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Parameter Estimation in a Model of the Human
Circadian Pacemaker Using a Particle Filter

Jochem Bonarius , Charikleia Papatsimpa , and Jean-Paul Linnartz

Abstract—Objective: In the near future, real-time estima-
tion of peoples unique, precise circadian clock state has
the potential to improve the efficacy of medical treatments
and improve human performance on a broad scale. Human-
centric lighting can bring circadian-rhythm support using
biodynamic lighting solutions that sync light with the time
of day. We investigate a method to improve the tracking
of individual’s circadian processes. Methods: In literature,
the human circadian physiology has been mathematically
modeled using ordinary differential equations, the state of
which can be tracked via the signal processing concept of
a Particle Filter. We show that substantial improvements
can be made if the estimator not only tracks state vari-
ables, such as the phase and amplitude of the circadian
pacemaker, but also fits specific model parameters to the
individual. In particular, we optimize model parameter τx,
which reflects the intrinsic period of the circadian pace-
maker (τ ). We show that both state and model parameters
can be estimated based on minimally-invasive light expo-
sure measurements and sleep-wake state observations. We
also quantify the effect of inaccuracies in sensing. Results:
We demonstrate improved performance by estimating τx

for every individual, both with artificially created and hu-
man subject data. Prediction accuracy improves with every
newly available observation. The estimated τx-s correlate
well with the subjects’ chronotypes, in a similar way as
τ correlates. Conclusion: Our results show that individ-
ualizing the estimation of model parameters can improve
circadian state estimation accuracy. Significance: These
findings underscore the potential improvements in person-
alized models over one-size fits all approaches.

Index Terms—Circadian rhythm, particle filter, parameter
estimation.

I. INTRODUCTION

T
HE timing in several physiological processes in humans,
including the sleep/wake cycle, hormone secretion, and
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subjective alertness and performance is controlled by a bio-
logical clock, called the circadian pacemaker [1]. On its own,
this pacemaker oscillates with a near-24 h period, hence the
name coming from the latin words “circa” and “diem” meaning
“approximately” and “a day”. But the pacemaker will also syn-
chronize to several external ‘zeitgebers’ including food intake,
social interaction, and most importantly: retinal light exposure.
Because of this, for millennia we have been using the daily
pattern of light and dark to set the timing of the pacemaker in
synchrony with the 24-hour light and dark cycle of the sun [2].
However, this natural light and dark pattern is disrupted by
modern lifestyle. From data collected between 1992 and 1994,
it was already determined that people on average spend 86.9%
of their time indoors, where light levels are commonly much
lower compared to outdoor light [3]. The excessive exposure to
artificial light (electric light and light emitting screens such as
smartphones or TVs) during the late evening and night, delays
our circadian system and can acutely suppress melatonin levels
and subjective sleepiness [4]. Furthermore, social demands, such
as work hours or school times, often oblige us to set an alarm
out of phase with our circadian propensity rhythm, resulting
in insufficient sleep [5]. Circadian rhythm sleeping disorders
such as insomnia, inefficient sleep and mismatch between sleep
and circadian rhythmicity are associated with adverse mental
and physical outcomes. In fact, circadian disruption has been
associated with mood disorders, including depression, and with
health risks such as diabetes, obesity, cardiovascular disease,
and cancer [6]–[10].

Despite a growing scientific understanding of the impact of
light on our wellbeing, performance, circadian rhythms and
sleep, these insights cannot (yet) easily be harvested as ben-
efits in lighting control systems. A wide-scale adaptation of
Human-Centric Lighting is only possible if these insights can
be captured by automatic control algorithms based on quantified
and scientifically proven models on how humans perceive and
experience lighting. An example of a potential future use for
optimized light recipes is in [11]. Towards this direction, an
essential aspect of any lighting control system based on circadian
physiology is the precise monitoring of an individuals actual
circadian state.

One of the major limitations of existing circadian models is
that they are not tailored to individual physiological characteris-
tics. Existing models are based on general population data, such
that they represent the average responses of physiological pro-
cesses and use the same parameter values for all individuals. Yet,
evidence is accumulating for the existence of inter-individual
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differences in circadian and sleep/wake-related variables, which
is important to consider as we want to use the models to predict
individual responses to input. The magnitude of such individual
differences is often considerable and comparable to the effect
sizes of many experimental and clinical interventions [12]. In
this work, we propose an approach to individualize the esti-
mation of specific parameters in a limit cycle oscillator model
of the human circadian pacemaker and a model of the home-
ostatic sleep drive, exclusively using minimally-invasive mea-
surements. We specifically focus on one such a model parameter,
namely, the period of the circadian oscillator model τx. Our
analysis showed that modelling the circadian pacemakers of
individuals with different τx results in inter-individual variability
in circadian phase, resulting in a different response to the same
light exposure. Therefore, we make a plea to include such indi-
vidual characterization into the system design and substantiate
this in later sections. Attributing inter-individual differences in
model parameters substantially improves the feasibility to track
individual circadian state in an unobtrusive manner. This can
make personalized light treatments more effective.

Because the physiological processes that control the sleep-
wake rhythm are biological, they are stochastic in nature. Fur-
thermore, the sensors used to observe an individual are not
perfect. To account for these imperfections and variability in our
chosen mathematical model, we treat the model state estimation
as a full stochastic estimation and characterization problem. In
particular, we adopt a particle filter estimator as an appropriate
statistical framework. This is the preferred framework for our
system: A regular Kalman filter is not suitable to handle the
non-linearities of the models. Further, the extended or unscented
Kalman filters are less suitable due to sparse observations. In
fact, we elaborate a particle filter to estimate and track the
circadian phase that has been suggested in [17]. In a particle
filter, the posterior distributions are approximated using a point
mass, which is realized as a weighted mixture of a finite number
of ‘particles,’ each having discrete values. We further extend this
framework to also estimate model parameters that reflect physi-
ological differences between individuals, based on observations
from the individuals responses to inputs. This allows a person-
alized prediction of the individual’s response to light exposure.
An important requirement for lighting control to be usable in
practical settings, such as an office or home environment, is that
it must be minimally invasive. However, current techniques for
estimating the circadian state in a statistical framework based on
user observations are often considerably invasive: typical physi-
ological markers include the minimum of core body temperature,
which requires the use of a rectal probe or telemetric pill, and/or
melatonin secretion, which for instance requires the collection
of saliva samples. The level of invasiveness of these methods
prevent them from being used freely. A less invasive approach
to estimate the circadian state would be to correlate it with the
sleep-wake activity, which can for instance be determined using
(remote) actigraphy [18]. In this work, we combine a model of
the circadian pacemaker with a model of the sleep-wake switch
as suggested in [19], providing a means to use these practically
measurable observations. A preliminary version of this work was
presented at 2018 Symposium on Information Theory and Signal

Processing in the Benelux (IEEE Benelux/WIC) [20]. The initial
description of the statistical framework is extended with an
elaborate theoretical analysis of the proposed approach which
gives objective insights of its capabilities, such as convergence
time and the effect of particle count. Most importantly, we
deal with the inherent sensor limitations present in any real-
application. In this context, we exploit domain knowledge from
field studies to develop a light error model that mimics real-life
measurement error. We thoroughly investigate the impact of
light measurement error on the system state. To our knowledge,
this is one of the first attempts to address how sensor errors
and limitations affect the system estimation performance in a
real-life setting.

The main contribution of this paper are:
� A new statistical framework to estimate both circadian

state and model parameters.
� Personalization of model parameters exclusively trained

based on observations from the individuals responses to
inputs, which can for instance be used for more accurate
predictions of the effect of future light exposure.

� Provide a building block for one of the first attempts to
non-invasive practical lighting system that assesses the
possible health impact of light.

� Include a light error noise model that mimics the mismatch
between retinal light exposure and light detected by light
sensors. We investigate the impact of this error.

II. METHODS

A. The Two-Process Model of Sleep Regulation

As stated in the introduction, we are looking for a means
to observe the circadian state of an individual through mini-
mally invasive observations. We consider observations of the
sleep-wake activity of the individual attractive, as these can be
measured using external sensors. We realize a simulation frame-
work to support this by combining a (mathematical) model of
the circadian oscillator with a model of the sleep-wake propen-
sity. This combination has been suggested and applied in the
past [19], [21] and such a two-process model of sleep regulation
has been popular in sleep research for several decades [22]. In
the following subsections, we will review the two models, one
describing the entrainment of the circadian system by light and
one describing the switching between sleep and wake as a result
of a drive consisting of homeostatic and circadian components.

1) Circadian Model: A number of mathematical models
have been developed in order to understand and predict the
behavior of the human circadian timekeeping system. We chose
to represent the dynamics of the circadian rhythm using the
Jewett-Forger-Kronauer (JFK) model [23]. The JFK model is
widely accepted in the circadian science as it can accurately
predict the effects of intensity, timing and duration of light
stimuli on the human circadian pacemaker. It consists of two
components: 1) a self-sustaining oscillator representing the en-
dogenous rhythm of the circadian pacemaker and 2) a light
input term B representing the effect of retinal light exposure
(i.e., “photic drive”) on the circadian oscillation. Unless stated
otherwise, we use the default numerical values of parameters
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Fig. 1. Example trajectory of the two state variables x, y of the circa-
dian pacemaker model over a 24-hour period during typical steady state
conditions with the realistic light intensity profile (described near (35)).

from the original source [23]. The oscillator component of the
pacemaker is modeled as a modified van der Pol oscillator which
can be described by a pair of interacting state variables (x and
y) described by the continuous ordinary differential equations
(ODEs)
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The period of the circadian oscillator model is defined as τx
(variable, but 24.2 h on average) and the stiffness (dampening
factor) of the oscillator asµ (µ = 0.13). Parameters q = 1/3 and
k = 0.55 are constants.

The internal state x is the component of the circadian pace-
maker that can be related to a physical indicator of the circadian
state (called a biomarker), such as the endogenous core–body
temperature cycle and dim-light melatonin onset, whereas y is an
associated complementary variable. Together, the state variables
x and y form a Cartesian coordinate pair that follows the limit
cycle path of the underlying Van der Pol oscillator. An example
trajectory is shown in Fig. 1.

Retinal light exposure enters the model as illuminance I
(in lux) through a dynamic filtering process that represents
the physiological process by which light activates the retinal
photoreceptors. This process can be thought of as comprising
photoreceptor activator elements that can be either in the ‘ready’
state (fraction 1− n) or the ‘used’ state (fraction n). Light

activates the ‘ready’ elements, converting them to the ‘used’
state at a rate α that depends on I . The most up-to-date model
of the forward rate α is a multiplicative logarithmic function
introduced by St. Hilaire et al. in [24], being

α = α0

(

I

I0

)p
I

I + I1
, (3)

whereα0 = 0.1, I0 = 9500 lx, p = 0.5, and I1 = 100 lx. Com-
pared to the previous model that already accurately predicts the
effects of light for intensities between 150 and 9500 lux, this re-
vision adds increased sensitivity around 100 lux, in concordance
with experimental results [25].

As the photoreceptors are activated, they generate a drive onto
the pacemaker, B̂, which is proportional to the element flux rate
α(1− n).

B̂ = Gα(1− n), (4)

where G = 37 is the scaling constant and n the fraction of
elements in the system that are used. Used elements are recycled
back into the ready state at a rate of β = 0.007 and the rate at
which elements are activated (processed from ‘ready’ to ‘used’)
is given by the ODE

ṅ = 60(α(1− n)− βn). (5)

Finally, the strength of the direct photic drive B is dependent on
the state variables x and y such that

B = B̂(1− bx)(1− by) (6)

with b = 0.4, which characterizes the feature that the human
circadian pacemaker has varying sensitivity to light throughout
the circadian day.

To express the state x and y into a single circadian clock
state C, it is projected onto a single dimension. C is used as an
input for the model of the sleep homeostat explained in the next
subsection. To generalize previous work, we use

C = 0.5(1 + cxx− cyy). (7)

As stated before, the combination of the circadian- and the
homeostatic model was already investigated in [19], where they
used cx = 1 and cy = 0. Later, Skeldon et al. found that a phase
shift was required to reproduce typical observed values for sleep
duration and timing under realistic light conditions, for which
they determined cx = 0.8 and cy = −0.47 [21, suppl. mat.].
While the previous authors both use the simplified Kronauer
model [26], we are using the full JFK in an attempt to get a more
accurate result, which required us to re-evaluate the values in
the equation. We determined our specific values of this equation
experimentally, by observing the estimated τx when feeding
the model with light data from the field study. Although the
relationship was not fully linear, we found a good compromise
with a phase shift of −2.75 hours, which through conversion
with Euler’s formula lead to cx = 0.75 and cy = −0.66.

2) Homeostatic Model: The second model in our system
describes the physiological need for sleep, known as homeostatic
sleep pressure. This sleep pressure builds up during wakefulness
and dissipates during the time the person is sleeping. For our
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system, we adopt the Phillips-Robinson model [27]. In our
description of the model, all parameter values except νvc and
µH are taken from [19]. In [21] it was stated that νvc and
µH are age dependent. The values show in this text slightly
deviate from the values suggested by Skeldon et al., but we
found they best match the data in our field study (Section III-B).
The model starts by describing how sleep- and wake states occur
as a result of mutual interaction between sleep-promoting and
wake-promoting neurons as described by the ODEs for their
mean electric potential, Vv and Vm, respectively

V̇v =
1

τv
(Dv − Vv − νvmQm) and (8)

˙Vm =
1

τm
(Dm − Vm − νmvQv) , (9)

where parameters τv = τm = 1/360 h are time constants of the
neuronal process and the parameters νvm = 2.1 mV s, νmv =
1.8 mV s weight the input from population m to v and v to m
respectively. Wake-promoting drive Dm = 1.3 mV is constant,
while sleep-promoting drive Dv is determined by

Dv = Av − νvcC + νvhH , (10)

with Av = −10.2 mV, νvc = 2.9 mV, and νvh = 1 mV ·
nM−1. In (8) and (9), the neuron firing rates Qm and Qv are
described by the logistic functions

Qi =
Qmax

1 + exp
(

θ−Vi

σ

) , for i ∈ {v,m}, (11)

which describe the relationship between the potential and the
firing rate of the neurons. Here, subscript v stands for sleep-
promoting- and m for wake-promoting neurons, respectively.
Furthermore, Qmax = 100s−1 is the maximum possible firing
rate, θ = 10 mV is the mean firing threshold, and σ = 3 mV is
the standard deviation of θ. The homeostatic sleep pressure H
is modeled as the virtual level of a somnogenic chemical such
as adenosine and described by the ODE

Ḣ =
1

χ
(µHQm −H) , (12)

with χ = 45 h and µH = 4.0 nM · s. Finally, wake-up and
sleep-onset events are represented using the Heaviside step
function H(. . . )

S = H(Qm −Qth) =

{

1(awake), if Qm ≥ Qth

0(sleeping), otherwise
, (13)

which effectively means that a person is awake when the firing
rate of wake promoting neurons Qm is equal-or-greater than a
threshold value Qth = 1˜s−1. It is evident that a wake-up event
occurs on a 0-to-1 transition of S and a sleep-onset event occurs
on a 1-to-0 transition. Thus, the output of the combined models
can be defined in the form of a set of the sleep-onset/wake-up
events that occurred since the start of evaluation (i.e., at day 1,
0:00).

T = {t : Qm(t) = Qth} (14)

For example, consider T = {7:50, 23:45, 32:15, 49:00, 57:00,
72:00} represents a little over 3 days of evaluated time. Within

Fig. 2. Block diagram showing the model order. Light exposure enters
the JFK model of the circadian pacemaker, in which the period of the
circadian oscillator model τx is a parameter considered variable. The
model produces a circadian clock that is fed to the Phillips-Robinson
model of the homeostatic sleep drive. From that, the sleep-to-wake and
wake-to-sleep transitions are detected, which form the output of the
combined models: the time(s) at which a sleep-onset- and/or wake-up
event occurs.

this set, the wake-up event times are subset Twake-up = {7:50,
32:15, 57:00} and the sleep-onset event times are subset
Tsleep-onset = {23:45, 49:00, 72:00}. The way that the two models
are connected is shown schematically in Fig. 2.

B. Particle Filter With Parameter Estimation

Both models introduced in the previous section address the
effect of physiological processes that are directly or indirectly
affected by external sources, in particular by light. It is com-
monly known that biological processes are stochastic in nature:
their outcomes vary in a random manner. Furthermore, sen-
sors that are used to measure inputs and outputs are also not
perfect. However, neither the JFK, nor the Phillips-Robinson
model seems to consider process uncertainties or measurement
imperfections. To improve their suitability for our purpose, we
introduce statistical effects into the mathematical framework.
As we argued in [20], for ease of notation, we firstly combine
the ODE state variables into a vector

x =
[

n, x, y, Vv, Vm, H
]

, (15)

where our state vector x in bold should not be confused with the
use of x which we adopted from the JFK model’s original paper.

Next, we combine the circadian model with the model of
the sleep homeostat, to form a single (non-linear) state-space
equation

ẋ(t) = Fc (x(t), θ(t),u(t),vx(t)) , (16)

where Fc(· · · ) is the collection of ODE equations 1, 2, 5, 8, 9,
and 12 with implicit support from the other model equations.
Individual specific parameters are captured in θ. In this paper,



BONARIUS et al.: PARAMETER ESTIMATION IN A MODEL OF THE HUMAN CIRCADIAN PACEMAKER 1309

only the period of the circadian oscillator model τx will be con-
sidered. However, we explicitly acknowledge that we estimate it
on the fly, thus we allow a time-dependent, hopefully converging
estimate θ(t).u(t) represents the control input vector; in our case
only the [retinal] light exposure I is considered.vx(t) represents
the state noise (also called process noise) vector.

In practice, we cannot solve the system analytically, due to the
high level of non-linearity of the equations. Instead, we integrate
the equations numerically using an ODE solver. This discretizes
the time steps of the state progression equations, according to

ẋk = F (xk−1, θk−1,uk−1,vx,k−1) . (17)

In our system, we assume that state noise, also known as
process noise is caused by the stochastic nature of the biological
processes. It is partially caused by the natural variation of the
physiological processes, but it also simulates the effects of
other mechanisms that affect the circadian clock that we do not
observe, such as food intake [28] and social interaction [29].
Moreover, modeling of noise facilitates a particle filter algorithm
in its operation, e.g. [17]. For our purpose, a Normal (Gaussian)
distribution will adequately approximate the state noise, giving

vx,k ∼ N6

(

0, σ2
x

I6
)

, (18)

where In represents the n-dimensional identity matrix and
Nn(M,Σ) represents the notation for a multivariate (i.e., n-
dimensional, with n = 1 when n is omitted) normal distribution
with mean vector M and covariance matrix Σ. It can be argued
that it may not be realistic to give the six state variables (in (15)),
each with different value ranges, the same noise. This seems to
be a pragmatic choice that appeared to work empirically. That
is, it allows an otherwise rigid mathematical model to follow the
spread and deviations in real biological processes of the human
subjects. However, lacking a model of the spread in the human
processes, we needed to empirically search for an appropriate
value. We experimentally found that σx = 0.02 gives us a good
balance between convergence rate and the situation where too
little particle spread causes the filter to stop converging short of
the final value. To further address the above concerns, we later
on introduce input measurement noise as well.

Next, we introduce the Bayesian statistical framework, in
which we describe the state evolution as a probabilistic model.
We determine that (17) represents a Markovian dynamic model
of order one, where new statexk is a random variable conditional
on the previous statexk−1. We can then describe a state transition
density function according to

P (xk|xk−1,uk−1, θk−1)

= N6

(

xk|F (xk−1, Ik−1; τx,k−1) , σ
2
x

I6
)

, (19)

where Nn(X|M,Σ) represents the multivariate (i.e., n-
dimensional, n = 1 when n is ommitted) Gaussian probability
density function, according to

Nn (X|M,Σ) = (2π)−n/2|Σ|−1/2

× exp

(

−
1

2
(X −M)TΣ−1(X −M)

)

,

(20)

where superscript T denotes the matrix transpose operator.
In this paper, ‘outputs’ are observations on the human subject

that allow the particle filter to verify the simulated state against
an individual’s actual (in vivo) state, observed through biomark-
ers. In our statistical framework, we denote the observation as a
random variable z. This observation represents the time instant
at which a sleep-onset or wake-up event occurs. We will use a
state-space equation to represent how such an event is triggered
by the current state xk, according to

zk = K (xk, vz,k) , (21)

where vz,k represents the output noise. The output function
K(· · · ) is derived from (14), in that zk will represent a sleep-
onset or wake-up event time. However, zk interacts only very
sparsely. For example, consider a zi occurs when a person wakes
up at 8:00 and the next zi+1 occurs when the person goes to sleep
at 23:45. In practice, we will numerically integrate (16) until
Qm = Qth (from (13)), thereby producing a sleep-onset/wake-
up event time zk.

Similar to the state noise, we assume that the output noise is
Gaussian, according to

vz,k ∼ N
(

0, σ2
z

)

. (22)

Currently, we are only considering the (self-recorded) sleep-
onset and wake-up times as output. But self-recorded times are
known not to be very accurate. For the experimental data used in
this paper, we observe that test subjects will for instance record
the time that they go to bed, instead of the actual sleep-onset time,
which will likely be past that recorded time (This is expected
behavior and is called sleep-onset latency). Furthermore, we
found that individuals often tend to round-off the time to the
half- or quarter-of-an-hour. Comparing recorded sleep-wake
times with actigraphy data gives us a good indication of how
to model this: we chose to fix the standard deviation of the
output noise at half an hour, i.e., σz = 0.5 h. Relying purely
on actigraphy data does not provide a solution to this problem,
as the validity of this approach remains sub-optimal for some
cases. If for instance, wrist actigraphy is used to record sleep,
abnormal increased activity during the night might be incorrectly
classified as wakefulness [18].

To next discuss the estimation process, we return to (21),
and explicitly acknowledge that the observation z is a random
variable conditional on the real state x. For this, we can describe
an output density function, which we approximate as being
Gaussian,

P (zk|xk) = N
(

zk|G(xk), σ
2
z

)

. (23)

As a refinement over Mott et al., we consider that parameters
in the model represent individual physiological differences. This
is already shown in (19), where parameter distribution P (θ) is
considered. Currently, we are only considering the period of
the circadian oscillator model τx as a variable parameter, which
is also reflected in (19) as dependent variable in F (. . . ). The
target is to estimate this parameter distribution P (θ) similar to
the way we estimate the state distribution P (x). To achieve that,
we use a mathematical approach from Liu and West [30]. First,
we combine Bayes theorem with the Chapman-Kolmogorov
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equation to separate the estimation of P (θ) and P (x) into a
sequential update steps, largely based on the description by Mott
et al. [17]:

P (xk, θk|z1:k) =

∫

P (θk|θk−1,xk, zk)

×
P (zk|xk)

P (zk|z1:k−1)

∫

P (xk|xk−1, θk−1)

× P (xk−1, θk−1|z1:k−1) dxk−1 dθk−1

(24)

where z1:k means “all output observations from times 1 to k”.
Furthermore, in this equation:

� P (xk−1, θk−1|z1:k−1) represents the previous estimated
state- and parameter distribution

� P (xk|xk−1, θk−1) represents prediction update step of the
particle filter, realized by evaluating the state transition
density function (19).

� P (zk|xk) represents the measurement update step of the
particle filter output density function (23).

� P (zk|z1:k−1) is a normalization constant [17], [31].
� P (θk|θk−1,xk, zk): as an improvement over Mott et al.,

this term represents how the new parameter distribution
depends on the (previous) parameter-, state-, and output
distribution, i.e., the parameter transition density function.

The model dynamics are described by ODEs that are non-
linear and that require a numerical evaluation. In fact, we can-
not find a closed-form expression for the posterior distribution
P (θk|θk−1,xk, zk). We adopted the mathematical approach by
Liu and West [30], who propose that the posterior distribution
can be approximated using a mixture of weighted kernel dis-
tributions. If we apply this to our parameter transition density
function, it is described by

P (θk|θk−1,xk, zk)

= ΣN
i=1w

i
kNdim(θ)

(

θk|m
i
k, h

2Vk

)

, (25)

where dim(θ) is the dimension of θ, which is equal to the
number of parameters being estimated. In our case, only τx is
considered, so dim(θ) = 1. For a discussion of the statistical
principles behind this method, we refer the reader to the text
book chapter by Liu and West [30].

In (25), the window width of the kernels is determined by h,
where

h2 = 1−

(

3δ − 1

2δ

)2

, (26)

for which a discount factor δ was suggested in the range 0.95-
0.99, preferably close to 0.99 [30]. Experimentally, we found
that this approach converges at a good rate particularly with
δ = 0.91, so h2 ≈ 0.1, thus slightly outside the range that [30]
recommends.

Eq. (25) is designed to be realized in the particle filter. Specif-
ically, in the equations we associate the superscript index i to the
value of the i-th particle of a total of N particles. The weights of
the particles represent how much a particle will contribute to the
mixture. The particle weights are determined using information

from the output density (shown in (23)), with a normalization
step, according to

wi
k =

P
(

zk|x
i
k

)

∑N
j=1 P

(

zk|x
j
k

) (27)

Covariance matrix Vk is based on the posterior parameter mean
vector θ̄k according to

θ̄k =
N
∑

i=1

wi
kθ

i
k−1, (28)

Vk =

N
∑

i=1

wi
k(θ

i
k−1 − θ̄k)(θ

i
k−1 − θ̄k)

T. (29)

We can interpret mk as a center of gravity of each kernel, which
is related to the parameter vector. However, if mk = θk−1, then
the variance of the total mixture will be (1 + h2)Vk, causing it
to diverge excessively [30]. This can be corrected by shrinking
mk towards θ̄k, according to

mi
k = aθ

i
k−1 + (1− a)θ̄k, (30)

with shrinkage parameter a, given by

a =
√

1− h2. (31)

As we only consider parameter τx, (25) can be further re-
duced to a parameter update function for the individual particle.
Applying the concept by Liu and West [30],

τ ix,k ∼ N (mi
k, h

2Vk). (32)

C. Input Measurement Noise

The light exposure detected by the sensors does not perfectly
represent the actual retinal light exposure of the individual.
We acknowledge that a light sensor will have a measurement
error because it is located at a different position than the eyes,
e.g. [32]. Moreover, illuminance (in lux) is not the best way to
measure light that influences the circadian rhythm, as suggested
in e.g. [33]. As such sensor imperfections dominate the input
‘noise,’ independent identically distributed (i.i.d.) additive white
Gaussian noise (awgn) may not dominate the measurement
imperfections. Rather, we expect a systematic error. Such highly
correlated error will systematically push the calculated chrono-
state in a specific direction that may not coincide with reality.
To model correlated errors, we searched for physical phenomena
that capture such correlation. As an example, we assume orien-
tation mismatch between the sensor and an individual’s gaze will
cause an certain gain and offset. Thus, we model the measured
input light Î to be a function of the actual light I according to

Îik = max(giIk + oi, 0), (33)

where gi is the gain and oi the offset which we draw for each
specific particle i. The ‘max’-operation is required to prevent
negative values for Î . Realistic values for this gain and offset
have been determined for a ceiling- or wall mounted light sensor
in [32], which for a calibrated device reports a best-case non-
image forming gain error of ±32% and an offset of ∼0.2%. To
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Fig. 3. The circadian state distribution spread over time due to input
sensor noise, shown for an uncalibrated and a calibrated sensor. The
state of the simulations are shown as points (that together form an
ellipsoidal blob) for each hour from wake-up at 8:00 until sleep at 0:00,
colors varying per hour. For reference, the typical state limit cycle is
shown as a black solid line. (a) Uncalibrated light sensor: gain 0.5 – 2,
offset ±20. (b) Calibrated light sensor: gain Eq. 34, offset 0.

simulate such an error we will consider this offset negligible and
will draw a gain for each particle, according to

gi ∼ N (1, (0.15)2). (34)

The effect of the input noise on the state variables x and y is
shown in Fig. 3 and the resulting circadian state error standard

Fig. 4. Combined standard deviation of the circadian state distribution
spread over time due to input sensor offset and gain errors. State noise
is set to zero to isolate the effect of sensor deviations. Result of 200
simulations, each starting at wake-up at 8:00.

deviation over time is shown in Fig. 4. These results were
obtained by running 200 simulations, each with different ran-
domized gain and offset. State noise was set to zero to isolate the
effect of sensor deviations. As light input, we used the realistic
light profile, described near (35). The figures show that the inac-
curacies of a ceiling-mounted light sensor only have a moderate
impact on the circadian state, particularly when the sensor is
calibrated to report the specific retinal light exposure [32].

The impact of the gain error depends on the light level, in
concordance with the logarithmic light function in (3): The effect
of the error will be relatively smaller for high light levels (say
10000 lx) than for low levels (say 500 lx). As we are using the
realistic light profile, our light levels are in the lower range.
But even when calibration leaves a substantial error (>30%),
the impact on the model relatively small. This agrees with our
expectation that the human entrainment to the day-night pattern
is quite resilient to some light level deviations; e.g. a cloudy
rather than a sunny day will not immediately de-synchronize
our rhythm. We tend to conclude that light sensors with this
level of imperfection are suitable as input for our system.

D. Particle Filter Initialization and Pseudo–Code

Summarizing from the previous subsections, each particle
will have three properties

� the state vector xi.
� the parameter τ ix
� the light gain (error) gi

Starting the particle filter, these properties need to be ini-
tialized with a certain uncertainty. The light gain was already
described in (34). For the τx we will use the suggested model
mean of 24.2 and use the standard deviation 0.13 found in [13].
As the models are based around ODEs, an initialization state x0

is required. A state close to the actual state is preferred, although
it cannot be expected the actual state is known. We determined
experimentally that x0 = [0.25,−0.9,−0.5, 2.5,−12, 13.8] re-
sembles a good starting state for the data from our field study
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Algorithm 1: Particle Filter Algorithm.

1: for i = 1 : N do

2: Initialize:
3: xi ∼

N6([0.25,−0.9,−0.5, 2.5,−12, 13.8], (0.02)2I6)
4: τ ix ∼ N (24.2, (0.13)2)
5: gi ∼ N (1, (0.15)2)
6: For each successive output observation Z do

7: for i = 1 : N do

8: repeat

9: Numerically integrate F (xi, giIk; τ
i
x)

10: until Qi
m = 1 (giving zi)

11: for i = 1 : N do

12: Determine particle weight
wi = N (zi|Z, (0.5)2)

13: Determine the total w̄ =
∑N

i=1 w
i

14: for i = 1 : N do

15: Normalize the weight wi = wi/w̄

16: Determine parameter mean τ̄x =
∑N

i=1 w
iτ ix

17: Determine parameter variance
V =

∑N
i=1 w

i(τ ix − τ̄x)
2

18: Determine new indices J using weighted sampling
(see Algorithm 2)

19: for i = 1 : N do

20: Draw new state, parameter, and light gain:
21: x′i ∼ N6(x

J[i], (0.02)2I6)

22: τ ′ix ∼ N (0.99τ
J[i]
x + 0.01τ̄x, 0.05 V )

23: gi ∼ N (1, (0.15)2)
24: for i = 1 : N do

25: Overwrite xi = x′i and τ ix = τ ′ix

(Section III-B). The state noise (0.02)2I6 was already discussed
earlier.

With all the pieces of the particle filter in place, its im-
plementation can be described by the pseudocode shown in
Algorithm 1. To realize this algorithm and all simulations, we
used MATLAB version 2019a (The MathWorks, Natick MA,
USA). An example implementation of the method to find new
indices using weighted sampling is shown in Algorithm 2,
although in practice we use MATLAB’s embedded function
“randsample”.

III. RESULTS

A. Parameter Detection in Simulation

First, we want to study the accuracy and convergence be-
haviour of the particle filter in estimating an individuals τx
from only light exposure and sleep-wake rhythm. We do that by
feeding the particle filter with artificially created data. For the
light input we use the realistic light intensity profile as suggested
by Skeldon et al. [21, suppl. mat.]. The intensity profile from
8:00 to 0:00 is described by

I(t) = l2 +
l1 − l2

2
{tanh[c(t− s1)]− tanh[c(t− s2)]} ,

(35)

Algorithm 2: Example Algorithm for Drawing New Indices
With Weighted Sampling, Based on [31].

1: Initialize CDF: c1 = w1
k

2: for i = 2 : N do

3: Construct CDF: ci = ci−1 + wi
k

4: Starts at: i = 1
5: Draw a starting point: u1 ∼ U(0, N−1)
6: for j = 1 : N do

7: move along the CDF: uj = u1 +N−1(j − 1)
8: while uj > ci do

9: i = i+ 1
10: Assign new index: J [j] = i
11: (Optional) shuffle J

Fig. 5. Block diagram showing the setup for the parameter estimation
via simulation. The models are ran with a preset value for τx and with the
realistic light intensity profile. This generates a set of sleep-onset- and
wake-up times (See (14)). The combination of light profile and sleep-
wake times are then fed into the particle filter to estimate the τx

where sunrise and sunset times are s1 = 7.5 resp. s2 = 16.5, day
and evening light intensities are l1 = 700 lx resp. l2 = 40 lx,
and switching speed c = 0.6 h−1. From 0:00 to 8:00 we assume
darkness (0 lx).

We feed the light data to the combined JFK and Phillips
models with a predetermined (to be estimated) τx, which gen-
erates artificial sleep-onset and wake-up times. To allow the
particle filter enough time to converge, we evaluate the models
equations with an ODE solver for 1 month (31 days= 744 hours)
of simulated time, which produces 62 sleep-onset / wake-up
event times. Next, the combination of light data and artificial
sleep-onset / wake-up times is fed to the particle filter to estimate
the corresponding model parameter τx. The system setup is
shown in Fig. 5.

One key parameter of the particle filtering approach is the
number of particles used to represent a distribution. This pa-
rameter defines the trade-off between computational cost and
the variance of the resulting estimates at the end of the sim-
ulation time. We have to find a trade off between the rate of
convergence, which is inversely proportional to the square root
of the number of particles used, and the computational cost,
which grows proportionally with the number of particles [34].
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Fig. 6. The estimated τx-s for 10 runs each of 100, 200, 400, 800
and 1600 particles, with preset τx = 23.8 h. For 100 to 400 particles the
results are spread out significantly more than for 800 or 1600 particles.
1600 particles doesn’t show improvement over 800 particles. In all cases
the average detected τx is a bit higher than the preset value, likely
caused by nonlinearities of the models.

Fig. 7. The values of τx estimated by the particle filter with preset τx
of 23.8, 24.0, 24.2, 24.4, and 24.6 shown as red circles. The 1-to-1 line
is shown in black. Each time, the particle filter is ran with 800 particles
for 31 days of artificial data.

Fig. 6 illustrates the distribution spread of the estimated τx
at the end of the simulation as a function of the number of
particles. Experimentally, we found that using 800 particles will
give a good balance between computational performance and
accuracy for a wide distribution of considered τx values. Using
more particles will give approximately identical results, while
requiring more processing power.

Five simulated scenarios with different preset τx of 23.8, 24.0,
24.2, 24.4, and 24.6 were evaluated to demonstrate the capabil-
ity of the particle filter estimator to reproduce the individual
circadian period.

Results presented in Fig. 7 show that the particle filter is able
to detect the preset τx with high accuracy, although the values
below 24.2 are estimated a bit higher and value above 24.2 are
estimated a bit lower. Likely, this effect is caused by the non-
linearities of the models.

Fig. 8. Typical distribution of the estimated τx error with respect to the
preset value over time. The preset τx value for this run was 23.8 and the
particle filter was ran with 800 particles for 31 days. The open circles
are the mean error values and the vertical lines indicate the standard
deviation. These points are determined at the simulated sleep-wake
times (i.e., the output observations).

An important performance indicator is the convergence of
parameter estimation, in particular how the error between es-
timated parameters and their true value decreases during the
days of observation and whether a residual error remains. A
typical convergence flow of the particle filter estimator for the
chosen number of particles is presented in Fig. 8. The estimation
error drops with every observation update. In fact, after 7 days
(168 h) the estimation error is already reduced by 75% to around
0.10 h± 0.07 h (mean± standard deviation) of the initial 0.4 h.
Taken together, our results show that the estimated parameter
τx converged to the true parameter value with low estimation
error (Fig. 7) showing a fast convergence rate (Fig. 8). This
correspondence lends confidence to the usefulness of the method
in real-life scenarios where the actual parameter values will be
unknown.

B. Parameter Detection With Human Data

For verification of the model against human data, data was
used from an ambulatory study [35]. Twenty elderly participated
in the study (12 males and 8 females, mean age = 71.18 years,
SD = 3.71, age range = 65–79). Persons with moderate or
more severe physical- or cognitive impairments were excluded.
The latter was tested using the subscale Forgetfulness of the
Cognitive Failures Questionnaire (CFQ) (mean = 75.24, SD =
8.67) [36]. Each participant wore a light logging device [37]
for at least 7 days, which samples the light level every 160
seconds. The light logging device is based around the TCS34725
Color Sensor by AMS [38]. During daytime the device was
clipped on the top of the shirt and during the night, the de-
vice was placed on a night stand as close to the head of the
participant as possible. Additionally each participant wore a
wrist-worn actigraphy device (Philips Respironics Actiwatch
Pro) and maintained a sleep dairy, where they recorded their
bedtimes. Both the objective measurement of the actigraphy and
the subjective measurement of the sleep diary were manually
combined to estimate the individuals’ sleep-onset and wake-up
times. Sleep was assumed in darkness and very little to no
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Fig. 9. Comparison of estimated wake-sleep times for of a particle filter
with parameter estimation and with the use of a fixed τx. The estimated
τx parameter value for this participant is 23.8 (smaller than the average
24.2.). Errors are are determined at the actual, observed sleep-wake
times.

movement. We do not consider a specific sleep-onset latency.
During the 7 days of recording, the participants conducted their
normal day routine. None of the participants used an alarm
clock. The study adhered to the declaration of Helsinki, the Code
of Ethics of the NIP (Nederlands Instituut voor Psychologen -
Dutch Institute for Psychologists), and national legal and ethics
requirements. It was approved by the Eindhoven University of
Technology’s internal Ethical Review Board. Of all the collected
data, 4 data sets had to be dropped due to hardware issues or
user errors. We further determined each individual’s chronotype
according to [39, suppl. inf.]. As the participants are not using
alarm clocks, their chronotype (MSFsc) is equal to the mean
midsleep on free days (MSF), given by

MSF = E[tsleep onset + tsleep duration/2]. (36)

The light data and sleep-wake times were each processed
by our proposed particle filter, which resulted in an estimation
of daily sleep and wake-up times and parameter τx for each
individual. To explore to what extent τx parameter estimation
outperforms the forecasting of an individual’s sleep and wake-up
times, we compare the estimation performance of a particle
filter with parameter estimation with one that uses a fixed τx.
As an illustrative example, Fig. 9 shows the absolute error in
the wake-up and sleep times estimation for a test participant.
Our estimated τx deviates from the population average 24.2.
Personalizing that model parameter largely improves estimation
accuracy. In fact, we see that the estimation error consistently
shows improved performance compared to the fixed model with
preset τx = 24.2. As our data-set is limited to 7 days, the final
estimate of τx might not fully represent the best possible fit.
Indeed, as we explicitly analyze in section III-A, in 7 days of
training, the τx estimation error has been reduced by 75%.

Fig. 10. The scatter plot showing the estimated τx versus the deter-
mined chronotype, which for our case equals to the (mean) midsleep
on free days, for the data from the field study (blue stars). The linear
regression line is shown in red. The Pearson coefficients are r = 0.80

and p = 0.0002.

Hida et al. showed that the intrinsic circadian period correlates
with the MSF [40]. Interestingly, we also found a similar correla-
tion between the individuals’ τx found by the particle filter with
the respective MSF, with the Pearson correlation coefficients
having a strength of r = 0.80 and a significance of p = 0.0002,
as shown in Fig. 10. This suggests that our estimate of the model
parameter τx (period of the circadian oscillator model) is also an
estimate of the physiological parameter τ , the intrinsic period of
the human circadian pacemaker. However, there are challenges
in individualizing model parameters to fit user-specific data. One
such difficulty stems from the fact that models may display
parameter dependencies, whereby estimating only a subset of
parameters can compensate for the other parameters which are
kept fixed, resulting in some arbitrariness in the specification of
their values. In this view, our estimated τx may also compensate
other model parameters that we did not explicitly vary. A further
validation is required to verify whether our statistical approach
is able to actually estimate a physiological parameter.

IV. DISCUSSION AND FUTURE WORK

In our proposed method, we simulate models of the sleep-
wake regulation using data that can be observed with minimally
invasive measurement methods. Specifically, we use light ex-
posure as an input to the model, and sleep-onset and wake-up
times to monitor and track the output of the model. Using this
observed data, we not only extract information that indicates the
actual circadian phase of the individual, but also information
that indicates the value of an internal parameter of the model
representing the period of the circadian oscillator model. We
verify this period by correlating it against the individual’s MSF,
which is also derived from the sleep-onset and wake-up times.
This works well for our situation.

In this work, the timing of sleep is modeled as the interaction
of homeostatic and circadian components. Admittedly, a variety
of internal factors, such as stress and medical conditions, and ex-
ternal factors, such as such as food- and caffeine intake and social
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interaction, can also influence the timing of sleep. As a result, our
estimated wake-up and sleep times may not necessarily match
the observed sleep and wake-up times. Additionally, when an
alarm clock is used, an individual will most likely not wake-up
at his/her natural wake-up time. We expect that our attempt to fit
model parameters to individual user observations may to some
degree compensate for those other factors that influence sleep.
In such case, the resulting estimated model parameters may not
yield values that best represent the physiological properties of
the individual. It is part of future research to find alternative
biomarkers that track the circadian state, such as body tempera-
ture or heart rate variability, and integrate these into our proposed
system.

The number of particles that we use in our simulation is
limited. Mott et al. [17] suggested 240 particles was sufficient for
estimating 3 variables. As we include 3 more state variables by
adding the Phillips-Robinson model and also consider parameter
τx to be variable, one could deduct that we would require some-
where in the order of (240)7/3 ≈ 360000 particles. However,
as shown in Section III-A we already find stable convergence
with only 800 particles. Intuitively, using only 800 particles may
suffice to get convergence as the initial state is close to the actual
state of the circadian clock en because the state noise σx is quite
small. Furthermore, the Phillips-Robinson model mostly follows
the circadian state C, hence no excessive effort is required to
estimate the extra state variables. Most effort seems to be going
into finding the parameter τx, for which the relatively small
number of particles is sufficient. In future research, we plan to
explore the limits of the particle filter by increasing the state
noise: it is expected that more particles will be required to reach
convergence at a comparable rate.

During our experiments, we found a statistical deviation of
the parameters that were considered age-related by Skeldon
et al. [21]: νvc and µH . We expect that these parameters are
not only age related, but differ between individuals of the same
age. In a quick experiment (not reported here) we considered
these parameters as a part of variable parameter vector θ, which
improved the correlation between the estimated τx and the MSF.
Our results suggest that these parameters should also be consid-
ered variable and are ‘to be estimated’ as part of θ. However,
as the model has many parameters that could differ between
individuals, we should carefully select which parameters are to
be considered variable. Trying to estimate too many parameters
with limited input data could cause the model to be over-fitted,
where the resulting parameters will only be valid for the specific
input data used for training. What parameters to consider in θ

will be a topic for future research.
The sleep-onset and wake-up times have a different time

interval: i.e., on average a persons is awake 16 hours and asleep
8 hours. Thus, one would expect the state noise σx to depend on
k. However, as the time between two sleep-onset and wake-up
times is 24 hours on average (i.e., E[zk+2 − zk] = 24 h) we as-
sume the fixed-valued state noise we use is sufficiently accurate.

A key unanswered question is whether our estimate of τx also
paves a path towards a viable, unobtrusive method to estimate
an actual physiological property, namely, the intrinsic circadian
period of an individual τ . Although the Forced Desynchrony
protocol is regarded as the most reliable and valid method for the

assessment of τ in humans, it is laborious and highly impact-full
for the human subject. Having an alternative that reduces the bur-
den on the subjects and increases the feasibility of examination,
even an alternative that can be suitable for non-medical grade
applications is attractive. We acknowledge that this work did not
verify to what extent our method converges to the same value
as a gold standard for measuring τ . For instance, another model
parameter may also correlate with wake up time variations, and it
is not ruled out that our τx-estimate takes on a optimum value that
also absorbs these effects. Still, our results revealed a significant
correlation between our estimates of τx and chronotype, in a
similar way as τ correlates, but we leave it to future research to
test to what extent our estimation method also is a suitable, less
invasive method to estimate τ .

V. CONCLUSION

In this work, we present a novel approach to estimate both
the circadian state and the model parameters of the human
sleep-wake rhythm based on minimally-invasive light exposure
measurements and sleep-wake state observations. Our target is
to improve the accuracy of personalized predictions of the effect
of future light exposure scenarios on individuals.

Initial simulation results using artificially created, but realis-
tic, light exposures show the accuracy of the suggested method
when estimating the circadian period of an individual: we deter-
mined that representing distributions using 800 particles suffice
to determine τx with good accuracy in 31 days of simulated time.
A second experiment using data collected from real human test
subjects shows a significant correlation between an individuals
τx estimated by the system and their respective MSF. As this cor-
relation was already determined in literature, this demonstrates
correct functioning of our algorithm.

Humans differ from each other. Our evaluations show that
due to biological differences (e.g. spread in τx) different light
recipes are required to achieve the same goal. That is, lighting
control based on population averages will have much less effect
than algorithms that take human variation into account and
could even have adverse effects on certain individuals. While
a further validation of our proposed algorithm against human
data has not been performed, our initial results suggest that our
algorithm may provide a useful tool to address inter-individual
differences when determining lighting control. Therefore, our
proposed method is a step towards human-centric smart lighting
control systems centered around individual needs.
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cles in sequential Monte Carlo methods through an online scheme for
convergence assessment,” IEEE Trans. Signal Process., vol. 65, no. 7,
pp. 1781–1794, Apr. 2017.

[35] R. van der Sande, “Light and elderly - The effect of light exposure on well-
being and sleep in the everyday life of elderly,” M.S. thesis, Dept. Social
Sciences, Eindhoven Univ. Tech., Eindhoven, The Netherlands, 2017

[36] D. E. Broadbent, P. F. Cooper, P. FitzGerald, and K. R. Parkes, “The
cognitive failures questionnaire (CFQ) and its correlates,” Brit. J. Clin.

Psychol., vol. 21, no. 1, pp. 1–16, 1982.
[37] G. Martin, “Lightlog - Brighten your day,” [Online] http://lightlogproject.

org/ Accessed: Mar. 16, 2020.
[38] AMS, “TCS34725 Color Sensor,” [Online] Available: https://ams.com/

TCS34725. Accessed: Jul. 10, 2020.
[39] T. Roenneberg et al., “Social Jetlag and Obesity,” Curr. Biol., vol. 22,

no. 10, pp. 939–943, May 2012.
[40] A. Hida et al., “In vitro circadian period is associated with circadian/sleep

preference,” Sci. Rep., vol. 3, no. 2074, pp. 1–7, Jun. 2013.

https://www.bbrfoundation.org/event/circadian-rhythms-and-bipolar-disorder
https://journals.sagepub.com/doi/full/10.1177/0748730419886992
http://lightlogproject.org/
https://ams.com/TCS34725

