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Parameter Estimation in Multivariate Gamma Distribution
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Abstract Multivariate gamma distribution finds abundant applications in stochastic modelling, hydrology and reliability.
Parameter estimation in this distribution is a challenging one as it involves many parameters to be estimated simultaneously.
In this paper, the form of multivariate gamma distribution proposed by Mathai and Moschopoulos [9] is considered. This
form has nice properties in terms of marginal and conditional densities. A new method of estimation based on optimal
search is proposed for estimating the parameters using the marginal distributions and the concepts of maximum likelihood,
spacings and least squares. The proposed methodology is easy to implement and is free from calculus. It optimizes the
objective function by searching over a wide range of values and determines the estimate of the parameters. The consistency
of the estimates is demonstrated in terms of mean, standard deviation and mean square error through simulation studies for
different choices of parameters.
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1. Introduction

Three-parameter gamma distribution stands central in the definition of various forms of multivariate gamma
distribution. The probability density function of three-parameter gamma distribution with parameters namely, α
(shape), β (scale) and µ (location) denoted by Gamma (α, β, µ) is defined as

f (x;α, β, µ) =
1

βαΓ (α)
(x− µ)

α−1
exp−

(
x− µ

β

)
, x > 0, α > 0, β > 0, µϵR. (1)

For more details on the properties and applications of this distribution, see Johnson et al. [7]. Princy [12]
discusses an application of the extended compound gamma model. Multivariate gamma distributions with gamma
marginals are common in literature. Several particular cases of these multivariate gamma densities including the
bivariate cases have gained prominence over the years. Some examples include bivariate gamma distributions
due to Cheriyan [3], Mathai and Moschopoulos [10], McKay [11], Kibble [8], Royen [14], Jensen [6], Sarmanov
([16],[17]). For an elaborate discussion of these distributions along with their applications, generalizations, method
of construction and inter-relationships, one may refer to Balakrishnan and Lai [1], Samuel Kotz et al. [15] and Yue
et al. [18] and the references cited therein.
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148 PARAMETER ESTIMATION IN MULTIVARIATE GAMMA DISTRIBUTION

Mathai and Moschopoulos [9] introduced a new form of multivariate gamma distribution using mutually
independent three-parameter gamma variates. Let V1, V2, ..., Vk be mutually independent random variates
where Vi ∼ Gamma (αi, β, µi), i = 1, 2, ..., k. Let Z1 = V1, Z2 = V1 + V2, ...,Zk = V1 + V2 + ...+ Vk. The joint
distribution of Z = (Z1, Z2, ..., Zk)

′
is a k-variate gamma distribution with density function given by

f (z1, z2, ...zk) =
(z1 − µ1)

α1−1
(z2 − z1 − µ2)

α2−1
... (zk − zk−1 − µk)

αk−1
exp−

(
zk−

∑k
i=1 µi

β

)
βα∗

k

∏k
i=1 Γ (αi)

(2)

where αi > 0, β > 0, µiϵR, zi−1 + µi < zi, i = 2, 3, ..., k, zk <∞, µ1 < z1, α
∗
k = α1 + α2 + ...+ αk and zero

elsewhere.
The requirement of the common scale parameter β is to ensure that marginals are of the same form. Figure

1 depicts the density function of the multivariate gamma distribution with k = 2 for three different choices of
parameters.
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Figure 1. Probability Density Function of Bivariate Gamma Distribution for various choice of parameters

This distribution is especially useful for models in reliability theory and stochastic process. See Mathai and
Moschopoulos [9]. In hydrology, it is extensively used in multivariate flood frequency analysis. See Yue [19].
McKay's bivariate gamma distribution is a special case of the form defined in (2) with µ1 = µ2 = 0. Clarke [4]
employed McKay's bivariate model for estimating the mean annual streamflow from precipitation data.

Some important properties of k-variate gamma distribution as discussed in Mathai and Moschopoulos [9] are
listed below.

• The marginal distribution of Zi is three-parameter gamma distribution of the form given in (1), i.e. Zi ∼
Gamma (α∗

i , β, µ
∗
i ) , i = 1, 2, ..., k, where α∗

i = α1 + α2 + ...+ αi and µ∗
i = µ1 + µ2 + ...+ µi.

• Zi and Zj have positive correlation given by ρ =

√(
α∗

i

α∗
j

)
.

• The conditional density of (Zi+1 | Zi = zi) ∼ Gamma (αi+1, β, zi + µi+1).Also, for j > i,
(

Zi−µ∗
i

Zj−µ∗
j

)
∼

BetaI
(
α∗
i , α

∗
j − α∗

i

)
and Zi−µ∗

i

Zj−Zi+µ∗
i −µ∗

j
∼ BetaII

(
α∗
i , α

∗
j − α∗

i

)
, where BetaI (.) and BetaII (.) denote

respectively, beta distribution of first and second kind.

It is interesting to note that, in terms of V1, V2, V3, ..., Vk, (2) can be represented as

f (V1, V1 + V2, ..., V1 + ...+ Vk) =
(V1 − µ1)

(α1−1)
.... (Vk − µk)

(αk−1)
exp−

(∑k
i=1 Vi−

∑k
i=1 µi

β

)
βα∗

k

∏k
i=1 Γ (αi)

(3)
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where, Vi ∼ Gamma (αi, β, µi), i = 1, 2, 3, ..., k and αi > 0, β > 0, µiϵR. Owing to the presence of a common
scale parameter, this can be expressed as a product of k univariate three-parameter gamma distributions i.e.

f (V1, V1 + V2, ..., V1 + ...+ Vk) =
(V1 − µ1)

(α1−1)
exp−

(
V1−µ1

β

)
βα1Γ(α1)

...
(Vk − µk)

(αk−1)
exp−

(
Vk−µk

β

)
βαkΓ(αk)

(4)

The above form serves as an aid to the development of a heuristic methodology to estimate the (2k + 1) unknown
parameters of the distribution. In this paper, we propose an approach to parameter estimation for the model in (4)
involving the concepts of Maximum Likelihood (ML), Least Squares (LS) and Maximum Product of Spacings
(MPS).

The motivation for the present study is due to the fact that parameter estimation has not been attempted for this
distribution before. Hence, an attempt in this direction will offer insights into the issues and challenges if any, in
parameter estimation. This will provide opportunities to develop new methodologies thereby widening the scope
of application of the distribution in other domains of research.

The primary contribution of this paper is to propose a heuristic algorithm for parameter estimation and assess
its performance through simulation studies.The proposed approach is easy to implement and is free from calculus.
It optimizes the objective function by searching over a wide range of values and determines the estimate of the
parameters. Rest of the paper is structured as follows. Section 2 details the methods of estimation in multivariate
gamma distribution. Section 3 contains a method for random variate generation from the k-variate gamma
distribution and the algorithmic description of the proposed methodology. In Section 4, we present and discuss
simulation results for bivariate gamma distribution. The estimates obtained are compared in terms of Average
(AVG), Standard Deviation (SD) and Mean Square Error (MSE). Section 5 concludes the paper with discussion.

2. Methods of Estimation

The complex structure of the k-variate gamma distribution requires solving non-linear equations for obtaining
estimates. Even typical iterative optimization procedures like Nelder-Mead Algorithm, Genetic Algorithm (GA)
often fail to produce results. For instance, Nelder-Mead method results in ”Not a Number” (NaN) when
implemented via optim() function in R. Moreover, the accuracy of the estimates obtained through these algorithms
decreases when the dimension of parameters increase.

In situations where the marginals follow gamma distribution, method of moments has been extensively used in
parameter estimation. See Yue [19]. However, Fisher [5] has reasoned that the classical method of moments in
general is inefficient, except when it closely approximates normality and recommends the use of ML estimation.
Hence, to estimate the (2k + 1) parameters of k-variate gamma distribution, the methods of ML as well as MPS
and LS are considered.

2.1. Maximum Likelihood Estimation

Based on a random sample of size n from k-variate gamma distribution with probability density function defined
in (2), the likelihood (L) and log-likelihood (logL) functions, respectively are given as

L =

n∏
i=1

(z1i − µ1)
(α1−1)

...
(
zki − z(k−1)i − µk

)(αk−1)
exp−

(
zki−(µ1+µ2+...µk)

β

)
βαk∗

∏k
j=1 Γ(αj)

(5)

Stat., Optim. Inf. Comput. Vol. 3, June 2015



150 PARAMETER ESTIMATION IN MULTIVARIATE GAMMA DISTRIBUTION

logL = (α1 − 1)

n∑
i=1

log (z1i − µ1) + ...+ (αk − 1)

n∑
i=1

log
(
zki − z(k−1)i − µk

)
+

(
n
∑k

j=1 µj

)
β

−n (log (Γ (α1)) + ...+ log (Γ (αk)))−
(∑n

i=1 zki
β

)
− n log (β)

k∑
j=1

αj

(6)

The corresponding (2k + 1) log-likelihood equations are:

∂ logL

∂αl
= 0⇒ (αl − 1)

n∑
i=1

log(zli − z(l−1)i − µl)− n(log(β))− nΨ(αl) = 0 (7)

∂ logL

∂β
= 0⇒

(
(
∑n

i=1 zki)− (n
∑k

j=1 µj)
)

β2
−

(
n
∑k

j=1 αj

)
β

= 0 (8)

∂ logL

∂µl
= 0⇒

(
n

β

)
− (αl − 1)

n∑
i=1

(
1

zli − z(l−1)i − µl

)
= 0 (9)

where z0i = 0, l = 1, 2, 3, ..., k, i = 1, 2, ..., n and Ψ(αl) =
∂ log Γ(αl)

∂αl
.

The non-linear equations defined in (7)-(9) have no closed form solutions. As pointed out earlier, numerical
optimization algorithms like Nelder-Mead, GA often fail to provide solutions owing to the large number of
parameters. It is found that these methods fail to produce numerical estimates even when k = 2. Also, Fisher’s
scoring method cannot be used since the regularity conditions are not met. It is interesting to note that the likelihood
function defined in (5) can be expressed as a product of k univariate three-parameter gamma likelihoods using (4).
As a consequence, the unknown parameters of the k-variate gamma distribution are estimated using its marginal
distributions. In this perspective, we consider n random samples from a three-parameter gamma distribution with
density defined in (1). The corresponding likelihood L and log-likelihood functions logL are

L =

(
1

βαΓ (α)

)n n∏
i=1

(xi − µ)
α−1

exp−

(
n∑

i=1

(xi − µ)

β

)
(10)

logL = (α− 1)

n∑
i=1

log(xi − µ)−
n∑

i=1

(
xi − µ

β

)
− nα log β − n log Γα (11)

In order to obtain estimates for the unknown parameters, the proposed methodology resorts to direct
maximization of the function given in (10).

2.2. Maximum Product of Spacings Estimation

In order to estimate the (2k + 1) parameters of the k-variate gamma distribution, we use the form defined in (4) that
involves k univariate three-parameter gamma distributions. Let X1, X2, ..., Xn be n random samples from a three-
parameter gamma distribution with density defined in (1). Let X(1), X(2), ..., X(n) represent the corresponding
ordered observations where X(1) < X(2) < ... < X(n). Also, let X(0) = −∞ and X(n+1) = +∞. Spacings (Cheng
and Amin [2], Ranneby [13]) are defined as the “gaps” between the values of the distribution function at adjacent
observed ordered points. Define Di(θ) = F (x(i); θ)− F (x(i−1); θ), θ = (α, β, µ) . i.e.

Di(θ) =

∫ x(i)

x(i−1)

(t− µ)
(α−1)

βαΓ(α)
exp−

(
t− µ

β

)
dt, i = 1, 2, 3, ..., n+ 1 (12)
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with D1 (θ) = F
(
x(1); θ

)
and Dn+1 (θ) = 1− F

(
x(n); θ

)
.

The maximum product of spacings estimator for θ is the one which maximizes the logarithm of the geometric mean
of sample spacings i.e. θ̂ = argmaxθϵΘ Sn (θ), where

Sn (θ) = log n+1
√

D1D2...Dn+1 = log(F (x(1); θ)) +

n∑
i=2

log(Di(θ)) + log(1− F (x(n); θ)) (13)

The direct maximization of the function defined in (13) would in turn, lead to estimates for the unknown parameters.

2.3. Least Squares Estimation

Based on the fact that the k-variate gamma distribution defined in (2) can be expressed as a product of k
univariate gamma distributions as given in (4), we consider n samples from each of the marginal densities.
Let X(1), X(2), ..., X(n) represent the corresponding ordered observations. LS estimation involves estimating the
parameters by minimizing the function Ln(θ) defined as

Ln(θ) =

n∑
i=1

[
(F (x(i)); θ)−

(
i

n+ 1

)2
]
, θ = (α, β, µ) (14)

where F
(
x(i); θ

)
, i = 1, 2, ..., n represents the distribution function evaluated at the observed value of X(i). The

minimization of the function defined in (14) produces the required estimates for the unknown parameters.

3. Proposed Methodology

In this section, we present a method for generating observations from k-variate gamma distribution of the form
given in (2). Following this, the algorithm for determining the estimates of (2k + 1) unknown parameters of k-
variate gamma distribution using ML, MPS and LS methods is described.

3.1. Random Variate Generation

The following steps are used to generate n observations from k-variate gamma distribution.
Step 1:
Generate n independent samples each from V1, V2, V3, ..., Vk where Vi ∼ Gamma (αi, β, µi),i = 1, ..., k.
Step 2:
Define Z1 = V1, Z2 = V1 + V2, ...,Zk = V1 + V2 + ...+ Vk and Z = (Z1, Z2, ..., Zk)

′
.

Thus Z = (Z1, Z2, ..., Zk)
′

contains n samples from k-variate gamma distribution.

3.2. Split-Join Algorithm

Consider a random sample of size n from k-variate gamma distribution with (2k + 1) unknown parameters. In
order to estimate the parameters, we propose an algorithm called Split-Join algorithm. This involves ‘Splitting’ the
k-variate gamma distribution into k univariate three-parameter gamma distributions followed by estimation of each
of its parameters and then ‘Joining’ the resulting estimates thereby giving estimates for the (2k + 1) parameters.

Given the k-variate gamma variable Z, the algorithm requires splitting of Z to k univariate three-parameter
gamma variables Vi where Vi = Zi − Zi−1, i = 2, 3, ..., k with V1 = Z1. Let θi = (αi, β, µi) denote the parameters
to be estimated in Vi. Specify the boundaries of parameter search space by defining a lower bound (lowθi) and
upper bound (upθi) for each parameter in θi. Let (seqαi),(seqβ), and (seqµi) represent the sequence of values
generated between (lowθi) and (upθi) by an incrementing factor I . The algorithm is given below.
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Algorithm 1 Split-Join Methodology

1: for i in 1 and k do
2: Sort Vi

3: Initialize I , (seqαi),(seqβ), and (seqµi)
4: for p in (seqαi) do
5: for q in (seqβ) do
6: for r in (seqµi) do
7: for s in 1 and n do
8: Compute obj()

9: End Loops
10: optim(obj)← optimum of obj()
11: θ̂ ← (p,q,r) corresponding to optim(obj)

12: End Loop
13: Combine all θ̂i, i = 1, 2, ..., k to obtain required estimates.

The objective function obj() in the above algorithm correspond to any of the equations (10),(13) and (14) and
optim(obj) represents the optimum value of the objective function. Thus, an implementation of the above algorithm
will result in estimates θ̂i for θi by ML, MPS, or LS method. Combining θ̂i, i = 1, 2, ..., k gives the required
estimates for k-variate gamma distribution. It is important to note that the algorithm results in k estimates for the
common scale parameter β . To get a single estimate for β , one may take the arithmetic mean of the k estimates or
any other meaningful function, thereof. Alternatively, one may fix the estimate of β obtained from the first run of
the algorithm for the successive runs. However, this approach is meaningful only when ML method is employed
due to the fact that the likelihood function of the k-variate gamma distribution can be expressed as product of the
likelihoods of marginal distribution.

4. Simulation results

The proposed methodology is implemented in R 3.1.0 for the case of bivariate gamma distribution. Datasets of
sizes n = 20, 50 and 100 are simulated for MC runs(m) = 100, 500 times each with the choice of parameter values
as shown in Table (I) using the random variate generation technique given in Section 3.1.

Table I. Choice of parameter values for simulating samples from bivariate gamma distribution

Case α1 α2 β µ1 µ2

1 0.70 12.30 1.30 8.50 5.70
2 5.10 4.90 3.50 2.30 3.20
3 11.20 1.50 6.40 0.70 2.10

The parameters are chosen so that the correlations of observations typically fall under three categories namely
low, moderate and high. The correlations under the above three cases are 0.232, 0.714 and 0.939 respectively. The
mean value of the estimates (AVG), its standard deviation (SD) and mean square error (MSE) obtained by ML,
MPS and LS methods based on m = 100, 500 runs of the algorithm for each of the above cases are presented in
Tables (II) to (X).

Note that LSE-S, MLE-S and MPS-S refer to LS, ML and MPS methods under Split-Join Methodology. MLE-
M refers to ML method wherein the estimate of β obtained from the first run of the Split-Join algorithm is used
throughout.
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Table II. AVG, SD and MSE of estimates for n=20, Case 1

Measure Estimates of LSE-S MLE-S MPS-S MLE-M LSE-S MLE-S MPS-S MLE-M
m=100 m=500

AVG

α1 0.8520 0.7700 0.8290 0.7700 0.8374 0.8000 0.8820 0.8000
α2 12.2600 12.5210 12.5730 12.9670 12.4462 12.6478 12.8132 12.9384
β 1.3505 1.2590 1.1875 1.2685 1.3149 1.2193 1.1402 1.2114
µ1 8.4560 8.4990 8.4770 8.4990 8.4702 8.5004 8.4750 8.5004
µ2 5.6290 6.0770 5.6540 6.3530 5.8346 6.2966 5.8302 6.3382

SD

α1 0.4019 0.2342 0.3591 0.2342 0.3700 0.2367 0.3729 0.2367
α2 0.8764 1.0499 1.0935 1.3134 0.9906 1.1171 1.1052 1.3062
β 0.3061 0.2213 0.2433 0.4349 0.2979 0.2274 0.2402 0.4352
µ1 0.0903 0.0100 0.0423 0.0100 0.0918 0.0127 0.0477 0.0127
µ2 1.0145 1.0858 0.9799 1.1962 1.0537 1.1100 1.0438 1.2064

MSE

α1 0.1830 0.0592 0.1443 0.0592 0.1555 0.0659 0.1719 0.0659
α2 0.7620 1.1401 1.2583 2.1527 1.0008 1.3665 1.4824 2.1104
β 0.0953 0.0502 0.0713 0.1882 0.0888 0.0581 0.0831 0.1969
µ1 0.0100 0.0001 0.0023 0.0001 0.0093 0.0002 0.0029 0.0002
µ2 1.0239 1.3093 0.9528 1.8431 1.1263 1.5855 1.1043 1.8598

Table III. AVG, SD and MSE of estimates for n=50, Case 1

Measure Estimates of LSE-S MLE-S MPS-S MLE-M LSE-S MLE-S MPS-S MLE-M
m=100 m=500

AVG

α1 0.7750 0.7380 0.7240 0.7380 0.7798 0.7350 0.7262 0.7350
α2 12.3720 12.4450 12.6940 12.9010 12.4256 12.5162 12.7386 12.8884
β 1.3095 1.2765 1.2490 1.2680 1.3066 1.2760 1.2472 1.2906
µ1 8.4800 8.5000 8.4970 8.5000 8.4822 8.4998 8.4962 8.4998
µ2 5.7230 5.8360 5.4770 6.1710 5.7916 5.9658 5.5948 6.1492

SD

α1 0.2528 0.1339 0.1700 0.1339 0.2706 0.1269 0.1748 0.1269
α2 0.8757 0.9786 1.0531 1.2910 0.8982 1.0409 1.0637 1.2708
β 0.2377 0.1857 0.1848 0.3375 0.2366 0.1771 0.1778 0.3210
µ1 0.0449 0.0000 0.0171 0.0000 0.0539 0.0045 0.0202 0.0045
µ2 0.8870 0.9324 0.7282 1.0936 0.9409 0.9561 0.8145 1.0915

MSE

α1 0.0689 0.0192 0.0292 0.0192 0.0794 0.0173 0.0312 0.0173
α2 0.7644 0.9691 1.2532 2.0113 0.8208 1.1281 1.3217 1.9578
β 0.0560 0.0347 0.0364 0.1138 0.0559 0.0319 0.0343 0.1029
µ1 0.0024 0.0000 0.0003 0.0000 0.0032 0.0000 0.0004 0.0000
µ2 0.7795 0.8792 0.5747 1.4059 0.8919 0.9829 0.6731 1.3907
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Table IV. AVG, SD and MSE of estimates for n=100, Case 1

Measure Estimates of LSE-S MLE-S MPS-S MLE-M LSE-S MLE-S MPS-S MLE-M
m=100 m=500

AVG

α1 0.7550 0.7270 0.7240 0.7270 0.7428 0.7254 0.7124 0.7254
α2 12.5910 12.4940 12.9150 12.7820 12.3788 12.4720 12.6710 12.7810
β 1.2800 1.2610 1.2350 1.2540 1.2977 1.2731 1.2579 1.2690
µ1 8.4890 8.5000 8.4990 8.5000 8.4914 8.5000 8.4990 8.5000
µ2 5.7530 5.9200 5.5110 6.0440 5.7494 5.7816 5.5350 5.8716

SD

α1 0.2007 0.1072 0.1415 0.1072 0.1861 0.1008 0.1166 0.1008
α2 1.0030 1.0152 0.9743 1.2555 0.8456 0.9764 1.0175 1.2390
β 0.1777 0.1323 0.1313 0.2280 0.1710 0.1308 0.1318 0.2285
µ1 0.0345 0.0000 0.0100 0.0000 0.0314 0.0063 0.0100 0.0063
µ2 0.8132 0.8255 0.6456 0.9874 0.8001 0.7966 0.6803 0.9147

MSE

α1 0.0429 0.0121 0.0204 0.0121 0.0364 0.0108 0.0137 0.0108
α2 1.0807 1.0580 1.3179 1.7928 0.7198 0.9811 1.1709 1.7634
β 0.0317 0.0189 0.0213 0.0536 0.0292 0.0178 0.0191 0.0531
µ1 0.0013 0.0000 0.0001 0.0000 0.0011 0.0000 0.0001 0.0000
µ2 0.6575 0.7230 0.4483 1.0836 0.6413 0.6400 0.4891 0.8645

Table V. AVG, SD and MSE of estimates for n=20, Case 2

Measure Estimates of LSE-S MLE-S MPS-S MLE-M LSE-S MLE-S MPS-S MLE-M
m=100 m=500

AVG

α1 5.0560 5.3260 5.4330 5.3260 4.9768 5.1660 5.2870 5.1660
α2 4.9360 4.9460 5.2150 5.0910 5.0306 5.0650 5.3146 4.9332
β 3.6815 3.4410 3.1300 3.3360 3.6693 3.4346 3.1030 3.4530
µ1 2.2380 2.7110 2.1000 2.7110 2.1076 2.6900 1.9888 2.6900
µ2 2.8190 3.5330 2.5920 3.5360 2.7714 3.5312 2.5582 3.6200

SD

α1 0.8710 0.8608 0.7764 0.8608 0.8866 0.9272 0.8669 0.9272
α2 0.9367 0.9644 0.8557 0.8580 0.8755 0.9008 0.7832 0.8896
β 0.5280 0.5248 0.6324 0.6791 0.5291 0.5004 0.6531 0.7078
µ1 1.0441 0.9162 1.0673 0.9162 1.0287 0.9174 1.0383 0.9174
µ2 1.2939 1.0846 1.3937 1.0385 1.3537 1.0627 1.3702 0.9378

MSE

α1 0.7530 0.7846 0.7077 0.7846 0.7997 0.8624 0.7850 0.8624
α2 0.8700 0.9228 0.8241 0.7653 0.7820 0.8371 0.7840 0.7909
β 0.3089 0.2762 0.5309 0.4834 0.3081 0.2542 0.5814 0.5021
µ1 1.0830 0.9999 1.1678 0.9999 1.0931 0.9920 1.1728 0.9920
µ2 1.8025 1.2755 2.2926 1.1806 2.0124 1.2368 2.2857 1.0541
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Table VI. AVG, SD and MSE of estimates for n=50, Case 2

Measure Estimates of LSE-S MLE-S MPS-S MLE-M LSE-S MLE-S MPS-S MLE-M
m=100 m=500

AVG

α1 5.0470 5.1240 5.2490 5.1240 4.9904 5.0904 5.2988 5.0904
α2 5.1440 5.1160 5.4050 4.9000 4.9994 5.0340 5.3730 4.8986
β 3.5420 3.4570 3.3435 3.5090 3.6303 3.4959 3.3609 3.5274
µ1 2.2520 2.5230 2.0400 2.5260 2.2804 2.6076 1.9850 2.6076
µ2 2.9370 3.3180 2.5760 3.3960 2.9044 3.3318 2.4972 3.4464

SD

α1 0.8236 0.8390 0.7817 0.8326 0.8144 0.8348 0.7903 0.8337
α2 0.7701 0.8336 0.6752 0.7602 0.8057 0.8254 0.7090 0.8297
β 0.4599 0.4542 0.3835 0.5719 0.4366 0.4212 0.3705 0.5910
µ1 0.9724 0.9492 1.0371 0.9509 0.9793 0.8978 0.9790 0.8982
µ2 1.2151 1.0251 1.2598 0.9879 1.2578 1.0754 1.2359 0.9396

MSE

α1 0.6743 0.6974 0.6271 0.6875 0.6739 0.6955 0.6629 0.6937
α2 0.6466 0.7346 0.7063 0.5722 0.6577 0.6979 0.7254 0.6871
β 0.2112 0.2061 0.1701 0.3239 0.2072 0.1770 0.1563 0.3493
µ1 0.9384 0.9417 1.1324 0.9462 0.9575 0.8990 1.0558 0.8998
µ2 1.5309 1.0542 1.9606 1.0046 1.6662 1.1715 2.0184 0.9418

Table VII. AVG, SD and MSE of estimates for n=100, Case 2

Measure Estimates of LSE-S MLE-S MPS-S MLE-M LSE-S MLE-S MPS-S MLE-M
m=100 m=500

AVG

α1 4.9750 5.1210 5.4200 5.1210 5.0388 5.1374 5.4406 5.1374
α2 4.8650 4.9240 5.2610 4.9270 4.8604 4.9368 5.3030 4.9536
β 3.6555 3.5255 3.3845 3.5290 3.6432 3.5188 3.3751 3.5118
µ1 2.4100 2.5180 1.8970 2.5180 2.3400 2.4918 1.8560 2.4918
µ2 3.0150 3.2770 2.5990 3.3050 2.9922 3.2530 2.5026 3.2682

SD

α1 0.7179 0.7400 0.5805 0.7400 0.7473 0.7449 0.6080 0.7449
α2 0.7792 0.7412 0.7128 0.7774 0.7723 0.7580 0.7091 0.7542
β 0.3941 0.3010 0.2655 0.4728 0.3956 0.3154 0.2803 0.4770
µ1 0.9275 0.9217 0.9214 0.9217 0.9294 0.9405 0.9177 0.9405
µ2 1.1732 1.1471 1.1962 0.9354 1.1853 1.1271 1.1827 0.9413

MSE

α1 0.5259 0.5425 0.4360 0.5425 0.5611 0.5552 0.4849 0.5552
α2 0.6023 0.5444 0.6333 0.5991 0.5968 0.5747 0.6642 0.5706
β 0.1779 0.0903 0.0831 0.2221 0.1767 0.0996 0.0940 0.2272
µ1 0.8638 0.8886 1.0029 0.8886 0.8636 0.9195 1.0376 0.9195
µ2 1.3969 1.3085 1.7779 0.8773 1.4453 1.2707 1.8824 0.8889
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Table VIII. AVG, SD and MSE of estimates for n=20, Case 3

Measure Estimates of LSE-S MLE-S MPS-S MLE-M LSE-S MLE-S MPS-S MLE-M
m=100 m=500

AVG

α1 10.9940 11.3220 11.1060 11.3220 10.9492 11.2916 11.1238 11.2916
α2 1.5100 1.3210 1.5240 1.3380 1.5796 1.3804 1.6010 1.3778
β 6.5950 6.4505 6.1210 6.3910 6.5415 6.4165 6.0530 6.3986
µ1 0.7610 0.9520 0.7160 0.9520 0.7174 1.0474 0.7410 1.0474
µ2 1.7080 2.6270 1.9090 2.5830 1.6980 2.6164 1.8418 2.5816

SD

α1 0.9458 0.9430 0.9898 0.9430 0.9303 0.9458 0.9920 0.9458
α2 0.3863 0.3836 0.4461 0.3345 0.4043 0.3994 0.4464 0.3421
β 0.5806 0.6394 0.6522 0.7040 0.5921 0.6222 0.6056 0.6891
µ1 0.7136 0.7885 0.7580 0.7885 0.7128 0.7652 0.7573 0.7652
µ2 1.1244 0.5698 0.9540 0.6032 1.1197 0.5597 0.9468 0.5842

MSE

α1 0.9280 0.8952 0.9788 0.8952 0.9266 0.9012 0.9879 0.9012
α2 0.1478 0.1777 0.1976 0.1370 0.1694 0.1735 0.2091 0.1317
β 0.3718 0.4073 0.4990 0.4907 0.3699 0.3867 0.4864 0.4739
µ1 0.5079 0.6790 0.5690 0.6790 0.5074 0.7051 0.5741 0.7051
µ2 1.4054 0.5991 0.9375 0.5935 1.4129 0.5794 0.9614 0.5726

Table IX. AVG, SD and MSE of estimates for n=50, Case 3

Measure Estimates of LSE-S MLE-S MPS-S MLE-M LSE-S MLE-S MPS-S MLE-M
m=100 m=500

AVG

α1 11.0230 11.2680 11.1920 11.2680 11.0318 11.2372 11.1820 11.2372
α2 1.5760 1.4300 1.6390 1.4450 1.5878 1.4354 1.6460 1.4512
β 6.4935 6.4525 6.1370 6.3930 6.4880 6.4588 6.1390 6.4014
µ1 0.8910 1.1170 0.7840 1.1170 0.8856 1.1414 0.8056 1.1414
µ2 1.8460 2.3990 1.8830 2.3760 1.8128 2.3884 1.8644 2.3620

SD

α1 0.9162 0.9005 0.9143 0.9005 0.9212 0.9135 0.9291 0.9135
α2 0.3699 0.2684 0.3318 0.2181 0.3791 0.2711 0.3361 0.2245
β 0.5445 0.5258 0.5819 0.6354 0.5481 0.5123 0.5684 0.6350
µ1 0.7007 0.7317 0.7562 0.7317 0.6981 0.7221 0.7576 0.7221
µ2 0.9944 0.4428 0.6030 0.4048 0.9885 0.4376 0.5994 0.4017

MSE

α1 0.8623 0.8074 0.8276 0.8074 0.8753 0.8341 0.8618 0.8341
α2 0.1412 0.0762 0.1283 0.0501 0.1511 0.0775 0.1341 0.0527
β 0.3022 0.2764 0.4044 0.3997 0.3075 0.2654 0.3906 0.4024
µ1 0.5225 0.7039 0.5732 0.7039 0.5208 0.7153 0.5840 0.7153
µ2 1.0434 0.2835 0.4071 0.2384 1.0577 0.2743 0.4140 0.2297
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Table X. AVG, SD and MSE of estimates for n=100, Case 3

Measure Estimates of LSE-S MLE-S MPS-S MLE-M LSE-S MLE-S MPS-S MLE-M
m=100 m=500

α1 11.0860 11.3070 11.2720 11.3070 11.0506 11.2142 11.1898 11.2142
α2 1.6060 1.4590 1.6070 1.4880 1.6086 1.4546 1.6100 1.4770
β 6.4155 6.4345 6.2165 6.3480 6.4138 6.4704 6.2269 6.4030
µ1 0.9450 1.0570 0.7190 1.0570 0.8936 1.0218 0.6792 1.0218
µ2 1.7990 2.2670 1.9390 2.2210 1.8270 2.2716 1.9414 2.2406

SD

α1 0.9360 0.8299 0.8411 0.8299 0.9368 0.8521 0.8556 0.8521
α2 0.3120 0.2216 0.2555 0.1849 0.3157 0.2161 0.2578 0.1772
β 0.6253 0.5664 0.5965 0.5799 0.5887 0.5274 0.5479 0.5813
µ1 0.6700 0.7350 0.7243 0.7350 0.6640 0.7366 0.7162 0.7366
µ2 0.7593 0.2288 0.3051 0.2358 0.7404 0.2426 0.3235 0.2473

MSE

α1 0.8804 0.6933 0.7056 0.6933 0.8981 0.7248 0.7306 0.7248
α1 0.1076 0.0503 0.0761 0.0340 0.1113 0.0487 0.0784 0.0319
β 0.3873 0.3188 0.3859 0.3356 0.3461 0.2825 0.3295 0.3372
µ1 0.5045 0.6623 0.5197 0.6623 0.4775 0.6451 0.5123 0.6451
µ2 0.6613 0.0797 0.1181 0.0697 0.6217 0.0882 0.1296 0.0808

20 40 60 80 100

0.
00

0.
05

0.
10

0.
15

0.
20

Case 1: MC runs=500 for α1

n

M
S

E

20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Case 1: MC runs=500 for α2

n

M
S

E

20 40 60 80 100

0.
00

0.
05

0.
10

0.
15

0.
20

Case 1: MC runs=500 for β

n

M
S

E

20 40 60 80 100

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

Case 1: MC runs=500 for µ1

n

M
S

E

20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

2.
0

Case 1: MC runs=500 for µ2

n

M
S

E

LSE_S

MLE_S

MPS_S

MLE_M

.

Figure 2. Line plot of MSEs corresponding to Case 1

In Case 1, which is characterised by low correlation, the simulation results in Tables (II) to (IV) reveal that the
average value of estimates (AVG) obtained by LSE-S is closer to the true parameter values among the different
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methods proposed. However, LSE-S does not produce consistent estimates for all the parameters as is evident from
Figure 2.

With an increase in correlation (Case 2), it is noted that the proposed methods provide similar estimates for the
parameters as seen in Tables (V) to (VII). But, from Figure 3, it is evident that MLE-M outperforms others in terms
of MSE .
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Figure 3. Line plot of MSEs corresponding to Case 2

Considering Case 3, which is marked by high correlation, it can be seen from Tables (VIII) to (X) that all the
proposed methods perform equally well in estimating the shape and scale parameters. However, the methods fail to
provide estimates closer to the true value for the location parameters. In general, it is observed that the performance
of the proposed methods improve with an increase in sample size and number of simulations.

5. Discussion

This paper introduces a heuristic approach for parameter estimation in k-variate gamma distribution introduced
by Mathai and Moschopoulos [9]. The proposed methodology makes use of the marginal distributions instead of
directly using the complex structure of the k-variate gamma distribution. This is due to the fact that the probability
density function of k-variate gamma distribution defined in (2) can be expressed as product of three-parameter
gamma marginals as given in (4). Thus, the complexity associated with estimating all the (2k + 1) parameters
simultaneously is reduced as only the parameters of the marginals need to be estimated independently. Since the
density in (2) has a common scale parameter β, the 3k estimates obtained for β have to be meaningfully combined
to provide a single estimate. It is observed from simulation studies that the arithmetic mean of the 3k estimates
obtained for β provides a single estimate that is close to the true parameter value. Alternatively, one can estimate
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the scale parameter from any of the marginal distributions and fix this value for estimating the parameters of the
remaining marginal distributions.

It is to be noted that the proposed methodology directly optimizes the objective function (e.g. likelihood function)
of the corresponding univariate marginal distributions through an extensive search in the three-parameter space
rather than solving non-linear derivatives. This offers better chances of attaining global optima which is achieved
by increasing the width of the interval in which the search is carried out. The steps involved in the proposed
methodology are presented in Split-Join Algorithm explained in Section 3.2. It is observed that the precision of the
estimates increases by reducing the factor of incrementation. Moreover, the algorithm places no restrictions on the
parameter space. However, the algorithm takes more time to arrive at the estimates owing to the fact that it searches
the parameter space corresponding to each marginal distribution separately.

Simulation studies performed to obtain estimates for the parameters of bivariate gamma distribution through
the proposed methodology involving ML, MPS and LS methods suggest that the resulting values are closer to the
parameters.

For implementing the algorithm on real-life datasets that follow k-variate gamma distribution, the following
considerations will serve as an aid. A test procedure for testing for common scale parameter of the marginal
distributions can be employed before implementing the algorithm. For fixing the lower and upper bounds of the
parameters in the search process, one may initially start with a random set of points in the three-dimensional search
space and evaluate the objective function corresponding to each of these points. An interval can be defined around
the point that optimizes the objective function and the algorithm can then be implemented by setting the endpoints
of the interval as the lower and upper bounds.
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