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SUMMARY 
Least squares (LS) estimation of model parameters is widely used in geophysics. If the data 
errors are Gaussian and independent the LS estimators will be maximum likelihood (ML) 
estimators and will be unbiased and of minimum variance. However, if the noise is not 
Gaussian, e.g. if the data are contaminated by extreme outliers, LS fitting will result in 
parameter estimates which may be biased or grossly inaccurate. When the probability 
distribution of the errors is known it is possible, using the maximum likelihood method, to 
obtain consistent and efficient (minimum variance) estimates of parameters. In some cases the 
distribution of the noise may be determined empirically, and the resulting distribution used in 
the ML estimation. A procedure for doing this is described here. Hourly values of 
geomagnetic observatory data are used to illustrate the technique. These data sets contain a 
number of periodic components, whose amplitudes and phases are geophysically interesting. 
Geomagnetic storms and other phenomena in the record make the noise distribution 
long-tailed, asymmetric and variable with location. Using an iterative procedure, one can 
model the form of these distributions using smoothing splines. For these data ML estimation 
yields quite different results from standard robust and LS procedures. The technique has the 
potential for widespread application to other problems involving the recovery of a known 
form of signal from non-Gaussian noise. 
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INTRODUCTION 

Parameter estimation is a problem that almost always arises 
in geophysics when one wishes to draw any inferences from 
data. A variety of estimators is available and the one chosen 
should obviously depend on the nature of the problem to be 
solved. In choosing an appropriate technique it is important 
to decide what properties are required of the best method. 
Two desirable properties are that an estimator be consistent 
and unbiased. An estimator t,, of a parameter 8, computed 
from a sample of n values is said to be consistent if t 
converges to 8 in probability; i.e. if for any 6 ,  r]  > 0 there 
exists N such that 

P{lt,, - 81 < 6 )  > 1 - r], 

The requirement that an estimator be unbiased is simply 
that its expected value should be the true value of the 
parameter 

E ( t )  = 6. 

Thus consistency includes the property of being unbiased in 
the limit of large data samples. In general there is more than 
one consistent estimator of a parameter, even if one only 
considers those that are unbiased (e.g. for the normal 
distribution both the sample mean and median are 
consistent and unbiased estimators of the mean). Clearly, 
one needs further criteria for discriminating between them; 
an obvious choice is to make use of the estimator which has 

n > N 

a smaller variance, since on the average it will deviate less 
from the true value than one with a large variance, and may 
thus be regarded as better. Under fairly general conditions, 
(Kendall & Stuart 1979, chapter 17) it may be shown that 
there exists a bound below which the variance of an 
unbiased estimator cannot fall (the minimum variance 
bound) although this bound is not necessarily attained. 
Since most estimators are asymptotically normally distrib- 
uted (by virtue of the Central Limit Theorem), the 
distribution of estimators will depend for large samples only 
on the mean and variance. The estimator with minimum 
variance in large samples is said to be efficient. Maximum 
likelihood (ML) estimators can be shown to be consistent, 
asymptotically normal and efficient (Kendall & Stuart 1979, 
chapter 18); we can therefore regard them as best in 
situations involving large samples. 

Least-squares (LS) estimation is widely used, and in some 
cases will be the optimum method. In particular, if the data 
errors are Gaussian, the Gauss-Markov theorem (see e.g. 
Kendall & Stuart 1979; Priestley 1981) shows that the LS 
estimators will be unbiased and of minimum variance, and 
coincide with the ML estimators. However, although data 
errors are often assumed to be Gaussian, an a priori 
knowledge of the distribution is comparatively rare in 
geophysical problems. Often the best that we can hope to do 
is look at the residuals after model fitting in order to 
determine whether our initial assumptions are justified. 

Even when the majority of the data errors are 
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approximately Gaussian, there may be contamination of the 
data by a small number of outlying points. LS estimation 
relies on the minimization of a loss (or penalty) function, in 
this case the sum of the squares of the residuals from the 
model fit to the data. This form for the loss function means 
that LS estimation is not robust in the presence of outliers; 
their residual contribution to the loss function is squared, 
giving them what might be regarded as an excessive 
influence on the resulting model. The presence of outliers in 
many data sets has led to the development of robust 
methods for performing regression estimates (see e.g. 
Barnett & Lewis 1984; Huber 1981; Montgomery & Peck 
1982, chapter 9; Hampel et al. 1986). These methods include 
M-type (or maximum likelihood type) estimation and R- 
and L- estimation. M-type estimation is similar to LS 
estimation in that it involves the minimization of a loss 
function; however, for outlying points the loss function 
usually invokes a lesser penalty than the square of the 
residual. The outcome from M-type estimation will thus 
depend on the choice of loss function and the distribution of 
the residuals. R-estimation is a procedure based on the 
ranks of the residuals and L-stimators are based on order 
statistics (e.g. the sample median is an order statistic). 
M-type regression estimates are probably the most widely 
used, partly because of their simplicity and partly because 
their effects may be more readily determined than those of 
R- or L-estimates. 

There are some situations, however, in which the data 
errors cannot even be regarded as approximately normally 
distributed. Then the LS parameter estimates cannot be 
expected to be minimum variance, and the results of robust 
estimation procedures may no longer be optimum either. A 
true ML estimate is desirable, because biased or inconsistent 
estimates may give us the wrong answer, while those which 
are not of minimum variance will have larger confidence 
intervals than necessary. I present here a method for 
obtaining ML estimates of parameters in cases where there 
are sufficient data available to make an estimate of the 
actual error distribution. The method is illustrated by 
estimating the amplitudes and phases of a number of 
sinusoidal signals of known period that occur in geomagnetic 
observatory data. 

MAXIMUM LIKELIHOOD ESTIMATION 

Let us assume that we have n data y i  which may be written 
as a linear combination of p known basis functions, c,(x), 
plus an error or noise term ci, i.e. 

yi = g(x,) + Ei i = 1, 2, . . . , n, (1) 
where 

or in matrix notation 

y =  g + € = gc + €. (3) 
The errors are independent random variables with 
probability density function (p.d.f.) f(~), --co < E < 00, and 
we will assume for the time being that f is of known 
functional form. Determining the model that best fits the 
data thus involves the estimation of the parameter vector p. 

The ML method finds the parameter estimates, f i ,  which 
maximize the probability of getting the data that were 
actually observed. The likelihood function L(& is the joint 
p.d.f., F, of the sample errors at y, i.e., 

L(S> = F(E,  8). (4) 
Assuming the errors in the yi to be independent and 
identically distributed (i.i.d.), this is the product of the 
individual density functions for each measurement yi 

i = l  

The maxima of the likelihood and of the log of the 
likelihood functions coincide so we may rewrite the problem 
as the minimization of a loss function P ( E )  = -In [ f ( ~ ,  a)] 

where there is an implicit dependence of p on the parameter 
vector p. The necessary condition for the minimum is thus 
n 

X c j ( x i ) v ( ~ ~ )  = o j = I, 2, . . . , p ,  
i = l  

(7) 

where 

V ( E )  = P ’ ( E )  

and is sometimes called the influence function (apart from a 
constant of proportionality). The equations (7) are known as 
the likelihood equations and their solution yields the ML 
estimate for p, provided that it corresponds to a global 
minimum in the loss function p ;  a sufficient condition is that 
p be convex. 

It is evident that the ML estimate depends entirely on the 
form assumed for f ( ~ ) ,  the p.d.f. for the errors. For a 
normal distribution the loss function P ( E )  = E* and (7) are 
simply the well-known normal equations; then the ML 
solution for 0 is identical to that obtained by least squares. 
The fact that it is minimum variance and unbiased for 
normal distributions is part of the reason for the widespread 
popularity of LS estimation. However, if the errors are 
non-Gaussian we should use a different loss function. As 
another example let us consider errors with a Laplacian 
distribution, whose tails fall off exponentially as e-IpI. ML 
estimation of the parameters yields a loss function of 
P ( E )  = 161, and therefore will involve minimization of the 
one norm of the residuals. 

Robust M-type estimation techniques make use of the 
above loss function minimization formulation. For data 
which have a normal error distribution contaminated by a 
few gross outliers it is possible to reduce the influence of 
these outliers on the LS parameter estimates. This is done 
by minimizing a loss function P ( E )  which increases less 
rapidly than the residual sum of squares. Examples of the 
influence functions associated with some commonly used 
robust loss functions are shown in Fig. 1, along with the LS 
influence function. The M-estimator obtained using Huber’s 
influence function is the maximum likelihood estimator 
corresponding to a density with a normal centre and 
double-exponential tails. This could be viewed as the sort of 
distribution that one obtains when the noise arises from two 
different sources, one with a normal distribution and the 
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Figure 1. LS influence function and examples of some commonly 
used robust influence functions. 

other contributing outliers. Such a combination of noise 
sources is referred to as a finite mixture distribution. 
Mixture distributions are discussed extensively by Titt- 
erington, Smith & Makov (1985), along with means of 
estimating their parameters. Problems involving outliers are 
often discussed in terms of mixture distributions as even 
when underlying categories for the noise processes cannot 
be identified they can provide a convenient means for 
modelling the overall p.d.f. for the noise. Some of the loss 
functions of Fig. 1 are somewhat ad hoc in that they require 
the data analyst to specify certain tuning constants in order 
to optimize their performance. Ideally, one would hope that 
the solution would not depend too critically on the choice of 
these constants. The density estimation discussed in the next 
section gets around this problem by enabling us to tailor the 
loss function used to the underlying noise distribution. 

The solution of equations (7) is in general a non-linear 
problem and may not be readily obtainable in exact form. 
Newton's method may be used by making an initial guess, 
lo, for the solution and then iterating to obtain an improved 
solution 

Alternatively, an approximate solution may be obtained 
using an iteratively reweighted LS method. Let us suppose 
once again that we have an initial estimate B, and write (7) 
as 

n 
& . ( x . ) - - E ; = O  V ( E i )  j = 1 , 2  , . . . ,  p .  

1 1  
i = l  Ei  

Now let go be our estimate of g computed from 8, and 

which transforms (7) to the well-known weighted least- 

squares normal equations 

cTwkcfik = cTwky k = 0, 1, 2, . . . (10) 
with Wk being the n x n diagonal matrix of 'weights' with 
diagonal elements (Wlk, WZk, . . . , wnk) given by (9). This 
system of equations may be solved repeatedly using 
successive estimates of Pk to recalculate the weights until 
convergence is reached. The initial estimate for Po may be 
provided by a LS fit to the data with all the w, = 1. When 
q ( c i )  no longer changes between successive iterations the 
parameter estimates have converged. 

This procedure for solving the likelihood equations is 
known as W-estimation and suffers from the disadvantage 
that even when the equations have a unique solution the 
corresponding W-estimator can only be guaranteed to 
converge to this solution if V ( E )  is non-decreasing. 
Heavy-tailed distributions will violate this condition and are 
said to have redescending functions; their W-estimators 
will have infinitely many solutions. However, if the initial 
estimate for b is sufficiently near the true M-estimator 
solution, then the W-estimator will converge to the true 
solution. Thus in some cases it might be more appropriate-to 
start with the one-norm solution as the initial model for Do, 
where this is closer to the true solution than the LS solutionl 

Huber (1972) has shown that the covariance matrix for @ 
may be approximated by the asymptotic form 

where E is the expectation opeator. This is similar to the 
expression obtained for LS covariance estimates, except that 
the variance term c? multiplying the covariance matrix is 
replaced by the asymptotic form 

This asymptotic variance provides a useful means of 
determining when the W-estimation has converged as it will 
then no longer change between successive iterations. A 
tolerance of 1 per cent was used in most cases, which 
reflected a similar tolerance between successive amplitude 
estimates. Initially it was thought that the difference 
between the sums of squares of the weighted residuals 
obtained from successive solutions to equation (10) could 
be used as an indication of whether the W-estimation had 
converged. However, in some cases where the p.d.f. was 
highly non-Gaussian this was not an adequate criterion-the 
weighted sums of the squares of the residuals converges 
more rapidly than the amplitude estimates. The asymptotic 
variance proved a more reliable indicator of when the 
estimation procedure had converged. 

DENSITY FUNCTION ESTIMATION 

The ML estimation procedure described above presumes 
throughout that the p.d.f. of the data errors is known. In 
practice this is often not the case and one has to make do 
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with a guess at the distribution of the errors associated with 
a given model (hence the widespread use of LS estimation). 
However, in the geomagnetic problem that we discuss here, 
as well as in many other geophysical problems, there are 
sufficient data available that we may use them to generate 
an estimate of the error p.d.f. Sometimes this may be done 
directly, when measurements of the noise distribution are 
available independently of the signal. For example, in 
controlled source electromagnetic sounding the noise 
distribution is determined by the telluric signal and 
electrode noise and could be monitored without the 
presence of the controlled source signal. In deep electrical 
soundings in South Africa, Van Zijl, Hugo & de Bellocq 
(1970) studied the statistical distribution of their measure- 
ments, and by use of a careful rejection procedure were able 
to work solely with noise that was approximately normally 
distributed. An alternative approach, which is advocated 
here, would be to model the actual noise distribution and 
use it for ML estimation as described in the previous 
section. In other cases, if we presume a knowledge of the 
form of the signal, we may estimate the distribution of the 
noise iteratively. Let us suppose initially that the error 
distribution is Gaussian i.i.d. Then a histogram of the 
residuals from a LS fit to the data should provide a good 
approximation to a normal p.d.f. as the number of data 
becomes sufficiently large. On the other hand if the 
Gaussian p.d.f. is a poor model for the errors, this should be 
manifest in the shape of the histogram. Then, however, we 
could use the histogram of residuals to provide an estimate 
of the true underlying p.d.f. for use in the ML procedure. 
This is a problem in adaptive estimation of the type 
discussed by Bickel (1982), where he derives sufficient 
conditions for adapative estimation of a Euclidean 
parameter in the presence of an infinite dimensional shape 
nuisance parameter, i.e. he shows that under the 
assumptions given here one may obtain parameter estimates 
that are as good as if one actually knew the true underlying 
noise distribution. 

Over the last 30 years or so a variety of methods for 
probability density function estimation has been developed 
(see e.g. Tapia & Thompson 1978; Silverman 1986). The 
histogram of the LS residuals is in fact an estimate of the 
p.d.f., when suitably normalized. However, for the purposes 
of the ML estimation described in the previous section it 
lacks a few essential characteristics, such as differentiability 
and smoothness. It is desirable to find a flexible form for the 
representation of the p.d.f., that can model any asymmetry 
in the tails, as well as following closely the variation in the 
centre of the histogram. Smoothing splines (Reinsch 1967; 
Silverman 1985) provide a useful means of modelling 
arbitrary functional forms, and by a judicious choice of 
misfit it is possible to take into account that the histogram is 
only an estimate of the p.d.f. It would also be useful to be 
able to compute analytically the influence function V ( E )  and 
its derivative for use in the ML estimation procedure. The 
B-spline representation for splines (de Boor 1978, chapter 
XIV) enables us to do this. For simplicity we may choose to 
fit P ( E )  = -In f ( E )  rather than fitting the p.d.f. directly, i.e. 
we can find a representation for p of the form 

... 
P ( E )  = ajbj(zj, 6 )  

j=l 

that is the minimizer over twice continuously differentiable 
functions on [xl, x,] of 

where bj are B-spline basis functions at knots zj, m is the 
number of histogram bins, q, is the negative logarithm of the 
fraction of the measurements in the jth bin, and l/uj is the 
weight applied to qj in the fitting procedure. Fitting in the 
log domain has a number of advantages. Firstly, many of the 
histograms from non-Gaussian data show the p.d.f.s to be 
very narrow and possess high curvature near the mode of 
the p.d.f., making them difficult to fit with a smoothing 
spline in the linear domain without very careful knot 
placement. Secondly, the computations in the ML 
estimation are much simpler, and last, but not least, the 
necessity for a positivity constraint on f is eliminated. The 
data are weighted in inverse proportion to their amplitude, 
to compensate for fitting in log domain. This method is akin 
to the penalized likelihood approach to density estimation, 
first applied by Good & Gaskins (1971). They actually fit the 
p.d.f. directly, not the loss function, and suggest a different 
form for the roughness penalty. However, penalized 
likelihood estimation in the log domain is not without 
precedent. Silverman (1982) discusses it, and in a later 
paper (Silverman 1984) gives a heuristic argument relating 
this type of estimate to adaptive kernel estimates (Silverman 
1986 provides a good review of kernel estimators for 
p.d.f.s). In density estimation it is not normal to bin the 
data first to form a histogram, as is done here; for the 
example discussed in the next section it is necessitated by 
the large number of data, which would otherwise make 
routine density estimation prohibitively expensive. This will 
be true in many situations where there are sufficient data 
available to make a reliable estimate of the p.d.f. 

The estimated p.d.f.s are usually quite simple in form 
even though they do not correspond to known distribution 
functions. The computation of the smoothing spline model 
for P ( E )  may be simplified by working with a depleted basis 
of B-splines, which no longer requires a knot to be 
positioned at every datum. These depleted basis repre- 
sentations, called penalized least-squares splines (PS), 
provide an excellent approximation to a smoothing spline, 
with a reduced number of parameters and at a lesser 
computational cost. Their use is described in Constable & 
Parker (1988). After fitting the PS, the p.d.f. f is normalized 
by performing a numerical integration using Gaussian 
quadrature. The expectation, mode and variance of the 
distribution may be computed by the same method. Using 
(12) we can also compute the asymptotic variance, 02, 
when the ML estimation procedure described in the 
previous section is used. These computations are facilitated 
by the fact that once p has been estimated by the PS, it is 
straightforward to differentiate it analytically and obtain $ 
and 6’. Thus once we have a model for the p.d.f. of the 
errors we may estimate the improvement over LS in the size 
of the confidence intervals for /3 by comparing the actual 
variance of the distribution with the computed asymptotic 
variance. 

Once the loss function p (and thus @, G r  and f )  has been 
derived from the LS residuals, it is used in the ML 
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estimation described in the previous section. The density 
function estimation procedure is repeated until no significant 
change in the loss function is obtained. For the examples 
discussed here this was considered to have occurred when 
subsequent values of q, (as given in equation (14)) were 
visually indistinguishable when they were plotted together 
or, equivalently, when the histograms of residuals from 
subsequent iterations were identical. This usually took no 
more than two or three iterations. The sum of the squares of 
the residuals from the ML fitting may be used to provide a 
quantitative measure of how much the residual distributions 
(and thus the estimated p.d.f.s) change between iterations. 
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APPLICATION TO LINE ESTIMATION FOR 
GEOMAGNETIC OBSERVATORY D A T A  
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In this section an example of the application of the ML 
method to line amplitude estimation in geomagnetic 
observatory data is presented. Fig. 2 shows a sample section 
of some hourly average values of geomagnetic observatory 
data from Yellowknife, Canada. The effects of long-term 
secular variation in the internally generated magnetic field 
have been removed using the penalized least-squares spline 
algorithm described by Constable & Parker (1988). The 
problem is to determine the amplitudes and phases of a 

Observatory  Data 
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Figure 2. Sample of hourly average values of geomagnetic observatory data from Yellowknife, Canada. 
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number of presumed sinusoidal signals of known frequency 
generated by periodic variations in current flow in the 
magnetosphere, ionosphere and oceans. Some of these 
occur at a period of 24 h and its harmonics (known as S,, S,, 
S,, etc.); others correspond to seasonal variations in the 
solar cycle, to tidal components in oceanic flow and other 
phenomena. Our ability to detect these signals will depend 
on their size, how close together their periods are and the 
length of the data series. Here we will look only at the 
period of one solar day and its first six harmonics in a data 
series that spans one year (this enables us to deal with a data 
set and parameter estimation problem of convenient size to 
illustrate the method discussed here). This is of interest, not 

just at this observatory, but also at other sites in North 
America, and the rest of the world, as it has application in 
conductivity studies of the Earth. Traditionally LS 
estimation has been used in this problem, either directly 
(e.g. Larsen 1968; Banks 1969; Malin & Schlapp 1980; 
Sellek & Malin 1982; Chave & Filloux 1984), or implicitly 
by using an to compute the power spectrum (e.g. 
Currie 1966). Results from both direct LS and power 
spectral methods may be unduly influenced by outlying data 
if the noise distribution is non-Gaussian. It is evident from 
the figure that, in addition to a number of possibly periodic 
processes present in the record, there are geomagnetic 
storms that have a strong pfluence on the characteristics of 
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Figure 3. Histograms of residuals from LS fit of lines to Yellowknife data set. 
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raw d a t a  

the record. We regard these non-periodic variations as noise 
for the purposes of our model. They are not actually errors 
in the data, but simply generated by processes that we have 
not taken account of in our model. It is unlikely that a 
Gaussian model for the noise will be satisfactory in this case. 
Fig. 3 shows a histogram of the residuals from a LS fit to the 
data set of the lines of interest. These residuals are indeed 
non-Gaussian; the distribution is asymmetric and far too 
long-tailed. A statistical test such as the Kolmogorov- 
Smirnov test (Kendall & Stuart 1979, chapter 30) rejects the 
hypothesis that these data come from a normal distribution. 

A further disturbing feature is apparent when we look at 
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the time series of these residuals; they are clearly correlated. 
This correlation is due to the effect of geomagnetic storms, 
which arrive at irregular intervals and change the frequency 
content of the record. At first glance one might also think 
that the series is non-stationary, however, the records used 
here were sufficiently long that they may be regarded as 
stationary, but with patches of outliers generated by the 
geomagnetic storms. Fig. 4 shows the autocorrelation 
function for these residuals at lags up to 1900 hr. Clearly the 
assumption that the noise is uncorrelated is not a reasonable 
one. Much of the autocorrelation occurs at periods longer 
than those of interest, so we can attempt to remove it by 
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Figure 4. Autocorrelation functions for the residuals from a LS fit to the Yellowknife data. The lower curve in each part of the figure is for the 
unfiltered data, the upper part the autocorrelation for the residuals from the first differenced data. 
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prewhitening the data. Looking at an amplitude spectrum of 
the individual field components reveals that for sufficiently 
high frequencies it falls off approximately inversely with 
increasing frequency, with peaks superimposed at the 
periods of interest. For the noise to be uncorrelated, we 
require its spectrum to be flat over the frequency band of 
interest. This can be largely achieved for these data by 
differentiating the time series using a first differencing filter. 
The resulting autocorrelation functions for the least squares 
residuals are also shown in Fig. 4. The resulting amplitude 

estimates are easily compensated for this differencing 
procedure, since they change only by a factor of the period 
of the sinusoid in question. The residuals for the first 
differenced data are almost uncorrelated (and certainly a 
vast improvement over the original series); the autocorrela- 
tion has dropped to less than 0.05 by a lag of 4hr,  the 
shortest period of interest. 

An example of the penalized spline fitting procedure 
described in the previous section is given in Fig. 5 using one 
year of hourly average values for the 2 component of the 
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Figure 5. (a) Histogram of residuals from a LS fit to the first differencd Yellowknife Z component data. (b) Loss function for Yellowknife Z. 
Symbols represent theedata, transformed from the histogram of (a). Solid line is the penalized cubic spline fit for the ML loss function. After 
initial ML estimation, subsequent iterations refine this estimate of the ML loss function, Dashed line is the loss function implied by a LS fitting 
procedure. (c) Solid line gives the ML influence function [the derivative of the loss function in (b)]. The dashed and dotted lines show the 
Huber and biweight influence functions respectively. The y-axis scale is arbitrary. 
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magnetic field at Yellowknife, i.e. 8760 data. Fig. 5(a) is a 
histogram of the residuals for the differenced data after 
least-squares fitting to the lines of interest. The distribution 
is very long-tailed, and slightly asymmetric: it falls off more 
steeply on the positive side than the negative. Fig. 5(b) 
shows P ( E )  (squares) and the penalized spline P ( E )  (solid 
line) that has been fitted to it. In fitting the histogram data 
of Fig. 5(a) it is necessary to choose a cut-off point for the 
loss function estimation, beyond which the histogram is 
essentially zero. This point will depend on how many data 
are available, and how they are distributed; in this case the 
spline has been fit to the residuals between -212 and 
238nT, as the p.d.f. is essentially zero outside this region. 
In the ML estimation procedure the influence function is 
linearly extrapolated to zero outside this interval. The fitted 
function differs drastically from the sort of loss function used 
in least-squares estimation; that would be a parabola centred 
on the origin and is shown by the dashed line on the figure. 
This loss function’s minimum is offset to the positive side of 
the origin, it initially rises more steeply than as the square of 
the residual, with the slope shallowing to be approximately 
linear in the size of the residual by about 80nT (i.e. by 
about 2 standard deviations). The loss function is slightly 
asymmetric, reflecting the asymmetry in the distribution of 
the residuals. Fig. 5(c) shows V ( E )  and some of the 
influence functions of Fig. 1. Note the different shapes of 
the influence curves. Their absolute magnitudes will have no 
effect on the fit; what determines the result is the relative 
influence of data with different size residuals. All of the 
standard robust techniques will allow points at around two 
or three standard deviations from the mean to have a 
greater influence on the fit than ML estimation would. In 
the tails of the distribution the ML influence function is 
intermediate between the biweight and Huber functions. 
This is due to the approximately linear dependence of the 
loss function on residual size in this region (i.e. exponential 
tails of the p.d.f.). 

A further advantage of this procedure is that it provides 
an estimate of location for the probability function for use in 
the ML estimation. This is particularly useful for this 
geomagnetic problem which has an asymmetric noise 
distribution. In this case the mean and mode of the 
distribution do not coincide and we use the mode as the 
estimate of location which will yield the ML solution. The 
p.d.f. model and influence function generated by this 
procedure are used in the ML estimation described in the 
previous section; then the residuals are recomputed and the 
process repeated until the residual distribution no longer 
changes. With the Yellowknife Z component data set the 
successive histograms of residuals were indistinguishable 
after two iterations. 

COMPARISON WITH LS AND STANDARD 
ROBUST PROCEDURES 

The ultimate justification for using the ML and p.d.f. 
estimation procedure should undoubtedly be that it provides 
parameter estimates superior in some way to those obtained 
by more conventional techniques such as ordinary LS or 
M-type robust estimation. It is of interest to compare the 
results obtained using the different methods and assess 
whether anything is gained by using the ML method. 

Table 1. Line amplitude estimates for Yellowknife Z by LS and 
ML . 
Method Period Amplitude 2 lo Bootstrap Average 2 InB og /o  

LS 24.00000 33.01 f 2.67 33.64 f 2.57 0.96 
1.25 ML 5.93 t 0.96 

LS 12.UO000 34.13 t 1.34 33.92 t 1.42 1.06 
ML 19.03 t 0.48 18.83 t 0.73 1.52 
LS 8.00000 3.16 * 0.89 3.34 2 0.74 0.83 
ML 4.64 2 0.32 4.62 * 0.38 1.20 
LS 6.00000 3.07 f 0.67 3.12 t 0.65 0.98 
ML 2.11 2 0.24 2.10 k 0.32 1.35 

1.12 LS 4.80000 2.60 t 0.53 
1.45 hlL 1.36 f 0.19 
0.97 LS 4.00000 0.51 t 0.45 

ML 0.44 2 0.16 0.48 f 0.23 1.45 

hours nT nT 

5.89 f 1.19 

2.65 f 0:60 
1.35 f 0.28 
0.68 2 0.43 

Let us look again at the data from Yellowknife 
observatory. There are three components of the magnetic 
field measured at the site, and an estimate of the line 
amplitude and phase was made at the first six harmonics of 
the solar day. For the 2-component Table 1 lists those 
periods and the amplitudes of the lines estimated using both 
LS and ML (estimates were performed on the differenced 
data and then corrected back to give true line amplitudes). 
Fig. 6 shows the histograms of rtsiduals for the 2 
component from a LS and a ML estimate of these lines over 
the interval from -200 to 200nT. Note how the histogram 
changes shape with the method used. The ML histogram is 
narrower and peakier than that from LS, showing that more 
small residuals result from ML than from LS. In LS the 
outlying points tend to drag the fitted model towards them, 
thereby sacrificing the fit to the rest of the data. The mode 
of the ML residuals is at zero, whereas for LS the mean is at 
zero. 

The asymptotic variance of the estimates decreases with 
successive iterations and the estimates of the line amplitudes 
change considerably as the noise distribution is approxim- 
ated more closely. Fig. 7 shows the results of Table 1, the 
estimates of line amplitudes for the different methods. Some 
of these change drastically when the ML procedure is used, 
by far more than one would expect given the error bars, 
which are one standard error computed using (11). In some 
cases the line amplitudes do not change very much, but 
there is still a vast improvement in the confidence of the ML 
result compared with the others. Table 2 gives the 
asymptotic variances for the various methods as computed 
by (12). The ratios of these variances provide a measure of 
the relative efficiency of the different methods. The ML 
method provides a worthwhile improvement of a factor of 
about 8 over LS in the variance and thus in the confidence 
of the result. The standard robust techniques do not 
perform nearly as well. 

Fitting lines at other observatories did not always yield 
such spectacular changes in the line amplitudes; 10 or 20 per 
cent changes were closer to the norm. The size of the 
change depends on how non-Gaussian the p.d.f.s are; if the 
p.d.f.s turn out to be Gaussian, then LS and ML estimation 
will yield the same result. However, in all cases the effect of 
using ML estimation was a substantial reduction in the 
asymptotic variance in the estimators, resulting in a great 
improvement in the confidence of the result. One question 
that should be addressed is to what extent the original 
assumptions about the data and model are likely to affect 
the recults obtained. In particular the assumption that the 
noise distribution is independent and identically distributed 
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Likel ihood 
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Figure 6. Comparison of the histograms of residuals for least-squares (dashed line and squares) and maximum likelihood (solid line and 
triangles) estimation. 

for each datum is not exact, as can be seen from the 
autocorrelations for the differenced data. This may result in 
unduly optimistic values for the standard deviation in the 
parameters estimated (not only for the ML estimation, but 
also for the LS and robust procedures). One means of 
checking how much effect the assumption has, is by using a 
bootstrap technique to obtain alternative estimates for the 
standard deviations in the estimated parameters. 

A review of bootstrap methods for obtaining standard 
errors, and confidence intervals is given by Efron & 
Tibshirani (1986). Let us suppose that the parameter 
estimates are distributed according to some unknown 
sampling distribution F and that the noise in the data yi has 
a common distribution f as before. The bootstrap technique 
assumes that the empirical distribution of the data residuals 
is this distribution, f, and computes the standard deviation 
for the parameter estimates based on this assumption. The 
computation of the standard deviations is usually performed 
by a Monte Carlo type experiment, sampling from the 
empirical distribution F that approximates F. However, the 
method used here which computes the standard error in the 
parameters based on the estimate of the loss function p (and 
thus also f )  could also be viewed as a sort of bootstrap 
method within a parametric framework. Its possible 
disadvantage is that the results may depend heavily on the 
initial assumptions about the data. This may be checked by 
performing a different type of bootstrap, which does involve 

a Monte Carlo type experiment. A random sample of size n 
is taken from the xi  values corresponding to the n first 
differenced data yi, with replacement of data between 
sampling (i.e. repetition of data points occurs within the 
sample), and the desired parameters are computed for each 
sample of xis and their associated yis. If there are B 
bootstrap samples taken then the bootstrap estimate of the 
standard error in @ will be given by 

As noted by Efron & Tibshirani (1986) this will not be 
sensitive to our initial assumptions in the ML estimation 
procedure, and the difference between the standard errors 
computed in this fashion and those computed using (12) will 
indicate how justifiable those initial assumptions were. In 
principle, if the number of bootstrap samples were allowed 
to approach infinity we could construct the true distribution 
function for the parameter estimates. For the large data set 
used in the geomagnetic example this would be prohibitively 
expensive; here we have simply tried to assess how reliable 
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Figure 7. Line amplitudes obtained by the various methods discussed in the text. Error bars are one standard deviation as computed by (11). 

the computed standard errors are, using 25 bootstrap 
samples from the original data. The results of this procedure 
are given in the last two columns of Table 1, where the 
average value of the parameter and a, are listed, as well as 
the ratio of the standard error computed using the bootstrap 
to the parametric estimate. It may be seen that for LS the 
bootstrap estimates are very similar to the parametric 
estimates. For ML the bootstrap estimates are consistently 
somewhat more variable than the parametric ones by a 
factor of one to one and a half. Nevertheless, the bootstrap 
ML errors are still substantially smaller than the standard 

Table 2. Asymptotic variances comp- 
uted for the various methods. 

Method Asymptotic Variance 
LS 2132.3 
Huber 1052.5 

ML 273.5 
Biweight 833.9 

errors obtained for LS, indicating that although the ML 
estimation is somewhat less robust to violations in our 
original assumptions about the data, it can still provide more 
efficient parameter estimates. These results must be 
regarded as tentative because of the small number of draws 
involved, however for smaller data sets, the method could 
provide a tractable means of defining the confidence limits 
for parameter estimates. 

CONCLUSIONS 

This paper has illustrated some of the differences between 
LS, ML and robust estimation procedures, by comparing the 
influence functions used in these procedures. From a 
theoretical point of view ML estimation is attractive, 
however, LS is still widely used because of its computational 
tractability, and because often little is known about the 
noise distribution. However, if the distribution of errors is 
known, it is in most cases straightforward to maximize the 
likelihood function and obtain the ML estimators for the 
parameters by solving iteratively the resulting non-linear 
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equivalent of the normal equations. This iterative procedure 
may be cast as a weighted LS problem, making the effort 
necessary to implement it minimal. 

In the section on density function estimation a method is 
described, whereby the p.d.f. and loss function for a noise 
distribution can be obtained. When noise measurements can 
be obtained independently of the signal, the density function 
may be found directly (e.g. in controlled source 
electromagnetic sounding, where the noise arises from 
telluric currents), otherwise the noise distribution may be 
obtained in an iterative fashion, provided some assumptions 
are made about the form of the model. By using penalized 
least-squares splines to represent the ML loss function 
associated with any given noise distribution we are able to 
tailor the ML estimation procedure to any particular noise 
distribution. 

The technique is illustrated with hourly values of 
geomagnetic observatory data, in which the amplitudes of a 
number of periodic processes were estimated. Geomagnetic 
storms and other phenomena in the record make the error 
distribution long-tailed, asymmetric and variable with 
location. By prewhitening the data it was possible to render 
the noise distribution largely uncorrelated, a necessary 
requirement for the ML estimation scheme presented here. 
A comparison of the ML method with standard and robust 
LS procedures shows that it can yield quite different results, 
both in the amplitudes for the fitted lines and in the 
decreased size of the confidence intervals. A bootstrap 
technique may be used to assess what effect any violation of 
our initial assumptions has on the reliability of the results. 
Although the LS estimates appeared more robust to the 
observed violations the ML results still compared very 
favourably in this example, as they always had smaller 
standard errors in the parameter estimates than for LS. For 
most geomagnetic data sets it is necessary to compute the 
loss function and p.d.f. and do the ML estimation once or 
twice before the distribution of residuals converges. How 
long each ML solution takes to converge using the 
W-estimation will depend on how non-Gaussian the p.d.f., 
f, is. In extreme cases eight or nine iterations in the 
W-estimation may be necessary; more typical distributions 
required two or three. The important distinction, however, 
is that unless the residuals are Gaussian, ML estimation is 
different from LS. The user must decide which estimate is 
preferable under the given circumstances. 
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