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Abstract. The efficiency of a mass consistent model for wind field ad-
justment depends on several parameters that arise in various stages of
the process. First, those involved in the construction of the initial wind
field using horizontal interpolation and vertical extrapolation of the wind
measures registered at meteorological stations. On the other hand, the
Gauss precision moduli which allow from a strictly horizontal wind ad-
justment to a pure vertical one. In general, the values of all of these
parameters are based on empirical laws. The main goal of this work is
the estimation of these parameters using genetic algorithms, such that
the wind velocities observed at the measurement station are regenerated
as much as possible by the model.

1 Introduction

Mass consistent models are diagnostic models for constructing wind velocity
fields from a few experimental measurements. In general, these models are de-
fined by the physical laws of an incompressible fluid, by the empirical design
of the wind profiles and by the values of velocities measured at the stations.
This explains the existence of many parameters in the model. Some of them
are clearly bounded and defined, while others are still under discussion and in-
terpretation. Our work deals with the latter ones. There are many methods for
the resolution of inverse problems involving parameter estimation and they have
been largely studied in the literature. Among them, we have chosen a robust
and flexible tool: genetic algorithms, which allow to solve linear and non-linear
multiparameter optimisation problems.

This work has been structured as follows. First, the wind model is summarised
in Sect. 2. We remark the studied parameters in Sect. 3. Next, in Sect. 4, the
fitness function is established and genetic algorithms are briefly introduced, with
their properties and possibilities used in this work. Numerical experiments are
shown in Sect. 5 and, finally, conclusions are presented in Sect. 6.
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2 Mass Consistent Model in 3-D

This model [14] is based on the continuity equation for an incompressible flow
with constant air density in the domain Ω and no-flow-through conditions on Γb

∇ · u = 0 in Ω . (1)

n · u = 0 on Γb . (2)

We formulate a least-square problem in Ω with u(ũ, ṽ, w̃) to be adjusted

E(u) =

∫
Ω

[
α2

1

(
(ũ− u0)

2
+ (ṽ − v0)

2
)
+ α2

2 (w̃ − w0)
2
]
dΩ . (3)

where the interpolated wind v0 = (u0, v0, w0) is obtained from experimental
measurements, and α1, α2 are the Gauss precision moduli. This problem is equiv-
alent to find a saddle point (v, φ) of the Lagrangian (see [27])

E (v) = min
u∈K

[
E (u) +

∫
Ω

φ∇ · u dΩ

]
. (4)

being v = (u, v, w), φ the Lagrange multiplier and K the set of admissible
functions. The Lagrange multipliers technique is used to minimise the problem
(4), whose minimum comes to form the Euler-Lagrange equations

u = u0 + Th
∂φ

∂x
, v = v0 + Th

∂φ

∂y
, w = w0 + Tv

∂φ

∂z
. (5)

where T = (Th, Th, Tv) is the diagonal transmissivity tensor, with Th = 1
2α2

1
and

Tv = 1
2α2

2
. Since α1 and α2 are constant in Ω, the variational approach results

in an elliptic problem substituting (5) in (1)

∂2φ

∂x2
+

∂2φ

∂y2
+

Tv

Th

∂2φ

∂z2
= − 1

Th

(
∂u0

∂x
+

∂v0

∂y
+

∂w0

∂z

)
in Ω . (6)

The boundary conditions result as follows (Dirichlet condition for open or
flow-through boundaries and Neumann condition for terrain and top)

φ = 0 on Γa . (7)

n · T ∇µ = −n · v0 on Γb . (8)

The classical formulation of the problem given by (6)-(8), is discretized using
a tetrahedral mesh of finite elements (see [12]) that leads to a set of 4×4 elemental
matrices and 4 × 1 elemental vectors, which are assembled into a global linear
system of equations. A preconditioned conjugate gradient method is used for
solving this symmetric linear system.
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2.1 Horizontal Interpolation

The wind speeds measured at station height zm are interpolated in function of
the distance and the height difference between each point and the station [14]

v0(zm) = ε

N∑
n=1

vn

d2
n

N∑
n=1

1

d2
n

+ (1− ε)

N∑
n=1

vn

|∆hn|
N∑

n=1

1
|∆hn|

. (9)

where vn is the velocity observed at station n, N is the number of stations
considered in the interpolation, dn is the horizontal distance from station n to
the point where we are computing the wind velocity, |∆hn| is the height difference
between station n and the studied point, and ε is a weighting parameter (0 ≤ ε ≤
1), which allows to give more importance to one of these interpolation criteria.

2.2 Vertical Profile of Wind

We have considered a logarithmic profile in the surface layer, which takes into
account the previous horizontal interpolation, as well as the effect of roughness
and the air stability (neutral, stable or unstable atmosphere, according to the
Pasquill stability class) on the wind intensity and direction. Above the surface
layer, a linear interpolation is carried out using the geostrophic wind. The loga-
rithmic profile is given by

v0(z) =
v∗

k
(log

z

z0
− Φm) z0 < z ≤ zsl . (10)

where v∗ is the friction velocity, k is von Karman constant, z0 is the roughness
length and zsl is the height of the surface layer. Function Φm depends on the air
stability

Φm = 0 (neutral) .

Φm = −5 z
L

(stable) .

Φm = log

[(
θ2 + 1

2

)(
θ + 1

2

)2
]
− 2 arctan θ +

π

2
(unstable) .

(11)

where θ = (1 − 16 z
L )

1/4 and 1
L = azb0, with a, b, depending on the Pasquill

stability class. L is the so called Monin-Obukhov length. The friction velocity is
obtained at each point from the interpolated measurements at the height of the
stations (horizontal interpolation)

v∗ =
k v0(zm)

log
zm
z0

− Φm

. (12)
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The height of the planetary boundary layer zpbl above the ground is chosen
such that the wind intensity and direction are constant at that height

zpbl =
γ |v∗|
f

. (13)

where f = 2ω sinϕ is the Coriolis parameter (ω is the earth rotation and ϕ the
latitude), and γ is a parameter depending on the atmospheric stability. The mix-
ing height h is considered to be equal to zpbl in neutral and unstable conditions.
In stable conditions, Zilitinkevich suggested (see [3])

h = γ′
√

|v∗| L
f

. (14)

where γ′ is a constant of proportionality. The height of surface layer is zsl =
h
10 .

From zsl to zpbl, a linear interpolation with geostrophic wind vg is carried out

v0(z) = ρ(z)v0(zsl) + [1− ρ(z)]vg zsl < z ≤ zpbl . (15)

ρ(z) = 1−
(

z − zsl
zpbl − zsl

)2 (
3− 2

z − zsl
zpbl − zsl

)
. (16)

Finally, this model assumes v0(z) = vg if z > zpbl and v0(z) = 0 if z ≤ z0.

3 Discussion on the Parameters to Be Estimated

First, we will consider the so called stability parameter

α =
α1

α2
=

√
Tv

Th
. (17)

since the minimum of the functional given by (3) is the same if we divide it by
α2

2. On the other hand, for α >> 1 flow adjustment in the vertical direction
predominates, while for α << 1 flow adjustment occurs primarily in the hori-
zontal plane. Thus, the selection of α allows the air to go over a terrain barrier or
around it, respectively [18]. Moreover, the behaviour of mass consistent models
in many numerical experiments has shown that they are very sensitive to the
values chosen for α. Therefore, we shall give particular attention to this problem.
In the past, many authors have studied the parametrisation of stability, since
the difficulty in determining the correct values of α have limited the possible
wide use of mass-consistent models in complex terrain. Sherman [21], Kitada et
al. [9] and Davis et al. [4], proposed to take α = 10−2, i.e., proportional to the
magnitude of w/u. Other authors such as Ross et al. [20] and Moussiopoulos et
al. [16] related α to the Froude number. Geai [7], Lalas et al. [10] and Tombrou
et al. [24], make the α parameter vary in the vertical direction. Finally, Barnard
et al. [2] proposed a procedure to obtain α for each single wind field simulation.
The main idea is to use N observed wind speeds to obtain the wind field and to

953Parameter Estimation in a Three-Dimensional Wind Field Model



keep the rest, Nr, as a reference. Then, several simulations are performed with
different values of α. The value which gives the best agreement with the refer-
ence observations is taken to be the final magnitude of the stability parameter.
Since this method provides values of α that are only reliable for each particular
case, it cannot provide an a priori value suitable for other simulations. Here,
we follow a version of the method proposed in [2], using genetic algorithms as
optimisation technique which lead to an automatic selection of α.

The second parameter to be estimate is the weighting coefficient ε (0 ≤ ε ≤ 1)
of (9). Note that ε → 1 signifies more importance of the horizontal distance from
each point to the measurement stations, while ε → 0 signifies more importance
of the height difference between each point and the measurement stations [14].
In general, the second approach has been used for complex terrains. On the
other hand, the first approach has been widely used for problems with regular
topography or in 2-D horizontal analysis. In realistic applications, the possibility
of existing zones with complex orography and others with regular one, suggests
that an intermediate value of ε should be more suitable.

The next parameter to discuss is γ, given in (13) and related to the height of
the planetary boundary layer. There exist different versions of where to search
this parameter. Panofsky et al. [17] proposed the interval [0.15,0.25]. On the
other hand, Ratto [19] directly suggested γ = 0.3 in the WINDS code, while γ
is located in [0.3,0.4] by de Baas [1]. Therefore, in our simulations, the search
space for γ must include all these possibilities.

Finally, we are interested in obtaining suitable values of the parameter γ′

involved in the computation of the mixing height for stable atmosphere, see (14).
Garratt [6] proposed γ′ = 0.4. Also in the WINDS code one may find bounds of
γ′ around 0.4. Thus, the value of γ′ will be searched in the surroundings of 0.4.

4 Genetic Algorithms

Genetic algorithms (GAs) are optimisation tools based on the natural evolution
mechanism. They produce successive trials that have an increasing probability
to obtain a global optimum. This work is based on the model developed by
Levine [11]. The most important aspects of GAs are the construction of an
initial population, the evaluation of each individual in the fitness function, the
selection of the parents of the next generation, the crossover of those parents to
create the children, and the mutation to increase diversity.

Two population replacements are commonly used. The first, the generational
replacement, replaces the entire population each generation [8]. The second,
known as steady-state, only replaces a few individuals each generation [23, 25,
26]. Stopping criteria are iteration limit exceeded, population too similar, and
no change in the best solution found in a given number of iterations. Initial
population is randomly generated.

The selection phase allocates an intermediate population on the basis of the
evaluation of the fitness function. We have considered four selection schemes
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[11]: proportional selection (P), stochastic universal selection (SU), binary tour-
nament selection (BT) and probabilistic binary tournament selection (PBT).

The crossover operator takes bits from each parent and combines them to
create a child. One-point (OP) and uniform (U) crossover operators are used
here. The first one selects randomly the place where each of the parents strings
are broken in two substrings. Children will be the union of first substring of one
parent and the second of the other. Uniform crossover depends on the probability
of exchange between two bits of the parents [22].

The mutation operator is better used after crossover [5]. It allows to reach
individuals on the search space that could not be evaluated otherwise. When part
of a chromosome has been randomly selected to be mutated, the corresponding
genes belonging to that part are changed. This happens with probability p.
This work deals with four mutation operators. Three of them are of the form
ν ← ν±p×ν, where ν is the existing allele value, and p may be a constant value
(C), chosen uniformly from the interval (0, β) with β ≤ 1 (U), or selected from
a Gaussian distribution (G). The fourth operator (R) simply replaces ν with a
value selected uniformly random from the initialisation range of that gene.

The fitness function plays the role of the environment. It evaluates each string
of a population. This is a measure, relative to the rest of the population, of
how well that string satisfies a problem-specific metric. The values are mapped
to a nonnegative and monotonically increasing fitness value. In the numerical
experiments with this wind model, we look for suitable values of α, ε, γ and γ′.
For this purpose, the average relative error of the wind velocities given by the
model with respect to the measures at the reference stations is minimised

F (α, ε, γ, γ′) =

Nr∑
n=1

|vn − v(xn, yn, zn)|
|vn|

Nr
. (18)

where v(xn, yn, zn) is the wind velocity obtained by the model at the location
of station n, and Nr is the number of reference stations.

5 Numerical Experiments

We consider the same wind field problem related to the southern area of La Palma
Island (Canary Islands) which was defined in [15]. A 45600× 31200× 9000 m3

domain with real data of the topography is discretized using the code developed
in [12]. The maximum height in this zone of the island is 2279 m. The mesh
contains 11578 nodes and 52945 tetrahedra; see Fig. 1. The wind measurements
were taken in four stations: MBI, MBII, MBIII and LPA. From the three cases
studied in [15], we have selected case I with softly unstable conditions and case III
with softly stable conditions in order to test the procedure for different stability
conditions of the atmosphere. Due to the small number of available data, we
have used the observed wind speeds of stations MBI, MBII and LPA to obtain
the interpolated wind field (9), i.e., N = 3, and the measurement of MBIII is
considered as reference station in the fitness function (18), i.e., Nr = 1.
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Fig. 1. Detail of the finite element mesh used for the numerical experiment. We only
plot the triangulation of the terrain and two vertical wall in order to hold clarity

In the first application (case I), the parameter γ′ is not involved in the mod-
elling due to the unstable condition of the atmosphere, i.e., h = zpbl. Thus, only
α, ε and γ will be estimated in this case. The experiment has been divided in
two stages. First, we fix γ = 0.3 and estimate α ∈ [10−3, 10] and ε ∈ [0, 1].
The second column of Tab. 1 (Stage 1 ) shows the values obtained for α and ε,
which suggest a nearly vertical wind adjustment and remark the complexity of
the terrain respectively. Note that we obtain with the model an error at station
MBIII about 10.7%. The strategy of GAs (BT, U, R) corresponds to the most
efficient selection, crossover and mutation operators after several tests with dif-
ferent combinations. In the second stage, α, ε and γ ∈ [0.15, 0.5] are estimated.
The results are also shown in the third column of Tab. 1. We observe that α
is near the maximum value of the space of search, ε remains quite small and γ
is reduced, such that the error at station MBIII is 10.7%. We remark that in
this experiment the worst evaluation of the fitness function, corresponding to
values of the parameters in the search space, yields an error of 72.19%. There-
fore, the knowledge of the studied parameters is essential for the efficiency of the
numerical model.

For the second experiment (case III) we have followed a similar procedure.
Now, γ′ ∈ [0.15, 0.5] must be also considered. First, a problem with two un-
known parameters (α, ε) is solved. The second column of Tab. 2 (Stage 1 ) shows
the values obtained for α, ε. Next, four problems arising from fixing one of the
parameters each time, respectively, are studied (Stages 2-5 ). Finally, the four
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parameters are estimated at the same time in Stage 6. The atmospheric stable
conditions reduce the vertical adjustment predominance arising in the previous
experiment with unstable conditions, as well as augment the importance of the
horizontal distance in the interpolation of the observed wind speeds. The mini-
mum error obtained at station MBIII was about 22.2%, while the error related
to the worst evaluation was 118.04%.

In both experiments, the number of individuals of the initial population was
100, except for stage 6 in case III where it was 150. Iterations and CPU timings on
a 933 MHz Pentium III are shown in Tab. 1 and Tab. 2 for each stage. Evidently,
the computational cost would be considerably reduced using a massive parallel
machine, where the GAs become competitive with other optimisation methods.

Finally, as example, Fig. 2 shows the wind field obtained by the model, in
the second experiment, at a height of 200 m using the values of the parameters
corresponding to Stage 6. Here, the measures of the four stations have been taken
into account for determining the interpolated wind field.

Table 1. First experiment corresponding to the case I analysed in [15]. Strategy of
genetics algorithms, best evaluation of the fitness function and values of the parameters
(fixed values are written between brackets)

Stage 1 Stage 2

GAs strategy BT, U, R SU, U, G

Iterations 17 1

CPU time (s) 1548 108

Best Fitness 0.107 0.107

α 9.810 9.727

ε 0.010 0.029

γ (0.300) 0.284

Table 2. Second experiment corresponding to the case III analysed in [15]. Strategy of
genetics algorithms, best evaluation of the fitness function and values of the parameters
(fixed values are written between brackets)

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6

GAs strategy SU, U, G SU, U, R SU, U, R SU, U, R SU, U, R SU, U, R

Iterations 110 147 37 16 29 61

CPU time (s) 8514 12120 2958 1362 2406 7050

Best Fitness 0.234 0.227 0.222 0.223 0.222 0.222

α 4.182 5.041 (5.041) 4.765 5.699 6.080

ε 0.003 0.272 0.281 (0.281) 0.292 0.282

γ (0.300) 0.490 0.493 0.498 (0.498) 0.494

γ′ (0.400) (0.400) 0.154 0.153 0.154 0.153
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Fig. 2. Wind field solution related to the second experiment at a height of 200 m

6 Conclusions

The estimation of several parameters is essential for the efficiency of a 3-D mass
consistent model for wind field adjustment. The numerical experiments have
shown that these codes are very sensitive to the values chosen for α, ε, γ and
γ′. A methodology for solving these parameter estimation problems is proposed.
Genetic algorithms have proved to be an efficient and robust tool for these op-
timisation problems when several parameters are involved (see also [13]).
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