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Abstract

Background: The development of large-scale kinetic models is one of the current key issues in computational

systems biology and bioinformatics. Here we consider the problem of parameter estimation in nonlinear dynamic

models. Global optimization methods can be used to solve this type of problems but the associated computational

cost is very large. Moreover, many of these methods need the tuning of a number of adjustable search parameters,

requiring a number of initial exploratory runs and therefore further increasing the computation times.

Here we present a novel parallel method, self-adaptive cooperative enhanced scatter search (saCeSS), to accelerate

the solution of this class of problems. The method is based on the scatter search optimization metaheuristic and

incorporates several key new mechanisms: (i) asynchronous cooperation between parallel processes, (ii) coarse and

fine-grained parallelism, and (iii) self-tuning strategies.

Results: The performance and robustness of saCeSS is illustrated by solving a set of challenging parameter

estimation problems, including medium and large-scale kinetic models of the bacterium E. coli, bakerés yeast S.

cerevisiae, the vinegar fly D. melanogaster, Chinese Hamster Ovary cells, and a generic signal transduction network.

The results consistently show that saCeSS is a robust and efficient method, allowing very significant reduction of

computation times with respect to several previous state of the art methods (from days to minutes, in several cases)

even when only a small number of processors is used.

Conclusions: The new parallel cooperative method presented here allows the solution of medium and large scale

parameter estimation problems in reasonable computation times and with small hardware requirements. Further, the

method includes self-tuning mechanisms which facilitate its use by non-experts. We believe that this new method

can play a key role in the development of large-scale and even whole-cell dynamic models.
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Background
Computational simulation and optimization are key top-

ics in systems biology and bioinformatics, playing a central

role in mathematical approaches considering the reverse

engineering of biological systems [1–9] and the handling

of uncertainty in that context [10–14]. Due to the signif-

icant computational cost associated with the simulation,

calibration and analysis of models of realistic size, several

authors have considered different parallelization strate-

gies in order to accelerate those tasks [15–18].
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Recent efforts have been focused on scaling-up the

development of dynamic (kinetic) models [19–25], with

the ultimate goal of obtaining whole-cell models [26, 27].

In this context, the problem of parameter estimation in

dynamic models (also known as model calibration) has

received great attention [28–30], particularly regarding

the use of global optimization metaheuristics and hybrid

methods [31–35]. It should be noted that the use of multi-

start local methods (i.e. repeated local searches started

from different initial guesses inside a bounded domain)

also enjoys great popularity, but it has been shown to

be rather inefficient, even when exploiting high-quality

gradient information [35]. Parallel global optimization
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strategies have been considered in several system biology

studies, including parallel variants of simulated annealing

[36], evolution strategies [37–40], particle swarm opti-

mization [41, 42] and differential evolution [43].

Scatter search is a promising metaheuristic that in

sequential implementations has been shown to outper-

form other state of the art stochastic global optimization

methods [35, 44–50]. Recently, a prototype of cooper-

ative scatter search implementation using multiple pro-

cessors was presented [51], showing good performance

for the calibration of several large-scale models. How-

ever, this prototype used a simple synchronous strategy

and small number of processors (due to inefficient com-

munications). Thus, although it could reduce the compu-

tation times of sequential scatter search, it still required

very significant efforts when dealing with large-scale

applications.

Here we significantly extend and improve this method

by proposing a new parallel cooperative scheme, named

self-adaptive cooperative enhanced scatter search

(saCeSS) that incorporates the following novel strategies:

• the combination of a coarse-grained

distributed-memory parallelization paradigm and an

underlying fine-grained parallelization of the

individual tasks with a shared-memory model, in

order to improve the scalability.
• an improved cooperation scheme, including an

information exchange mechanism driven by the

quality of the solutions, an asynchronous

communication protocol to handle inter-process

information exchange, and a self-adaptive procedure

to dynamically tune the settings of the parallel

searches.

We present below a detailed description of saCeSS,

including the details of a high-performance implementa-

tion based on a hybrid message passing interface (MPI)

and open multi-processing (OpenMP) combination. The

excellent performance and scalability of this novel method

are illustrated considering a set of very challenging param-

eter estimation problems in large-scale dynamic models

of biological systems. These problems consider kinetic

models of the bacterium E. coli, bakerés yeast S. cere-

visiae, the vinegar fly D. melanogaster, Chinese Hamster

Ovary cells and a generic signal transduction network.

The results consistently show that saCeSS is a robust and

efficient method, allowing a very significant reduction

of computation times with respect to previous meth-

ods (from days to minutes, in several cases) even when

only a small number of processors is used. Therefore, we

believe that this new method can play a key role in the

development of large-scale dynamic models in systems

biology.

Methods

Problem statement

Here we consider the problem of parameter estimation

in dynamic models described by deterministic nonlinear

ordinary differential equation models. However, it should

be noted that the method described below is applicable to

other model classes.

Given such amodel and ameasurements data set (obser-

vations of some of the dynamic states, given as time-

series), the objective of parameter estimation is to find the

optimal vector p (unknown model parameters) that min-

imizes the mismatch between model predictions and the

measurements. Such a mismatch is given by a cost func-

tion, i.e. a scalar function that quantifies the model error

(typically, a least-squares or maximum likelihood form).

The mathematical statement is therefore a nonlinear

programming (NLP) problem with differential-algebraic

constraints (DAEs). Assuming a generalized least squares

cost function, the problem is:

Find p to minimize

J =

nε
∑

ε=1

nε
o

∑

o=1

nε,o
s

∑

s=1

(ymε,o
s − yε,o

s (p))TW (ymε,o
s − yε,o

s (p))

(1)

where nε is the number of experiments, nǫ
o is the num-

ber of the observables which represent the state vari-

ables measured experimentally, ymε,o
s corresponds with

the measured data, nǫ,o
s is the number of the samples per

observable per experiment, yε,o
s (p) are the model predic-

tions andW is a scaling matrix that balances the residuals.

In addition, the optimization above is subject to a num-

ber of constraints:

ẋ = f (x,p, t) (2)

x(to) = xo (3)

y = g(x,p, t) (4)

heq(x, y,p) = 0 (5)

hin(x, y,p) ≤ 0 (6)

pL ≤ p ≤ pU (7)

where f is the nonlinear dynamic problem with the

differential-algebraic constraints (DAEs), x is the vector

of state variables and xo are their initial conditions; g is

the observation function that gives the predicted observed

states (y is mapped to ys in Eq. 1); heq and hin are equality

and inequality constraints; and pL and pU are upper and

lower bounds for the decision vector p.
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Due to the non-convexity of the parameter estimation

problem above, suitable global optimization must be used

[31, 33, 35, 52–54]. Previous studies have shown that the

scatter search metaheuristic is a very competitive method

for this class of problems [35, 44, 45].

Scatter search

Scatter search (SS) [55] is a population based metaheuris-

tic for global optimization that constructs new solutions

based on systematic combinations of the members of a

reference set (called RefSet in this context). The RefSet

is the analogous concept to the population in genetic

or evolutionary algorithms but its size is considerably

smaller than in those methods. A consequence is that the

degree of randomness in scatter search is lower than in

other population based metaheuristic and the generation

of new solutions is based on the combination of the Ref-

Set members. Another difference between scatter search

and other classical population based methods is the use of

the improvement method which usually consists of local

searches from selected solutions to accelerate the conver-

gence to the optimum in certain problems, turning the

algorithm into a more effective combination of global and

local search. This improvement method can of course be

ignored in those problems where local searches are very

time-consuming and/or inefficient.

Figure 1 shows a schematic representation of a basic

Scatter Search algorithm where the steps of the popular

five-step template [56] are highlighted. Classical scatter

search implementations update the RefSet by replacing the

worst elements with new ones which outperform their

quality. In continuous optimization, as is the case of the

problems considered in the present study, this can lead to

premature stagnation and lack of diversity among the Ref-

Setmembers. The scatter search version used in this work

as a starting point is based on a recent implementation

[45, 57], named enhanced scatter search (eSS), in which

the population update is carried out in a different way so

as to avoid stagnation problems and increase the diversity

of the search without losing efficiency.

Basic pseudocodes of the eSS algorithm are shown in

Algorithms 1 (main routine) and 2 (local search). The

method begins by creating and evaluating an initial set of

ndiverse random solutions within the search space (line 4).

Then, the RefSet is generated using the best solutions

and random solutions from the initial set (line 6). When

all data is initialized and the first RefSet is created, the

eSS repeats the main loop until the stopping criterion is

fulfilled.

These main steps of the algorithm are briefly described

in the following lines:

1. RefSet order and duplicity check: The members of

the RefSet are sorted by quality. After that, if two (or

more) RefSet members are too close to one another,

one (or more) will automatically be replaced by

random solutions (lines 8-12). These comparisons are

performed pair to pair for all members of the Refset,

Fig. 1 Schematic representation of a basic Scatter Search algorithm
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considering normalized solutions: every solution

vector is normalized in the interval [0, 1] based on

the upper and lower bounds. Thus, two solutions are

“too close” to each other if the maximum difference

of its components is higher than a given threshold,

with a default value of 1e-3. This mechanism

contributes to increase the diversity in the RefSet
thus preventing the search from stagnation.

2. Solution combination: This step consists in pair-wise

combinations of the RefSet members (lines 13-23).

The new solutions resulting from the combinations

are generated in hyper-rectangles defined by the

relative position and distance of the RefSet members

being combined. This is accomplished by doing

linear combinations in every dimension of the

solutions, weighted by a random factor and bounded

by the relative distance of the combined solutions.

More details about this type of combination can be

found in [57].

3. RefSet update: The solutions generated by

combination can replace the RefSet members if they

outperform their quality (line 53). In order to preserve

the RefSet diversity and avoid premature stagnation,

a (1+λ)[58] evolution strategy is implemented in this

step. This means that a new solution can only replace

that RefSet member that defined the hyper-rectangle

where the new solution was created. In other words,

a solution can only replace its “parent”. What is

more, among all the solutions generated in the same

hyper-rectangle, only the best of them will replace

the “parent”. This mechanism avoids clusters of

similar solutions in early stages of the search which

could produce premature stagnation.

4. Extra mechanisms: eSS includes two procedures to

make the search more efficient. One is the so-called

“go-beyond” strategy and consists in exploiting

promising search directions. If a new solution

outperforms its “parent”, a new hyper-rectangle

following the direction of both solutions and beyond

the line linking them is created. A new solution is

created in this new hyper-rectangle, and the process

is repeated varying the hyper-rectangle size as long as

there is improvement (lines 24-49). The second

mechanism consists in a stagnation checking. If a

RefSet solution has not been updated during a

predefined number of iterations, we consider that it

is a local solution and replace it with a new random

solution in the RefSet. This is carried out by using a

counter (nstuck) for each RefSet member (lines 54-59).

5. Improvement method. This is basically a local search

procedure that is implemented in the following form

(see Algorithm 2): when the local search is activated,

we distinguish between the first local search (which

is carried out from the best found solution after

local.n1 function evaluations), and the rest. Once the

first local search has been performed, the next ones

take place after local.n2 function evaluations from

the previous local search. In this case, the initial point

is chosen from the new solutions created by

combination in the previous step, balancing between

their quality and diversity. The diversity is computed

measuring the distance between each solution and all

the previous local solutions found. The parameter

balance gives more weight to the quality or to the

diversity when choosing a candidate as the initial

point for the local search. Once a new local solution

is found, it is added to a list. There is an exception

when the best_sol parameter is activated. In this case,

the local search will only be applied over the best

found solution as long as it has been updated in the

incumbent iteration. Based on our previous

experience, this strategy is only useful in certain

pathological problems, and should not be activated

by default.

For further details on the eSS implementation, the

reader is referred to [45, 57].

Parallelization of enhanced Scatter Search

The parallelization of metaheuristics pursues one or more

of the following goals: to increase the size of the prob-

lems that can be solved, to speed-up the computations,

or to attempt a more thorough exploration of the solution

space [59, 60]. However, achieving an efficient paralleliza-

tion of a metaheuristic is usually a complex task since the

search of new solutions depends on previous iterations

of the algorithm, which not only complicates the par-

allelization itself but also limits the achievable speedup.

Different strategies can be used to address this problem:

(i) attempting to find parallelism in the sequential algo-

rithms and preserving their behavior; (ii) finding parallel

variants of the sequential algorithms and slightly vary-

ing their behavior to obtain a more easily parallelizable

algorithm; or (iii) developing fully decoupled algorithms,

where each process executes its part without communica-

tion with other processes, at the expense of reducing its

effectiveness.

In the case of the enhanced scatter search method,

finding parallelism in the sequential algorithm is straight-

forward: themajority of time-consuming operations (eval-

uations of the cost function) are located in inner loops (e.g.

lines 13-23 in Algorithm 1) which can be easily performed

in parallel. However, since the main loop of the algorithm

(line 7 in Algorithm 1) presents dependencies between

different iterations and the dimension of the combina-

tion loop is rather small, a fine-grained parallelization

would limit the scalability in distributed systems. Thus, a

more effective solution is a coarse-grained parallelization
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Algorithm 1: Basic pseudocode of eSS

1 Set parameters: dim_refset, best_sol, local.n1, local.n2, balance, ndiverse;
2 Initialize nstuck , neval;
3 local_solutions = ∅;
4 Create set of random ndiverse solutions and evaluate them;
5 neval = neval + ndiverse;
6 Generate the initial RefSet with dim_refset solutions with the best

solutions and random elements from ndiverse;
7 repeat

8 Sort RefSet by quality RefSet = {x1, x2, . . . , xdim_refset} so that

f (xi) ≤ f (xj) where i, j ∈[ 1, 2, . . . , dim_refset] and i < j;

9 ifmax
(

abs
(

xi−xj

xj

))

≤ ǫ with i < j then

10 Replace xj in the RefSet by a random solution and evaluate it;
11 neval = neval + 1;

12 end

13 y = ∅;
14 for i = 1 to dim_refset do
15 for j = 1 to dim_refset do
16 if i �= j then
17 Combine xi with xj to generate a new solution, yi,j ;

18 y = y ∪ {yi,j};

19 Evaluate yi,j ;

20 end

21 end
22 neval = neval + dim_refset − 1;

23 end

24 for i = 1 to dim_refset do
25 yi,∗ = best solution in yi,j∀j ∈[ 1, 2, . . . dim_refset] ; j �= i;

26 if f (yi,∗) < f (xi) then
27 Label xi;

28 xtemp = xi;
29 improvement = 1;
30 � = 1;

31 while f (yi,∗) < f (xtemp) do
32 Create a new solution, xnew, in the hyper-rectangle

defined by;

33

[

yi,∗ −
(xtemp−yi,∗)

�
, yi,∗

]

;

34 xtemp = yi,∗;

35 yi,∗ = xnew ;
36 neval = neval + 1;

37 y = y ∪ {yi,∗};
38 improvement = improvement + 1;
39 if improvement = 2 then
40 � = �/2;
41 improvement = 0;

42 end

43 end

44 if f (yi,∗) < fbest then
45 xbest = yi,∗;

46 fbest = f (yi,∗);

47 end

48 end

49 end

50 if local search is activated then
51 Apply local search routine (see Algorithm 2);
52 end

53 Replace labeled RefSet members by their corresponding yi,∗ and
reset nstuck(i);

54 nstuck(j) = nstuck(j) + 1 where j is the index of a not labeled RefSet
member;

55 for i = 1 to dim_refset do
56 if nstuck(i) > nchange then
57 Replace xi ∈ RefSet by a random solution and set

nstuck(i) = 0;

58 end

59 end

60 until stopping criterion is met;

Algorithm2: Pseudocode of the local search procedure

1 if best_sol is activated then
2 if xbest was updated since last iteration then
3 Apply local search over xbest;
4 end
5 else
6 if local_solutions = ∅ then
7 if neval ≥ local.n1 then
8 Apply local search over xbest;
9 end

10 else
11 if neval ≥ local.n2 then
12 Sort y by quality, creating yq = {y1q, y

2
q, . . . y

m
q }

where f (yiq) ≤ f (y
j
q) if i < j;

13 Compute the minimum distance between
each element i ∈[ 1, 2, . . . ,m] in y and all the
local optima found so far.
dmin(i) = min ||yi − local_solutions||2;

14 Sort y by diversity, creating

yd = {y1d , y
2
d , . . . y

m
d } where dmin(i) ≥ dmin(j)

if i < j;

15 for each solution yk ∈ y do

16 score(yk) = (1 − balance) · i + balance · j

17 where i is the index of yk in yq and j is

the index of yk in yd;
18 end
19 Apply local search over

yl : score(yl) = min score(y)
20 end
21 end
22 end
23 Produce a local solution z∗;
24 if z∗ /∈ local_solutions then
25 local_solutions = local_solutions ∪ {z∗};
26 end
27 if f (z∗) < fbest then
28 xbest = z∗;
29 fbest = f (z∗);
30 end
31 neval = 0

that implies finding a parallel variant of the sequential

algorithm. An island-model approach [61] can be used,

so that the reference set is divided into subsets (islands)

where the eSS is executed isolated and sparse individual

exchanges are performed among islands to link different

subsets. This solution drastically reduces the communi-

cations between distributed processes. However, its scal-

ability is again heavily restrained by the small size of the

reference set in the eSS method. Reducing the already

small reference set by dividing it between the different

islands will have a negative impact on the convergence

of the eSS. Thus, building upon the ideas outlined in

[51], here we propose an island-based method where each

island performs an eSS using a different RefSet, while

they cooperate modifying the systemic properties of the

individual searches.



Penas et al. BMC Bioinformatics  (2017) 18:52 Page 6 of 24

Current High Performance Computing (HPC) systems

include clusters of multicore nodes that can benefit from

the use of a hybrid programming model, in which a mes-

sage passing library, such as MPI (Message Passing Inter-

face), is used for the inter-node communications while a

shared memory programming model, such as OpenMP,

is used intra-node. Even though programming using a

hybrid MPI+OpenMP model requires some effort from

application developers, this model provides several advan-

tages such as reducing the communication needs and

memory consumption, as well as improving load balance

and numerical convergence [62].

Thus, the combination of a coarse-grained paralleliza-

tion using a distributed-memory paradigm and an under-

lying fine-grained parallelization of the individual tasks

with a shared-memory model is an attractive solution for

improving the scalability of the proposal. A hybrid imple-

mentation combining MPI and OpenMP is explored in

this work. The proposed solution pursues the develop-

ment of an efficient cooperative enhanced Scatter Search,

focused on both the acceleration of the computation by

performing separate evaluations in parallel and the con-

vergence improvement through the stimulation of the

diversification in the search and the cooperation between

different islands. MPI is used for communication between

different islands, that is, for the cooperation itself, while

OpenMP is used inside each island to accelerate the

computation of the evaluations. Figure 2 schematically

illustrates this idea.

Fine-grained parallelization

The most time consuming task in the eSS algorithm is

the evaluation of the solutions (cost function values cor-

responding to new vectors in the parameter space). This

task appears in several steps of the algorithm, such as

in the creation of the initial random ndiverse solutions,

in the combination loop to generate new solutions, and

in the go-beyond method (lines 4, 13-23 and 24-49 in

Algorithm 1, respectively). Thus, we have decided to per-

form all these evaluations in parallel using the OpenMP

library.

Algorithm 3 shows a basic pseudocode for performing

the solutions’ evaluation in parallel. As can be observed,

every time an evaluation of the solutions is needed, a

parallel loop is defined. In OpenMP, the execution of

a parallel loop is based on the fork-join programming

model. In the parallel section, the thread running cre-

ates a group of threads, so that the set of solutions to be

evaluated are divided among them and each evaluation

is performed in parallel. At the end of the parallel loop,

the different threads are synchronized and finally joined

again into only one thread. Due to this synchronization,

load imbalance in the parallel loop can cause significant

delays. This is the case of the evaluations in the eSS, since

different evaluations can have entirely different compu-

tational loads. Thus, a dynamic schedule clause must be

used so that the assignment can vary at run-time and the

iterations are handed out to threads as they complete their

previously assigned evaluation. Finally, at the end of the

parallel region, a reduction operation allows for counting

the number of total evaluations performed.

Coarse-grained parallelization

The coarse-grained parallelization proposed is based on

the cooperation between parallel processes (islands). For

this cooperation to be efficient in large-scale difficult

problems, each island must adopt a different strategy

to increase the diversification in the search. The idea

is to run in parallel processes with different degrees

of aggressiveness. Some processes will focus on diver-

sification (global search) increasing the probabilities of

finding a feasible solution even in a rough or difficult

space. Other processes will concentrate on intensification

(local search) and speed-up the computations in smoother

Fig. 2 Schematic representation of the proposed hybrid MPI+OpenMP algorithm. Each MPI process is an island that performs an isolated eSS.

Cooperation between islands is achieved through the master process by means of message passing. Each MPI process (island) spawns multiple

OpenMP threads to perform the evaluations within its population in parallel
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Algorithm 3: Parallel solutions’ evaluation

1 neval = 0;

2 $$ parallel do (dynamic schedule,

private(eval,newsol,i) reduction(+:neval));

3 for i=1 to numSolutions do

4 newsol = solutions(:,i);

5 eval = f_eval(newsol);

6 neval ++;

7 end

8 $$ end parallel do;

spaces. Cooperation among them enables each process to

benefit from the knowledge gathered by the rest. However,

an important issue to be solved in parallel cooperative

schemes is the coordination between islands so that the

processes’ stalls due to synchronizations are minimized

in order to improve the efficiency and, specifically, the

scalability of the parallel approach.

The solution proposed in this work follows a popular

centralized master-slave approach. However, as opposed

tomost master-slave approaches, in the proposed solution

the master process does not play the role of a central glob-

ally accessible memory. The data is completely distributed

among the slaves (islands) that perform a sequential eSS

each. The master process is in charge of the cooperation

between the islands. The main features of the proposal

scheme presented in this work are:

• cooperation between islands : by means of the

exchange of information driven by the quality of the

solutions obtained in each slave, rather than by

elapsed time, to achieve more effective cooperation

between processes.
• asynchronous communication protocol : to handle

inter-process information exchange, avoiding idle

processes while waiting for information exchanged

from other processes.
• self-adaptive procedure : to dynamically change the

settings of those slaves that do not cooperate, sending

to them the settings of the most promising processes.

In the following subsections we describe in detail

the implementation of the new self-adaptive cooperative

enhanced Scatter Search algorithm (saCeSS), focusing on

these three main features and providing evidences for

each of the design decisions taken.

Cooperation between islands

Some fundamental issues have to be addressed when

designing cooperative parallel strategies [63], such as what

information is exchanged, between which processes it is

exchanged, when and how information is exchanged and

how the imported information is used. The solution to

these issues has to be carefully designed to avoid well-

documented adverse impacts on diversity that may lead to

premature convergence.

The cooperative search strategy proposed in this paper

accelerates the exploration of the search space through

different mechanisms: launching simultaneous searches

with different configurations from independent initial

points and including cooperation mechanisms to share

information between processes. The exchange of infor-

mation among cooperating search processes is driven by

the quality of the solutions obtained. Promising solutions

obtained in each island are sent to the master process to

be spread to the rest of the islands.

On the one hand, a key aspect of the cooperation

scheme is deciding when a solution is considered promis-

ing. The accumulated knowledge of the field indicates that

information exchange between islands should not be too

frequent to avoid premature convergence to local optima

[64, 65]. Thus, exchanging all current-best solutions is

avoided to prevent the cooperation entries from filling up

the islands’ populations and leading to a rapid decrease

of the diversity. Instead, a threshold is used to deter-

mine when a new best solution outperforms significantly

the current-best solution and it deserves to be spread to

the rest. The threshold selection adds to a new degree of

freedom that needs to be fixed to the cooperative scheme.

The adaptive procedure described further in this section

solves this issue.

On the other hand, the strategy used to select those

members of the RefSet to be replaced with the incom-

ing solutions, that is, with promising solutions from other

islands, should be carefully decided. One of the most pop-

ular selection/replacement policies for incoming solutions

in parallel metaheuristics is to replace the worst solu-

tion in the current population with the incoming solution

when the value of the latter is better than that of the for-

mer. However, this policy is contrary to the RefSet update

strategy used in the eSS method, going against the idea

that parents can only be replaced by their own children

to avoid loss of diversity and to prevent premature stag-

nation. Since an incoming solution is always a promising

one, replacing the worst solution will promote this entry

to higher positions in the sorted RefSet. It is easy to realise

that, after a few iterations receiving new best solutions,

considering the small RefSet in the eSS method, the initial

population in each island will be lost and the RefSet will be

full of foreign individuals. Moreover, all the island popula-

tions would tend to be uniform, thus, losing diversity and

potentially leading to rapidly converge to suboptimal solu-

tions. Replacing the best solution instead of the worst one

solves this issue most of the times. However, several mem-

bers of the initial population could still be replaced by

foreign solutions. Thus, the selection/replacement policy
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proposed in this work consists in labeling one member

of the RefSet as a cooperative member, so that a for-

eign solution can only enter the population by replacing

this cooperative solution. The first time a shared solu-

tion is received, the worst solution in the RefSet will be

replaced. This solution will be labeled as a cooperative

solution for the next iterations. A cooperative solution is

handled like any other solution in the RefSet, being com-

bined and improved following the eSS algorithm. It can

also be updated by being replaced by its own offspring

solutions. Restricting the replacement of foreign solutions

to the cooperative entry, the algorithm will evolve over the

initial population and still promising solutions from other

islands may benefit the search in the next iterations.

As described before, the eSS method already includes

a stagnation checking mechanism (lines 54–59 in

Algorithm 1) to replace those solutions of the popula-

tion that which cannot be improved in a certain number

of iterations of the algorithm by random generated solu-

tions. Thus, diversity is automatically introduced in the

eSS when the members in the RefSet appeared to be stuck.

In the cooperative scheme this strategy may punish the

cooperative solution by replacing it too early. In order to

avoid that, a nstuck larger than that of other members of

the RefSet is assigned to the cooperative solution.

Asynchronous communication protocol

An important aspect when designing the communication

protocol is the interconnection topology of the differ-

ent components of the parallel algorithm. A widely used

topology inmaster-slave models, the star topology, is used

in this work, since it enables different components of

the parallel algorithm to be tightly coupled, thus quickly

spreading the solutions to improve the convergence. The

master process is in the center of the star and all the rest of

the processes (slaves) exchange information through the

master. The distance between any two slaves is always two,

therefore it avoids communication delays that would harm

the cooperation between processes.

The communication protocol is designed to avoid pro-

cesses’ stalls if messages have not arrived during an exter-

nal iteration, allowing for the progress of the execution in

every individual process. Both the emission and reception

of the messages are performed using non-blocking oper-

ations, thus allowing for the overlap of communications

and computations. This is crucial in the application of

the saCeSS method to solve large-scale difficult problems

since the algorithm success heavily depends on the diver-

sification degree introduced in the different islands that

would result in an asynchronous running of the processes

and a computationally unbalanced scenario. Figure 3 illus-

trates this fact by comparing a synchronous coopera-

tion scheme with the asynchronous cooperation proposed

here. In a synchronous scheme, all the processes need to

be synchronized during the cooperation stage, while in

the proposal, each process communicates its promising

results and receives the cooperative solutions to/from the

master in an asynchronous fashion, avoiding idle periods.

Self-adaptive procedure

The adaptive procedure aims to dynamically change, dur-

ing the search process, several parameters that impact the

success of the parallel cooperative scheme. In the pro-

posed solution, the master process controls the long-term

behavior of the parallel searches and their cooperation. An

iterative life cycle model has been followed for the design

and implementation of the tuning procedure and several

parameter estimation benchmarks have been used for the

Fig. 3 Visualization of performance analysis against time comparing synchronous versus asynchronous cooperation schemes



Penas et al. BMC Bioinformatics  (2017) 18:52 Page 9 of 24

evaluation of the proposal in each iteration, in order to

refine the solution to tune widespread problems.

First, the master process is in charge of the thresh-

old selection used to decide which cooperative solutions

that arrive at the master are qualified to be spread to the

island. If the threshold is too large, cooperation will hap-

pen only sporadically, and its efficiency will be reduced.

However, if the threshold is too small, the number of

communications will increase, which not only negatively

affects the efficiency of the parallel implementation, but

also is often counterproductive since solutions are gen-

erally similar, and the receiver processes have no chance

of actually acting on the incoming information. It has

also been observed that excess cooperation may rapidly

decrease the diversity of the parts of the search space

explored (many islands will search in the same region)

and bring an early convergence to a non-optimal solution.

For illustrative purposes Fig. 4 shows the percentage of

improvement of each spread solution when using a very

low fixed threshold. Considering that at the beginning of

the execution the improvements in the local solutions will

be notably larger than at the end, an adaptive procedure

that allows to start with a large threshold and decrease

it with the search progress will improve the efficiency

of the cooperation scheme. The suggested threshold to

begin with is a 10%, that is, incoming solutions that

improve the best known solution in the master process

by at least 10% are spread to the islands as cooperative

solutions. Once the search progresses and most of the

incoming solutions are below this threshold of improve-

ment, the master reduces the threshold to a half. This

procedure is repeated, so that the threshold is reduced,

driven by the incoming solutions (i.e., the search progress

in the islands). Note that if a excessively high threshold is

selected, it will rapidly decrease to an adequate value for

the problem at hand, when the master process ascertains

that there are insufficient incoming solutions below this

threshold.

Second, the master process is used as a scoreboard

intended to dynamically tune the settings of the eSS in

the different islands. As commented above, each island in

the proposed scheme performs a different eSS. An aggres-

sive island performs frequent local searches, trying to

refine the solution very quickly and keeps a small ref-

erence set of solutions. It will perform well in problems

with parameter spaces that have a smooth shape. On the

other hand, conservative islands have a large reference set

and perform local searches only sporadically. They spend

more time combining parameter vectors and exploring

the different regions of the parameter space. Thus, they

are more appropriate for problems with rugged parame-

ter spaces. Since the exact nature of the problem at hand

is always unknown, it is recommended to choose, at the

beginning of the scheme, a range of settings that yields

conservative, aggressive, and intermediate islands. How-

ever, a procedure that adaptively changes the settings in

the islands during the execution, favoring those settings

that exhibit the highest success, will further improve the

efficiency of the evolutionary search.

There are several configurable settings that determine

the strategy (conservative/aggressive) used by the sequen-

tial eSS algorithm, and whose selection may have a great
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solution, as a function of the number of cooperation events. Results obtained from benchmark B4, as reported in the Results section
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impact in the algorithm performance. Namely, these set-

tings are:

• Number of elements in the reference set (dimRefSet,
defined in line 1 in Algorithm 1).

• Minimum number of iterations of the eSS algorithm

between two local searches (local.n2, line 11 in
Algorithm 2).

• Balance between intensification and diversification in

the selection of initial points for the local searches

(balance, line 15 in Algorithm 2).

All these settings have qualitatively the same influence

on the algorithm’s behavior: large setting values lead to

conservative executions, while small values lead to aggres-

sive executions.

Designing a self-adaptive procedure that identifies those

islands that are becoming failures and those that are suc-

cessful is not an easy task. To decide the most promising

islands, the master process serves as a scoreboard where

the islands are ranked according to their potential. In the

rating of the islands, two facts have to be considered: (1)

the number of total communications received in the mas-

ter from each islands, to identify promising islands among

those that intensively cooperates with new good solutions;

and (2) for each island, the moment when its last solu-

tion has been received, to prioritize those islands that

have more recently cooperated. A good balance between

these two factors will produce a more accurate score-

board. To better illustrate this problem Fig. 5(a) shows,

as an example, a Gantt diagram where the communica-

tions are colored in red. Process 1 is the master process,

while process 2-11 are the slaves (islands). At a time of

t = 2000, process 5 has a large number of communica-

tions performed, however, all these communications were

performed a considerable time ago. On the other hand,

process 2 has just communicated a new solution, but

presents a smaller number of total communications per-

formed. To accurately update the scoreboard, the rate of

each island is calculated in the master as the product of

the number of communications performed and the time

elapsed from the beginning of the execution until the last

reception from that island. In the example above, pro-

cess 6 achieves a higher rate because it presents a better

balance between the number of communications and the

time elapsed since the last reception.

Identifying the worst islands is also cumbersome. Those

processes at the bottom of the scoreboard are there

because they do not communicate sufficient solutions or

because a considerable amount of time has passed since

their last communication. However, they can be either

non-cooperating (less promising) islands or more aggres-

sive ones. An aggressive thread often calls the local solver,

performing longer iterations, and thus being unable to

communicate results as often as conservative islands can

do so. To better illustrate this problem, Fig. 5(b) shows a

new Gantt diagram. At a time of t = 60, process 4 will

be at the top of the scoreboard because it often obtains

promising solutions. This is a conservative island. Pro-

cess 3 will be at the bottom of the scoreboard because

at that time it has not yet communicated a significant

result. The reason is that process 3 is an aggressive slave

that is still performing its first local search. To accu-

rately identify the non-cooperating islands, the master

process would need additional information from islands

that would imply extra messages in each iteration of the

eSS. The solution implemented is that each island decides

by itself whether it is evolving in a promising mode or not.

If an island detects that it is receiving cooperative solu-

tions from the master but it cannot improve its results, it

will send the master a reconfiguration request. The mas-

ter, will then communicate to this island the settings of the

island on the top of the scoreboard.

Comprehensive overview of the saCeSS algorithm

The pseudocode for the master process is shown in

Algorithm 4, while the basic pseudocode for each slave is

shown in Algorithm 5.

At the beginning of the algorithm, a local variable

present in the master and in each slave is declared to keep

track of the best solution shared in the cooperation step.

The master process sets the initial threshold, initiates the

scoreboard to keep track of the cooperation rate of each

slave, and begins to listen to the requests and cooperations

arriving from the slaves. Each time the master receives

from a slave a solution that significantly improves the cur-

rent best known solution (BestKnownSol), it increments

the score of this slave on the board.

Each slave creates its own population matrix of ndi-

verse solutions. Then an initial RefSet is generated for

each process with dimRefSet solutions with the best ele-

ments and random elements. Again, different dimRefSet

are possible for different processes. The rest of the oper-

ations are performed within each RefSet in each process,

in the same way as in the serial eSS implementation.

Every external iteration of the algorithm, a cooperation

phase is performed to exchange information with the rest

of the processes in the parallel application. Whenever a

process reaches the cooperation phase, it checks if any

message with a new best solution from the master has

arrived at its reception memory buffer. If a new solution

has arrived, the process checks whether this new solution

improves the BestKnownSol or not. If the new solution

improves the current one, the new solution promotes to

be the BestKnownSol. The loop to check the reception of

new solutions must be repeated until there are no more

shared solutions to attend. This is because the execution

time of one external iteration may be very different from
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Fig. 5 Gantt diagrams representing the tasks and cooperation between islands against execution time. Process 1 is the master, and processes 2-11

are slaves (islands). Red dots represent asynchronous communications between master and slaves. Light blue marks represent global search steps,

while green marks represent local search steps. These figures correspond to two different examples, intended to illustrate the design decisions,

described in the text, taken in the self-adaptive procedure to identify successful and failure islands. a Gantt diagram 1 and b Gantt diagram 2

one process to another, due to the diversification strat-

egy explained before. Thus, while a process has completed

only one external iteration, their neighborsmay have com-

pleted more and several messages from the master may be

waiting in the reception buffer. Then, the BestKnownSol

has to replace the cooperation entry in the process RefSet.

After the reception step, the slave process checks

whether its best solution improves in, at least, an ǫ the

BestKnownSol. If this is the case, it updates BestKnownSol

with its best solution and sends it to the master. Note that

the ǫ used in the slaves is not the same as the ǫ used in

the master process. The slaves use a rather small ǫ so that
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Algorithm 4: Self-adaptive Cooperative enhanced

Scatter Search algorithm - saCeSS. Pseudocode for

themaster process

1 BestKnownSol = DBL_MAX;

2 ! Initial threshold
3 ǫ=0.1;
4 nRefuse=0;

5 ! Scoreboard information
6 slaveComm(:)=0;
7 slaveScore(:)=0;
8 for i=1 to nslaves do
9 scoreBoard(i)=i;

10 end

11 repeat

12 ! Cooperation step
13 recvflag=true;
14 sendflag=false;
15 while recvflag do
16 Non_Blocking_Recv(RecvSol,slave,recvflag);
17 if ((BestKnownSol−RecvSol)/BestKnownSol) <

ǫ then
18 BestKnownSol=RecvSol;
19 sendflag=true;
20 ! Score slave
21 slaveComm(slave)++;
22 slaveScore(slave)=slaveComm(slave)*elapsed

Time();
23 else
24 nRefuse++;
25 end
26 end
27 if sendflag then
28 Non_Blocking_Send(BestKnownSol,slaves);
29 end

30 ! Adapt threshold considering refused solutions
31 if nRefuse > nslaves then
32 ǫ = ǫ/2 ;
33 nRefuse=0;
34 end

35 ! Adapt slaves’ settings using scoreboard
36 recvflag=true;
37 while recvflag do
38 Non_Blocking_Recv(Request,slave,recvflag);
39 Sort(scoreBoard);
40 Non_Blocking_Send(NewSettings[scoreBoard(0)],

slave);
41 end
42 until stopping criterion;

many good solutions will be sent to themaster. Themaster,

in turn, is in charge of selecting those incoming solutions

that are qualified to be spread, thus, its ǫ begins with quite

a large value that decreases when the number of refused

solutions increases and no incoming solution overcomes

the current ǫ.

Finally, before the end of the iteration, the adaptive

phase is performed. Each slave decides if it is progressing

in the search by checking if:

Algorithm 5: Self-adaptive Cooperative enhanced

Scatter Search algorithm - saCeSS. Pseudocode for

the slave processes

1 BestKnownSol = DBL_MAX;
2 recvSolutions=0;
3 iter_solver=0;
4 Neval=0;
5 Create_Population(ndiverse);
6 Generate_RefSet(RefSet, dimRefSet);
7 repeat

8 ! Serial eSS: (1) RefSet order and duplicity check,
(2) Solution combination, (3) RefSet update, (4)
Extra mechanisms and (5) Improvement method
(see Algorithms 1 and 2).

9 ! Cooperation step
10 sendflag=false;
11 recvflag=true;
12 replaceflag=false;
13 while recvflag do
14 Non_Blocking_Recv(RecvSol,master,recvflag);
15 if RecvSol < BestKnownSol then
16 BestKnownSol=RecvSol;
17 recvSolutions++;
18 replaceflag=true;
19 end
20 end
21 if replaceflag then
22 Replace_Solution(BestKnownSol);
23 end
24 if ((BestKnownSol − bestSol)/bestSol) < ǫ then
25 BestKnownSol=bestSol;
26 sendflag=true;
27 end
28 if sendflag then
29 Non_Blocking_Send(BestKnownSol,master);
30 Neval=0;
31 recvSolutions=0;
32 end

33 ! Adaptive step
34 if

recvSolutions > (10× sendSolutions)+20 &&Neval
> (Npar × 5000) then

35 Non_Blocking_Send(Request,master);
36 end
37 Non_Blocking_Recv(NewSettings,master,recvflag);
38 until stopping criterion;

Neval > Npar × 5000

where Neval is the number of evaluations performed by

this process since its last cooperation with the master

and Npar is the number of parameters of the problem.

Thus, the reconfiguration condition depends on the prob-

lem at hand. Besides, if the number of received solutions

is greater than the number of solutions sent, that is, if

other processes are cooperating much more than itself,

the reconfiguration condition is also met. Summarizing,

if a process detects that it is not improving while it is

receiving solutions from the master, it sends a request for

reconfiguration to the master process. The master listens
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to these requests and sends to those slaves the settings of

the most promising ones, i.e., those that are on the top of

the scoreboard.

Finally, the saCeSS algorithm repeats the external loop

until the stopping criterion is met. The current version

can consider three different stopping criteria (or any com-

bination among them): maximum number of evaluations,

maximum execution time and a value-to-reach (VTR).

While the VTR is usually known in benchmark problems

(such as those used below), for a new problem, the VTR

will be, in general, unknown. Thus, in such more realistic

cases, the recommended practice in metaheuristics is to

perform some trial runs and then analyze the convergence

curves in order to find sensible values for the maximum

number of evaluations and/or execution time.

For illustrative purposes, Fig. 6 graphically shows

the self-adaptive Cooperative enhanced Scatter Search

(saCeSS) proposed. Note that different processes (islands)

are executing a different eSS. Since they run asyn-

chronously, they might be in different stages at every

time moment. Thus, cooperation between these different

searches should also be performed in an asynchronous

fashion, avoiding stalls if any of the islands is involved

in a time consuming phase, such as the execution of the

local solver (see process ID 6 in the figure), while other

islands (processes ID 1, ID 3 and ID 5 in the figure) are

in the cooperation phase. When an island cannot attend

to a cooperation reception, the message will be stored in

the process as a pending cooperation, avoiding the block-

ing of the sender process (see processes ID 3 or ID 5 in

the figure, attending pending cooperations). The master

process (ID 0 in the figure) is in charge of the coop-

eration between parallel searches and their long-term

behavior. It maintains a scoreboard to guide the adap-

tive procedure that tunes the settings of the eSS in the

different islands. When an island detects that it is not pro-

gressing in its search (see process ID 7 in the figure), it

sends the master a reconfiguration request. The master

communicates, to those islands that request a recon-

figuration, the settings of the most promising searches

according to its scoreboard (see process ID 4 in the

figure).

Results and discussion
The proposed self-adaptive cooperative algorithm

(saCeSS) has been applied to a set of benchmarks from

the BioPreDyn-bench suite [66], with the goal of assess-

ing its efficiency in challenging parameter estimation

problems in computational system biology:

• Problem B1 : genome-wide kinetic model of S.
cerevisiae. It contains 276 dynamic states, 44

observed states and 1759 parameters.
• Problem B2 : dynamic model of the central carbon

metabolism of E. coli. It consists of 18 dynamic states,

9 observed states and 116 estimable parameters.

Fig. 6 saCeSS: self-adaptive Cooperative enhanced Scatter Search. An example representation of the different mechanisms of communication and

adaptation proposed in saCeSS
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• Problem B3 : dynamic model of enzymatic and

transcriptional regulation of the central carbon

metabolism of E. coli. It contains 47 dynamic states

(fully observed) and 178 parameters to be estimated.
• Problem B4 : kinetic metabolic model of Chinese

Hamster Ovary (CHO) cells, with 34 dynamic states,

13 observed states and 117 parameters.
• Problem B5 : signal transduction logic model, with 26

dynamic states, 6 observed states and 86 parameters.
• Problem B6 : dynamic model describing the gap gene

regulatory network of the vinegar fly, Drosophila
melanogaster. It consists of three processes
formalized with 108-212 ODEs, and resulting in a

model with 37 unknown parameters.

Different experiments have been conducted using the

saCeSS method, and its performance has been compared

with two different parallel versions of the eSS, namely:

an embarrassingly-parallel non-cooperative enhanced

Scatter Search (np-eSS), and a previous cooperative syn-

chronous version (CeSS) [51]. The np-eSS algorithm con-

sists of np independent eSS runs (being np the number of

available processors) performed in parallel without coop-

eration between them and reporting the best execution

time of the np runs. Diversity is introduced in these np eSS

runs, alike in the cooperative methods, that is, each one

executes a separate eSS using different strategies.

It should be noted that the eSS [57] and CeSS [51] meth-

ods have been originally implemented in Matlab. Both

algorithms have been now coded in F90 to perform an

honest comparison with the proposed saCeSS method.

For the same reason, the CeSSmethod has been re-written

using the MPI library for the communications between

master and slaves, since its original reported implementa-

tion used jPar [67].

The experiments reported here have been performed

in a multicore cluster with 16 nodes powered by two

octa-core Intel Xeon E5-2660 CPUs with 64 GB of RAM.

The cluster nodes were connected through an InfiniBand

FDR network. For problem B3 this cluster could not be

used because the execution of B3 exceeds the maximum

allowed job length. Thus, another multicore heteroge-

neous cluster was used for this problem that consists of 4

nodes powered by two quadcore Intel Xeon E5420 CPUs

with 16GB of RAMand 8 nodes powered by two quadcore

Intel Xeon E5520 CPUs with 24 GB of RAM, connected

through a Gigabit Ethernet network.

The computational results shown in this paper were

analyzed from a horizontal view [68], that is, assessing

the performance by measuring the time needed to reach

a given target value. To evaluate the efficiency of the

proposal, experiments with a stopping criteria based on

a value-to-reach (VTR) were performed. The VTR used

was the optimal fitness value reported in [66]. Also, since

comparing different metaheuristic is not an easy task, due

to the substantial dispersion of computational results due

to the stochastic nature of these methods, each experi-

ment reported in this section was performed 20 times and

a statistical study was carried out.

Performance evaluation of the coarse-grained

parallelization and the self-adaptive mechanism

The cooperation between processes in the coarse-grained

parallelization can change the systemic properties of the

eSS algorithm and therefore its macroscopic behavior.

The same happens with the self-adaptive mechanism pro-

posed. Thus, the first set of experiments shown in this

section disables the fine-grained parallelization, since it

does not alter the convergence properties of the algo-

rithm, to evaluate solely the impact of the coarse-grained

parallelization, as well as the self-adaptive mechanism.

Table 1 displays, for each benchmark and each method,

the number of external iterations performed (line 7 in

Algorithm 1), the average number of evaluations needed

to achieve the VTR, the mean and standard deviation

execution time of all the runs in the experiment and

the speedup achieved versus the non-cooperative case

(10-eSS). In these experiments, the computational load

is not shared among processors. Therefore, the total

speedup achieved over the np-eSSmethod depends on the

impact that the cooperation among processes produces

on achieving a good result, performing less evaluations

and, hence, providing a better performance. We com-

pare the CeSS method, that exchanges the information

based on a time elapsed, and where the information to

be exchanged is the complete RefSet, and the proposed

saCeSS method, that exchanges the information driven

by the quality of the solutions through a star topology

using asynchronous communications and, thus, avoiding

communication delays. Additionally, to better evaluate the

efficiency of the self-adaptive procedure proposed, Table 1

also displays results for two different experiments with the

saCeSS method: experiments where the self-adaptive pro-

cedure was disabled, labeled as saCeSS(non-adaptive) in

the table, that is, the settings of the eSS in the different

islands were not dynamically tuned during the execu-

tion; and, experiments where this procedure was enabled,

allowing for the adaptive reconfiguration of the islands,

labeled as saCeSS in the table.

The results of the saCeSS (non-adaptive) show that

the cooperation mechanisms and the asynchronous com-

munication protocol proposed in the saCeSS method

improve the results obtained by 10-eSS and CeSS, both

in terms of number of evaluations and execution time.

As regards the CeSS method, the results can be explained

both because the synchronization slows down the pro-

cesses, since it implies more processes’ stalls while wait-

ing for data, and because of the effectiveness of the
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Table 1 Performance of the coarse-grained parallelization and the self-adaptive scheme proposed

P Method Mean iter±std Mean evals±std Mean time±std(s) Speedup

10-eSS 80±30 199214±44836 5378 ± 1070 -

CeSS (τ = 700s) 109±49 188131±82834 6487 ± 3226 0.83

B1 CeSS (τ = 1400s) 122±41 175331±98255 5018 ± 1477 1.07

saCeSS( non-adaptive) 92±35 143145±61828 3759 ± 976 1.43

saCeSS 62±21 92122±35058 2753 ± 955 1.95

10-eSS 450±167 1504503±541257 1914 ± 714 -

CeSS ( τ = 400s) 452±278 1637125±1016688 2459 ± 2705 0.78

B2 CeSS ( τ = 800s) 508±205 1802917±690613 1911 ± 1103 1.00

saCeSS( non-adaptive) 440±192 1528793±647677 1918 ± 833 1.00

saCeSS 846±982 1247699±1222378 1694 ± 1677 1.13

10-eSS 10062±2528 66915128±15623835 511166 ± 135988 -

CeSS(τ = 50000s) 7288±5551 52592578±35513874 332721 ± 245829 1.53

B3 saCeSS( non-adaptive) 4323±3251 32604331±23357322 251305 ± 209082 2.03

saCeSS 4113±3130 27647470±21488783 229888 ± 238970 2.22

10-eSS 99±121 2230089±2068300 750 ± 692 -

CeSS (τ = 100s) 140±386 1665954±2921838 817 ± 1909 0.92

B4 CeSS (τ = 200s) 119±87 1649723±1024833 518 ± 428 1.45

saCeSS( non-adaptive) 39±30 1163458±927751 402 ± 303 1.86

saCeSS 35±24 1017956±728328 343 ± 240 2.18

10-eSS 16±4 69448±14570 901 ± 197 -

CeSS (τ = 200s) 11±4 108481±36190 1481 ± 634 0.61

B5 CeSS (τ = 400s) 14±3 94963±20172 996 ± 264 0.90

saCeSS( non-adaptive) 10±2 49622±9530 637 ± 131 1.42

saCeSS 10±3 51076±12696 658 ± 174 1.37

10-eSS 4659±3742 9783720±8755231 8217 ± 7536 -

CeSS ( τ = 1000s) 5919±5079 10475485±8978383 8109 ± 7441 1.01

B6 CeSS ( τ = 2000s) 6108±6850 10778260±12157617 7878 ± 9400 1.04

saCeSS( non-adaptive) 2501±1517 4394243±2689489 3638 ± 2302 2.26

saCeSS 1500±1265 2594741±2214235 2177 ± 1933 3.77

Execution time and speedup results using 10 processors. Stopping criteria: VTRB1 = 1.3753 × 104 , VTRB2 = 2.50 × 102 , VTRB3 = 3.7 × 10−1 , VTRB4 = 55, VTRB5 = 4.2 × 103 ,

VTRB6 = 1.0833 × 105

information exchanged. The results of the saCeSS show

that the self-adaptive approach improves the previous

results even more. The main goal of this approach

is to reduce the impact that the initial choice of the

configurable settings may have in the evolution of the

method. For instance, one issue of the CeSS algorithm

is the selection of the migration time (τ ), that is, the

time between information sharing. On the one hand,

this time has to be long enough to allow each of the

threads to exploit the eSS capabilities. On the other hand,

if the time is too long, cooperation will happen only

sporadically, reducing its efficiency. On the contrary, in

the saCeSS method proposed, the initial selection of the

threshold to spread a cooperative solution, as well as

the selection of the other configurable settings of the

eSS method, will change adaptively during the execution

progress.

When dealing with stochastic optimization solvers, it

is important to evaluate the dispersion of the compu-

tational results. Figure 7 illustrates how the proposed

saCeSS reduces the variability of execution time in the

non-cooperative 10-eSS method. This is an important
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Fig. 7 Hybrid violin/Box plots of the execution times using 10 processes. Results for experiments reported in Table 1.The green asterisks correspond

to the mean and light blue boxes illustrate the distribution of the results. Each box with a strong blue contour represents a typical boxplot: the

central red line is the median, the edges of the box are the 25th and 75th percentiles, and outliers are plotted with red crosses. (a) B1, (b) B2, (c) B3,

(d) B4, (e) B5 and (f) B6

feature of the saCeSS, because it reduces the average

execution time for each benchmark. For instance, even

in the B2 problem, where the mean execution time is

similar in the non-cooperative and the cooperative exe-

cutions, the dispersion of the results is reduced in the

cooperative case.
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Finally, to prove the significance of the results, a non-

parametric statistical analysis has been applied to the

final runtimes of the experiments over each test problem.

Recent studies show that the most appropriate methods to

compare the performance of different metaheuristics are

the nonparametric procedures [69]. In this work we have

applied the Kruskal-Wallis test [70] followed by Dunn’s

test [71], that reports the results among multiple pairwise

comparisons after the Kruskall-Wallis test. The objec-

tive is to explain if the observed differences among final

runtimes for each problem are due to the optimization

method used (i.e., np-eSS, CeSS and saCeSS) or to pure

randomness. Table 2 shows, for each problem, the p-

values of Dunn’s test for every pair comparison after the

Kruskall-Wallis test application. Table 3 shows, for each

problem, the classification of methods in groups at 95%

confidence level according to the p-values shown above.

As shown in Tables 2 and 3, the statistical results reveal

that saCeSS shows better performance than the other two

methods in the problems considered. It is clear for prob-

lems B1, B3, B5 and B6. For problems B2 and especially B4,

the differences are not as significant as in the other prob-

lems. For B2, the reason is the outlier in one of the runs

with saCeSS in problem B2, which damages the results

since it is the worst value among all runs and methods for

this problem. For B4, the reason is the high dispersion of

the results, together with the fact that many experiments

achieved the convergence in the first iterations of the algo-

rithm (note the swelling at the bottom of the violin/box

plots in Fig. 7), before the cooperation turned into effec-

tive, or the self-adaptive procedure became operational,

thus, reducing the difference among the three algorithms.

The CeSS method presents an important issue related

to its scalability, since the cooperation among islands is

carried through a synchronous communication step. To

assess the scalability of the coarse-grained paralleliza-

tion proposed in saCeSS, experiments were carried out

using 1 (that is a single eSS), 10, 20 and 40 proces-

sors. The convergence curves for B2 benchmark (see

Additional file 1 for the others problems) are shown in

Fig. 8. This curves represent the logarithm of the objec-

tive function value against the execution time for those

experiments that fall in the median values of the results

distribution. Similar results are obtained for the rest of the

benchmarks, and they are reported in the supplementary

Table 2 p-values of the pairwise comparisons provided by the

Dunn’s test

B1 B2 B3 B4 B5 B6

saCeSS vs CeSS 0.0000 0.0630 0.0380 0.1924 0.0000 0.0000

saCeSS vs 10-eSS 0.0000 0.0115 0.0000 0.0324 0.0001 0.0000

CeSS vs 10-eSS 0.1850 0.2289 0.0006 0.1641 0.2128 0.3964

Table 3 Group classification of the optimization methods at 95%

confidence level

B1 B2a B3 B4 B5 B6

saCeSS A A A A A A

CeSS B A B B A B B B

10-eSS B B C B B B

aFor problem B2, the classification at 90% confidence interval is:

saCeSS(A), CeSS(B), np-eSS(B)

information. As it can be observed, when the number of

processors grows, the saCeSS method keeps on improv-

ing the convergence results. This is due to the proposed

asynchronous communication protocol. However, as the

number of cooperative processes increases, the improve-

ment in the algorithm performance is restrained. This is

readily justified, because the self-adaptive mechanism will

drive the different processes from different initial parame-

ters to those settings that obtain successful results, which,

in the long term, means that having a larger number of

processes does not aim to a larger diversity and better

results. Thus, the hybrid MPI+OpenMP proposal aims

to improve the performance results when the number

of processors increases, by combining the MPI stimula-

tion on diversification in the search with the OpenMP

intensification.

Performance evaluation of the hybrid MPI+OpenMP

proposal

The goal of the fine-grained parallelization proposed in

this paper is to perform the evaluation of the obtained

solutions in parallel threads, thus, accelerating the execu-

tion without altering the properties of the algorithm. As

already commented in previous sections, the scalability of

the fine-grained parallelization is limited in the eSS algo-

rithm, due to the small dimRefSet. Also, the workload is

uneven, since different evaluations lead some threads to

be busy for longer times. Thus, the dynamic schedule used

allows the threads with small workloads to go after other

chunks of work, and hopefully, balance the work between

threads. But it introduces a large overhead at runtime, as

work has to be taken off of a queue.

Table 4 shows the performance and scalability of the

hybrid MPI+OpenMP implementation proposed in this

work. Benchmarks B3 and B6 were excluded of these

evaluations: B3 due to our lack of available resources

to run such long executions, and B6 since its currently

available implementation could not be parallelized using

the OpenMP library. Note that the np-eSS algorithm

was executed also using 10, 20 and 40 processes (non-

cooperative), to perform a fair comparison with saCeSS

using 10, 20 and 40 processors respectively. The speedup

was calculated accordingly. In most of the cases, the

hybrid configurations obtain better performance than
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Fig. 8 Scalability of self-adaptive Cooperative enhanced Scatter Search (saCeSS) using 1, 10, 20 and 40 processors in problem B2. Note that the

saCeSS method using 1 MPI process is equivalent to the eSS method using 1 processor. For each method, the convergence curves that are closer to

the median of the results distribution are shown in the figure. Detailed distributions for all the benchmarks can be found in Additional file 1

other configurations that only use MPI processes. In gen-

eral, results show that, for the same number of processors,

those hybrid configurations that achieve a good balance

between intensification and diversification perform more

effectively. For instance, the configuration of 5 MPI pro-

cesses with 4 OpenMP threads each, achieves, in general,

better speedup than the configuration with 10 MPI pro-

cesses with 2 OpenMP threads each, while both use 20

processors. The exception is benchmark B4, whose per-

formance is heavily affected by the number of different

processes cooperating. That is, benchmark B4 greatly ben-

efits from the diversity introduced with the scalability in

the number of MPI processes versus the intensification

of the OpenMP search. Thus, for benchmark B4, con-

figurations using all the available processors to run MPI

cooperative processes perform better.

Figure 9 shows, for B2 benchmark (see Additional file 1

for the others problems), the convergence curves for those

experiments that fall in the median values of the results

distribution. Similar results are obtained for the rest of

the benchmarks, and they are reported in the supplemen-

tary information. The performance of 40 individual, non

cooperative processes, is compared to the performance of

saCeSS method with different hybrid configurations using

40 processors in all of them. As it has already been pointed

out, when the number of available processors increases,

hybrid MPI+OpenMP configurations will improve the

performance versus a solely coarse-grained parallelization

(see Fig. 9). This is an important result because it allows

us to predict a good performance of this method on HPC

systems, built as clusters of multicore nodes, where MPI

processes would be located in different nodes, improv-

ing diversification, while, within each node, the OpenMP

threads would intensify the search.

Finally, Fig. 10 compares the results obtained by the

proposed saCeSS method and the results reported in

the BioPreDyn-bench suite [66]. Note that, although

these figures correspond to a partially different language

implementation of eSS (Matlab and C, as reported in

[66]), the cost functions and the associated dynamics were

computed using the same C code in both cases. It can

be observed that the parallel cooperative scheme signif-

icantly reduces the execution time in the very complex

problems as B1 (1 week vs 1 hour) or B3 problem (10

days vs less than 46 hours). These figures can be espe-

cially illustrative for those interested in the potential of

HPC in general, and the saCeSS method in particular, in

the solution of parameter estimation problems.

Comparison with other parallel metaheuristics

In order to properly evaluate the novel parallel method

presented here, we now compare it with a parallel ver-

sion of another state of the art metaheuristic, Differential

Evolution (DE [72]). Previous works in the literature have
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Table 4 Performance of the hybrid MPI+OpenMP saCeSS and scalability analysis when the number of processors grows

P Method # proc. config. Mean iter±std Mean evals±std Mean time±std(s) Speedup

# (MPI x OpenMP)

B1 10-eSS 10 80±30 199214±44836 5378 ± 1070 -

saCeSS 10 (10 x 1) 62±21 92122±35058 2753 ± 955 1.95

saCeSS 10 (5 x 2) 76±40 88186±46200 2762 ± 1273 1.95

20-eSS 20 106±34 304972±88870 4524 ± 942 -

saCeSS 20 (20 x 1) 79±38 218871±107769 3125 ± 1349 1.45

saCeSS 20 (10 x 2) 86±43 147268±75752 2299 ± 1199 1.97

saCeSS 20 (5 x 4) 54±19 68907±27132 1288 ± 380 3.51

40-eSS 40 79±21 455091±121875 3662 ± 718 -

saCeSS 40 (40 x 1) 51±19 274628±115644 2070 ± 650 1.77

saCeSS 40 (20 x 2) 64±27 205766±93753 1743 ± 759 2.10

saCeSS 40 (10 x 4) 58±30 111804±61212 1130 ± 535 3.24

saCeSS 40 (5 x 8) 57±29 82414±38357 1078 ± 494 3.39

B2 10-eSS 10 450±167 1504503±541257 1914 ± 714 -

saCeSS 10 (10 x 1) 846±982 1247699±1222378 1694 ± 1677 1.13

saCeSS 10 (5 x 2) 630±275 916166±357665 1298 ± 700 1.47

20-eSS 20 355±130 2306298±851619 1465 ± 546 -

saCeSS 20 (20 x 1) 649±287 1901601±747379 1345 ± 619 1.09

saCeSS 20 (10 x 2) 904±646 1388211±854461 962 ± 616 1.52

saCeSS 20 (5 x 4) 609±244 925076±353594 734 ± 320 2.00

40-eSS 40 297±108 3878818±1478105 1223 ± 447 -

saCeSS 40 (40 x 1) 571±542 3286363±2593258 1326 ± 1764 0.92

saCeSS 40 (20 x 2) 766±863 2185567±2228163 951 ± 1468 1.29

saCeSS 40 (10 x 4) 756±243 1309744±446419 506 ± 180 2.42

saCeSS 40 (5 x 8) 522±290 801661±380553 353 ± 162 3.46

B4 10-eSS 10 99±121 2230089±2068300 750 ± 692 -

saCeSS 10 (10 x 1) 35±24 1017956±728328 343 ± 240 2.18

saCeSS 10 (5 x 2) 177±269 1854102±2331070 916 ± 1210 0.82

20-eSS 20 18±22 1206948±1177645 176 ± 203 -

saCeSS 20 (20 x 1) 11±8 819845±548341 111 ± 93 1.58

saCeSS 20 (10 x 2) 30±23 898459±657350 215 ± 169 0.82

saCeSS 20 (5 x 4) 294±692 2090044±3980316 736 ± 1453 0.24

40-eSS 40 12±13 1811454±1608998 121 ± 141 -

saCeSS 40 (40 x 1) 9±5 1254545±603925 78 ± 51 1.55

saCeSS 40 (20 x 2) 26±26 1523817±1267964 159 ± 160 0.76

saCeSS 40 (10 x 4) 37±50 878008±1178953 168 ± 238 0.72

saCeSS 40 (5 x 8) 159±692 1666511±3980316 490 ± 446 0.25
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Table 4 Performance of the hybrid MPI+OpenMP saCeSS and scalability analysis when the number of processors grows (Continued)

B5 10-eSS 10 16±4 69448±14570 901 ± 197 -

saCeSS 10 (10 x 1) 10±3 51076±12696 658 ± 174 1.37

saCeSS 10 (5 x 2) 11±3 36090±8761 520 ± 136 1.73

20-eSS 20 11±2 106051±17602 685 ± 127 -

saCeSS 20 (20 x 1) 10±2 99995±21070 654 ± 151 1.05

saCeSS 20 (10 x 2) 9±2 52419±12040 368 ± 92 1.86

saCeSS 20 (5 x 4) 10±3 38427±10523 331 ± 97 2.07

40-eSS 40 10±2 192192±29082 618 ± 102 -

saCeSS 40 (40 x 1) 8±2 161687±40392 514 ± 138 1.20

saCeSS 40 (20 x 2) 9±2 100315±17758 350 ± 68 1.76

saCeSS 40 (10 x 4) 11±2 64594±13173 280 ± 61 2.21

saCeSS 40 (5 x 8) 11±3 45854±11607 248 ± 67 2.48

Execution time and speedup results. Stopping criteria: VTRB1 = 1.3753× 104 , VTRB2 = 2.50× 102 , VTRB3 = 3.7× 10−1 , VTRB4 = 55, VTRB5 = 4.2× 103 , VTRB6 = 1.0833× 105

already pointed out that, for sequential implementations,

eSS performs better than DE in those problems where

local searches are instrumental in refining the solution

[51]. Thus, to ensure a more fair comparison here, we

chose a parallel DE implementation (asynPDE [43]) that

performs a global search through an asynchronous paral-

lel implementation based on a cooperative island-model,

and that also improves the local search phase by means of

several heuristics also used in the eSS (i.e. an efficient local

solver, a tabu list and a logarithmic space search).

Fig. 9 Comparative between non-cooperative enhanced Scatter Search (eSS) and self-adaptive Cooperative enhanced Scatter Search (saCeSS)

using 40 processors in problem B2. The performance of 40 individual, non-cooperative eSS is compared with different hybrid configurations of the

saCeSS method using 40 processors. For each method, the convergence curves that are closer to the median of the results distribution are shown in

the figure. Detailed distributions for all the benchmarks can be found in Additional file 1
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Fig. 10 Performance acceleration of saCeSS versus eSS (as reported in [66]). Bars show wall-clock times for each solver and benchmark problem,

with the numbers over saCeSS bars indicating the overall acceleration obtained. Computations with saCeSS were carried out with 10 processors

while computations with eSS were carried out with 1 processor
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saCeSS (5 proc_MPI x 2 th_openMP)

asynPDE (10 proc_MPI)

Fig. 11 Comparison of the convergence curves of asynchronous parallel Differential Evolution (asynPDE) and self-adaptive Cooperative enhanced

Scatter Search (saCeSS) using 10 processors in problem B2. For each method, the convergence curves that are closer to the median of the results

distribution are shown in the figure. Detailed distributions for all the benchmarks can be found in Additional file 1
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The convergence curves, considering problem B2 (see

Additional file 1 for the others problems), of the asyn-

PDE and the saCeSS algorithms for 10 and 20 processors

are shown in Figs. 11 and 12 respectively. These figures

represent the convergence curves for those experiments

that fall in the median values of the results distribution.

Although the best configuration for the saCeSS method is

a hybrid MPI+OpenMP one, since the asynPDE method

only performs a coarse-grained parallelization, for com-

parison purposes the convergence curves of saCeSS using

only MPI processes are shown. As can be seen, in all

cases asynPDE is significantly outperformed by saCeSS.

Results for the other benchmarks can be found in the

supplementary information.

Conclusions
In this contribution we present a novel parallel method for

global optimization in computational systems biology: a

self-adaptive parallel cooperative enhanced scatter search

algorithm (saCeSS). A hybrid MPI+OpenMP implemen-

tation is proposed combining a coarse-grained paralleliza-

tion, focused on stimulating the diversification in the

search and the cooperation between different processes,

with a fine-grained parallelization, aimed at accelerat-

ing the computation by performing separate evaluations

in parallel. This novel approach results in a much more

effective way of cooperation between different processes

running different configurations of the scatter search algo-

rithm.

The new proposed approach has four main features: (i) a

coarse-grained parallelization using a centralized master-

slave approach, where the master is in charge of the con-

trol of the communications between slaves (islands) and

serves as a scoreboard to dynamically tune the settings of

the islands based on its individual progress; (ii) a coop-

eration between processes driven by the quality of the

solution obtained during the execution progress, instead

of by time elapsed; (iii) an asynchronous communication

protocol that minimizes processes’ halts, thus improving

the efficiency in a computational unbalanced scenario;

and (iv) a fine-grained parallelization is included in each

process to perform separate cost-function evaluations in

parallel and, thus, accelerate the global search.

The proposed saCeSS method was evaluated consid-

ering a suite of very challenging benchmark problems

from the domain of computational systems biology. The
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Fig. 12 Comparison of the convergence curves of asynchronous parallel Differential Evolution (asynPDE) and self-adaptive Cooperative enhanced

Scatter Search (saCeSS) using 20 processors in problem B2. For each method, the convergence curves that are closer to the median of the results

distribution are shown in the figure. Detailed distributions for all the benchmarks can be found in Additional file 1
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computational results show that saCeSS attains a very

significant reduction in the convergence time through

cooperation of the parallel islands (from days to min-

utes in several cases, using a small number of proces-

sors). A nonparametric statistical analysis shows that the

saCeSS method significantly outperforms other parallel

eSS approaches, such as an embarrassingly-parallel non-

cooperative eSS algorithm, and a previous synchronous

cooperative proposal.

These results indicate that parameter estimation in

large-scale dynamic models of biological systems can

be feasible even when using small and low-cost paral-

lel machines, thus opening new perspectives towards the

development and calibration of whole-cell models [73].

Additional file

Additional file 1: Supplementary info document. This document is a

complete report for all experiments performed for this work. (PDF 9 305 kb)
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