
Citation: Anghel, C.G.; Ilinca, C.

Parameter Estimation for Some

Probability Distributions Used in

Hydrology. Appl. Sci. 2022, 12, 12588.

https://doi.org/10.3390/

app122412588

Received: 29 October 2022

Accepted: 7 December 2022

Published: 8 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Parameter Estimation for Some Probability Distributions Used
in Hydrology
Cristian Gabriel Anghel and Cornel Ilinca *

Faculty of Hydrotechnics, Technical University of Civil Engineering Bucharest, Lacul Tei, nr.122-124,
020396 Bucharest, Romania
* Correspondence: cornel@utcb.ro; Tel.: +40-723-071-247

Abstract: Estimating the parameters of probability distributions generally involves solving a system
of nonlinear equations or a nonlinear equation, being a technical difficulty in their usual application in
hydrology. The choice of probability distributions for the calculation of extreme values in hydrology
is, in most cases, made according to the ease of calculation of the estimated parameters and the
explicit form of the inverse probability function. This article presents improved approximations
and, in some cases, new approximations for the estimation with the method of ordinary moments
and the method of linear moments, which are useful for the direct calculation of the parameters,
because the errors in the approximate estimation are similar to the use of iterative numerical methods.
Thirteen probability distributions of two and three parameters frequently used in hydrology are
presented, for which parameter estimation was laborious. Thus, the approximate estimation of
the parameters by the two methods is simple but also precise and easily applicable by hydrology
researchers. The new and improved approximate forms presented in this article are the result of
the research conducted within the Faculty of Hydrotechnics to update the Romanian normative
standards in the hydrotechnical field.

Keywords: probability distributions; estimation parameters; approximate form; method of ordinary
moments; method of L-moments

1. Introduction

Probability distributions are used in hydrology to determine the probability of occur-
rence of extreme events: maximum flows, maximum volumes and maximum precipitation.

A criticism of the probabilistic estimation of extreme events is that it does not take
climate changes into account, this being generally solved with hydrological modeling
using learning machines [1] of the neural network type and others. However, statisti-
cal modeling is complementary and necessary to other types of black-box and gray-box
modeling, because the input and output data from these models must be presented proba-
bilistically, especially for extreme events with low probability, necessary for the design of
hydrotechnical constructions.

In the case of determining the maximum flows, three or more parameter distributions
are recommended, while for the determination of precipitation and maximum volumes,
two parameter distributions are recommended [2–4].

In general, finding approximate relations to express the parameters is very impor-
tant because many of these probability distributions, for exact determination, require
solving with the Levenberg–Marquardt algorithm [5] for nonlinear least squares curve-
fitting problems, which can sometimes represent a difficulty requiring the use of specific
calculation programs.

Another important aspect is the expression of the quantile function (inverse of the
distribution function) of these distributions, both of which facilitate the use of these distri-
butions in the determination of the analyzed extreme values.
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This article presents approximate forms of the expressions of some parameters of
some frequently used probability distributions in hydrology, such as: Pearson III (PE3),
Generalized extreme value (GEV), Weibull (W3), Weibull (W2), Fréchet (F3), Fréchet (F2),
Generalized Pareto (P3), Log-Logistics (LG3), Kappa (K3-Generalized Gumbel), Kappa
(K3-Park), Pearson V (PV3), Pearson V (PV2) and Generalized Exponential (EG2).

The approximate forms are for determining the parameters using the method of
ordinary moments (MOM) and the method of linear moments (L-moments).

For the method of ordinary moments, the parameters of the three-parameter distri-
butions are determined from relationships that use mean, variance and skewness, the
latter representing the ratio between the centered moment of order 3 and variance to the
1.5 power. For the method of linear moments, the parameters of the distribution are deter-
mined from relations that use the arithmetic mean (L1), L2 and τ3, the latter representing
the ratio between the moment L3 and L2.

These methods are some of the most frequently used methods for estimating parame-
ters in hydrology [2–4,6–9]. The approximations use rational and polynomial functions in
which the coefficients are obtained by least squares nonlinear regression on the domain of
definition considered.

In some cases, the approach is similar by using the same type of function but with
more terms, and in other cases the approach is different by using other types of functions.

For the method of ordinary moments, the approximation range most often used for
skewness is 0–4, but in certain regions of the world they meet up to a skewness equal to
9 [3], or the skewness is adopted by multiplying the coefficient of variation with a chosen
positive coefficient [10], so the skewness is always positive, even if that of the given sample
may have negative skewness values. The definition range of approximations 0–8 was
chosen in the case of MOM, and the definition range for the method of linear moments
is the default 0–1. Considering that the approximation relations must be as accurate as
possible, the relative error graphs are also presented. The relative error is the ratio between
the difference between the exact and approximate value of the skewness, and the exact
value. In this article, the new approximation relations are noted as “a better approximation”.
For the L-skewness of the sample, it can have negative values, generally greater than −0.4.

Thus, all these novelty elements for these distributions presented in Table 1 will help
hydrology researchers to use these distributions easily.

Table 1. Novelty elements.

Approximations MOM L-Moments

A better approximation GEV, LL3 PE3, GEV, F3

A new approximation W3, W2, F3, F2, P3, K3, PV3, EG2 W3, K3, PV3, PV2, EG2

The research also had as its object the use of mathematics by the large mass of engineers
in the field of hydrotechnics, because the use of dedicated software without knowledge
of mathematical methods is not beneficial. In this way, functions from Mathcad were
presented comparatively, which can be equated by researchers with functions from their
favorite programs (Matlab, Excel, Python, R, etc.).

2. Probability Distributions

In this section, the analyzed probability distributions are presented. The probability
density function, f(x); the complementary cumulative distribution function, F(x), and
quantile function (inverse function), x(p) are presented below.
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2.1. Pearson III Distribution (PE3)

The Pearson III distribution belongs to the Gamma distribution family, being a gener-
alized form of the two-parameter Gamma distribution [11], with shifted x, and a particular
case of the four-parameter gamma distribution [5,12,13].

f(x) =
(x− γ)α−1

βα·Γ(α) · exp
(
−x− γ

β

)
=

1
β
·dgamma

(
x− γ
β

,α
)

(1)

F(x) = 1−
x∫
γ

f(x)dx = 1− 1
β·Γ(α) ·

x∫
γ

(
x− γ
β

)α−1

· exp
(
−x− γ

β

)
dx =

Γ
(
α, x−γ

β

)
Γ(α)

(2)

F(x) = 1− pgamma
(

x− γ
β

,α
)
= 1− pchisq

(
2·x− γ

β
, 2·α

)
(3)

x(p) = F−1(x) = γ+ β·Γ −1(1− p;α) = γ+ β·qgamma(1− p,α) (4)

where α,β,γ are the shape, the scale and the position parameters and x can take any values
of range γ < x < ∞ if β > 0 or −∞ < x < γ if β < 0 and α > 0; µ,σ represent the
mean (expected value) and standard deviation. If β < 0 (negative skewness) then the
first argument of the inverse of the distribution function Gamma, Γ −1(1− p;α) becomes
Γ −1(p;α).

The expressions of the inverse function x(p) = F−1(x), using the mean and standard
deviation, are valid only for the method of ordinary moments.

2.2. Generalized Extreme Value Distribution (GEV)

The GEV distribution was introduced for the first time by Jenkins in 1955 [11] for the
analysis of extreme values. It is also known as the Fisher–Tippett distribution.

Depending on the sign of the shape parameter, this can be transformed into the Weibull
(α < 0), Fréchet (α > 0) or Gumbel (α = 0) distributions [11,13,14].

f(x) =
(

1− α
β
·(x− γ)

) 1
α−1
· 1
β
· exp

(
−
(

1− α
β
·(x− γ)

) 1
α

)
(5)

F(x) = 1− exp

(
−
(

1− α
β
·(x− γ)

) 1
α

)
(6)

x(p) = γ+
β

α
·(1− (− ln(1− p))α) (7)

where α,β,γ are the shape, the scale and the position parameters; x can take any values of
range x <

(
γ+ β

α

)
if α > 0, and x >

(
γ+ β

α

)
if α < 0.

2.3. Weibull Distribution (W3)

The distribution represents a particular case of the GEV distribution when the shape
parameter is negative. It is also known as the Type II extreme value distribution, [11,15,16].

f(x) =
α

β
·
(

x− γ
β

)α−1
·e−(

x−γ
β )

α

=
α

β
·dweibull

(
x− γ
β

,α
)

(8)

F(x) = e−(
x−γ
β )

α

= 1− pweibull
(

x− γ
β

,α
)

(9)

x(p) = γ+ β·(− ln(p))1/α = γ+ β·qweibull(1− p,α) (10)

where α,β,γ are the shape, the scale and the position parameters; α,β > 0, x ≥ γ.
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2.4. Weibull Distribution (W2)

The distribution represents a particular case of the W3 distribution when the position
parameter is 0 [11,16]:

f(x) =
α

β
·
(

x
β

)α−1
· exp

(
−
(

x
β

)α)
=

1
β
·dweibull

(
x
β

,α
)

(11)

F(x) = exp
(
−
(

x
β

)α)
= 1− pweibull

(
x
β

,α
)

(12)

x(p) = β·(− ln(p))1/α = β·qweibull(1− p,α) (13)

where α,β are the shape and the scale parameters; α,β, x > 0.

2.5. Fréchet Distribution (F3)

The distribution represents a particular case of the GEV distribution when the shape
parameter is positive. It is also known as the Type III extreme value distribution [11,17,18].

f(x) =
α

β
·
(

x− γ
β

)−α−1
· exp

(
−
(

x− γ
β

)−α)
(14)

F(x) = 1− exp

(
−
(

x− γ
β

)−α)
(15)

x(p) = γ+ β·(− ln(1− p))−1/α (16)

whereα,β,γ are the shape, the scale and the position parameters;α,β > 0,−∞ < γ < ∞, x > γ.

2.6. Fréchet Distribution (F2)

The distribution represents a particular case of the F3 distribution when the position
parameter is 0 [16].

f(x) =
α

β
·
(
β

x

)α+1
· exp

(
−
(
β

x

)α)
(17)

F(x) = 1− exp
(
−
(
β

x

)α)
(18)

x(p) = β·(− ln(1− p))−1/α (19)

where α,β are the shape and the scale parameters; α,β, x > 0.

2.7. Generalized Pareto Distribution (P3)

The Pareto distribution was introduced by Pickands in 1975 [17]. The distribution
represents a special case of the five-parameter Wakeby distribution [11,14], respectively, of
the four-parameter Wakeby distribution [13,17].

f(x) =
1
β
·
(

1− α
β
·(x− γ)

) 1
α−1

(20)

F(x) =
(

1− α
β
·(x− γ)

) 1
α

(21)

x(p) = γ+
β

α
·(1− pα) (22)

where α,β,γ are the shape, the scale and the position parameters; x ≥ γ if α < 0 or
γ ≤ x ≤ γ+ β

α if α > 0.
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2.8. Log-Logistic Distribution (LL3)

The distribution was popularized in hydrology by Ahmad, et al. in 1988 and represents
a generalized form of the two-parameter Log-Logistic distribution [11,17].

f(x) =
α

β
·
(

x− γ
β

)α−1
·
((

x− γ
β

)α
+ 1
)−2

(23)

F(x) =
(

1 +
(

x− γ
β

)α)−1

(24)

x(p) = γ+ β·
(

1
p
− 1
) 1
α

(25)

where α,β,γ are the shape, the scale and the position parameters; α,β > 0, γ < xmin.

2.9. Kappa Distribution (K3-Generalized Gumbel)

The distribution represents a particular case of the four-parameter Kappa distribution.
It is also known as the generalized Gumbel distribution [19].

f(x) =
1
β
· exp

(
−x− γ

β

)
·
(

1− α· exp
(
−x− γ

β

)) 1
α−1

(26)

F(x) = 1−
(

1− α· exp
(
−x− γ

β

)) 1
α

(27)

x(p) = γ+ β· ln
(

α

1− (1− p)α

)
, if α > 0 (28)

x(p) = γ− β· ln
(
(1− p)−α − 1

α

)
, if α < 0 (29)

where, α,β,γ are the shape, the scale and the position parameters. x,β > 0.

2.10. Kappa Distribution (K3-Park)

The distribution represents a particular case of the four-parameter Kappa distribution
and a generalized form of the two-parameter Kappa distribution by adding a location
parameter (shifted x), being presented for the first time in 2009 by Park et al. [20].

f(x) =
α

β
·
(
α+

(
x− γ
β

)α)−α+1
α

(30)

F(x) = 1− x− γ
β
·
((

x− γ
β

)α
+ α

)− 1
α

(31)

x(p) = γ+ β·
(
α·(1− p)α

1− (1− p)α

) 1
α

(32)

where, α,β,γ are the shape, the scale and the position parameters.

2.11. Pearson V Distribution (PV3)

The distribution represents the inverse of the Pearson III distribution [21].

f(x) =
exp

(
− β

x−γ

)
β·Γ(α− 1)

·
(

x− γ
β

)−α
(33)
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F(x) =
Γ
(
α− 1, β

x−γ

)
Γ(α− 1)

= 1− pgamma
(

β

x− γ ,α− 1
)

(34)

x(p) = γ+
β

Γ −1(p;α− 1)
= γ+

β

qgamma(p,α− 1)
(35)

where α,β,γ are the shape, the scale and the position parameters; α,β > 0;γ < xmin and x
can take any values of the range γ < x < ∞.

2.12. Pearson V Distribution (PV2)

Two parameters, Pearson V distribution, represent a particular form of PV5 when the
position parameter is 0 [21].

f(x) =
exp

(
−βx

)
β·Γ(α− 1)

·
(

x
β

)−α
(36)

F(x) =
Γ
(
α− 1, βx

)
Γ(α− 1)

= 1− pgamma
(
β

x
,α− 1

)
(37)

x(p) =
β

Γ −1(p;α− 1)
=

β

qgamma(p,α− 1)
(38)

where α,β > 0 are the shape and the scale parameters; x > 0.

2.13. Generalized Exponential Distribution (EG2-Gupta)

The Generalized Exponential Distribution is an alternative to the two-parameter
Gamma and Weibull distributions. It was introduced by Gupta and Kundu in 1999 [22].

f(x) = α·β· exp(−β·x)·(1− exp(−β·x))α−1 (39)

F(x) = 1− (1− exp(−β·x))α (40)

x(p) = −
ln
(

1− (1− p)1/α
)

β
(41)

where α,β > 0 are the shape and the scale parameters; x > 0.

3. Methods

This chapter presents the parameter estimation relationships for the method of ordi-
nary moments and the method of linear moments, as well as the approximate estimation of
the parameters, using various approximation functions; the variation graphs of approxi-
mately estimated parameters and how to obtain the approximation functions.

The estimated parameters for the analyzed distribution can be exactly obtained only
by numerical methods, because the moments equations are nonlinear, being presented in
Appendix B. Mathematical notations for the built-in functions in the Mathcad program
used in this article are shown in Appendix A.

3.1. Method for Parameter Approximation

The approach method for three-parameter distributions consisted of determining the
domain of definition of the α variable as a function of Cs for MOM and τ3 for L-moments.
The limits of the definition domain of the parameter αwere established according to the
extreme values of Cs and τ3, thus α was calculated for 0 < Cs ≤ 8, respectively, 0 < τ3 < 1.
The Cs(α) and τ3(α) functions were plotted for both methods.

The variation graph of skewness (Cs) for the first vertical axis and L-skewness (τ3) and
for the vertical secondary axis, depending on the parameter α are presented in Figure 1.
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Figure 1. The variation of parameter α for three parameters distributions.

For two-parameter distributions, the definition range of the α variable was determined
as a function of Cv for MOM and τ2 for L-moments. The limits of the definition domain
of the parameter α were established according to the extreme values of Cv and τ2, thus τ2
was calculated for 0 < Cv ≤ 2, respectively, for 0 < τ2 < 1. The functions Cv(α) and τ2(α)
were plotted for both methods.

The variation graph of coefficient of variation for the first vertical axis (Cv) and L-
coefficient of variation (τ2) for the vertical secondary axis, depending on the parameter α
are presented in Figure 2.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 29 
 

 

 

 

(i) PV3.  

Figure 1. The variation of parameter α  for three parameters distributions. 

For two-parameter distributions, the definition range of the α  variable was deter-
mined as a function of vC  for MOM and τ2  for L-moments. The limits of the definition 

domain of the parameter α  were established according to the extreme values of vC  

and τ2 , thus α  was calculated for < ≤v0 C 2 , respectively, for < τ <20 1. The func-

tions ( )αvC  and ( )τ α2  were plotted for both methods. 

The variation graph of coefficient of variation for the first vertical axis ( vC ) and L-

coefficient of variation ( τ2 ) for the vertical secondary axis, depending on the parameter 
α  are presented in Figure 2. 

  
(a) W2  (b) F2 

  
(c) PV2 (d) EG2-Gupta 

Figure 2. The variation of parameter α  for two parameters distributions Figure 2. The variation of parameter α for two parameters distributions.

Graphical examination indicated the type of approximation functions. The first-order
derivatives were calculated to determine the slope variation, so for uniform variations over
certain intervals a type of function is defined. If the variation is uniform in logarithmic
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scale, then the argument of the function is chosen logarithmically for the approximation
with a polynomial, otherwise the rational function is chosen without logarithmization. The
rational function is the ratio of two polynomial functions. There were situations in which
the rational function was reduced only to a polynomial function, because “the denominator”
represents a constant equal to one. For some probability distributions, the same type of
functions, rational or polynomial, were used, and in some cases both functions were used
on some distinct defining intervals.

The attempts that were made for approximation functions took into account existing
approximations for some distributions [6,11]. The approximation functions considered
optimal in terms of relative errors and number of terms were chosen, ensuring a balance
between the relative error allowed and the complexity of the relationship.

The calibration of the approximation functions was carried out with the linear least
squares method for the polynomial functions and nonlinear for the rational functions.

3.2. Methods of Parameter Estimation

In this article, two methods of parameters estimation are studied: the method of
ordinary moments (MOM) and the L-moments method.

3.2.1. Pearson III Distribution (PE3)

For estimation with MOM, the distribution parameters have the following expressions [10]:

α =

(
2

Cs

)2
(42)

β =
σ

2
·Cs (43)

γ = µ− α·β (44)

where Cs represents the skewness coefficient.
The parameter α can be estimated using the rational function presented by Hosking

in 1997, named in this section the “Hosking approximation”, or based on an approximation
made up of two polynomial functions and one rational, depending on the definition domain
of the estimated parameter, named here “a better approximation”.

Thus, for the estimation with the L-moments, the shape parameter α can be evaluated
numerically with the following approximate forms, depending on L-skewness (τ3):

The Hosking approximation, rational function [11,14]:
If 0 < |τ3| < 1

3 :

α =
1 + 2.73884·τ2

3

9.424778·τ2
3 + 16.7171359·τ4

3 + 37.0028906·τ6
3

(45)

if 1
3 ≤ |τ3| < 1:

α =
0.36067·(1− |τ3|)− 0.59567·(1− |τ3|)2 + 0.25361·(1− |τ3|)3

1− 2.78861·(1− |τ3|) + 2.56096·(1− |τ3|)2 − 0.77045·(1− |τ3|)3 (46)

better approximation, polynomial and rational functions:
If 0 < |τ3| ≤ 1

3 :

α = exp

 −3.164791927− 5.108735285· ln(|τ3|)− 4.116014079· ln(|τ3|)2−
2.985250105· ln(|τ3|)3 − 1.327399577· ln(|τ3|)4 − 0.373944875· ln(|τ3|)5−
0.065421611· ln(|τ3|)6 − 0.006508037· ln(|τ3|)7 − 0.000281969· ln(|τ3|)8

 (47)
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if 1
3 < |τ3| ≤ 2

3 :

α = exp

 −3.9918551− 10.781466· ln(|τ3|)− 21.557807· ln(|τ3|)2−
33.8752604· ln(|τ3|)3 − 35.0641585· ln(|τ3|)4 − 22.921163· ln(|τ3|)5−
8.5491823· ln(|τ3|)6 − 1.3855653· ln(|τ3|)7

 (48)

if 2
3 < |τ3| < 1:

α =

5.17817436− 26.209448756·|τ3|+ 62.12494027·τ2
3 − 84.39423264·|τ3|3+

67.08589624·τ4
3 − 29.150288079·|τ3|5 + 5.364968945·τ6

3

1 + 0.0005134·|τ3|+ 0.00063644·τ2
3

(49)

The scale parameter β and the position parameter γ are determined with the following
expressions [14]:

β = L2·
√
π· Γ(α)

Γ
(
α+ 1

2

) (50)

γ = L1 − α·β (51)

where L1, L2, τ3 are the sample L-moments and L-skewness, [7,11,14].

3.2.2. Generalized Extreme Value Distribution (GEV)

The parameter α can be estimated using the “approximation 1”, which represents a
polynomial function presented by Rao et.al [11], or using two new approximations of the
polynomial or rational type, hereafter named “approximation 2” and “approximation 3”.

Thus, the parameter α has the following approximate forms depending on Cs:
Approximation 1, polynomial function [11]:
If Cs ≤ 1.14:

α = 0.277648− 0.322016·Cs + 0.060278·C2
s + 0.016759·C3

s−
0.005873·C4

s − 0.00244·C5
s − 0.000050·C6

s
(52)

if Cs > 1.14:

α = 0.2858221− 0.357983·Cs + 0.116659·C2
s − 0.022725·C3

s+

0.002604·C4
s − 0.000161·C5

s + 0.000004·C6
s

(53)

better approximations:
Approximation 2, polynomial form:
If Cs ≤ 1.14:

α = 0.2775961− 0.3217629·Cs + 0.0608352·C2
s + 0.0170626·C3

s−
0.0100647·C4

s + 0.0004883·C5
s + 0.0003895·C6

s
(54)

If Cs > 1.14:

α = 0.2786297− 0.3425507 ·Cs + 0.1041188 ·C2
s − 0.0177578 ·C3

s
+0.001584 ·C4

s − 0.0000572 ·C5
s

(55)

Approximation 3, rational form:

α =
0.277593723− 0.116805709·Cs − 0.071360121·C2

s − 0.035014727·C3
s

1 + 0.73874734·Cs + 0.37485038·C2
s + 0.103516119·C3

s
(56)

β =
α

|α| ·
σ · α√

Γ(1 + 2 · α)− Γ(1 + α)2
(57)



Appl. Sci. 2022, 12, 12588 11 of 25

γ = µ− α

|α| ·
σ·[1− Γ(1 + α)]√

Γ(1 + 2·α)− Γ(1 + α)2
(58)

For estimation with the L-moments, parameter α has the following approximate forms
depending on τ3:

Approximation 1, polynomial form, presented in Rao et al. [11] and Hosking [14]:

α = 7.85890·
(

2
3 + τ3

− ln(2)
ln(3)

)
+ 2.9554·

(
2

3 + τ3
− ln(2)

ln(3)

)2

(59)

Approximation 2, also a polynomial function but more accurate, presented in Rao et al. [11]:

α = 7.817740·
(

2
3+τ3

− ln(2)
ln(3)

)
+ 2.930462·

(
2

3+τ3
− ln(2)

ln(3)

)2
+

13.641492·
(

2
3+τ3

− ln(2)
ln(3)

)3
+ 17.206675·

(
2

3+τ3
− ln(2)

ln(3)

)4 (60)

a better approximation, named in this section approximation 3, being a rational function:

α =
0.283759107− 1.669931462·|τ3|

1 + 0.441588375·|τ3| − 0.071007671·τ2
3 + 0.015634368·|τ3|3

(61)

β =
L2

Γ(α)·(1− 2−α)
(62)

γ = L1 +
β

α
·[Γ(1 + α)− 1] (63)

3.2.3. Weibull Distribution (W3)

For estimation with MOM, parameter α can be approximated, depending on the
skewness, using the “approximation 1” of the rational function type presented by Rao,
valid for a maximum skewness of 2, or using the new approximation called here “a better
approximation” valid for a skewness in the range of 0–8:

Approximation 1, for Cs ≤ 2, [11]:

α =
1

0.2777561 + 0.3219·Cs + 0.061566·C2
s − 0.017376·C3

s−
0.00771·C4

s + 0.00398·C5
s − 0.00051·C6

s

(64)

a better approximation, called here approximation 2, valid for 0 < Cs ≤ 8:

α =

3.5947875− 3.7374529·Cs + 2.7023151·C2
s − 1.1835102·C3

s+

0.4318107·C4
s − 0.0042306·C5

s + 0.0045545·C6
s − 0.0046984·C7

s

1 + 0.0931316·Cs − 0.12783·C2
s + 0.0671082·C3

s + 0.1113667·C4
s−

0.0425475·C5
s + 0.0673629·C6

s − 0.0157628·C7
s

(65)

β =
σ√

Γ
(
1 + 2

α

)
− Γ

(
1 + 1

α

)2
(66)

γ = µ− β·Γ
(

1 +
1
α

)
(67)

For estimation with the L-moments, parameter α has the following approximate forms
depending on τ3:
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Approximation 1, a rational function presented by Rao et al. [11]:

α =
1

7.85890·
(

2
3−τ3

− log(2)
log(3)

)
+ 2.9554·

(
2

3−τ3
− log(2)

log(3)

)2 (68)

Approximation 2, polynomial form, for positive τ3, presented by Y.Goda [15]:

α = 285.3·τ6
3 − 658.6·τ5

3 + 622.8·τ4
3 − 317.2·τ3

3 + 98.52·τ2
3 − 21.256·τ3 + 3.516 (69)

a better approximation, named here approximation 3, which is a rational function, valid for
negative and positive values of L-skewness:

α =
3.528107902− 6.294082546·|τ3|+ 2.767652838·τ2

3

1 + 4.599024923·|τ3| − 7.993601572·τ2
3 + 2.423742593·|τ3|3

(70)

β =
L2

Γ
(

1 + 1
α

)
·
(

1− 2−
1
α

) (71)

γ = L1 −
β

α
·Γ
(

1
α

)
(72)

3.2.4. Weibull Distribution (W2)

For estimation with MOM, parameter α has the following approximate forms depend-
ing on the coefficient of variation Cv ≥ 0.1:

α = exp

 0.000006199− 1.000228322· ln(Cv) + 0.144564211· ln(Cv)
2+

0.055543308· ln(Cv)
3 − 0.016265526· ln(Cv)

4 − 0.013691787· ln(Cv)
5−

0.000586501· ln(Cv)
6 + 0.001239068· ln(Cv)

7 + 0.000240162· ln(Cv)
8

 (73)

β =
µ

Γ
(

1 + 1
α

) (74)

For estimation with the L-moments, parameters have the following expressions [11,16,17]:

α =
− ln(2)

ln
(

1− L2
L1

) (75)

β =
L1

Γ
(

1 + 1
α

) (76)

3.2.5. Fréchet Distribution (F3)

For estimation with MOM, parameter α has the following approximate forms depend-
ing on Cs:

Rational approximation form, for Cs > 1.14:

α =
1 + 0.73874734·Cs + 0.37485038·C2

s + 0.103516119·C3
s

−0.277593723 + 0.116805709·Cs + 0.071360121·C2
s + 0.035014727·C3

s
(77)

β =
σ√

Γ
(
1− 2

α

)
− Γ

(
1− 1

α

)2
(78)

γ = µ− β·Γ
(

1− 1
α

)
(79)
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For estimation with the L-moments, parameter α has the following approximate forms
depending on L-skewness, |τ3| ≥ 0.17:

Approximation 1, a rational function, adopted from GEV approximation [11]:

α =
1 −7.817740·

(
2

3+τ3
− ln(2)

ln(3)

)
− 2.930462·

(
2

3+τ3
− ln(2)

ln(3)

)2
−

13.641492·
(

2
3+τ3

− ln(2)
ln(3)

)3
− 17.206675·

(
2

3+τ3
− ln(2)

ln(3)

)4


(80)

a better approximation, named here approximation 2, also a rational function form but
characterized by smaller relative errors in the range of 0.6–1 of the L-skewness:

α =
1 + 0.441588375·|τ3| − 0.071007671·τ2

3 + 0.015634368·|τ3|3

−0.283759107 + 1.669931462·|τ3|
(81)

β =
L2

Γ
(
− 1
α

)
·
(

1− 2−
1
α

) (82)

γ = L1 − β·Γ
(

1− 1
α

)
(83)

3.2.6. Fréchet Distribution (F2)

For estimation with MOM, parameter α has the following approximate forms depend-
ing on the coefficient of variation Cv:

α = exp

 0.928192087− 0.358563901· ln(Cv) + 0.206039026· ln(Cv)
2−

0.023717668· ln(Cv)
3 − 0.029286344· ln(Cv)

4 + 0.003741887· ln(Cv)
5+

0.008353766· ln(Cv)
6 + 0.002758305· ln(Cv)

7 + 0.000306859· ln(Cv)
8

 (84)

β =
µ

Γ
(

1− 1
α

) (85)

For estimation with the L-moments, parameters have the following expressions [15]:

α =
ln(2)

ln
(

L2+L1
L1

) (86)

β =
L1

Γ
(

1− 1
α

) (87)

3.2.7. Generalized Pareto Distribution (P3)

For estimation with MOM, parameter α has the following approximate polynomial or
rational forms depending on Cs:

For Cs ≤ 2:

α = 999.998156889·10−3 − 1.154659839·Cs + 555.214061169·10−3·C2
s−

137.553895649·10−3·C3
s − 2.365065448·10−3·C4

s + 13.308919064·10−3·C5
s−

3.931108819·10−3·C6
s + 409.717304137·10−6·C7

s

(88)
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for Cs > 2:

α =

880.965365848·10−3 − 926.199345052·10−3·Cs + 394.547875439·10−3·C2
s−

103.261733369·10−3·C3
s + 16.938774757·10−3·C4

s − 1.812785982·10−3·C5
s+

103.169053863·10−6·C6
s − 2.562841773·10−6·C7

s

1 + 449.853791343·10−6·Cs + 1.18940502·10−3·C2
s+

353.672107629·10−6·C3
s + 1.35505086·10−3·C4

s + 84.527491397·10−6·C5
s

(89)

β = σ·(α+ 1)·
√

2·α+ 1 (90)

γ = µ− β

α+ 1
(91)

For estimation with the L-moments, parameters have the following expressions [11,14,16,17]:

α =
1− 3·τ3

τ3 + 1
(92)

β = L2·(1 + α)·(2 + α) (93)

γ = L1 − L2·(2 + α) (94)

3.2.8. Log-Logistic Distribution (LL3)

For estimation with MOM, parameter α has the following approximate forms depend-
ing on Cs > 0:

Approximation 1, adopted from the expression for generalized Logistic [11,19]:
For Cs ≤ 2.5, the approximation function is polynomial:

α = exp
(

2.246− 0.848· ln(Cs) + 0.1272· ln(Cs)
2 − 0.04008· ln(Cs)

3
)

(95)

for Cs > 2.5, the approximation function has a rational form:

α =
4.007 + 3.411·Cs + 2.985·C2

s

C2
s

(96)

approximation 2, adopted from the expression for generalized Logistic [11]:

α =
−3·π

2·a tan(−0.59484·Cs)
(97)

a better approximation referred here as approximation 3, which is a polynomial function:
For Cs ≤ 2.5:

α = exp


2.22464301− 850.7876728·10−3· ln(Cs) + 121.776022·10−3· ln(Cs)

2+

51.4528279·10−3· ln(Cs)
3 + 5.3737403·10−3· ln(Cs)

4−
2.8910802·10−3· ln(Cs)

5 − 3.2030341·10−3· ln(Cs)
6−

671.4922523·10−6· ln(Cs)
7 − 51.670024·10−6· ln(Cs)

8

 (98)

for Cs > 2.5:

α = 15.786327481− 11.37147504·Cs + 5.201363981·C2
s−

1.418144703·C3
s + 0.239556022·C4

s − 0.02462292·C5
s+

0.001412092·C6
s − 0.00003466·C7

s

(99)

β =
σ√

Γ
(
1 + 2

α

)
·Γ
(
1− 2

α

)
− Γ

(
1 + 1

α

)2
·Γ
(

1− 1
α

)2
(100)
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γ = µ− β
α
·Γ
(

1
α

)
·Γ
(

1− 1
α

)
(101)

For estimation with L-moments, parameters have the following expressions [11]:

α =
L2

L3
(102)

β =
α2·L2

Γ
(

1
α

)
·Γ
(

1− 1
α

) (103)

γ = L1 −
β

α
·Γ
(

1
α

)
·Γ
(

1− 1
α

)
(104)

3.2.9. Kappa Distribution (K3-Generalized Gumbel)

For estimation with MOM, parameter α has the following approximate polynomial
form, for Cs > 1.14:

α = −918.79032552·10−3 + 768.82077754·10−3·Cs − 91.79270267·10−3·C2
s+

136.3152042·10−3·C3
s − 27.00071596·10−3·C4

s + 3.20994481·10−3·C5
s−

210.04317387·10−6·C6
s + 5.80948381·10−6·C7

s

(105)

β =
σ

7.7175·α8 − 326.34·α7 − 3711.7·α6+
67724.37·α5 + 321482.3241·α4−
7529351.76·α3 + 38043509.47·α2−
19935867.29·α+ 219479848.41

115221657.6

(
ψ
(

1
α + 1

)
+ ln(α) + γe

)2



0.5 (106)

γ = µ− β·
(
ψ

(
1
α
+ 1
)
+ ln(α) + γe

)
(107)

where γe is the Euler–Mascheroni constant and ψ(..) represents the digamma function,
which has the following approximate form [11]:

ψ(α) = d
dα (ln(Γ(α))) = Psi(α)

ψ(α) ≈ ln(α+ 2)− 1
α −

1
α+1 −

1
2·(α+2) −

1
12·(α+2)2 +

1
120·(α+2)4

(108)

For estimation with the L-moments, parameter α has the following approximate forms
depending on τ3:

For 0.17 ≤ |τ3| ≤ 1
3 :

α = −971.10886182·10−3 + 6.3606944·|τ3| − 6.35405524·τ2
3 + 15.03572719·|τ3|3 (109)

for 1
3 < |τ3| < 1:

α =
−661.76303922·10−3 + 4.30832382·|τ3| − 1.09504916·τ2

3 + 373.12384033·10−3·|τ3|3

1− 999.98952576·10−3·|τ3|
(110)

β =
L2

ψ
( 2
α + 1

)
−ψ

(
1
α + 1

) (111)

γ = L1 − β·
[
ψ

(
1
α
+ 1
)
+ γe + ln(α)

]
(112)
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3.2.10. Kappa Distribution (K3-Park)

For estimation with MOM, parameter α has the following approximate logarithmic
polynomial form, depending on Cs > 0:

α = exp


1.7822619− 0.437806883· ln(Cs) + 0.049586114· ln(Cs)

2+

0.019798571· ln(Cs)
3 + 0.002017836· ln(Cs)

4−
0.001937961· ln(Cs)

5 − 0.000620839· ln(Cs)
6+

0.000097814· ln(Cs)
7 + 0.000046042· ln(Cs)

8

 (113)

β = σ·

√√√√√√ Γ
(

1
α + 1

)
Γ
( 3
α

)
·α 2
α−1·Γ

(
1− 2

α

)
− Γ( 2

α )·α
2
α−2·Γ(1− 1

α )
2

Γ( 1
α+1)

(114)

γ = µ−
β·Γ
( 2
α

)
·α 1
α ·Γ
(

1− 1
α

)
Γ
(

1
α

) (115)

For estimation with the L-moments, parameter α has the following approximate forms
depending on L-skewness:

α = exp

 0.000753505− 0.983447042· ln(|τ3|) + 0.162877024· ln(|τ3|)2 + 0.247492727· ln(|τ3|)3+

0.116264397· ln(|τ3|)4 + 0.029183504· ln(|τ3|)5 + 0.004031622· ln(|τ3|)6+

0.000270699· ln(|τ3|)7 + 0.000005628· ln(|τ3|)8

 (116)

β =
L2

α
1
α ·Γ
(

1− 1
α

)
·
(

Γ( 3
α )

Γ( 2
α )
− Γ( 2

α )
Γ( 1
α )

) (117)

γ = L1 − β·α
1
α ·

Γ
( 2
α

)
·Γ
(

1− 1
α

)
Γ
(

1
α

) (118)

3.2.11. Pearson V Distribution (PV3)

For estimation with MOM, parameter α can be evaluated numerically with the follow-
ing approximation, depending on Cs ≥ 0.2:

α = exp


3.04183273− 1.532335271· ln(Cs) + 0.350524466· ln(Cs)

2+

0.114266418· ln(Cs)
3 − 0.018372078· ln(Cs)

4 − 0.026493586· ln(Cs)
5−

0.000919818· ln(Cs)
6 + 0.004375959· ln(Cs)

7+

0.000310213· ln(Cs)
8 − 0.000357638· ln(Cs)

9

 (119)

β = σ·(α− 2)·
√
α− 3 (120)

γ = µ− β

α− 2
(121)

For estimation with the L-moments, parameter α has the following approximate forms
depending on L-skewness:

α = exp


0.692740135− 0.466055586· ln(|τ3|) + 0.460508385· ln(|τ3|)2+

0.470172127· ln(|τ3|)3 + 0.938027763· ln(|τ3|)4+

0.805363294· ln(|τ3|)5 + 0.359846034· ln(|τ3|)6+

0.08945247· ln(|τ3|)7+0.011775528· ln(|τ3|)8 + 0.000641664· ln(|τ3|)9

 (122)

β =
L2

1
α−2 − 2·z

(123)
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γ = L1 −
β

α− 2
(124)

where z has the following expression:

z = exp


4.083852739− 11.442833473· ln(α) + 10.701793287· ln(α)2−
6.513639901· ln(α)3 + 2.527142191· ln(α)4−
0.640389591· ln(α)5 + 0.105546499· ln(α)6−
0.010903032· ln(α)7+0.000641094· ln(α)8 − 0.000016371· ln(α)9

 (125)

3.2.12. Pearson V Distribution (PV2)

For estimation with MOM, the distribution parameters have the following expressions:

α = 2 +
1

C2
v

(126)

β = µ·
(

1 +
1

C2
v

)
(127)

For estimation with the L-moments, parameter α has the following approximate forms
depending on τ2:

α = exp


0.000105303− 0.719316463· ln(τ2) + 0.365000334· ln(τ2)

2−
0.063429562· ln(τ2)

3 + 0.043630525· ln(τ2)
4+

0.110250588· ln(τ2)
5 + 0.060323921· ln(τ2)

6+

0.015685798· ln(τ2)
7+0.002043393· ln(τ2)

8 + 0.000107581· ln(τ2)
9

 (128)

β =
L1

exp


3.524909041− 11.725123564· ln(α) + 17.230914474· ln(α)2−
16.342259941· ln(α)3 + 9.681973166· ln(τ2)

4−
3.719303884· ln(α)5 + 0.941443582· ln(α)6−
0.15590484· ln(α)7+0.016253258· ln(α)8−
0.000967866· ln(α)9 + 0.000025104· ln(α)10



(129)

3.2.13. Generalized Exponential Distribution (EG2-Gupta)

Parameter α can be accurately obtained only by numerical methods, because the
coefficient of variation and the L-coefficient of variation are nonlinear equations presented
in Appendix B.

For estimation with MOM, parameter α has the following approximate forms depend-
ing on Cv:

α = exp


−0.00031096− 2.262833217· ln(Cv) + 0.260607141· ln(Cv)

2−
0.211003998· ln(Cv)

3 + 0.094017376· ln(Cv)
4+

0.045622834· ln(Cv)
5 + 0.049036309· ln(Cv)

6+

0.016045195· ln(Cv)
7+0.002009549· ln(Cv)

8

 (130)

β =
ψ(α+ 1) + γe

µ
(131)

where γe represent the Euler–Mascheroni’s constant andψ(α) represents the digamma function.
For estimation with the L-moments, parameter α has the following approximate forms

depending on τ2:
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If 0.05 ≤ τ2 ≤ 0.5

α = exp


−2.705734288− 6.147348286· ln(τ2)− 5.63695924· ln(τ2)

2−
4.843168776· ln(τ2)

3 − 2.533007093· ln(τ2)
4−

0.9053571· ln(τ2)
5 − 0.19830547· ln(τ2)

6−
0.026613323· ln(τ2)

7 − 0.001663193· ln(τ2)
8

 (132)

if 0.5 < τ2 < 1

α =

34.8898543− 252.3059668·τ2 + 838.0635788·τ2
2−

1605.8220859·τ3
2 + 1885.2871002·τ4

2−
1344.7635811·τ5

2 + 536.9323004·τ6
2 − 92.2812201·τ7

2

1 + 0.0001378·τ2 + 0.0005466·τ2
2 + 0.0005326·τ3

2
(133)

β =
ψ(α+ 1) + γe

L1
(134)

4. Result and Discussion

The errors of the new approximations are compared with the existing ones, having a
uniform relative error below 10−3. Figures 3–5 present the relative errors of the estimated
parameters for the analyzed probability distributions.

The improvement in the approximations was achieved by adopting other types of
functions compared to the existing ones or by using some conditional functions, for example
the approximation for the PE3 distribution in which the definition domain was divided
into three equal intervals for τ3.

The proposed approximations were made for the estimated parameters, sometimes
being necessary to transform them by logarithmization. Thus, there are approximations
with polynomial functions to the logarithmic parameters, it being necessary to write them
later in the exponent. In the following, this type of approximation will be referred to as a
polynomial with a logarithmic argument.

For the GEV distribution, a polynomial approximation was tried for the estimation
of MOM, following an existing model calibrated in the range 0 < Cs < 4 applied for the
extended range 0 < Cs < 8. The errors obtained were 10−2, so a new approximation with
a rational function was tried, which gave relative errors below 10−3. The same type of
rational function was used for the L-moments estimation, with errors below 10−4 over the
entire domain of τ3.

For the W3 distribution, rational functions were used to approximate the parameter.
In the case of MOM estimation, the existing approximation was of a rational type, valid for
Cs ≤ 2, and the new approximation extended the definition domain to 4 < Cs < 8 with
a relative error for MOM below 10−2. For the estimation of L-moments, there were two
rational-type approximations with logarithmic and polynomial arguments with significant
errors for τ3 > 0.5 The proposed rational type approximation is characterized by relative
errors less than 10−2 over the entire domain.

The W2 distribution requires approximation only for MOM, not existing so far, thus
the proposed approximation with polynomial function with logarithmic argument has
relative errors below 10−4.

For the F3 distribution, to estimate the parameters with MOM and L-moments, the
rational function type was adopted, with relative errors below 10−3 and 10−4, respec-
tively. For the F2 distribution, the approximation used is polynomial with the logarithmic
argument having relative errors below 10−3.

For the P3 distribution, in the case of MOM estimation, the analysis resulted in the
necessity of dividing the skewness coefficient into two intervals. For Cs ≤ 2 a polynomial
function of the 7th degree was adopted with relative errors below 10−6, respectively; for
the interval 2 < Cs ≤ 8 a rational function was chosen with relative errors below 10−4.
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For the LL3 distribution, the two existing approximations for parameter estimation
with MOM have relative errors up to 0.1. The proposed approximation uses the same
ranges for Cs, but the approximation functions differ. For Cs ≤ 2.5 the approximation
function is of the polynomial type with a logarithmic argument with relative errors below
10−4, and for Cs > 2.5 the approximation function is of the polynomial type with relative
errors below 10−3.

For the K3-Generalized Gumbel distribution, a polynomial type approximation func-
tion was adopted for MOM estimation. For L-moments estimation, the approximation
function is of the conditional type defined on two intervals using a polynomial and a ratio-
nal function. The relative errors for both parameter estimation methods are below 10−3.

For the K3-Park and PV3 distributions, the type of polynomial function with log-
arithmic argument with relative errors below 10−3 was adopted for both parameter
estimation methods.



Appl. Sci. 2022, 12, 12588 22 of 25

For the PV2 distribution for the L-moment estimation of the parameter, the approxi-
mation function adopted is of the polynomial function type with logarithmic argument
with relative errors below 10−4.

For the EG2-Gupta distribution, a polynomial type approximation function with a
logarithmic argument was adopted for MOM estimation, with relative errors below 10−2.
For L-moments estimation, the approximation function is of the conditional type defined
on two equal intervals using a polynomial function with a logarithmic argument and a
rational one with relative errors below 10−4.

5. Conclusions

The probability distributions presented here are frequently used in hydrology to calcu-
late maximum rainfall, maximum and minimum flows, and volumes of synthetic floods.

The need to approximate the parameters is given by obtaining some initial values for
the numerical calculation of the parameters, reducing the number of iterations and thus the
calculation time.

The approximate values calculated with the formulas presented here can be used
directly to estimate the parameters of the probability distributions due to very small errors.

The relative errors of the parameter estimates are generally well below 10−3, which
has a much smaller implication on the relative errors of the inverse function values and are
independent of the length of the observed data. The first-order derivatives of the param-
eters determined from the approximations show negligible errors, especially for “better
approximations”. The choice of the approximation functions using mathematical analysis
tools, especially the analysis of the parameter variation graph, allowed the improvement of
the approximation functions and the choice of new approximation functions, especially
for the distributions for which there were no approximation formulas. The functions used
in the approximation relations are of the rational and polynomial type, sometimes with a
logarithmic argument.

The comparative presentation of the variation in the estimated parameter for the two
methods of estimating the parameters of the probability distributions is useful in choosing
the skewness coefficient in the case of MOM, considering that the linear moments are closer
to reality, an important aspect in Romania where the skewness is chosen according to the
genesis of the flows, a legacy from the USSR normative standards [23].

In general, in Romania, tabular calculation is used for a small number of distributions
(Pearson III and Kritsky-Menkel) using linear interpolation, so the approximations pre-
sented in this article prove to be extremely useful, facilitating the use of a larger number of
distributions, a necessity regarding the updating of Romanian normative standards at the
international level.

It is worth mentioning that this article can be used as a guideline for the simpler
implementation of these probability distributions in various software.

All research was carried out by authors in the Faculty of Hydrotechnics with hydro-
logical data provided by the National Institute of Hydrology and Water Management and
National Administration “Romanian Waters”.

The presentation of some approximate forms of the parameters, especially for the
estimation with the L-moments method, represents a step forward in the implementation
stage of a transition from MOM to a regionalization based on L-moments in Romania.
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MOM method of ordinary moments
L-moments method of linear moments
µ expected value; arithmetic mean
σ standard deviation
CV coefficient of variation
CS coefficient of skewness; skewness
L2, L2, L3 linear moments
τ2 coefficient of variation based on the L-moments method
τ3 coefficient of skewness based on the L-moments method
PE3 Pearson III distribution
GEV generalized extreme value distribution
W3 three parameters Weibull distribution
W2 two parameters Weibull distribution
F3 three parameters Fréchet distribution
F2 two parameters Fréchet distribution
P3 three parameters Pareto distribution
LL3 three parameters Log-Logistic distribution
K3 three parameters Kappa distribution
PV3 three parameters Pearson V distribution
PV2 two parameters Pearson V distribution
EG2 Generalized exponential distribution

Appendix A. Built-In Function in Mathcad

Γ(α) =
∫ ∞

0 tα−1·e−tdt the complete gamma function;
Γ(α, x) =

∫ ∞
x tα−1·e−tdt returns the value of the upper incomplete gamma function

of x with parameter α;
dgamma(x,α) = xα−1·e−x

Γ(α) returns the probability density for value x, for the Gamma
distribution;

pgamma(x,α) =
∫ x

0
xα−1·e−x

Γ(α) dx = γ(α,x)
Γ(α) = 1− Γ(α,x)

Γ(α) returns the cumulative proba-
bility distribution for value x, for the Gamma distribution;

qgamma(p,α) = Γ −1(p;α) returns the inverse cumulative probability distribution
for probability p, for the Gamma distribution.

pchisq(x, d) =
∫ x

0
x

d
2 −1·e−x

2
d
2 ·Γ( d

2 )
dx = 1− Γ

(
d
2 , x

2

)
/Γ
(

d
2

)
returns the cumulative probabil-

ity distribution for value x, for the Chi-Squared distribution;
qchisq(p, d) returns the inverse cumulative probability distribution for probability p,

for the Chi-Squared distribution;
dweibull(x, s) = s·xs−1·e−xs

returns the probability density for value x, for the
Weibull distribution;

pweibull(x, s) = 1− e−xs
returns the cumulative probability distribution for value x,

for the Weibull distribution;
qweibull(p, s) = (− ln(1− p))

1
s returns the inverse cumulative probability distribu-

tion for probability p, for the Weibull distribution;
ibeta(a, x, y) = B(a; x, y) =

Γ(x+y)
Γ(x)·Γ(y) ·

∫ a
0 tx−1·(1− t)y−1dt, the incomplete Beta func-

tion, returns the value of the incomplete beta function of x and y with parameter a;

Psi(z) = ψ(z) = d
dz ln(Γ(z)) =

d
dz Γ(z)
Γ(z) , the digamma function.

Psi(n, z) = dn

dznψ(z) = dn+1

dzn+1 ln(Γ(z)), the polygamma function of order n.
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Appendix B. The Exact Formulas of the Parameters Expressed with Approximate
Expressions

PE3
τ3 = 3·

(
2· Γ(3·α)

Γ(α)·Γ(2·α) ·
1/3∫
0

xα−1·(1− x)2·α−1dx− 1

)
=

3·
(

2·B
(

1
3 ;α, 2·α

)
− 1
)
= 3·

(
2·ibeta

(
1
3 ,α, 2·α

)
− 1
)

GEV
Cs = sign(α)· 3·Γ(2·α+1)·Γ(α+1)−Γ(3·α+1)−2·Γ(α+1)3√

(Γ(2·α+1)−Γ(α+1)2)
3

τ3 =
2·(1−3−α)
(1−2−α)

− 3

W3

Cs =
Γ( 3

α
+1)+2·Γ( 1

α
+1)

3−3·Γ( 2
α
+1)·Γ( 1

α
+1)√(

Γ( 2
α
+1)−Γ( 1

α
+1)

2
)3

τ3 = 2· 2−
1
α −3−

1
α

2−
1
α −1

+ 1

W2 Cv =

√
Γ(1+ 2

α )
Γ(1+ 1

α )
2 − 1

F3

Cs =
Γ(1− 3

α )+2·Γ(1− 1
α )

3−3·Γ(1− 2
α
+)·Γ(1− 1

α )√(
Γ(1− 2

α )−Γ(1− 1
α )

2
)3

τ3 = 2·3 1
α +1−3·2 1

α

2
1
α −1

− 1

F2 Cv =

√
Γ(1− 2

α )
Γ(1− 1

α )
2 − 1

P3 Cs = sign(1− α)· 2·(1−α)·
√

2·α+1
3·α+1

LL3
Cs =

Γ
(

1 + 3
α

)
·Γ
(

1− 3
α

)
+ 2·Γ

(
1 + 1

α

)3
·Γ
(

1− 1
α

)3
−

3·Γ
(

1 + 2
α

)
·Γ
(

1− 2
α

)
·Γ
(

1 + 1
α

)
·Γ
(

1− 1
α

)
[
Γ(1+ 2

α )·Γ(1− 2
α )−Γ(1+ 1

α )
2·Γ(1− 1

α )
2
]1.5

K3—generalized
Gumbel

Cs =
1∫

0

[
ln
(

α
1−(1−p)α

)
−ψ( 1

α
+1)−ln(α)−γe

]3

[
1∫

0
ln
(

α
1−(1−p)α

)2
dp−(ψ( 1

α
+1)+ln(α)+γe)

2
]1.5 dp

τ3 = 2·ψ(1+ 3
α )−ψ(1+ 1

α )
ψ(1+ 2

α )−ψ(1+ 1
α )
− 3

K3—Park

Cs =

2·Γ
(

2
α

)3
·α 3

α ·Γ
(

1− 1
α

)3
+ Γ

(
1
α

)2
·Γ
(

4
α

)
·α 3

α ·Γ
(

1− 3
α

)
−

3·Γ
(

1
α

)
·Γ
(

2
α

)
·Γ
(

3
α

)
·Γ
(

1− 2
α

)
·Γ
(

1− 1
α

)
·α 3

α

Γ( 1
α )

3·
[

Γ( 3
α )·α

2
α ·Γ(1− 2

α )
Γ( 1

α )
−

Γ( 2
α )

2
·α

2
α ·Γ(1− 1

α )
2

Γ( 1
α )

2

]1.5

τ3 =
2·

Γ( 4
α )

Γ( 3
α )
−3·

Γ( 3
α )

Γ( 2
α )

+
Γ( 2

α )
Γ( 1

α )
Γ( 3

α )
Γ( 2

α )
−

Γ( 2
α )

Γ( 1
α )

PV3

Cs =
4·
√
α−3
α−4

τ3 =

1∫
0

1
Γ−1(p;α−1)

·(1−6·p+6·p2)dp

1∫
0

1
Γ−1(p;α−1)

·(1−2·p)dp
=

1∫
0

1−6·p+6·p2

qgamma(p,α−1) dp

1∫
0

1−2·p
qgamma(p,α−1) dp

PV2 τ2 =

1∫
0

1
Γ−1(p;α)

·(1−2·p)dp

1∫
0

1
Γ−1(p;α)

dp
=

1∫
0

1−2·p
qgamma(p,α) dp

1∫
0

1
qgamma(p,α) dp

EG2
Cv =

√
π2

6 −
d

dαψ(α+1)
(ψ(α+1)+γe)

2

τ2 =
ψ(2·α+1)−ψ(α+1)
ψ(α+1)+γe
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