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Background

Novel high-throughput techniques of molecular biology
are capable of producing in vivo time series data that are
relatively high in quantity and quality. These data implic-
itly contain enormous information about the biological

Abstract

Background: The estimation of parameter values continues to be the bottleneck of the
computational analysis of biological systems. It is therefore necessary to develop improved
methods that are effective, fast, and scalable.

Results: We show here that alternating regression (AR), applied to S-system models and combined
with methods for decoupling systems of differential equations, provides a fast new tool for
identifying parameter values from time series data. The key feature of AR is that it dissects the
nonlinear inverse problem of estimating parameter values into iterative steps of linear regression.
We show with several artificial examples that the method works well in many cases. In cases of no
convergence, it is feasible to dedicate some computational effort to identifying suitable start values
and search settings, because the method is fast in comparison to conventional methods that the
search for suitable initial values is easily recouped. Because parameter estimation and the
identification of system structure are closely related in S-system modeling, the AR method is
beneficial for the latter as well. Specifically, we show with an example from the literature that AR
is three to five orders of magnitudes faster than direct structure identifications in systems of
nonlinear differential equations.

Conclusion: Alternating regression provides a strategy for the estimation of parameter values and
the identification of structure and regulation in S-systems that is genuinely different from all existing
methods. Alternating regression is usually very fast, but its convergence patterns are complex and
will require further investigation. In cases where convergence is an issue, the enormous speed of
the method renders it feasible to select several initial guesses and search settings as an effective
countermeasure.
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system they describe, such as their functional connectivity
and regulation. The hidden information is to be extracted
with methods of parameter estimation, if the structure of
the system is known, or with methods of structure identi-
fication, if the topology and regulation of the system are
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not known. The S-system format within Biochemical Sys-
tems Theory (BST; [1-4]) is recognized as a particularly
effective modeling framework for both tasks, since it has a
mathematically convenient structure and because every
parameter has a uniquely defined meaning and role in the
biological system. Due to the latter feature, the typically
complex identification of the pathway structure reduces to
a parameter estimation task, though in a much higher-
dimensional space. Still, like most other biological mod-
els, S-system models are nonlinear, so that parameter esti-
mation is a significant challenge. Here, we propose a
method called alternating regression (AR), which we com-
bine with a previously described decoupling technique
[5]. AR is fast and rather stable, and performs structure
identification tasks between 1,000 and 50,000 times faster
than methods that directly estimate systems of nonlinear
differential equations (cf. [6]).

Methods

Modeling framework
In the S-system formulation within BST, X; denotes the

concentration of metabolite i, and its change over time,

X;, is represented as the difference between one produc-

tion and one degradation term, both of which are formu-
lated as products of power-law functions. *

(* Footnote: Throughout the paper, metabolite concentra-
tions are represented as upper-case italics (X). An upper-
case boldface variable (L) represents a matrix of regressor
columns and a lower-case boldface variable (y) represents
a regressand column in a linear multivariate statistical
regression model.)

The generic form of an S-system is thus

n n

: &ijj hy .

Xi zaiHXj] —ﬁiHle,l:LQ,...,n. (1)
j=1 j=1

The rate constants ¢; and f; are non-negative and the
kinetic orders g; and h;; are real numbers with typical val-
ues between -1 and +2. The S-system format allows the
inclusion of independent variables, but because these are
typically known in estimation tasks and constant, they
can be merged with the rate constants [4]. S-systems have
been discussed many times [3,4,7,8] and need no further
explanations here.

Decoupling of differential equations

Suppose the S-system consists of n metabolites X;, X,, ...,
X, ..., X,, and for each metabolite, a time series consisting
of N time points t;, t,, ..., t;, ..., tyhas been observed. If we
can measure or deduce the slope S;(1,) for each metabolite
at each time point, we can reformulate the system as 7 sets
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Si(t) = e[ TX¥ (1) - BTTX] (1),
j=1

j=1

Si(t2) = o T1X5 (62) - BTTXS (12),
j=1

j=1

5i(60) = o TTX5 (1) - BTTX (1),
j=1

j=1

n n
8ij hy
Si(tN ) = al-HXj’ (tN )— BIHX]] (tN )
j=1 j=1

Thus, for the purpose of parameter estimation, the origi-
nal system of n coupled differential equations can be ana-
lyzed in the form of n x N uncoupled algebraic equations
[4,9].

The uncoupling step renders the estimation of slopes a
crucial step. If the data are more or less noise-free, simple
linear interpolation, splines [10-12], B-splines [13], or the
so-called three-point method [14] are effective. If the data
are noisy, it is useful to smooth them, because the noise
tends to be magnified in the slopes. Established smooth-
ing methods again include splines, as well as different
types of filters, such as the Whittaker filter (see [15] for a
review), collocation methods [16], and artificial neural
networks [17,18]. In order to keep our illustration of the
AR method as clean as possible, we assume that true
slopes are available and elaborate on issues of experimen-
tal noise in the Discussion.

Alternating regression

The decoupling of the system of differential equations
allows us to estimate the S-system parameters ; &; f;
and h;; (i, j = 1,2,...,n) one equation at a time, using slopes
and concentration values of each metabolite at time
points t,. The proposed method called alternating regres-
sion (AR) has been used in other contexts such as spectrum
reconstruction and robust redundancy analysis [19,20],
but, to the best of our knowledge, not for the purpose of
parameter estimation from time series. The overall flow of
the method is shown in Figure 1. Adapted to our task of S-
system estimation, AR works by cycling between two
phases of multiple linear regression. The first phase begins
with guesses of all parameter values of the degradation
term in a given equation and uses these to solve for the
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Figure |
Logistic flow of parameter estimation by alternating regression.
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parameters of the corresponding production term. The
second phase takes these estimates to improve the prior
parameter guesses or estimates in the degradation term.
The phases are iterated until a solution is found or AR is
terminated for other reasons.

In pure parameter estimation tasks, the structure of the
underlying network is known, so that it is also known
which of the S-system parameters are zero and which of
the kinetic orders are positive or negative. Thus, the search
space is minimal for the problem. Nonetheless, the same
method of parameter estimation can in principle also be
used for structure identification. In this case, the estima-
tion is executed with an S-system where no parameter is a
priori set to zero and all parameters have to be estimated.
As an intermediate task, it is possible that only some of
the structure is known. This information can again be
used to reduce the search space. If it is known, for
instance, that variable X; does not affect the production or
degradation of X;, the corresponding parameter value g;; or
h;; is set equal to zero, or X; is taken out of the regression.
One can thus reduce the regression task either by con-
straining the values of some g's or h's throughout the AR
or by selecting a subset of regressors at the beginning, i.e.,
by taking some variables out of the regression. Similarly,
if a kinetic order is known to represent an inhibiting (acti-
vating) effect, its range of possible values can be restricted
to negative (positive) numbers. This constraining of
kinetic orders, while not essential, typically improves the
speed of the search. It is imaginable that a kinetic order is
constrained too tightly. In this case, the solution is likely
to show the kinetic order at the boundary, which is subse-
quently relaxed.

To estimate the parameters of the ith differential equation,
the steps of the AR algorithm are as follows:

{1} Let L, denote an (n+1) x N matrix of logarithms of
regressors X;, defined as

IOg(Xn(tl))
log(Xn(tz))

[1 log(Xl(tl))
1 log(Xl(IZ))

log( X (t1))
log(X,-(tz))
1 log(Xl(lk))

log(X; (1)) log( X, (1))

lOg(xn(tN))

E log(XI(tN)) log(Xi(tN))

L, is used in the first phase of AR to determine the param-
eter values of the production term. Additional informa-
tion on the system, if it is available, reduces the width of
L,. For instance, if X,and X,do not affect the production
of X;in a four variable system, Eq. (3) reduces to

http://www.tbiomed.com/content/3/1/25

1 log(X (1)) log(X5(t1))
1 log(X;(t;)) log(X5(ty))

bp = 1 log(Xl(tk)) log(X3(tk)) (4)

»1 log(Xl(tN)) 108(X3(t1\7))<

Analogous to L, let Ly denote the (n+1) x N matrix of
regressors used in the second phase of AR to determine the
parameter values of the degradation term. L, and L are
the same when the variables used in two phases of AR are
identical.

{2} Compute the matrices

Cp= (LTL,) LT (5)

Cq= (Lg"Lg)'Lg"  (6)

which are invariant throughout the iterative process.

{3} Select values for 3 and h;; in accordance with experi-
ence about S-system parameters (cf. [4]: Ch. 5) and make
use of any available information constraining some or all
h

ijt

n
hy; .
{4} Forallt, k=1,2, .., N, compute ﬁiHXj” , using val-
j=1
ues X;(t,) from the observed or smoothed time series

measurements.

{5} Compute the N-dimensional vector

n
h;
va =log| Si(t)+BI1X;" (t) (k=12 .., N) con-
j=1
taining transformed "observations" on the degradation
term. Note: It is possible to compute y, for all n traces

simultaneously so that Yy becomes an n x N matrix with

columns yy.
{6} Based on the multiple linear regression model
yd = Lpbp + gp (7)

estimate the regression coefficient vector b,= [a;, gij JJ=

1, 2,..., n]' by regression over the N time points. In other
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words, this step leads to an estimation of parameters in
sets of equations of the type

n
Vi =i+ . 8ij log(Xj(tk ))+ &} Specifically, com-

j=1
pute by, as

bp = (LpTLp).leTYd = Cde (8)
according to Egs. (3-5).

{7} Constrain some or all g;, if outside information on

the model suggests it.

{8} Using the observed values of Xj(t,), compute
n N
diHX;-gij forallt, k=1,2, .. N.
j=1
{9} Compute the N-dimensional vector

n N
8ij ..
yp = log OCiHX]- "(t,)—Si(t) containing the trans-
j=1
formed "observations"
term.

2

associated with the production

{10} Based on the multiple linear regression model
Yp=Laba+ea (9)

and in analogy to step {6} estimate the regression coeffi-

cient vector by = | [31, jj=1,2,..,n] by regression over

the N time points as

by=Cay, (10)

{11} Constrain some or all h;;, if outside information on

the model suggests it.

{12} Iterate Steps {4} - {11} until a solution is found or
some termination criterion is satisfied.

At each phase of AR, lack-of-fit criteria are estimated and
used for monitoring the iterative process and to define ter-
mination conditions. In this paper we use the sum of
squared y-errors (SSE; and SSE,) as optimization criteria
for the two regression phases, i.e. we compute

http://www.tbiomed.com/content/3/1/25

N
log(SSE) = log Z -9 ) | (11)

where y =L x b, L equals L, or Ly, and b is the solution
vector b, or by, estimated through regression and modi-
fied by constraints reflecting structural information. We

use the logarithm of SSE because it is superior in illustrat-
ing small changes in the residual error.

It is known that collinearity may affect the efficiency of
multivariate linear regressions. We therefore also imple-
mented methods of principal component regression
(PCR), partial least squares regression (PLSR) and ridge
regression [21]. For the cases analyzed here, these meth-
ods did not provide additional benefit.

Results and discussion

For illustration purposes, we use a didactic system with
four variables that is representative of a small biochemical
network [5]. A numerical implementation with typical
parameters is

X; =12x3%8 —10x95 X (1p) =14
X2 =8x93 —3x975 X,(tp)=27

=3X937° -5Xx3°x9? X;5(tp)=1.2 (12)
x4 =2XP —6x98 X4 (tg) =04

The system is first used to create artificial datasets that dif-
fer in their initial conditions (Table S1 of Additional file1).
In a biological setting, these may mimic different stimu-
lus-response experiments on the same system. For exam-
ple, they could represent different nutrient conditions in a
growth experiment. Figure 2 shows the branched path-
way, along with a selection of time course data (dataset 1)
and slopes.

In order not to confuse the features of AR with possible
effects of experimental noise, we use true metabolite con-
centrations and slopes; we compute the latter directly
from Eq. (12) at each time point. We initially assume that
we have observations at 50 time points, but discuss cases
with fewer points and with noise later.

Performance of AR

Given the time series data of X; and §; at every time point
t, the AR algorithm is performed for each metabolite, one
at a time. Figure S1 summarizes various patterns of con-
vergence observed. Generally we can classify the conver-
gence patterns into four types: 1) convergence to the true
value; 2) convergence to an incorrect value; 3) no conver-
gence; typically the value of ¢; (or f;) continuously
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Test system with four dependent variables. (a) time
courses computed with initial values in Eq. (12) (use dataset |
in Table S1); (b) corresponding dynamics of slopes. Typical
units might be concentrations (e.g., in mM) plotted against
time (e.g., in minutes), but the example could as well run on
an hourly scale and with variables of a different nature.

increases while all g; (or h;) gradually approach zero,
while in some other cases g; and the corresponding h;;
increase (or decrease) in a parallel manner; 4) termination
fiuring AR, due to some of the observations y, (ory,) tak-
ing on complex values.

As is to be expected, the speed of convergence depends on
the initial guesses, the variables used as regressors, the
constraints, and the data set. After a few initial iterations,

http://www.tbiomed.com/content/3/1/25

the approach of the true value is usually, though not
always, strictly monotonic. In some cases, the error ini-
tially decreases rapidly and subsequently enters a phase of
slower decrease. It is also possible that convergence is
non-monotonic, that the algorithm converges to a differ-
ent point in the search space, or that it does not converge
at all. Convergence to the wrong solution and situations
of no convergence are particularly interesting. In the case
of no convergence, the solution arrives at unreasonable
parameter values that grow without bound; this case is
very easy to detect and discard. By contrast, the search may
lead to a solution with wrong parameter values, but a sat-
isfactory residual error. Thus, the algorithm produces a
wrong, but objectively good solution. It is close to impos-
sible with any algorithm to guard against this problem,
unless one can exclude wrong solutions based on the
resulting parameter values themselves. This is actually
greatly facilitated with S-systems because all parameters
have a clearly defined meaning in terms of both their sign
and magnitude, which may help spot unrealistic solutions
with small residual error.

Reasons for AR not to converge are sometimes easily
explained, but sometimes obscure. For instance, the
slope-minus-degradation or -production expressions in
steps {5} and {9} of the algorithm may become negative,
thereby disallowing the necessary logarithmic transforma-
tion. As a consequence, the regression terminates. If this
happens, it usually happens during the first or the second
iteration, and the problem is easily solved when the initial
por ais increased. In other cases, AR converges for one
dataset, but not for another, even for the same model. This
sometimes happens if datasets have low information con-
tent, for instance, if the dynamics of a variable is affected
by a relatively large number of variables, but the observed
time course is essentially flat or simple monotonic. In this
case, convergence is obtained if one adjusts the con-
straints on some of the parameter values or selects a differ-
ent set of regressors (see below). Of importance is that
each iteration consists essentially of two linear regressions
so that the process is fast. Thus, even the need to explore
alternative settings is computationally cheap and provides
for an effective solution to the convergence problem.

Patterns of convergence

The speed and pattern of convergence depend on a com-
bination of several features, including initial guesses for
all parameters and the datasets. Overall, these patterns are
very complicated and elude crisp analytical evaluations.
This is not surprising, because even well-established algo-
rithms like the Newton method can have basins of attrac-
tion that are fractal in nature (e.g., [22]). A detailed
description of some of these issues, along with a number
of intriguing color plates describing well over one million
ARs, is presented in Additional file 1.
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Summary of convergence patterns of AR. Panel A: all variables are initially used as regressors and constraints are
imposed afterwards; Panel B: regression with the "union" of variables of both terms; Panel C: only those variables that are
known to appear in the production or degradation term, respectively, are used as regressors. Row (a): speed of convergence;
the color bars represent the numbers of iterations needed to converge to the optimum solution; Rows (b) and (c): 2D view of
the error surface superimposed with convergence trajectories with different initial values of and h; the color bars represent
the value of log(SSE). The intersections of dotted lines indicate the optimum values of parameters fand h.

Effect of initial parameter guesses

Figure 3 combines results from several sets of initial
guesses of S, and h;; (the results of the second phase of AR
are not shown, but are analogous). The data for this illus-
tration consist of observations on the first variable of data-
sets 4, 5 and 6 (see Table S1 in the Additional filel). These
are processed simultaneously as three sets of algebraic
equations at 50 time points. Thus, the parameters a;, g;3,
B, and h,;of the equation

X; = g X§5 — By X (13)

are to be estimated. As a first example, we initiate AR with
all variables (X;, ..., X,) as regressors, but constrain the
kinetic orders g;,, ;,, and g, ,to be zero after the first phase
of the regression, and the kinetic orders h;,, h;; and
h, ,after the second phase, in accordance with the known
network structure.

Figure 3A(a) shows the "heat map" of the convergence,
where the x- and y-axes represent the initial guesses of
h;;and g, respectively, and the color bar represents the

number of iterations needed for convergence. Since we
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use noise-free data, the residual error should approaches
0, which corresponds to - in logarithmic coordinates.
We use -7 instead as one of the termination criteria, which
corresponds to a result very close to the true value, but
allows for issues of machine precision and numerical
inaccuracies. Once this error level is reached, AR stops and
the number of iterations is recorded as a measure for the
speed of convergence. The unusual shape of a "martini
with olive" is due to the following. The deep blue outside
area indicates an inadmissible domain, where the initial
parameter guess causes one or more of the terms

n
Si(t, )+ ﬁiHX?’j (t),k=12,.,N in step {5} to
j=1
become negative, so that the logarithm, y,4 becomes a
complex number and the regression cannot continue. The
line separating admissible and inadmissible domains is
thus not smooth but shows the envelope of several pieces
of power-law functions where the S-term is smaller than
the (negative) slope at some time point. The "olive" inside
the glass is also inadmissible. In this case, the chosen ini-
tial value causes the term

n .
diHXfij(tk)—Si(tk),k=1,2,...,N in step {9} to
j=1

become negative, so that y, becomes complex and AR ter-

minates during the second phase. This type of termination
usually, though not always, happens during the first itera-
tion. In order to prevent it, one may a priori require that

31(tk)+ﬁ1X1h” (te)>0

for every t;, such that the logarithm is always defined. This
is possible through the choice of a sufficiently large value
for the initial guess of £ The magnitude of g should be
reasonable, however, because excessive values tend to
slow down convergence. As a matter of practically, one
may start with a value of 5 or 10 and double it if condition
(14) is violated.

(14)

Use of different variables as regressors

Panel A in Figure 3 shows results where we initially use all
variables as regressors, but constrain their kinetic orders to
zero after each iteration, if they are known to be zero. As
alternatives, Panels B and C show results of using different
variable combinations as regressors under otherwise iden-
tical conditions. In Panel B, both phases of AR use all var-
iables as regressors that appear in either the production or
the degradation term of the equation. In Panel C we make
full use of our knowledge of the pathway structure and
include in each term only the truly involved variables.

http://www.tbiomed.com/content/3/1/25

Interestingly, this choice of regressors has a significant
effect on convergence.

Compared with the case in of Figure 3A(a), the speed of
convergence is slower in Figure 3B(a) and much slower in
Figure 3C(a), even though this represents the "best-
informed" scenario. The time needed to generate the
graphs in Figures 3A(a), 3B(a), and 3C(a) for all shown
60,000 initial values is 72, 106, and 1,212 minutes,
respectively. Thus, if we suppose that roughly half of the
start points are inadmissible and require no iteration
time, the average convergence time in Figure 3A(a) is
0.144 seconds, whereas it is 0.212 seconds in Figure 3B(a)
and 2.424 seconds in Figure 3C(a). The pattern of conver-
gence is affected by the datasets used. As another example,
Figure S2 shows results of regressions with dataset 5.

Error surface

Rows (b) and (c) in Figure 3 Panels A, B, and C show heat
maps of log(SSE), where darker dots indicate smaller
errors. The true minimal value of log(SSE) for our noise-
free data is -oo, but for illustration propose, we plot it only
to -5. Pseudo-3-D graphs of the error surface are shown in
Figure S3 with views from two angles.

Convergence trajectories

Paths toward the correct solution may be visualized by
plotting and superimposing the solution at every regres-
sion step onto the corresponding heat maps, with arrow-
heads indicating the direction of each trajectory (Figures
3A(b,c), 3B(b,c), and 3C(b,c)). For the first set of illustra-
tions, four different initial values of h;;are chosen, while
the value of f,is always 40. For the second set of illustra-
tions, four different initial values of S,are chosen, while
the value of h,,is always 2. Interestingly, independent of
the start values, only two iterations are needed to reach a
point very close to the valley of the error surface where the
true solution is located. After the dramatic initial jump, all
solutions follow essentially the same trajectory with small
steps toward the true solution. We can also link the obser-
vations of Figure 3A(b) and 3A(c) to the result in 3A(a).
For the same B, a start point in the right part the graph
causes AR to jump to a more distant location on the tra-
jectory, thus requiring more iterations to converge to the
true solution.

It might be possible to speed up convergence in the flat
part of the error surface, for instance by using history-
based modeling based on conjugated gradients or partial
least squares regression [21]. These options have not been
analyzed.

Accuracy and speed of solution
The previous sections focused on the first equation of the
S-system model in Eq. (12) and Figure 2. We used the AR
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Table I: Estimated parameter values of the S-system model of the pathway in Figure 2 using log(SSE) < -7 as termination criterion. 2
Regressor: A: all variables used as regressors and subsequently constrained; B: use of "union" variables as regressors (see Text); C: fully
informed selection of regressors (see Text). b time (secs) needed to converge to the solution with log(SSE) < -7. < Convergence results
according to AR algorithm: *: convergence to the true solution; **: convergence to different solution; ***: no convergence. 4 time after
running 1,000,000 iterations. See Eq. (12) for optimal parameter values and the Additional file for further comments.

Regressor? a; g g g3 84 B h;, h; hiz hyy  log(SSE) Time(sec)®  Notec

X, A 1200 0.00 0.00 -0.80 -0.00 1000 050 -0.00 000 0.00 -6.84 0.58 *
B 12.03  -0.00 0 -080 0 10.04  0.50 0 000 0 -7.00 2.39 *

C 12.00 0 0 -0.80 0 9.99  0.50 0 0 0 -6.95 0.17 *

X, A 4450 -0.00 -0.02 -0.04 0.1 3148 003 0.14 005 -0.13 051 1071.584 o
B 8.0l 0.50  0.00 0 0 301 -000 075 0 0 -7.00 0.97 *

C 8.0l 0.50 0 0 0 3.0l 0 075 0 0 -7.00 69.05 *

X3 A 300 000 075 -000 -0.00 500 -000 000 050 0.20 -9.44 0.03 *
B 729 0 037 -000 -0.00 8.76 0 -000 0.19 004 -4.04 1117.144 oK

C 2.98 0 075 0 0 5.00 0 0 051 0.20 -7.01 0.50 *

X4 A 96.80  0.0lI 0.0l -000 000 100.00 -0.00 -0.0 000 0.2 -3.83 4.59 ok
B 9829  0.06 0 0 000 10000 -0.00 0 0 o0l -5.85 341.94 oIk

C 2016 050 0 0 0 5.99 0 0 0 080 -6.97 8491 *

algorithm in the same manner to estimate all other
parameters. Again, three sets of regressors were used for
every variable. For simplicity of discussion, we describe
the results from using dataset 1 of Table S1, always using
as initial guesses ;= 15 and h;;= 1. The results are listed in
Tables 1, S2 and S3.

For every variable, at least one of the three choices of
regressors leads to convergence to the correct solution.
Convergence is comparably fast, even if we require a very
high accuracy for termination (log(SSE) < -20) (see Table
S2). If we relax the accuracy to log(SSE) < -7 or log(SSE) <
-4, the solution is still very good, but the solution time is
noticeably decreased (Tables 1 and S3). However, the
false-positive rate increases slightly for log(SSE) < -4. As a
compromise, we use log(SSE) < -7 as termination criterion
for the remainder of this paper.

Interestingly, the speed of convergence is fastest for the
strategy "A" of using all variables as regressors; however,
the failure rate in this case is also the highest. In contrast,
the slowest speed of convergence is obtained for the cor-
rect regressors ("C"), where AR always converges to the
right solution. The regressor set "B" is between "A" and
"C" in terms of speed and ability to yield the correct opti-
mum. For cases that don't converge to the right solution
one easily adapts the AR algorithm by choosing different
start values, slightly modifying constraints, or choosing
different regressors in addition to the three types used
above. The probability of finding the correct solution is
increased if different datasets are available for sequential

or simultaneous estimation. The same was observed for
other estimation methods (e.g., [5]).

Structure identification

The previous sections demonstrated parameter estimation
for a system with known structure. Similar to this task is
the identification of the unknown structure of a pathway
from time series data, if one uses S-systems as the mode-
ling framework [5]. The only difference is that very few or
no parameters at all can a priori be set to zero or con-
strained to the positive or negative half of the search
space. A totally uninformed AR search of this type often
leads to no convergence. However, since each AR is fast, it
is feasible to execute many different searches, in which
some of the parameters are allowed to float, while others
are set equal to zero.

Table S6 shows the results of exhausting all combinations
of constraints to determine those that yield convergence.
The total time for this exhaustive search is just over one
hour. This is furthermore reduced if some a priori informa-
tion is available. As an alternative to an exhaustive search,
one may obtain constraining information from a prior
linearization of the system dynamics [23]. This method
does not identify parameter values per se, but provides
very strong clues on which variables are likely to be
involved in a given equation and which not. In the exam-
ple tested, this method provided an over 90% correct clas-
sification of the relevant variables in each equation (see
Table S7). Using this inference information, the total time
was reduced to 53 minutes.
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Finally, it is possible to sort parameter combinations by
their empirical likelihood of inclusion in an equation
[24]). For instance, a metabolite usually affects its own
degradation but usually has no effect on its own produc-
tion. Thus, a reasonable start is the parsimonious model

X;=a; - ﬂiXih"" with g; = 0 and h; > 0. In subsequent

runs, free-floating variables (parameters) are added, one
at a time. This strategy reduced the total time from one
hour to under 3 minutes (see Table S8). As illustration,
and for a second, independent example, we used the strat-
egy of Veflingstad et al. [23] to determine the regulatory
structure and parameter values of a gene regulatory net-
work model [25] that has become a benchmark in the
field. Kikuchi and collaborators [6] identified the struc-
ture of this model by using a genetic algorithm acting
directly on the five differential equation of the model.
Using a cluster of 1,040 CPUs, the solution required about
70 hours. We generated time series data from the model,
using 0.5 as initial concentration for all five variables. The
solution time needed for exhausting all constraint combi-
nations for all variables and an error tolerance of log(SSE)
= -7 was 81.2 min on a single PC. Interestingly, the false-
positive rate in this case was higher in this system as com-
pared to the example above. The time needed for the hier-
archical strategy proposed by Marino and Voit [24] was
6.38 mins. The parameter values of metabolites X;, X,, X,,

and X, were found correctly, but the parameters associ-
ated with X; were not all identified, even though the error

satisfied our termination criterion (log(SSE) < -7), indicat-
ing that a different solution with essentially zero-error
exists in this equation. This result interestingly echoes the
result based on linearization, as proposed by Veflingstad
et al. [23]. The reason is probably that X, contributes to

both the production term and the degradation term of X;

with the same kinetic order (-1) and that the time course
is not very informative. Also similar to Veflingstad's
results, when we used different initial concentrations to
perturb X,and X; more strongly, AR yielded the correct

solution.

Conclusion

Biological system models are usually nonlinear. This
renders the estimation of parameter values a difficult
problem. S-systems are no exception, but we have shown
here that their regular structure offers possibilities for
restructuring the estimation problem that are uniquely
beneficial. Specifically, the combination of the previously
described method of decoupling with the alternating
regression technique proposed here dramatically reduces

http://www.tbiomed.com/content/3/1/25

estimation time. Since the AR algorithm essentially con-
sists of iterative linear regressions, it is extremely fast. This
makes it feasible to explore alternative settings or initial
guesses in cases where a particular initiation fails to lead
to convergence.

Methods of parameter estimation, and the closely related
task of structure identification, naturally suffer from com-
binatorial explosion, which is associated with the number
of equations and the much faster increasing number of
possible interactions between variables, which show up as
parameters in the equations. The proposed method of
decoupling behaves much better in this respect than most
others (cf. [5,24]). In practical applications, the increase in
the number of combinations is in most cases vastly less
than theoretically possible, because the average connectiv-
ity of a biological network is relatively small (<<O(n2);

e.g., [26]).

The patterns of convergence are at this point not well
understood. Some issues were discussed in the Results sec-
tion and others are detailed in Additional file 1. From
these numerical analyses it is clear that convergence
depends in a very complicated fashion on the dataset, the
constraints, the choice of regressors, and the structure and
parameter values of the system. Given that even the con-
vergence features of the Newton algorithm are not fully
understood [22], it is unlikely that simple theorems will
reveal the convergence patterns of AR in a general manner.

The speed of convergence is also affected by the starting
guesses, the choice of regressors, the constraints imposed,
and the data set. From our analyses so far it seems that if
initially more regressors are used than actually needed,
and if they are secondarily constrained, AR converges the
fastest. However, a loosely constrained selection of regres-
sors also has a higher chance of convergence to a wrong
solution or never to converge. This is especially an issue if
the time series are not very informative; for instance, if the
system is only slightly perturbed from its steady state. By
contrast, when fewer regressors are used, the speed of con-
vergence is slower, but the chance of reaching the optimal
solution is increased. A possible explanation of this phe-
nomenon is that more regressors offer more degrees of
freedom in each regression, which results in more leeway
but also in an increased chance for failure. If AR does not
converge, choosing different datasets, using different
regressors, or slightly relaxing or tightening the con-
straints often yields convergence to the correct solution.
Most importantly, in all cases of convergence the solution
is obtained very quickly in comparison to other methods
that attempt to estimate parameters directly via nonlinear
regression on the differential equations.
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At this stage we have deduced optimized solutions for
each metabolite separately. In other words, we have not
accounted for constraints among equations, such as stoi-
chiometric precursor-product or branch point relation-
ships. Also, it seems that similar methods should be
efficacious for the estimation of Generalized Mass Action
systems [4]. These issues will be the subject of further
study. We have also assumed that the data are error-free.
This assumption was made to identify advantages and
failures of the AR algorithm in a fashion as unobstructed
as possible. Also, as we typically smooth raw data before
estimating parameter values, the analysis of noisy data
seems to depend more on the quality of smoothing than
on AR itself. The same is the case for data that do not stem
from S-system models, where the quality of the estimation
is driven by the accuracy of the S-system representation.
Future studies will elucidate how sensitive to experimen-
tal error the algorithm is.

Like any other estimation algorithm, AR is not a panacea.
However, our studies so far provide strong indication that
this algorithm is much faster than nonlinear algorithms
that one can afford to test quite a number of false starts
and explore multiple combinations of initial guesses.
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