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Parameter estimation in epoch folding analysis
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Abstract. — We describe a procedure that we have implemented to use epoch folding to estimate pulse period,
shape, amplitude and phase (with uncertainties) for coherent oscillations in time series data. We improve on traditional
techniques by fitting the x? as a function of test period with a response function which takes into account both data
sampling and the oscillation pulse shape. It is shown that the epoch folding procedure makes optimum usage of the full
pulse shape information, or equivalently all its Fourier components, in the period determination. An analytic expression
for the period error is also given for this general, non-sinusoidal, case. The error estimate, which is equivalent to that
for a least-squares fit of a set of harmonically related Fourier components, is verified by Monte Carlo simulations.
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1. Introduction

The problem of estimating periodicities in time series data
is common in astronomy as well as in many other sci-
ences. A large variety of methods, with different statis-
tical properties, are in use. The choice of the method,
such as Fourier transform, epoch folding, Rayleigh fold-
ing, etc., will depend on signal-to-noise ratio, data length,
evenness of sampling and on the character of the signal to
be analyzed. In this paper we will consider epoch folding,
which is often used in cases where one wants to search
for a coherent signal in large amounts of data with low
or moderate signal-to-noise ratio. One advantage of epoch
folding is that it is more easily applied to cases of non-
evenly sampled data than e.g. Fourier methods. Investi-
gations of the statistical properties of epoch folding have
mainly concerned the estimate of detection significances
(Schwarzenberg-Czerny 1989 and Davies 1990, 1991). In
this paper we describe a procedure by which we use epoch
folding to estimate pulse period, shape, amplitude and
phase (with uncertainties) for a single coherent oscillation
in time series data. Our two main improvements of the
traditional epoch folding techniques are: 1. We estimate
the oscillation period by fitting a x? response function
which takes into account both data sampling and oscilla-
tion pulse shape. 2. We give an analytic expression for the
period uncertainty in the general, non-sinusoidal case, and
show that our method gives errors consistent with basic
statistical limits for least-squares fits to the time series.
For non-sinusoidal oscillations the epoch folding automat-
ically adds together the signal of all harmonic components,

so that the period determination makes maximum use of
the available information. Our parameter estimation pro-
cedure works well also for non-evenly sampled data, and
as long as the sampling is reasonably even the error es-
timates will still provide quite reliable uncertainty limits
for the oscillation parameters.

2. Method

In most applications of epoch folding, x? (over the folded
pulse) is calculated for a range of test periods and the oscil-
lation period is taken as the period at the largest x? value
or at the x? maximum estimated from a polynomial fit
near the peak. A suggestion by Leahy (1987) to estimate
period and amplitude by fitting an analytic x? function
to X?(Piest) Was the starting point for the development of
our estimation procedure.

In summary the analysis contain the following steps
which will be further elaborated below.

1. Calculate x? as a function of test folding period.

2. Calculate the x? response function by sampling a syn-
thetic pulse at the same times as the data. Then fit
this x2 function to that of the data to estimate pulse
period and amplitude.

3. Fold the data with the best fit period and make a
Fourier decomposition of the pulse profile.

4. Using the Fourier pulse determination, go back to step
2. It is in most cases sufficient to rerun steps 2 & 3
only once or twice.
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2.1. Calculating x>

In epoch folding the data is folded modulo a test period
and coadded into Ny, phase bins. We then calculate

Do (2 — 7)?
=y Eor (1)
i=1 i

so that x2 ~ N}, —1 if the scatter of the bin points over the
pulse cycle is as expected for Gaussian noise with standard
deviations o;. A high x? value (> N}, — 1) will signal the
presence of a periodicity for which the significance can be
estimated from the y? distribution function for N, — 1
degrees of freedom. We want to make two comments on
our definition and use of x? from Eq. (1). First, since our
aim is to determine the parameters for an oscillation we
already know (or assume) is in the data, the o; values are
calculated from either the variance of the data points in
each phase bin or from initial error estimates associated
to each data point. To estimate the significance of a x?2
value the standard deviations should instead (under the
null hypothesis) be defined as 0; = 01ot/+/7i, Where ooy is
the standard deviation of the unfolded time series and n;
is the number of data points in bin 4. Secondly, for short
time series a more proper test statistic than x? is to use the
L-statistic for estimates of significances (Schwarzenberg-
Czerny 1989 and Davies 1990, 1991).

2.2. Estimating pulse period

Just as in the case of power density spectra the peak in
the x?(Piest) is a broadened function with sidelobes. The
X%(Piest) function depends on the time series sampling
and length as well as on the pulse shape. For an evenly
sampled sinusoidal signal x? o sin’(z)/z? (Leahy 1987)
as shown in Fig. 1. Leahy suggested that the pulsation
period and amplitude be determined by fitting the an-
alytic x2-function for a sinusoid to x?(Piest) calculated
from the data. From Monte Carlo simulations Leahy also
gave a relation for estimating the uncertainty in the pe-
riod and amplitude determinations. To estimate the error
in period we instead use an analytic expression derived for
power density spectra and least-squares fitted sinusoids.
Kovécs (1980) estimated the frequency shift in power den-
sity spectra by nearby white noise frequency components
and found the gaussian frequency error to be

- \/iao—tot 2)
T UNAT

In this equation, N is the total number of data points,

A is the sinusoidal amplitude and T is the total time length
for the data. For the parameter a, Kovacs had to rely on
a Monte Carlo estimate which gave a value of a =~ 0.45.
Gilliland & Fisher (1985), in the analysis of chromospheric
activity data, also used Eq. (2) but with a value corre-

sponding to a = 0.53. An expression which is essentially
the same as Eq. (2) is given by Bloomfield (1976),
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Since w is given in radians per sampling time interval
this corresponds to a = 0.551. Note that Bloomfield as-
sumes that the time series is evenly sampled. Using the
analytic value of a derived by Bloomfield, we can rewrite
Eq. (2) in terms of period error as,

Ow = + smaller terms, (3)
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Let us now consider a non-sinusoidal oscillation. In this
case the time series can be described as a set of Fourier
components with frequencies, v, = kv;. Since the frequen-
cies are related by exact (integer) multiples, it is possible
to increase the precision of the period determination by
taking a weighted mean of the fundamental period asso-
ciated with these harmonics. In epoch folding this is done
automatically since the higher harmonics are folded with
k cycles over one fundamental pulse cycle. We can then
also generalize Eq. (4) to give

Pt (4)
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mENT?2 Y0 k2A3
To apply this estimate in practice we need to know the
harmonic content of the signal, which is determined in the
next step of the analysis.
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Fig. 1. The plot shows the expected x? calculated over the
pulse shape as a function of the folding period when the evenly
sampled time series contains a pure sinusoidal oscillation

2.3. Fourier decomposition of the pulse profile

The Fourier decomposition is done as follows. The best fit
period gives a folded pulse with value x; and standard er-
ror o; (in bin 7). After subtraction of the mean, the number
of degrees of freedom is Ny, — 1. Each Fourier component
has two parameters so fitting (N, —1)/2 harmonics will ab-
sorb all white noise in the folded pulse, or equivalently the
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white noise power per fitted harmonic is o /[( N, — 1)/2].
After a linear regression fit of the desired number of
Fourier components, this white noise contribution should
be subtracted from each harmonic variance (4% /2). Each
harmonic is fitted as ay, sin(kw1t)+by cos(kw1t) from which
the phase for each harmonic can be calculated. The fitted
amplitude values have to be corrected for binning, which
is done by multiplying with the factor

1 1
Ny) = = , 6
9(NVy) NGO \/1_%+% (6)

(where f(Np) is the related factor used by Leahy 1987.)

To select significant Fourier components we use the
uncorrected amplitudes and the noise variance to estimate
the false alarm probability for each component. This can
be done in the same way as for peaks in power density
spectra. In our case we have error estimates for the points
in the pulse profile, so we can test the significance of each
Fourier amplitude.

For Gaussian white noise, the variance estimates, Vj,
at the Fourier frequencies are independently distributed
with a probability distribution proportional to a x? with
two degrees of freedom, i.e.

Vi
5 = X% ) (7)
o,

This distribution is exponential and gives a probability
for V4 /0—]2Vb to be larger than some value, z of (see e.g.

Priestley 1981, p. 388),

O'Nb

2.4. Iteration

For the Fourier decomposition we now select the compo-
nents with amplitudes above some significance level, using
the result in Eq. (8). This Fourier pulse is then sampled at
the same time points as the data and a new x2 response
function is calculated and fitted to the x2-values for the
data. It is usually sufficient to rerun steps 2 & 3, only once
or twice.

3. Example and verification

In order to verify our parameter and uncertainty estima-
tion procedure we have made extensive Monte Carlo sim-
ulations injecting coherent oscillations with a range of dif-
ferent pulse shapes and signal-to-noise ratios. In each case
the error estimates were compared with the standard de-
viation in the parameter estimates for some 200 to 1000
simulations. The results from these simulations were found
to be consistent with the estimates in Sect. 2. In particu-
lar the deviation of the period estimate for a set of 2400
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Fig. 2. a-c). An example of a data simulation used to test
the analysis procedure. The data is evenly sampled (25 points
per time unit) except for the two time gaps. a) The full time
series, 2024 points. b) The first part of the time series without
any noise added. The injected oscillation has a period equal
to one and is composed of two equally strong (A = 5) Fourier
components (the fundamental and the first overtone). ¢) The
same time series segment as in b) but after adding Poisson
noise
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Fig. 3. a-b). x? calculated over the pulse shape for a range
of different folding periods near the true fundamental period.
The solid line is for the simulated data plotted in Fig. 2a. a)
Best fit (dashed curve) theoretical x2-function for the case of
a sinusoidal oscillation. b) Best fit (dashed curve) numerically
calculated x2-function for the particular data sampling and
pulse shape (determined from the folded pulse) of this simula-
tion

simulations containing a single sinusoidal oscillation was
compared to the predicted value from our Eq. (4). The
ratio of the observed to predicted standard deviation was
1.026+0.018. The corresponding value for the parameter a
is 0.565+0.010, to be compared with the theoretical value
of 0.551 and the estimates of 0.45 and 0.53 given by Kovécs
(1980) and Gilliland & Fisher (1985) respectively. In our
simulation the data was folded in 16 phase bins. The bin-
ning effectively reduces the amplitude of the folded data
by the factor 1/ f(Ny) (see Eq. (6)). The expected stan-
dard deviation does therefore, in this case, correspond to
a = 0.555 so our simulation estimate of a is consistent
with the analytic expression to within the statistical un-
certainty (1o). Note that these results were obtained for
evenly sampled data. As already mentioned the error es-
timates will be quite reasonable also for mildly non-even
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Fig. 4. a-c). Oscillation pulse shapes (two cycles). a) Pulse
shape obtained by folding the simulated data at the best fit pe-
riod. b) Fourier pulse obtained by fitting Fourier components
to the pulse in f. ¢) The shape of the original pulse injected
into the simulation
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sampling. One example of a simulations with two substan-
tial data gaps is shown together with analysis results in
Figs. 2-4. The simulated data is shown in Figs. 2 a-c with
a blow up of the first 10% of the data to show the injected
oscillation (with two equally strong Fourier components)
before and after the Poisson noise was added. The calcu-
lated x? as a function of test period is plotted in Figs. 3a
and 3b. In the first of these figures it is shown together
with the best fit x2 function for an evenly sampled sinu-
soid. The narrow width of the x2 peak compared to that of
the analytic function is because it contains a Fourier com-
ponent also at the first harmonic. A more precise period
determination is of course possible when the peak is more
narrow. This is just a graphical representation of how the
period error in Eq. (5) depends on the harmonic content of
the pulse shape. In Fig. 3b we show the resulting fit after
we have applied our full parameter estimation procedure.
It is clear from this fit that most of the x? modulation
pattern is an effect of windowing and pulse shape. Finally
in Fig. 4 we compare the pulse shape of the inject oscilla-
tion with the folded pulse shape for the best fit period and
the pulse shape resulting from the Fourier decomposition
of the folded pulse.

For unevenly sampled data the uncertainty in the pe-
riod estimate depends on the actual sampling distribution.
The more asymmetric and clumped the data distribution
is, the larger is the deviation of errors from the estimate of
Eq. (5). For data that consist of evenly sampled segments
separated by gaps (such as in Fig. 2) Eq. (5) will remain a
good error estimate as long as the data is not strongly con-
centrated to one part of the total time range. This is what
one would expect intuitively, but it is also what we found
from simulations with 1—12 data gaps covering up to 99%
of the length of the time series. The two most extensive
sets of simulations that we ran gave period deviations cor-
responding to a = 0.469 4 0.022 and 0.532 £ 0.037. The
first set consisted of 380 simulations with a sampling dis-
tribution almost identical to that in Fig. 2, i.e. 2024 points
that were evenly sampled except for two gaps covering a
fraction 0.74 of the total time series length. The second set
of 160 simulations had the same number of points, total
length and gap fraction but with six gaps instead of two.
These gaped data simulations were made with the same
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pulsation parameters as in the previous example (Figs.
2-4).

In the limit of a time series with few data points our
folding procedure provides no advantage to directly fitting
Fourier components to the data. The method can still be
applied in such cases however, as long as there is good, but
not necessarily complete, coverage of the oscillation cycle.
Also, for time series with gaps the length of data sub-
segments with respect to the oscillation period will only
have an affect on the aliasing problem (the sidelobe pat-
tern of the x? function) and not on the applicability of the
method. This last statement is true if the time series con-
tains no variability component in addition to the coherent
oscillation and the white noise. This is really the most
important assumption on which our analysis procedure is
based. It is also the main limitation that has to be con-
sidered when applying the method to real observational
data.

4. Summary

We have presented a procedure by which epoch folding
is used to estimate pulse period, shape, amplitude and
phase for coherent oscillations in time series data. We also
give a generalized analytic expression for the uncertainty
in the period estimate. The error estimate is verified by
Monte Carlo simulations for evenly sampled data with and
without data gaps.
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