2. Asymptotic properties of minimum-contrast estimators

3.2.1. Consistency

In what follows, we denote by è0 the true value of the parameter, i.e. the value of the

parameter which rules the observation. According to the classical scheme, the following

assumptions are needed. The exponent ã appearing below is that given in (A4).

(H1) È is a compact subset of Rd .

(H2) (Identi®ability assumption) For all è 2 È, the function è9! �
R

u(è9, x)Qè (dx) has

a strict minimum at è9 � è.

(H3) For all è 2 È, u(è, :) 2 F ã.

(H4) For all x 2 R, u(:, x) is a continuous function on È.

(H5) For ç > 0, there exists a function â(ç) such that

8è, è9 2 È, 8x 2 R, sup
ièÿè9i<ç

ju(è, x)ÿ u(è9, x)j < â(ç)(1� jxjã)

and â(ç)! 0 as ç! 0.

Theorem 3.1. Assume (A1)±(A4) and (H1)±(H5). Let Än ! 0, and nÄn ! �1. Then,bèn !
n!�1 è0 in Pè0

probability, where bèn is the minimum-contrast estimator de®ned in (14).

Proof. The proof follows Dacunha-Castelle and Du¯o (1983, Chapter 3). Recall that

Un(è) � cPn(u(è, :)). Assumption (H3) ensures that, for all è 2 È,
� ju(è, x)jq(è0, x) dx

,�1 (see (10)). Applying Theorem 2.1 to the functions u(è, :) and u(è0, :), we obtain

Un(è)ÿ Un(è0) ÿ!
n!�1 K(è0, è) in Pè0

probability,

where

K(è0, è) �
�

R

fu(è, x)ÿ u(è0, x)gq(è0, x) dx: (15)

The identi®ability assumption (H2) implies that the function è! K(è0, è) has a unique

minimum at è � è0. The continuity of è! K(è0, è) must hold and follows from (H4)

and (H5). It remains to study the continuity modulus of U n(è). Let w(Un, ç) �
supièÿè9i<çjUn(è)ÿ Un(è9)j. Using (H5), we get

w(U n, ç) < â(ç) 1� 1

n

Xn

i�1

jX ijã
 !

:

Now, Eè0
jX ijã � CãEè0

V
ã=2

i . Since ã=2 > 1, the HoÈlder inequality implies that

V
ã=2

i < 1=(Än)
� t i

tiÿ1
Vã=2

s ds. So, by the strict stationarity of (Vt), we get (see (10))

Eè0
jX ijã < Cãmè0

ã

2

� �
: (16)
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Following the usual standard proof, this leads to the consistency of the minimum-contrast

estimator. u

3.2.2. Asymptotic normality

The next step of the statistical analysis is to study the asymptotic distribution of bèn ÿ è0

suitably normalized. The additional assumptions are as follows (u9èi
denotes the partial

derivative of u with respect to èi).

(K1) The true value è0 of the parameter belongs to 8È.

(K2) For all x 2 R, u(:, x) 2 C2( 8È).

(K3) For all è 2 8È, for all i, u9èi
(è, :) 2 F ã, and

�
u9èi

(è, x)q(è, x) dx � 0.

(K4) For all è 2 8È,�
0�

dv s(è, v)

�v

0

ð(è, u) du

� �2

,�1 and

�1
dv s(è, v)

��1
v

uã=2ð(è, u) du

 !2

,�1:

(K5) For all è 2 8È, for all i, j, u 0èiè j
(è, :) 2 F ã, the matrix J (è) de®ned by

J (è)ij �
�

R

u 0èiè j
(è, x)q(è, x) dx (17)

is positive de®nite.

(K6) For ç > 0, there exists a function å(ç) such that, for all i, j 2 f1, . . . , dg,
8è, è9 2 8È, 8x 2 R, sup

ièÿè9i<ç
ju 0èiè j

(è, x)ÿ u 0èiè j
(è9, x)j < å(ç)(1� jxjã)

and å(ç)! 0 as ç! 0.

Among these assumptions, some are those usually used to prove asymptotic normality

((K1), (K2), K(6) and the second parts of (K3) and (K5)). The others are required for

applications of Theorem 2.1. Now, let us introduce the matrix

Ó(è) � (Vè(u9èi
(è, :), u9è j

(è, :)))i,j�1,:::,d : (18)

It has been proved by Genon-Catalot et al. (1998, Section 3.4) that, under (K4), the quantity

Vè(j, j) is ®nite for all j 2 F ã. Therefore, under (K3), (K4), Ó(è) is well de®ned for all è.

Theorem 3.2. Assume (A1)±(A4), (H1)±(H5) and (K1)±(K6), and let Än ! 0 and

nÄn !1. If moreover nÄ2
n ! 0, then

(nÄn)1=2( bèn ÿ è0)ÿ!D N d(0, Jÿ1(è0)Ó(è0)Jÿ1(è0)) under Pè0
:

Proof. By the consistency of bèn and (K1), we have Pè0
( bèn 2 8È)! 1. Let dèn, j and è0, j be the

coordinates of bèn, è0, and denote by U 9n,i (or U 0n,ij) the partial derivatives of Un with respect

to èi (or èiè j). For i 2 f1, . . . , dg,
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0 � U 9n,i( bèn) � U 9n,i(è0)�
Xd

j�1

(dèn, j ÿ è0, j)

�1

0

U 0n,ij(è0 � s( bèn ÿ è0)) ds:

By (K3) and Theorem 2.1,

U 9n,i(è0) � cPn(u9èi
(è0, :))!

�
R

u9èi
(è0, x)q(è0, x) dx � 0 as n!1 in Pè0

probability:

Using (K3), (K4), Theorem 2.1(b) may be applied to the set of functions

u9èi
(è0, x), i 2 f1, . . . , dg. So, we get (see (18) for Ó(è))

(nÄn)1=2(U 9n,i(è0))i2f1,:::,dg ÿ!D N d(0, Ó(è0)) under Pè0
:

Applying Theorem 2.1(1) to U 0n,ij(è0) gives

U 0n,ij(è0) � cPn(u 0èiè j
(è0, :))! J (è0)ij in Pè0

probability

(J is de®ned in (K5)). Finally, a bound for the remainder term is obtained using (K6), for all

i, j 2 f1, . . . , dg,�����1

0

U 0n,ij(è0 � s( bèn ÿ è0)) dsÿ U 0n,ij(è0)

���� < å(ibèn ÿ è0 i) 1� 1

n

Xn

k�1

jX k jã
 !

:

By the consistency, å(i bèn ÿ è0 i)! 0, in Pè0
probability. Using (16), the left-hand side of the

previous inequality tends to 0 under Pè0
. Assumption (K5) leads to the asymptotic

distribution N d(0, Jÿ1(è0)Ó(è0)Jÿ1(è0)) for (nÄn)1=2( bèn ÿ è0). u

Examples of contrasts can be derived from the moments of Qè. For instance,

u(è, x) � (x2 ÿ mè(1))2 or u(è, x) � log v(è)� (x2 ÿ mè(1))2

v(è)
,

with mè(1) � � x2Qè dx and v(è) � �fx2 ÿ mè(1)g2Qè (dx). We shall not give more details of

these examples, but we have rather restricted our attention to an example which takes more

into account the distribution of the X i.

3.3. A contrast ®tting the statistical model well

To build an appropriate contrast, in view of Theorem 2.1, we use the idea that X i has

approximately, for small Ä, the distribution Qè. Thus, let us set

u(è, x) � ÿlog q(è, x), (19)

where q(è, x) is the density of Qè (see (9)). In this case, the following theorem links the

conditions on u(è, x) with the properties of the stationary distribution ðè of diffusion (Vt).

Theorem 3.3. Recall that ç has distribution ðè.

(a) If, 8è, è9 2 È, è 6� è9) ðè 6� ðè9, then (H2) holds.

(b) Let è 2 È. If Eè(çÿ3=2) ,1, then u(è, :) belongs to F 2.
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Proof. For (a), let us remark that (see (15))

K(è0, è) �
�

log
q(è0, x)

q(è, x)

� �
q(è0, x) dx � K(Qè0

, Qè),

which is the Kullback information of Qè0
with respect to Qè. Recall that K(Qè0

, Qè) is

positive if and only if Qè 6� Qè0
. One can calculate the characteristic function of Qè:

jè(t) �
�

R

eitx Qè (dx) �
��1

0

eÿv t2=2 ð(è, v) dv:

Therefore, the characteristic function of Qè at point t is equal to the Laplace transform of ðè

at point t2=2, and, for all (è, è9) 2 È 3 È, ðè 6� ðè9 , Qè 6� Qè9. This gives the result.

For (b), let us set, for t > 0, g(è, t) � ��1
0
f1=(2ðv)1=2g exp(ÿt=2v)ð(è, v) dv and

j(è, t) � ÿlog g(è, t). So j(è, x2) � u(è, x). Using Remark 2.2, we just need to prove that

j(è, :) 2 C1([0, �1)) and that

9Kè . 0, 8t > 0, jj(è, t)j � jj9t(è, t)j < Kè(1� t): (20)

Note that g(è, 0) ,1 if and only if Eè(çÿ1=2) ,1. Under this condition, since g(è, :) is a

Laplace transform, we have, for all t > 0, 0 , g(è, t) ,1 and g(è, :) is continuous on

[0, �1). Similarly, g(è, :) 2 C1([0, �1)) if and only if Eè(çÿ3=2) ,1: So,

j(è, :) 2 C1([0, �1)). It remains to prove (20). Let á 2 [0, 1]. By the HoÈlder inequality,

for t, t9 > 0,

g(è, át � (1ÿ á)t9) <

��1
0

exp ÿ t

2v

� �
ð(è, v)

(2ðv)1=2
dv

 !á ��1
0

exp ÿ t9

2v

� �
ð(è, v)

(2ðv)1=2
dv

 !1ÿá

:

Thus, j(è, át � (1ÿ á)t9) > áj(è, t)� (1ÿ á)j(è, t9). Therefore, j(è, :) is a concave

function and its derivative is given by

j9t(è, t) � 1
2

��1
0

1

v
exp ÿ t

2v

� �
ð(è, v)

(2ðv)1=2
dv

 !� ��1
0

exp ÿ t

2v

� �
ð(è, v)

(2ðv)1=2
dv

 !
: (21)

So, for all t > 0,

0 ,j9t(è, t) < j9t(è, 0) � 1
2

Eè(çÿ3=2)

Eè(çÿ1=2)
: (22)

This clearly implies (20), and the proof is complete. u

Theorem 3.3(a) means that all the parameters present in the stationary distribution ðè can

be consistently estimated. However, some parameters of b(è, :) and a(è, :) may no longer

be present in the expression of ðè. They must be estimated by another method. Further

work is in progress in this direction. It is indeed a drawback, already encountered in other

papers (see, for example, Kessler (1996)). On the other hand, this method provides simple

and tractable computations of the estimators and requires weak assumptions easy to check.

The second part corresponds to the weakest version of assumption (A4). For what concerns
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assumptions implying asymptotic normality, let us point out that, for this contrast,�
u9èi

Qè(dx) � 0 is immediate and that J (è) is now the Fisher information matrix of Qè.

4. Estimating functions

In situations where explicit likelihood in untractable as in the case here, another approach is

to construct an estimating function Gn(è) to be a substitute for the score function (see, for

example, Barndorff-Nielsen and Sùrensen (1994)). Let us consider ø: È 3 R! Rd, and

de®ne

Gn(è) �
Xn

i�1

ø(è, X i): (23)

We de®ne estimators eèn as the solutions of

Gn( eèn) � 0: (24)

Let øi, i � 1, . . . , d, denote the coordinates of ø. Clearly, a class of estimating functions is

obtained by setting øi(è, x) � u9èi
(è, x) and u(è, x) a function leading to a contrast Un(è)

(see (13)). However, other estimating functions can be used. Then, assumptions concern the

functions (øi). For instance, another class of estimating functions is derived from power

functions and moment properties of the distribution Qè. In particular, the moment method

corresponds to the choice

øi(x) � C2i mè(i)ÿ x2i, i > 1: (25)

Clearly, this leads to estimate mè(i) by
Pn

k�1 X 2i
k =(nC2i).

In the contrast approach, we are able to prove that all the solutions of (14) are consistent.

Afterwards, asymptotic normality is proved. In the estimating functions method, one proves

that a solution of (24) exists which is consistent and asymptotically normal, under a

different set of assumptions given below.

(~K1) This is the same as (K1)

(~K2) For all x 2 R, ø(:, x) 2 C1( 8È).

(~K3) For all è 2 8È, for all i, øi(è, :) 2 F ã and
�
øi(è, x)q(è, x) dx � 0.

(~K4) This is the same as (K4).

(~K5) For all è 2 8È, for all i, j, (@=@è j)øi(è, :) 2 F ã and the d 3 d matrix ~J (è) de®ned

by

~J (è)ij �
�

R

@

@è j

øi(è, x)q(è, x) dx (26)

is positive de®nite.

(~K6) For all è 2 8È, for ç > 0, there exists a function äè(ç) such that, for all

i, j 2 f1, . . . , dg,
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8x 2 R, sup
è9:iè9ÿèi<ç

���� @@è j

øi(è9, x)ÿ @

@è j

øi(è, x)

���� < äè(ç)(1� jxjã)

with äè(ç)! 0 as ç! 0.

The notation is chosen on purpose to establish a correspondence between assumptions

(K1±K6) of Section 3 and assumptions ( ~K1± ~K6) above. Note that the matrix ~J (è)

appearing in ( ~K5) is not necessarily symmetric. The property ~J (è) positive de®nite means

that the inner product h~J (è)x, xi is positive for all x 6� 0. Using the notation introduced in

(12), let us de®ne the matrix ~Ó(è) by

~Ó(è)ij � Vè(øi(è, :), ø j(è, :)): (27)

Theorem 4.1. Assume (A1)±(A4) and ( ~K1)±( ~K6), and let n!1, Än ! 0, nÄn !1. If

moreover nÄ2
n ! 0, then an estimator eèn, which solves (24), exists with a probability tending

to one as n!1 under Pè0
and is weakly consistent. Moreover,

(nÄn)1=2( eèn ÿ èn)ÿ!D N d(0, ~Jÿ1(è0)~Ó(è0)~Jÿ1(è0)) under Pè0
:

Proof. Our assumptions imply that

(a) Gn(:) 2 C1( 8È),

(b) under Pè0
, (Än n)1=2(1=n)Gn(è0)ÿ!D N d(0, ~Ó(è0)),

(c) (1=n) _Gn(è0) Pè0ÿ! ~J (è0), where _Gn(è) denotes the matrix ((@=@è j)Gn,i(è)) and

(d) ~J (è0) is positive de®nite.

In addition, a uniformity condition is required. Set M c,n � fè: ièÿ è0 i < c(nÄn)ÿ1=2g;
we must have

sup
è2M c, n

���� 1

n
_Gn(è)ÿ ~J (è0)

����ÿ!Pè0
0: (28)

This property will be proved later. Now, we can follow step by step the proof of Theorem A1

(Appendix) of Barndorff-Nielsen and Sùrensen (1994) to get the existence and consistency ofeèn and also that, for all convex combination è�n of eèn and è0, (1=n) _Gn(è�n )Pè0ÿ!~J (è0). Then,

the asymptotic normality is a straightforward consequence of the standard expansion:

0 � Än

n

� �1=2

Gn(è0)� (Än n)1=2( eèn ÿ è0)
1

n
_Gn(è�n ):

We now check condition (28), following the proof of Theorem 3.4 and Lemma 3.5 of Bibby

and Sùrensen (1995). Let f (è) � � _ø(è, x)Qè0
(dx), where _ø � ((@=@è j)øi). We have

sup
è2M c, n

���� 1

n
_Gn(è)ÿ eJ (è0)

���� < sup
è2K

���� 1

n
_Gn(è)ÿ f (è)

����� sup
è2M c, n

j f (è)ÿ ~J (è0)j,

where K is a compact set such that M c,n � K � 8È. From ( ~K2), ( ~K6) and the Lebesgue
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theorem, it follows that f is continuous. Thus, the second term in the inequality above tends

to 0. Let us choose a ®nite covering of K by balls of radius ç and centres è j. For è such that

ièÿ è j i < ç, we have, using ( ~K6),���� 1

n

Xn

i�1

_ø(è, X i)ÿ f (è)

���� < äè j
(ç)

1

n

Xn

i�1

jX ijã �
���� 1

n

Xn

i�1

_ø(è j, X i)ÿ f (è j)

����� j f (è j)ÿ f (è)j:

The proof may be ended by an appropriate choice of ç and noting that _ø(è j, :) 2 F ã. u

5. Application to some classical models in ®nance

In this section, we develop the previous estimation methods for parametric models on the

hidden diffusion (Vt) commonly used in ®nance. We study below successively the contrast

based on log q(è, x) (see Section 3.3) and the moment method (see (25)).

Model 1. The diffusion approximation of a GARCH(1,1)-M model (Nelson 1990) is given

by

dYt � ó t dBt, Y0 � 0,

dVt � á(âÿ Vt) dt � cVt dWt, V0 � ç, Vt � ó 2
t ,

where á, â and c are real numbers. Let us set a � 1� 2á=c2 and ë � 2âá=c2. Assumption

(A2) holds if and only if ë. 0 and a . 0, and the stationary distribution ðè is the inverse

Gamma distribution, with density

ð(è, v) � ëa

Ã(a)
vÿaÿ1 exp ÿ ë

v

� �
1fv.0g, (29)

where Ã(a) is the usual gamma function. The moments of ðè are given by

mè( p) � Eè(ç p) � ë p Ã(aÿ p)

Ã(a)
if p , a, (30)

and �1 if p > a. Hence, (A4) is satis®ed with ã � 2 if and only if a . 2. To sum up, we

get the conditions a . 2, ë. 0, which are equivalent to â. 0, á. c2=2. From the expression

for ðè and Theorem 3.3, we see that only the parameters a and ë can be identi®ed in our

asymptotic framework; so the unknown parameter to estimate is è � (a, ë). This means that

either á or c is known. Applying (9), we remark that the mixture distribution Qè is

completely explicit:

q(è, x) �
��1

0

1

(2ðv)1=2
exp ÿ x2

2v

� �
ëa

Ã(a)
vÿaÿ1 exp ÿ ë

v

� �
dv

� 1

(2ð)1=2

Ã(a� 1
2
)

Ã(a)

ëa

(ë� x2=2)a � 1=2
:
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This is the distribution of (ë=a)1=2T when T has the Student t distribution of 2a degrees of

freedom. Note that the Student distribution has been already proposed to take into account

the observed `̀ fat tails'' of stock returns (see, for example, Blattberg and Gonedes (1974)).

Hence, we consider the contrast built with

u(è, x) � a� 1

2

� �
log ë� x2

2

� �
ÿ a log(ë)� log

Ã(a)

Ã(a� 1
2
)

 !
: (31)

Let us assume that è � (a, ë) 2 È, where È is a compact subset of (2, �1) 3 (0, �1) and

let bèn be the minimum-contrast estimator associated with (31). Let us remark that

Eè(çÿ3=2) � a� 1
2

ë3=2

Ã(a)

Ã(a� 1
2
)
:

Theorem 3.3 implies that (H3) is satis®ed with ã � 2. Note also that è! u(è, x) is

continuously differentiable (the derivatives can be explicitely computed) and satisfy (H5).

Therefore, the weak consistency follows from Theorem 3.1.

For the asymptotic normality, the main dif®culty is to prove that the asymptotic

covariance matrix is well de®ned and positive de®nite. An elementary proof shows that

assumption (K4) of Theorem 3.2 is satis®ed. For (K5), we can compute explicitly J (è):

J (è)11 � Ø9(a)ÿØ9(a� 1
2
), J (è)12 � ÿ1

ë(2a� 1)
and J (è)22 � a

ë2(2a� 3)
,

where Ø(z) is the derivative of logÃ(z) (the so-called digamma function). To show that the

determinant is positive, we use the following equality (Luke, 1969, Chapter 2):

Ø(z) � log(z)ÿ 1

2z
ÿ h(z),

with

h(z) �
�1

0

f(e t ÿ 1)ÿ1 ÿ tÿ1 � 1
2
g eÿ tz dt:

Let us stress the fact that asymptotic normality holds without any other additional restriction

on the parameter set.

For the moment method, we use the estimating functions based on the moments of ðè. A

natural choice to estimate (a, ë) is to consider the ®rst two moments of ðè, which are ®nite

if a . 2, and are given by mè(1) � ë=(aÿ 1) and mè(2) � ë2=(aÿ 1)(aÿ 2). The

correspondence (a, ë)! (mè(1), mè(2)) is a C1 diffeomorphism of (2, �1) 3 (0, �1)

onto (0, �1)2. Therefore, we consider the estimation of m � (mè(1), mè(2)), and set

ø � (ø1, ø2), with ø1(m, x) � mè(1)ÿ x2 and ø2(m, x) � 3mè(2)ÿ x4. Looking at ø2, we

must choose ã � 4, which implies the condition a . 4 to get (A4) (see (30)). Thus,

compared with the contrast method, the application of the moment method adds a restriction

on the parameter set. Let us remark that assumptions ( ~K1)±( ~K6) are easy to check, and that

the asymptotic covariance matrix of the estimators can be explicitly computed.
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Model 2. (Heston 1993). We consider for (Vt) the classical square-root process used by Cox

et al. (1985) for interest rates. Let

dVt � á(âÿ Vt) dt � cV
1=2
t dWt, V0 � ç,

where á, â and c are real numbers. Let us set a � 2âá=c2 and ë � 2á=c2. If ë. 0 and

a > 1, the stationary distribution ðè is the Gamma distribution with density

ð(è, v) � ëa

Ã(a)
vaÿ1 eÿëv 1fv . 0g: (32)

Thus, this model has similarities with the variance-gamma model of Madan and Seneta

(1990). The moments of ðè are ®nite for all positive p:

mè( p) � Eè(ç p) � Ã(a� p)

Ã(a)ë p
: (33)

In particular, Eè(ç) � a=ë and Eè(ç2) � a(a� 1)=ë2. Here again, the parameter to estimate

is è � (a, ë). The mixture distribution Qè can be computed and has the density

q(è, x) � (2ë)1=2

Ã(a)ð1=2

jxj(2ë)1=2

2

� �aÿ1=2

Kaÿ1=2(jxj(2ë)1=2),

where Kí is the modi®ed Bessel function of the second kind with index í (see, for example,

Luke (1969)). This distribution belongs to the Barndorff-Nielsen (1978) generalized

hyperbolic distributions.

For the contrast method, we must check Eè(çÿ3=2) ,1. Since

Eè(çÿ3=2) � ë3=2 Ã(aÿ 3
2
)

Ã(a)
,1 if a . 3

2
,

and �1 otherwise, this leads to an additional restriction. Assumption (K4) holds for all

ã > 2 by an elementary proof. As for (H5), (K3) and (K6), the technical tool is to use that, at

�1, Kí(t) � eÿ t ð1=22tÿ1=2, to control the polynomial growth of the functions involved. For

the moment method, the restriction a . 3
2

is no longer needed. Here also, the asymptotic

covariance matrix of the moments estimators can be explicitly computed.

Model 3. The diffusion approximation of the exponential ARCH model (Nelson 1990) is

given by

dYt � e Z t=2 dBt,

dZ t � á(âÿ Z t) dt � r dWt:

Both methods can be applied. The moment estimators have been used by Chesney and Scott

(1989).
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6. Numerical results

The aim of this section is to investigate the qualities of the estimators in Model 1 and Model

2 for ®nite sample, using 150 simulated paths of (Yt).

We consider ®rst Model 1, with c � 21=2. To simulate the diffusion process Vt, we have

used a Euler scheme with sampling interval Ä=50 and get from this an approximation of

the integral Vi, for each i. Then, we have computed the moment and the minimum-

contrast estimators for each path. Table 1 gives the mean and the standard deviation of

the estimates of the parameter (â, á) for both methods and for different values of n and

Ä.

First, let us recall that, when á � 1:5, the moment method does not provide an

asymptotically normal estimator for this parameter. So, they are not present in Table 1.

Let us remark that the contrast method provides better results than the moment method

does, as can be seen from the means as well as the standard deviations. This is in

accordance with the fact that the contrast method takes the distribution of the observations

into account more. The accuracy of the estimates of â is better than those of á. This may

be explained by the properties of the Student distribution; it is well known that, even for

independent observations of the Student distribution, the parameter involving the number

of degrees of freedom is badly estimated (see the discussion by Blattberg and Gonedes

(1974)). Finally, these numerical results con®rm that n and Ä must be in accordance with

the asymptotic conditions nÄ large and nÄ2 small to get good estimates.

For Model 2, we have chosen values for the parameters which enable an exact

simulation of Vt using the explicit transition densities (â � 2, á � 1, c � 21=2). As

suggested by Table 2, the same conclusions hold, and the results are even slightly better

than for Model 1.

Table 1. Simulation results for Model 1 (150 replications)

Moment method Contrast method

Asymptotic Parameter True value Mean

Standard

deviation Mean

Standard

deviation

n � 1500 â 2 2.02 0.13 2.02 0.13

Ä � 0:1 á 3.5 3.97 1.53 3.72 1.26

n � 3000 â 2 2.04 0.09 2.03 0.08

Ä � 0:1 á 3.5 3.52 1.05 3.54 0.84

n � 3000 â 2 2.02 0.11 2.02 0.11

Ä � 0:05 á 3.5 3.83 1.29 3.66 1.06

n � 1500 â 2 2.07 0.34 2.08 0.33

Ä � 0:1 á 1.5 Ð Ð 1.58 0.53

n � 1500 â 2 2.12 0.23 2.1 0.18

Ä � 0:3 á 1.5 Ð Ð 1.54 0.41
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7. Extensions and concluding remarks

Stochastic models for stock prices and the instantaneous standard deviation of the stock

returns are generally given by

dSt

St

� r dt � ó t dBt, Vt � ó 2
t ,

dVt � b(è, Vt) dt � a(è, Vt) dWt,

where only (St) is observed. Thus, Yt � log St has a drift term depending only on the

instantaneous conditional variance Vt. This leads us to consider models such that

dYt � ì(ó 2
t ) dt � ó t dBt:

Genon-Catalot et al. (1998) proved that, under appropriate conditions on ì(:), the results of

Theorem 2.1 are identical. Therefore, the estimation methods apply in the same way, that is

to say as if ì were identically null. This is consistent with the usual results concerning the

different rates of convergence for the drift and diffusion coef®cients estimation, as Än ! 0.

To include more models of the ®nancial area, a relevant extension would be to assume

that the two Brownian motions Bt and Wt are correlated and to study the estimation of their

instantaneous correlation. Another possible extension is to study models where the

coef®cients of (Vt) depend on the state (Yt). More generally, multidimensional processes

including observed and unobserved coordinates can be encountered and justify further

investigations.
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