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Abstract

This paper develops an asymptotic estimation theory for nonlinear autoregressive models
with conditionally heteroskedastic errors. We consider a functional coefficient autoregression
of order p (AR(p)) with the conditional variance specified as a general nonlinear first order
generalized autoregressive conditional heteroskedasticity (GARCH(1,1)) model. Strong con-
sistency and asymptotic normality of the global Gaussian quasi maximum likelihood (QML)
estimator are established under conditions comparable to those recently used in the corre-
sponding linear case. To the best of our knowledge, this paper provides the first results
on consistency and asymptotic normality of the QML estimator in nonlinear autoregressive
models with GARCH errors.
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1 Introduction

This paper studies asymptotic estimation theory for nonlinear autoregressive models with con-

ditionally heteroskedastic errors. Such models have been widely used to analyze financial time

series ever since the introduction of generalized autoregressive conditionally heteroskedastic

(GARCH) models by Engle (1982) and Bollerslev (1986). In addition to ‘pure’ GARCH models,

where the conditional mean is set to zero (or a constant), specifications combining autoregressive

moving average (ARMA) type models with errors following a GARCH process (ARMA–GARCH

models) have been applied. Furthermore, a variety of nonlinear specifications have been used in-

stead of the linear one (see, e.g., the early survey article by Bollerslev, Engle, and Nelson (1994)).

Asymptotic properties of the (Gaussian) quasi maximum likelihood (QML) estimator in

GARCH-type models have been investigated in a number of papers. Contributions in the case

of linear pure GARCH models include Lee and Hansen (1994), Lumsdaine (1996), Boussama

(2000), Berkes, Horváth, and Kokoszka (2003), Hall and Yao (2003), Jensen and Rahbek (2004),

and Francq and Zaköıan (2004, 2007). These papers also contain further references. The linear

ARMA–GARCH case has been studied in Weiss (1986), Pantula (1988), Ling and Li (1997,

1998), Ling and McAleer (2003), Francq and Zaköıan (2004), Lange, Rahbek, and Jensen (2006),

and Ling (2007a).1 Of these papers, Weiss (1986), Pantula (1988), and Lange, Rahbek, and

Jensen (2006) only deal with ARCH, but not GARCH, errors. Ling and Li (1997, 1998) allow

for GARCH errors and establish weak consistency and asymptotic normality of a local, but not

global, QML estimator. Their results were extended to the global QML estimator by Ling and

McAleer (2003) who proved weak consistency and asymptotic normality under second and sixth

order moment conditions, respectively (in the case of ARCH errors, they only needed fourth order

moments for asymptotic normality). Strong consistency and asymptotic normality of the global

QML estimator were proved by Francq and Zaköıan (2004) under conditions that appear to be

the weakest so far. Their consistency result only requires a fractional order moment condition for

the observed process and, in the pure GARCH case, they showed that weak moment conditions

also suffice for asymptotic normality. However, in the ARMA–GARCH case they still needed

finite fourth order moments for the observed process to obtain asymptotic normality. Finally,

Lange, Rahbek, and Jensen (2006) and Ling (2007a) consider weighted QML estimators instead

of the usual one. As these previous papers indicate, the inclusion of an autoregressive conditional

mean entails non-trivial complications for the development of asymptotic estimation theory.

The aforementioned papers are all confined to the linear case. Estimation in nonlinear pure
1Estimation theory for related ‘double autoregressive’ models is developed, among others, by Ling (2007b),

where further references can also be found.
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ARCH, but not GARCH, models is considered by Kristensen and Rahbek (2005a,b). To the

best of our knowledge, Straumann and Mikosch (2006) are the only ones to consider asymptotic

estimation theory in nonlinear GARCH models. These authors study QML estimation in a

rather general nonlinear pure GARCH model. The examples explicitly treated in their paper

are the so-called AGARCH model and EGARCH model. They prove consistency and asymptotic

normality of the QML estimator in the case of the AGARCH model but in the EGARCH model

only consistency is established. As their work indicates, allowing for nonlinearities in GARCH

models considerably complicates the development of asymptotic estimation theory.

In this paper, we consider QML estimation in autoregressive models with GARCH errors

and allow both the conditional mean and conditional variance to take general nonlinear forms.

Specifically, the conditional mean is modeled as a functional-coefficient autoregression of order

p (AR(p)) similar to that in Chen and Tsay (1993) and the conditional variance is specified as

a general nonlinear first order GARCH model (GARCH(1,1)). As far as we know, this paper

provides the first results on consistency and asymptotic normality of the QML estimator in

nonlinear autoregressive models with GARCH errors. Obtaining such results has until recently

been hindered by the lack of conditions guaranteeing stationarity and ergodicity for nonlinear

AR–GARCH models. Such conditions were recently obtained by Cline (2007) and Meitz and

Saikkonen (2008b) whose work opened up the way for the developments of this paper. Based

on this previous work, we can only present concrete examples in the case where the conditional

heteroskedasticity is modeled by first order GARCH models. This is a major reason why we

have decided to leave the extension to higher order GARCH models for future research. Another

reason is that the technical difficulties are considerable already in the first order case. An

instance of such difficulties is that in one of our examples we have been forced to resort to

Markov chain theory to verify identification conditions needed to establish consistency of the

QML estimator and positive definiteness of its asymptotic covariance matrix. As far as we know,

the only previous reference using a similar approach is Chan and Tong (1986) where Markov

chain methods are used to show the positive definiteness of the asymptotic covariance matrix

of a QML estimator in a homoskedastic smooth transition autoregressive model. Because our

treatment of these issues may also be useful in other nonlinear time series models, this part of

the paper may be of independent interest.

In order to relate our paper to previous literature, we note that our results can also be viewed

as extensions to those developing asymptotic estimation theory in homoskedastic nonlinear au-

toregressions. Above we already mentioned the paper by Chan and Tong (1986) which studies

a homoskedastic special case of the general model considered in this paper. Another paper

related to ours is Tjøstheim (1986) which derives asymptotic properties of least squares and
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QML estimators in general nonlinear autoregressions. Although conditional heteroskedasticity

is also allowed for, the focus is mainly in homoskedastic models and GARCH type models are

not considered. These two papers differ from ours in that they obtain consistency of a local,

not global, optimizer of the objective function. There also exists an extensive literature on the

estimation theory in general nonlinear dynamic econometric models; for an excellent review and

synthesis, see Pötscher and Prucha (1991a,b). However, we have found it difficult to directly

apply the general results in this literature, although our proofs are based on the same underlying

ideas. A major reason is that, under the assumptions to be used in this paper, a uniform law of

large numbers cannot be directly applied to prove the consistency of the QML estimator.

We establish strong consistency and asymptotic normality of the QML estimator under

conditions which, when specialized to the linear AR–GARCH model, coincide with the conditions

used by Francq and Zaköıan (2004). For consistency, only a mild moment condition is required,

whereas existence of fourth order moments of the observed process is needed for asymptotic

normality. Thus, the use of our more general nonlinear framework does not come at the cost of

more restrictive assumptions. Our results are also closely related to those obtained by Straumann

and Mikosch (2006) in the pure GARCH case. As far as the treatment of the conditional variance

is concerned, we use ideas similar to theirs in our more general model. Further comparisons to

previous work are provided in the subsequent sections.

The rest of this paper is organized as follows. The model considered is introduced in Section

2, and the consistency result is given in Section 3. Differentiability of certain components

of the Gaussian likelihood function is treated in Section 4. These results are needed for the

asymptotic normality of the QML estimator which is presented in Section 5. Concrete examples

are discussed in Section 6, and Section 7 concludes. All proofs are given in Appendices.

Finally, a word on notation and terminology used in this paper. Unless otherwise indicated,

all vectors will be treated as column vectors. For the sake of uncluttered notation, we shall

write x = (x1, ..., xn) for the (column) vector x where the components xi may be either scalars

or vectors (or both). An open interval of the real line will also be denoted as (a, b), but the

context will make the meaning clear. For example, we denote R+ = (0,∞). For any scalar,

vector, or matrix x, the Euclidean norm is denoted by |x|. For a random variable (scalar, vector,

or matrix), the Lp–norm is denoted by ‖X‖p = (E [|X|p])1/p, where p > 0 (note that this is a

vector norm only when p ≥ 1). If ‖Xn‖p <∞ for all n, ‖X‖p <∞, and limn→∞ ‖Xn −X‖p = 0,

Xn is said to converge in Lp–norm to X. A random function Xn (θ) is said to be Lp–dominated

in Θ if there exists a positive random variable Dn such that |Xn (θ)| ≤ Dn for all θ ∈ Θ and

‖Dn‖p <∞ uniformly in n. Finally, ‘a.s.’ stands for ‘almost surely’.
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2 Model

2.1 Data generation process

We consider a fairly general (univariate) nonlinear autoregressive model with GARCH(1,1) er-

rors. The model is defined by

yt =
p∑
j=1

aj (yt−1, . . . , yt−p;µ0) yt−j + b (yt−1, . . . , yt−p;µ0) + σtεt, t = 1, 2, . . . , (1)

where aj and b are nonlinear functions of p lagged values of yt and the m× 1 parameter vector

µ0, σt is a positive function of ys, s < t, and εt is a sequence of independent and identically

distributed random variables with E[εt] = 0 and E[ε2t ] = 1 such that εt is independent of

{ys, s < t}. Thus, the first two terms on the right hand side specify the conditional mean

of yt whereas σ2
t , the squared volatility, is the conditional variance. The specification of the

conditional variance is assumed to be of the general parametric form

σ2
t = g(u0,t−1, σ

2
t−1; θ0), (2)

where θ0 = (µ0, λ0) with λ0 an l × 1 parameter vector specific to the conditional variance, and

u0,t = yt − f (yt−1, . . . , yt−p;µ0) (3)

with

f (z;µ0) = a (z;µ0)′ z + b (z;µ0) (4)

and a (z;µ0) = (a1 (z;µ0) , . . . , ap (z;µ0)) (z ∈ Rp).

We use the subscript ‘0’ to signify true parameter values. Thus, θ0 is a fixed but unknown

and arbitrary point in a parameter space to be specified subsequently and equations (1)–(4)

define the generation process of the observed time series used to estimate θ0. We assume that

the data are generated by a stationary and ergodic process with finite moments of some order.

Specifically, we make the following assumption.

Assumption DGP. The process (yt, σ2
t ) defined by equations (1)–(4) is stationary and ergodic

with E[|yt|2r] <∞ and E[σ2r
t ] <∞ for some r > 0.

Sufficient conditions for Assumption DGP to hold were recently obtained by Meitz and

Saikkonen (2008b). Using theory developed for Markov chains, they give conditions for geometric

ergodicity in general nonlinear AR–GARCH models. For their results to hold, they have to

assume (in addition to a number of technical assumptions) that the error term εt has a positive

and lower semicontinuous (Lebesgue) density on R. This is more than needed in some recent
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work on the estimation of GARCH and ARMA–GARCH models (see Berkes, Horváth, and

Kokoszka (2003), Francq and Zaköıan (2004), and Straumann and Mikosch (2006)). Meitz and

Saikkonen (2008b) also need rather stringent smoothness conditions on the nonlinear functions

in (1) and (2) as well as boundedness of aj and b. Such conditions are not needed by Cline

(2007) who also establishes geometric ergodicity in nonlinear AR–GARCH models. Cline (2007)

considers a very general model but his assumptions are not easy to check. Indeed, Cline (2007)

only verifies all his assumptions for a threshold model and, as is well-known, a discontinuity

in the (Gaussian) likelihood function makes the estimation theory of threshold models with

an unknown threshold location nonstandard (see, e.g., Chan (1993)). However, we are able to

obtain partial results for a model with a known threshold location in the conditional variance.

As shown in Meitz and Saikkonen (2008b), Assumption DGP can be justified for several

widely used models. The conditional mean can be as in a smooth version of the general

functional-coefficient autoregressive model of Chen and Tsay (1993) which includes as special

cases the exponential autoregressive model of Haggan and Ozaki (1981) and the smooth transi-

tion autoregressive models discussed by Teräsvirta (1994) and van Dijk, Teräsvirta, and Franses

(2002) among others. In addition to the standard linear GARCH model of Bollerslev (1986)

the conditional variance can be a smooth transition GARCH model proposed González-Rivera

(1998) and further discussed by Lundbergh and Teräsvirta (2002), Lanne and Saikkonen (2005),

and Meitz and Saikkonen (2008a).

Assumption DGP may of course be verified without relying on the results of Meitz and

Saikkonen (2008b), although this may be difficult in the case of a general nonlinear model.

However, in Section 6 we exemplify this possibility with a model in which the conditional mean

is linear and the conditional variance can either be an asymmetric GARCH model (see Ding,

Granger, and Engle (1993)) or a threshold GARCH model (see Glosten, Jaganathan, and Runkle

(1993) or Zaköıan (1994)).

Regarding the moment conditions in Assumption DGP, they are mild and not stronger

than needed in the linear case studied by Francq and Zaköıan (2004). They suffice to prove

the consistency of the QML estimator but not asymptotic normality for which more stringent

moment conditions, similar to those in Francq and Zaköıan (2004), are needed.

Finally, although Assumption DGP applies to a variety of well-known models it imposes the

rather strong requirement that the data are generated by a stationary process, by which we

mean that the initial values in (1) and (2) have the stationary distribution. In this respect,

our approach is similar to that in Berkes, Horváth, and Kokoszka (2003), Francq and Zaköıan

(2004), and Straumann and Mikosch (2006). The possibility to allow for nonstationary initial
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values in the pure GARCH case is discussed by Straumann and Mikosch (2006, Section 9) but

the situation seems quite complicated in our context. We shall say more about this later. In

ARCH models the situation is different, for it becomes possible to use limit theorems developed

for Markov chains and avoid the assumption of stationary initial values (see Kristensen and

Rahbek (2005a)).

2.2 Approximating the conditional variance process

A difficulty with developing estimation theory for the model introduced in the previous section

(and even for a pure GARCH model) is that the conditional variance process is not observable

and its stationary distribution is, in general, unknown. Thus, even if the value of the true

parameter vector θ0 were known it is not possible to compute the value of the conditional variance

σ2
t from an observed time series. For that, an initial value with the stationary distribution of σ2

t

would be needed (see equation (2)) and such an initial value is not available in practice. Thus,

because the Gaussian likelihood function depends on the conditional variance we have to use an

approximation.

Motivated by the preceding discussion we introduce the process

ht (θ) =

ς0, t = 0,

g(ut−1, ht−1 (θ) ; θ), t = 1, 2, . . .,
(5)

where θ = (µ, λ) is an (m+ l) × 1 parameter vector with true value θ0 = (µ0, λ0) and ut =

yt − f (yt−1, . . . , yt−p;µ). Once the initial value ς0 has been specified one can use equation (5)

to compute ht (θ), t = 1, 2, ..., recursively for any chosen value of the parameter vector θ. For

simplicity, we assume the initial value ς0 to be a positive constant independent of θ, which is

also the choice most common in practice.2 When there is no need to make the dependence of

ht (θ) explicit about the parameter vector θ we use the notation ht. Similarly, the short-hand

notation ft = ft (µ) = f (yt−1, . . . , yt−p;µ) will sometimes be used.

If the results of Meitz and Saikkonen (2008b) are used to justify the ergodicity assumed in

Assumption DGP then, given any initial value, the conditional distribution of ht (θ0) approaches

the stationary distribution of the true conditional variance σ2
t as t → ∞. Furthermore, limit

theorems developed for Markov chains apply to realizations of the process (yt, ht (θ0)). Unfortu-

nately, however, this is not sufficient to prove consistency and asymptotic normality of the QML

estimator of the parameter vector θ0. The reason is that in these proofs one has to consider the
2The results in this paper could be generalized to the case of a stochastic initial value ς0(θ) depending on θ,

but, to avoid additional technical complications, we have decided not to pursue this matter.
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process ht (θ) for parameter values different from the true value θ0 but the results of Meitz and

Saikkonen (2008b) only apply to the process ht (θ0) and say nothing about properties of ht (θ)

when θ 6= θ0. Another point to note is that the process ht (θ) depends on the entire past history

of the observed process yt. If ht (θ) were a function of a fixed finite number of lagged values of yt

the aforementioned difficulty could be overcome, for the stationarity and ergodicity of yt would

make it possible to apply well-known limit theorems to statistics involving the process ht (θ).

In ARCH models this is the case and explains why the development of asymptotic estimation

theory is not hampered by nonstationary initial values (see Kristensen and Rahbek (2005a)).

The preceding discussion means that we have to study properties of the process ht (θ) for

all θ = (µ, λ) in a permissible parameter space. Due to the relatively simple structure of

the standard GARCH model this is quite straightforward in the linear ARMA–GARCH model

considered by Francq and Zaköıan (2004). However, nonlinear GARCH models are considerably

more difficult, as the recent work of Straumann and Mikosch (2006) shows. Our approach is to

follow these authors and extend some of their arguments to a model with a nonlinear conditional

mean. To this end, we impose the following assumptions which are central in proving the

consistency of the QML estimator. The permissible parameter spaces of µ and λ are denoted

by M and Λ, respectively, so that their product Θ = M× Λ defines the permissible space of θ.

Assumption C1. The true parameter value θ0 ∈ Θ = M× Λ, where M and Λ are compact

subsets of Rm and Rl, respectively.

Assumption C2. The function g : R × R+ × Θ → R+ is continuous with respect to all its

arguments and satisfies the following two conditions.

(i) For some 0 < % < 1 and 0 < κ, $ < ∞, g(u, x; θ) ≤ %x + κu2 + $ for all θ ∈ Θ, u ∈ R,

and x ∈ R+.

(ii) For some 0 < κ < 1, |g (u, x1; θ)− g (u, x2; θ)| ≤ κ |x1 − x2| for all θ ∈ Θ, u ∈ R, and

x1, x2 ∈ R+.

Assumption C3. The functions a : Rp ×M → Rp and b : Rp ×M → R are such that a (·;µ)

and b (·;µ) are bounded uniformly in µ and Borel measurable for every µ.

As usual in nonlinear estimation problems, Assumption C1 requires the parameter space to

be compact. From a mathematical point of view this assumption provides a convenient simplifi-

cation although it may not be easy to justify in practice. Assumption C2 is more stringent than

needed to justify Assumption DGP (see Assumption 4 in Meitz and Saikkonen (2008b)). This

particularly holds for the Lipschitz condition in Assumption C2(ii). It would be possible to relax
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this condition along the lines in Straumann and Mikosch (2006) but we prefer not to pursue

this matter because it would complicate the exposition and we have no example where such a

relaxed condition would be necessary. From a mathematical point of view, the boundedness as-

sumption in Assumption C3 is rather stringent but still satisfied by several functional-coefficient

autoregressive models including the exponential autoregressive model and various smooth tran-

sition autoregressive models (see Haggan and Ozaki (1981), Teräsvirta (1994), and van Dijk,

Teräsvirta, and Franses (2002)).

Using Assumptions C1–C3 we can prove the following result.

Proposition 1. Suppose Assumptions DGP and C1–C3 hold. Then, for all θ ∈ Θ there exists

a stationary and ergodic solution h∗t (θ) to the equation

ht (θ) = g(ut−1, ht−1 (θ) ; θ), t = 1, 2, . . . . (6)

This solution is continuous in θ, measurable with respect to the σ–algebra generated by (yt−1, yt−2, ...),

and it is unique when (6) is extended to all t ∈ Z. Furthermore, the solution h∗t (θ) has the prop-

erties h∗t (θ0) = σ2
t and E

[
supθ∈Θ h

∗r
t (θ)

]
<∞, and, if ht(θ), θ ∈ Θ, are any other solutions to

the equation (6), then for some γ > 1, γt supθ∈Θ|h∗t (θ)− ht(θ)| → 0 in Lr–norm as t→∞.

Proposition 1 is proved in Appendix B by using an analogous more general lemma given

in Appendix A. This lemma is similar to Theorem 3.1 of Bougerol (1993) and Theorem 2.8 of

Straumann and Mikosch (2006) although more specific. Proposition 1 shows that the stationary

solution h∗t (θ0) to equation (6) with θ = θ0 coincides with the true conditional variance of the

data generation process and that any other solution obtained with θ = θ0 converges to the true

conditional variance exponentially fast. Note, however, that the mode of convergence is different

from that in the aforementioned result of Meitz and Saikkonen (2008b). Also, the convergence

to the stationary solution does not only hold for the true parameter value θ0 but uniformly

over the parameter space Θ. This last fact and the existence of the stationary and ergodic

solution h∗t (θ) will be of importance in our subsequent developments. Indeed, with Proposition

1 (and assumptions to be imposed later) we can prove the consistency and asymptotic normality

of the QML estimator of the parameter vector θ0. As already mentioned, this requires more

stringent conditions about the function g than needed to establish the geometric ergodicity of

the data generation process. It is worth noting that no similar strengthening is needed for

the function f (i.e., the functions aj (j = 1, ..., p) and b) that specifies the conditional mean

of the model. This is due to the fact that the technique used to prove Proposition 1 (and the

aforementioned theorems of Bougerol (1993) and Straumann and Mikosch (2006)) is only needed

for the conditional variance process, and not for the conditional mean. Had we needed a similar
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method for the conditional mean, this might have lead to Lipschitz (contraction) conditions also

for the function f , which could have considerably restricted the type of permitted nonlinearity.

3 Consistency of the QML estimator

Suppose we have an observed time series y−p, . . . , y0, y1, . . . , yT generated by the stationary

and ergodic process defined by equations (1)–(4) (cf. Assumption DGP). We shall estimate the

unknown parameter vector θ0 by minimizing the objective function

LT (θ) = T−1
T∑
t=1

lt (θ) , where lt (θ) = log (ht) +
u2
t

ht

and ut = yt−f (yt−1, . . . , yt−p;µ) and ht are as in (3) and (5) with dependence on the parameter

vectors µ and θ suppressed. Clearly, LT (θ) is an approximation to the conditional Gaussian

log-likelihood multiplied by −2/T. We do not assume Gaussianity, however, so that the resulting

estimator is a QML estimator. Conditioning is on the first p + 1 observations and the initial

value ς0 needed to compute the approximate conditional variances ht (θ) (t = 1, ..., T ). It follows

from Proposition 1 that ht (θ) approximates the stationary solution to equation (6) which for

θ = θ0 coincides with the true conditional variance σ2
t .

We also define

L∗T (θ) = T−1
T∑
t=1

l∗t (θ) , where l∗t (θ) = log (h∗t ) +
u2
t

h∗t

and h∗t = h∗t (θ) is the stationary and ergodic solution to equation (6) (see Proposition 1). Due

to stationarity, the function L∗T (θ) is easier to work with than LT (θ) and, using assumptions to

be made below, it turns out that minimizers of L∗T (θ) and LT (θ) are asymptotically equivalent.

In addition to the assumptions already made we need further assumptions about the non-

linear functions used to model the conditional mean and conditional variance. Regarding the

conditional mean, we impose the following assumption.

Assumption C4. The functions a : Rp ×M → Rp and b : Rp ×M → R are such that a (z; ·)

and b (z; ·) are continuous for every z ∈ Rp.

The continuity of the functions a and b combined with the continuity of the function g im-

posed in Assumption C2 ensures that the Gaussian log-likelihood function LT (θ) is continuous.

This is a common requirement in nonlinear estimation problems and, in conjunction with the

assumed compactness of the parameter space Θ, it implies the existence of a measurable mini-

mizer θ̂T = (µ̂T , λ̂T ) of LT (θ) (see, e.g., Pötscher and Prucha (1991a), Lemma 3.4). In view of

the continuity of h∗t (θ) established in Proposition 1 the same is true for a minimizer of L∗T (θ).
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As for the conditional variance, we have to supplement Assumption C2 by the following

technical condition.

Assumption C5. The function g : R×R+ ×Θ→ R+ is bounded away from zero in the sense

that inf(u,x,θ)∈R×R+×Θ g(u, x; θ) = g for some g > 0.

This condition bounds the function g away from zero in the same way as, for example,

Assumption C.3 of Straumann and Mikosch (2006). This assumption is somewhat unnatural

but appears difficult to avoid even in pure ARCH models (cf. condition C.2 in Kristensen and

Rahbek (2005a)).

Our final assumption for the consistency of the QML estimator θ̂T is the following identifi-

cation condition.

Assumption C6.

(i) f (yt−1, ..., yt−p;µ) = f (yt−1, ..., yt−p;µ0) a.s. only if µ = µ0.3

(ii) h∗t (µ0, λ) = σ2
t a.s. only if λ = λ0.

As will be seen in the proof of Theorem 1 (Appendix B), given the assumptions so far, As-

sumption C6 is equivalent to E[L∗T (θ)] being uniquely minimized at θ0. In the present context,

this is essentially equivalent to θ0 being an identifiably unique minimizer of L∗T (θ) in the sense of

Pötscher and Prucha (1991a, Definition 3.1) and White (1980, Definition 2.1).4 Although more

explicit than an identifiable uniqueness condition, the conditions in Assumption C6 are still of

a general nature, and in particular cases they have to be verified by using more basic assump-

tions about the functional forms of the specified conditional mean and conditional variance. In

nonlinear cases this turns out to be difficult, and we next provide some comments on this.

So far, there appears to be rather limited previous work available on the verification of an

identification condition such as C6(i) in nonlinear autoregressive models of the type considered

in this paper. Although Chan and Tong (1986) and Tjøstheim (1986) consider estimation in

homoskedastic nonlinear autoregressions with structures similar to ours, their results concern

a local, not global, minimizer of the objective function, and therefore they need not verify

an identification condition corresponding to C6(i). Lai (1994) considers (global) least squares

estimation in nonlinear regression models, and his identification condition (2.2) is related to

ours. However, he does not verify this condition in any examples similar to ours. It appears
3This condition could also be expressed by using the functions a and b as in (4).
4‘Essentially’ equivalent because in our situation E[L∗T (θ)] takes values in R ∪ {+∞} instead of R; if E[L∗T (θ)]

is finite in Θ, compactness of Θ and lower semi-continuity of E[L∗T (θ)] (to be shown in the proof of Theorem 1)

suffice for this equivalence.
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challenging to verify condition C6(i) in a nonlinear autoregression with a nonlinear structure

sufficiently general for the results to be applicable in practice. For instance, general results such

as those provided by Pötscher and Prucha (1991a) do not consider verifying conditions of this

kind. In one of our examples we have found it difficult to verify condition C6(i) without resorting

to rather complicated derivations that involve the application of Markov chain theory. The basic

idea is to impose suitable assumptions on the function f so that, for every µ 6= µ0, there exists

a (Borel) measurable set A ⊂ Rp such that f (z;µ) 6= f (z;µ0) for all z ∈ A. Then condition

C6(i) clearly holds if the event {(yt−1, ..., yt−p) ∈ A} has positive probability. Using Markov

chain theory it is possible to show that events of this kind indeed have positive probability even

though the precise form of the stationary distribution of the process yt is unknown.

Regarding condition C6(ii), it agrees with the identification condition used by Straumann

and Mikosch (2006) in their nonlinear GARCH model (we are not aware of any other papers

dealing with identification in nonlinear GARCH models). However, in their examples they do

not consider nonlinearities as complicated as we do, and, therefore, they do not need to rely

on Markov chain theory to verify the identification condition (although even in their case the

verification is quite complicated). One of our examples is again rather difficult and we have

been forced to resort to Markov chain theory to verify condition C6(ii).

As a final remark we note that in the verification of Assumption C6, it may also be necessary

to make assumptions about the distribution of the error term εt. For instance, in order to prove

consistency in a linear ARMA–GARCH model, Francq and Zaköıan (2004) assume that the

distribution of ε2t is non-degenerate and a similar condition also appears in Straumann and

Mikosch (2006, Theorems 5.1 and 5.5). However, in nonlinear cases much more may need to be

assumed, as one of our examples suggests.

Now we can state our consistency result which is proved in Appendix B.

Theorem 1. Suppose Assumptions DGP and C1–C6 hold. Then the QML estimator θ̂T is

strongly consistent, that is, θ̂T → θ0 a.s.

The proof of this theorem makes use of the relation between the Gaussian log-likelihood

function LT (θ) and its stationary and ergodic counterpart L∗T (θ). Instead of the QML estimator

θ̂T the proof is reduced to its infeasible analog obtained by minimizing L∗T (θ) (for details, see

Appendix B). The same approach has also been used in the related previous work of Berkes,

Horváth, and Kokoszka (2003), Francq and Zaköıan (2004), and Straumann and Mikosch (2006).

Similarly to these authors, we can prove consistency with very mild moment conditions (see

Assumption DGP). As a final remark we note that, with our assumptions, a ‘classical’ consistency

proof relying on an application of a uniform law of large numbers (see, e.g., Pötscher and Prucha
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(1991a)) is not directly applicable. Therefore, our proof relies on alternative (though well-known)

arguments similar to those also used by Straumann and Mikosch (2006) in part 2 of their proof

of Theorem 4.1 (for details, see Appendix B).

4 Derivatives of the approximate conditional variance process

For the asymptotic normality of the QML estimator of the parameter vector θ0 we subsequently

need to consider the first and second derivatives of the objective function LT (θ) as well as its

stationary ergodic counterpart L∗T (θ). A complication that arises is the differentiability of the

processes ht and h∗t . In this section we give conditions under which both of these processes are

twice continuously (partially) differentiable and the derivatives of ht converge to those of h∗t .

Similarly to Subsection 2.2, the differentiability of ht and h∗t is more straightforward in the case of

a linear ARMA–GARCH model considered by Francq and Zaköıan (2004). In nonlinear GARCH

models the situation is rather complex, and again our approach is to follow the arguments in

Straumann and Mikosch (2006) and extend them to our case with a nonlinear conditional mean.

We begin with some assumptions.

Assumption N1. The true parameter value θ0 is an interior point of Θ.

Assumption N1 is necessary for the asymptotic normality of the QML estimator. Together

with the differentiability assumptions to be imposed shortly it allows us to use a conventional

Taylor series expansion of the score. Estimation in linear GARCH models when θ0 is allowed

to be on the boundary of the parameter space has only recently been considered by Francq and

Zaköıan (2007) (see also Andrews (1999)). In this case, the resulting asymptotic distribution is

no longer normal. We leave this for future research.

Assumption N1 together with the consistency of the QML estimator implies that in the

subsequent analysis we (without loss of generality) only need to consider parameter values in

an arbitrarily small open ball centered at θ0. For concreteness, let Θ0 be a compact convex

set contained in the interior of Θ that has θ0 as an interior point. This gives us a suitable set

Θ0 on which to investigate the differentiability and the validity of the Taylor expansions of the

objective functions LT (θ) and L∗T (θ) and their components. The assumed compactness will be

convenient because we will apply Lemma A.3 (in Appendix A) to examine the differentiability

of the processes ht and h∗t on Θ0. On the other hand, convexity ensures that all intermediate

points obtained from Taylor expansions will also be in Θ0.

To present the next assumption, we partition the set Θ0 as Θ0 = M0 × Λ0.
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Assumption N2. The function g(·, ·; ·) is twice continuously partially differentiable on R ×

R+ × Θ0 and the functions a (z; ·) and b (z; ·) are twice continuously partially differentiable on

M0 for every z ∈ Rp.

Assumption N2 is necessary for the differentiability of the objective function LT (θ) on the set

Θ0, and is similar to (parts of) Assumptions D.1 and D.3 of Straumann and Mikosch (2006). A

difference to these assumptions is that due to the presence of the conditional mean, the function

g is required to be differentiable also with respect to its first argument (we will see in Section 6,

Example 2, that this additional requirement turns out to be restrictive).

We next impose restrictions on the derivatives of the functions g, a, and b. Denote the first

and second partial derivatives of g with gυ1 = ∂g (u, h; θ) /∂υ1 and gυ1υ2 = ∂2g (u, h; θ) /∂υ1∂υ
′
2,

where υ1 and υ2 can be any of u, h, or θ. Define aµ, aµµ, bµ, and bµµ similarly (e.g. aµ =

∂a (z;µ) /∂µ).

Assumption N3.

(i) For some C <∞ and all µ ∈ M0 and z ∈ Rp, the quantities |aµ|, |aµµ|, |bµ|, and |bµµ| are

bounded by C.

(ii) For some C <∞ and all θ ∈ Θ0, u ∈ R, and x ∈ R+, the quantities |gθ|, |gu|, |gθθ|, |guu|,

|gθu|, and |guθ| (evaluated at (u, x; θ)) are bounded by C(1 + u2 + x).

(iii) For some κ′ <∞ and all u ∈ R and x1, x2 ∈ R+,

|gυ(u, x1; θ)− gυ(u, x2; θ)| ≤ κ′|x1 − x2|, υ = u, h, θ,

|gυ1υ2(u, x1; θ)− gυ1υ2(u, x2; θ)| ≤ κ′|x1 − x2|, υ1, υ2 = u, h, θ.

The first condition in Assumption N3 places further restrictions on the behaviour of the

functions a and b in the conditional mean function. Like the boundedness conditions already

imposed on them in Assumption C3, these conditions may be stringent from a mathematical

point of view but are typically satisfied in applications. The second and third parts of Assump-

tion N3 are related to conditions C2(i) and (ii) already imposed on the function g. The condition

in N3(ii) is used to ensure the existence of certain moments involving the partial derivatives of

g (a less stringent condition would also suffice, but this one is used for its simplicity). Condi-

tion N3(iii) is a Lipschitz continuity requirement for the partial derivatives of g but, unlike the

condition on the function g itself in C2(ii), the partial derivatives need not be contractions (i.e.,

κ′ does not need to be less than one).
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We now introduce further notation that is needed to present the derivatives of ht and h∗t

in a reasonably concise form. Denote the first and second partial derivatives of the func-

tion ht (θ) with hθ,t = ∂ht (θ) /∂θ and hθθ,t = ∂2ht (θ) /∂θ∂θ′, respectively. Similarly, de-

note fθ,t = ∂ft (θ) /∂θ and fθθ,t = ∂2ft (θ) /∂θ∂θ′ (note that fθ,t = −∂ut (θ) /∂θ and fθθ,t =

−∂2ut (θ) /∂θ∂θ′, and also that although both ft and ut depend only on µ and not on λ, we

will often use the argument θ for simplicity). Furthermore, let gυ1,t = [gυ1 ]u=ut−1(θ),h=ht−1(θ) =

∂g (ut−1 (θ) , ht−1 (θ) ; θ) /∂υ1 denote the first partial derivative of g evaluated at u = ut−1 (θ)

and h = ht−1 (θ), and define gυ1υ2,t similarly (υ1 and υ2 can be any of u, h, or θ). Finally, all

the derivatives may be partitioned conformably with the partition θ = (µ, λ), and θ is replaced

with either µ or λ when denoting these blocks (for example, hθ,t = (hµ,t, hλ,t); note also that

fλ,t, fλλ,t, fµλ,t, and fλµ,t are zero vectors or matrices).

The first and second derivatives of the difference equation ht = g (ut−1, ht−1; θ), t = 1, 2, ...,

can now be derived by straightforward but tedious differentiation. We have

hθ,t = gθ,t − gu,tfθ,t−1 + gh,thθ,t−1, t = 1, 2, ...,

hθθ,t = gθθ,t + guu,tfθ,t−1f
′
θ,t−1 − fθ,t−1guθ,t − gθu,tf ′θ,t−1 − gu,tfθθ,t−1

+ (gθh,t − guh,tfθ,t−1)h′θ,t−1 + hθ,t−1

(
ghθ,t − ghu,tf ′θ,t−1

)
+ghh,thθ,t−1h

′
θ,t−1 + gh,thθθ,t−1, t = 1, 2, ...,

where the recursions are initialized from a zero vector and matrix, respectively. For further

conciseness we denote

αθ,t = gθ,t − gu,tfθ,t−1, βt = gh,t, γθ,t = gθh,t − guh,tfθ,t−1, δt = ghh,t, (7)

αθθ,t = gθθ,t + guu,tfθ,t−1f
′
θ,t−1 − fθ,t−1guθ,t − gθu,tf ′θ,t−1 − gu,tfθθ,t−1, (8)

and with this notation the derivatives of ht satisfy the difference equations

hθ,t = αθ,t + βthθ,t−1, t = 1, 2, ..., (9)

hθθ,t = αθθ,t + βthθθ,t−1 + γθ,th
′
θ,t−1 + hθ,t−1γ

′
θ,t + δthθ,t−1h

′
θ,t−1, t = 1, 2, .... (10)

We also define stationary ergodic counterparts of the quantities appearing in (7)–(8). To this end,

let g∗υ1,t = [gυ1 ]u=ut−1(θ),h=h∗t−1(θ) = ∂g
(
ut−1 (θ) , h∗t−1 (θ) ; θ

)
/∂υ1 denote this partial derivative

evaluated at u = ut−1 (θ) and h = h∗t−1 (θ), where h∗t (θ) is the stationary ergodic solution

obtained from Proposition 1, and define g∗υ1υ2,t similarly (υ1 and υ2 can be any of u, h, or θ).

Furthermore, let α∗θ,t, β
∗
t , γ∗θ,t, δ

∗
t , and α∗θθ,t denote the analogously defined counterparts of the

quantities in (7)–(8) (for example, β∗t = g∗h,t = ∂g(ut−1(θ), h∗t−1(θ); θ)/∂h).

Given these assumptions and notation, we obtain the following result.

15



Proposition 2. Suppose Assumptions DGP, C1–C6, and N1–N3 hold.

(a) For all θ ∈ Θ0 there exists a stationary ergodic solution h∗θ,t(θ) to the equation

hθ,t(θ) = α∗θ,t + β∗t hθ,t−1(θ), t = 1, 2, .... (11)

This solution is measurable with respect to the σ–algebra generated by (yt−1, yt−2, ...), it is unique

when (11) is extended to all t ∈ Z, and E
[
supθ∈Θ0

|h∗θ,t(θ)|r/2
]
<∞. Furthermore, the stationary

ergodic solution h∗t (θ) obtained from Proposition 1 is continuously partially differentiable on Θ0

for every t ∈ Z and ∂h∗t (θ)/∂θ = h∗θ,t(θ).

(b) If ht(θ) and hθ,t(θ), θ ∈ Θ0, are any solutions to the difference equations (6) and (9),

respectively, then for some γ > 1, γt supθ∈Θ0
|h∗θ,t(θ)− hθ,t(θ)| → 0 in Lr/4–norm as t→∞.

Proposition 2(a) shows that h∗t (θ) is continuously differentiable and that its derivative co-

incides with h∗θ,t(θ), the stationary ergodic solution to (11). Part (b) of the proposition shows

that for any other solution ht(θ) to equation (6), its derivative hθ,t(θ) converges to h∗θ,t(θ) expo-

nentially fast and uniformly over Θ0. These facts will be of importance when we subsequently

consider the first derivatives of the objective function LT (θ) and its stationary ergodic counter-

part L∗T (θ). In particular, using part (a) we can show that L∗T (θ) is continuously differentiable

with a stationary and ergodic derivative, whereas using part (b) we can establish that this

derivative provides an approximation to the first derivative of LT (θ).

Our next proposition gives an analogous result for the second derivatives.

Proposition 3. Suppose Assumptions DGP, C1–C6, and N1–N3 hold.

(a) For all θ ∈ Θ0 there exists a stationary ergodic solution h∗θθ,t(θ) to the equation

hθθ,t(θ) = α∗θθ,t+β
∗
t hθθ,t−1(θ)+γ∗θ,th

∗′
θ,t−1(θ)+h∗θ,t−1(θ)γ∗′θ,t+δ

∗
t h
∗
θ,t−1(θ)h∗′θ,t−1(θ), t = 1, 2, .... (12)

This solution is measurable with respect to the σ–algebra generated by (yt−1, yt−2, ...), it is unique

when (12) is extended to all t ∈ Z, and E
[
supθ∈Θ0

|h∗θθ,t(θ)|r/4
]
<∞. Furthermore, the station-

ary ergodic solution h∗t (θ) obtained from Proposition 1 is twice continuously partially differen-

tiable on Θ0 for every t ∈ Z and ∂2h∗t (θ)/∂θ∂θ
′ = h∗θθ,t(θ).

(b) If ht(θ), hθ,t(θ), and hθθ,t(θ), θ ∈ Θ0, are any solutions to the difference equations (6), (9),

and (10), respectively, then for some γ > 1, γt supθ∈Θ0
|h∗θθ,t(θ)− hθθ,t(θ)| → 0 in Lr/8–norm as

t→∞.

The results of Proposition 3 are analogous to those of Proposition 2. We note that in the

moment and convergence results obtained for h∗θ,t and h∗θθ,t in Propositions 2 and 3, respectively,

the exact orders (r/2, r/4, or r/8) are not crucial as long as these results hold for some positive
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exponents. Our approach here is somewhat different from the one used by Straumann and

Mikosch (2006, Propositions 6.1 and 6.2) in that we obtain moment results for h∗θ,t and h∗θθ,t

and use convergence in Lp–norm instead of the almost sure convergence used by them. As a

consequence, the use of these results in subsequent proofs appears to lead to less complex and

more transparent derivations.5

5 Asymptotic normality of the QML estimator

As already indicated, the moment conditions used to prove strong consistency of the QML

estimator are not sufficient to establish asymptotic normality. Further restrictions are needed

for the moments of the observed process as well as for the derivatives of the process h∗t (θ). We

make the following assumption.

Assumption N4. Assumption DGP holds with r = 2, the random variables εt satisfy E[ε4t ] <

∞, and ∥∥∥∥∥ sup
θ∈Θ0

|h∗θ,t(θ)|
h∗t (θ)

∥∥∥∥∥
4

<∞ and

∥∥∥∥∥ sup
θ∈Θ0

|h∗θθ,t(θ)|
h∗t (θ)

∥∥∥∥∥
2

<∞.

The first two conditions mean that finiteness of fourth moments is assumed for the observed

process yt, which is much more than needed to prove consistency. As discussed by Francq and

Zaköıan (2004) and Ling (2007a) in the linear ARMA–GARCH case, it is quite expected that

finiteness of second moments of the observed process is required to make a suitable central limit

theorem applicable to the score vector and, even in this linear case, it has proved difficult to do

without assuming finite fourth moments. The moment conditions imposed on the derivatives

of h∗t are satisfied when the conditional mean is modeled by a linear function and conditional

variance by a standard linear GARCH(1,1) model (see Francq and Zaköıan (2004) and Ling

(2007a)). In our general nonlinear model it seems difficult to replace these conditions with

something more explicit. However, as will be seen in Section 6, these conditions are satisfied in

the nonlinear example we consider.

The assumptions made so far guarantee finiteness of the expectations

I (θ)
def
= E

[
∂L∗T (θ)
∂θ

∂L∗T (θ)
∂θ′

]
and J (θ)

def
= E

[
∂2L∗T (θ)
∂θ∂θ′

]
5We note that only the moment and convergence results for h∗θ,t, but not those for h∗θθ,t, are explicitly used

in the proofs that follow. The results for h∗θθ,t are, however, required to justify the twice continuous partial

differentiability of h∗t on Θ0 and the relation ∂2h∗t (θ)/∂θ∂θ
′ = h∗θθ,t(θ) although we have omitted the details of

this in the proofs.
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for θ ∈ Θ0. Explicit expressions for these matrices are derived in Appendix D, Lemmas D.1 and

D.2. If the matrices I (θ0) and J (θ0) are positive definite the asymptotic covariance matrix of

the QML estimator θ̂T is also positive definite, as required for statistical inference. In order to

guarantee this, we impose the following three conditions.

Assumption N5.

(i) The distribution of εt is not concentrated at two points.

(ii) x′µ
∂ft(µ0)
∂µ = 0 a.s. only if xµ = 0 (xµ ∈ Rm).

(iii) x′λ
∂g(u0,t,σ2

t ;θ0)
∂λ = 0 a.s. only if xλ = 0 (xλ ∈ Rl).

The third condition in Assumption N5 is similar to the one used by Straumann and Mikosch

(2006, Assumption N.4) in the pure GARCH case, whereas the second one is its analogue for

the conditional mean. These two conditions require the components of both ∂ft(µ0)/∂µ and

∂g(u0,t, σ
2
t ; θ0)/∂λ to be linearly independent with probability one. Due to the generality of

our model these two conditions seem difficult to replace with more transparent counterparts.

However, if the function f used to model the conditional mean is linear, the first condition is

automatically satisfied given that N5(i) holds (or as long as εt is not degenerate; see Appendix

E, Example 1). Moreover, if conditional heteroskedasticity is modeled by a standard linear

GARCH(1,1) model and provided that homoskedasticity is ruled out, the second condition also

holds given that N5(i) is satisfied (or as long as ε2t is not degenerate; see Appendix E, Example

1). For a model containing both a conditional mean and a conditional variance, condition N5(i)

appears to be the minimal requirement on the error term εt to ensure the positive definiteness

of the asymptotic covariance matrix of the QML estimator θ̂T . This condition was also used

by Francq and Zaköıan (2004) in the context of their linear ARMA–GARCH model and, as

they point out, is marginally stronger than the requirement that the random variable ε2t is

not degenerate (in the case εt has an asymmetric distribution). In the context of a nonlinear

GARCH model, a condition at least as strong as N5(i) may often be needed to ensure that

condition N5(iii) holds. We will return to this in the concrete examples of the next section,

but already note that, for instance, Straumann and Mikosch (2006) need condition N5(i) when

verifying their counterpart of N5(iii) (see the example in their Section 8).

Verifying conditions N5(ii) and N5(iii) for particular nonlinear models may be complicated.

The technical difficulties are similar to those already discussed in connection with the verification

of the identification conditions in Assumption C6, and we only mention that we have resorted to

Markov chain techniques in order to be able to verify them. As far as we know, the only previous
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example of this kind of approach is Chan and Tong (1986, Appendix II) where Markov chain

techniques are used to show the positive definiteness of the asymptotic covariance matrix of the

nonlinear least squares estimator in a homoskedastic smooth transition autoregressive model.6

Now we can state the main result of this section.

Theorem 2. Suppose Assumptions DGP, C1–C6, and N1–N5 hold. Then

T 1/2(θ̂T − θ0) d→ N
(

0,J (θ0)−1 I (θ0)J (θ0)−1
)
,

where the matrices I (θ0) and J (θ0) are given in (32) and (35) in Appendix D and are positive

definite. Moreover, if the distribution of εt is symmetric, I (θ0) and J (θ0) can be expressed as

I (θ0) =

 4E
[
fµ,t(µ0)
σt

f ′µ,t(µ0)

σt

]
0m×l

0l×m 0l×l

+ E
[
ε4t − 1

]
E

[
h∗θ,t(θ0)

σ2
t

h∗′θ,t(θ0)

σ2
t

]
(13)

and

J (θ0) =

 2E
[
fµ,t(µ0)
σt

f ′µ,t(µ0)

σt

]
0m×l

0l×m 0l×l

+ E

[
h∗θ,t(θ0)

σ2
t

h∗′θ,t(θ0)

σ2
t

]
. (14)

As in the consistency proof, we shall follow Berkes, Horváth, and Kokoszka (2003), Francq

and Zaköıan (2004), and Straumann and Mikosch (2006) and first show that the infeasible QML

estimator obtained by minimizing the function L∗T (θ) has the limiting distribution stated in the

theorem. After this intermediate step, the proof is completed by showing that the same limiting

distribution applies to the corresponding feasible estimator θ̂T (for details, see Appendix D).

To compute approximate standard errors for the components of θ̂T and construct asymptot-

ically valid Wald tests we need consistent estimators for the matrices I (θ0) and J (θ0). The

expressions of these matrices in (32) and (35) in Appendix D reveal that it suffices to find

consistent estimators for

E

[
fµ,t(µ0)
σt

f ′µ,t(µ0)
σt

]
, E
[
ε4t − 1

]
, E

[
h∗θ,t(θ0)

σ2
t

h∗′θ,t(θ0)

σ2
t

]
, and E

[
fµ,t(µ0)
σt

h∗′θ,t(θ0)

σ2
t

]
(15)

(in the case of a symmetric error distribution the fourth one is not required, as expressions (13)

and (14) reveal). The obvious choices for these quantities are

T−1
T∑
t=1

f̂µ,t

ĥ1/2

t

f̂ ′µ,t

ĥ1/2

t

, T−1
T∑
t=1

(
û4
t

ĥ2
t

− 1

)
, T−1

T∑
t=1

ĥθ,t

ĥt

ĥ′θ,t

ĥt
, and T−1

T∑
t=1

f̂µ,t

ĥ1/2

t

ĥ′θ,t

ĥt
, (16)

6Tjøstheim (1986, Section 4.1) is able to verify his counterpart of condition N5(ii) in a very simple manner in

a homoskedastic first order exponential autoregressive model.
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respectively, where “ˆ” signifies evaluation at the QML estimator θ̂T . The obvious estimators of

I (θ0) and J (θ0) obtained in this way are denoted by ÎT and ĴT , respectively. It is shown in

Appendix D that, under the conditions of Theorem 2,

ÎT → I (θ0) a.s. and ĴT → J (θ0) a.s. (17)

Thus, a consistent estimator of the asymptotic covariance matrix J (θ0)−1 I (θ0)J (θ0)−1 in

Theorem 2 is given by Ĵ −1
T ÎT Ĵ

−1
T . Finally, note that if εt is normally distributed (or, more

generally, if E
[
ε4t
]

= 3 and E
[
ε3t
]

= 0), the relation I (θ0) = 2J (θ0) obviously holds. Then

the limiting distribution of θ̂T simplifies (see Theorem 2) which can accordingly be taken into

account in the computation of standard errors and Wald test statistics.

6 Examples

We shall now consider concrete examples to which our general theory applies. In each case

we give a set of low-level conditions that guarantee the validity of Assumptions DGP, C1–C6,

and N1–N5. Verifying that the stated conditions imply these assumptions is postponed to

Appendix E.

Example 1: Linear AR–GARCH. Consider the linear AR(p)–GARCH(1,1) model in which

the conditional mean and conditional variance are given by

f (yt−1, . . . , yt−p;µ0) = φ0,0+
p∑
j=1

φ0,jyt−j and σ2
t = g

(
u0,t−1, σ

2
t−1; θ0

)
= ω0+α0u

2
0,t−1+β0σ

2
t−1,

respectively, where u0,t = yt− (φ0,0 +
∑p

j=1 φ0,jyt−j) = σtεt and εt is a sequence of independent

and identically distributed random variables with E[εt] = 0 and E[ε2t ] = 1. The parameter

vectors µ and λ are given by µ = (φ0, . . . , φp) and λ = (ω, α, β), respectively. These parameters

take values in the permissible parameter spaces M and Λ that are compact subsets of Rp+1 and

(0,∞)× [0,∞)× [0, 1) containing the true parameter vectors µ0 and λ0, respectively. Note that

our definition of the parameter space includes the restriction that β < 1 over Θ.

Consider the following set of conditions.

(a) (i) E
[
ln(β0 + α0ε

2
t )
]
< 0

(ii) 1−
∑p

j=1 φ0,jz
j 6= 0, |z| ≤ 1

(b) (i) ε2t has a non-degenerate distribution

(ii) α0 > 0
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(c) (i) The true parameter value θ0 is an interior point of Θ

(ii) E
[
(β0 + α0ε

2
t )

2
]

= β2
0 + 2α0β0 + α2

0E[ε4t ] < 1

(iii) The distribution of εt is not concentrated at two points

The two conditions in part (a) imply the validity of Assumption DGP for the linear AR(p)–

GARCH(1,1) model as defined above (for details of this and the following statements, see Ap-

pendix E). The former condition agrees with the necessary and sufficient condition for the (strict)

stationarity and geometric ergodicity of the conditional variance process obtained in Nelson

(1990) and Francq and Zaköıan (2006), respectively. The latter is necessary and sufficient for

the existence of a strictly stationary causal solution to a conventional linear AR(p) model. If

the conditions in part (b) are also assumed, Assumptions C1–C6 hold. The conditions in (b) are

needed to ensure the identifiability of the parameters in the conditional variance part. Finally,

conditions in (a)–(c) (where (b.i) becomes unnecessary) suffice for Assumptions N1–N5 to hold.

Condition (c.i) is obviously required for asymptotic normality of the parameter estimator to

hold. The second condition, which implicitly includes the requirement that E[ε4t ] <∞, ensures

that the conditional variance process, and hence also yt, has finite fourth moments. This is much

more than is needed for asymptotic normality of the QML estimator in the pure GARCH case

but, as already discussed, appears difficult to avoid in the AR–GARCH case. Finally, condition

(c.iii), which is slightly stronger than (b.i), is needed for the identification condition N5 to hold.

We note that our conditions (a)–(c) (almost) coincide with those required in Francq and

Zaköıan (2004) for strong consistency and asymptotic normality of the QML estimator in the

case of a linear AR(p)–GARCH(1,1) model.7 Therefore, although our framework allows for

rather general forms of nonlinearity, it does not come at the cost of assumptions that would

be stronger than those required in the linear case in earlier literature. We refer to Francq and

Zaköıan (2004) for a discussion of previous, more stringent, assumptions used in QML estimation

of linear GARCH and ARMA–GARCH models.

Example 2: AR–AGARCH. As a second example, we consider a model in which a linear

AR(p) model is combined with the Asymmetric GARCH (AGARCH) model of Ding, Granger,

and Engle (1993). For this model we are able to show strong consistency, but not asymptotic
7There appears to be only one small difference. In their condition A8 restricting the conditional mean, Francq

and Zaköıan (2004) assume that the roots of the autoregressive polynomial are outside the unit circle for all θ ∈ Θ,

whereas our condition (a.ii) requires this only for the true parameter value θ0. However, inspecting their proofs it

would seem that this stronger requirement is actually not used. In this sense, our conditions appear to coincide

with theirs.
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normality, of the QML estimator. The set-up is otherwise exactly the same as in Example 1,

except that now the conditional variance process is defined as

σ2
t = g

(
u0,t−1, σ

2
t−1; θ0

)
= ω0 + α0(|u0,t−1| − γ0u0,t−1)2 + β0σ

2
t−1, (18)

and the parameter vector λ defined as λ = (ω, α, β, γ) with the permissible parameter space Λ

a compact subset of (0,∞) × [0,∞) × [0, 1) × [−1, 1] containing the true parameter vector λ0.

Note that, letting 1 (·) stand for the indicator function, (18) can be rewritten as

σ2
t = ω0 + α0(1− γ0)2u2

0,t−11(u0,t−1 ≥ 0) + α0(1 + γ0)2u2
0,t−11(u0,t−1 < 0) + β0σ

2
t−1,

so that the threshold GARCH formulations of Glosten, Jaganathan, and Runkle (1993) and

Zaköıan (1994) are included in the AGARCH model.

Consider the following set of conditions.

(a) (i) E
[
ln
(
β0 + α0(|εt| − γ0εt)2

)]
< 0

(ii) 1−
∑p

j=1 φ0,jz
j 6= 0, |z| ≤ 1

(b) (i) The distribution of εt is not concentrated at two points

(ii) α0 > 0

Conditions (a.i) and (a.ii) ensure the validity of Assumption DGP for the AR–AGARCH

model. Condition (a.i) agrees with the necessary and sufficient condition for the (strict) sta-

tionarity and geometric ergodicity of the conditional variance process obtained in Straumann

and Mikosch (2006, Theorem 3.5) and Meitz and Saikkonen (2008a, Example 1), respectively.

Altogether the conditions in (a) and (b) ensure that Assumptions C1–C6 hold. Note that the

restriction −1 ≤ γ ≤ 1 imposed on the parameter γ and the slightly stronger condition (b.i)

compared to Example 1 are needed to verify the identification condition in C6(ii).

In this example, we are unable to show the asymptotic normality of the QML estimator.

This is due to the appearance of |u0,t| in the equation defining the conditional variance, which,

as can readily be verified, invalidates Assumption N2 requiring the function g to be twice contin-

uously differentiable with respect to all its arguments. A similar complication occurs in several

other nonlinear GARCH models that involve absolute values. In the pure AGARCH model the

situation simplifies because u0,t = yt contains no parameters and therefore differentiability of g

with respect to u is not required. In this case the asymptotic normality of the QML estimator

is proved by Straumann and Mikosch (2006).
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Example 3: Nonlinear AR–GARCH. As a third example we consider a model in which

both the conditional mean and the conditional variance are nonlinear. We model the condi-

tional mean by a fairly general subclass of the functional-coefficient autoregressive models of

Chen and Tsay (1993). The best known special case to which our results apply is the logistic

smooth transition autoregressive specification considered by Teräsvirta (1994). For the condi-

tional variance, we consider a smooth transition GARCH model similar to those discussed by

González-Rivera (1998) and Lundbergh and Teräsvirta (2002). The resulting nonlinear AR–

GARCH model is a special case of the one considered by Meitz and Saikkonen (2008b) whose

results on geometric ergodicity we can apply. Using similar arguments other models of interest

could also be considered. For instance, the nonlinearity in the conditional expectation might be

of the exponential autoregressive type of Haggan and Ozaki (1981) or the smooth transition in

the conditional variance might be of the type considered by Lanne and Saikkonen (2005).

In the nonlinear AR(p)–GARCH(1,1) model we consider the conditional mean and condi-

tional variance are given by

f (yt−1, . . . , yt−p;µ0) = φ0,0 + ψ0,0F (yt−d;ϕ0) +
p∑
j=1

(φ0,j + ψ0,jF (yt−d;ϕ0)) yt−j ,

and

σ2
t = g

(
u0,t−1, σ

2
t−1; θ0

)
= ω0 + (α0,1 + α0,2G(u0,t−1; γ0))u2

0,t−1 + β0σ
2
t−1, (19)

respectively, where u0,t = yt − f (yt−1, . . . , yt−p;µ0) = σtεt, εt is a sequence of independent and

identically distributed random variables with E[εt] = 0 and E[ε2t ] = 1, and ϕ0 = (ϕ0,1, ϕ0,2)

and γ0 = (γ0,1, γ0,2). The parameter vectors µ and λ are µ = (φ0, . . . , φp, ψ0, . . . , ψp, ϕ1, ϕ2) and

λ = (ω, α1, α2, β, γ1, γ2) and the permissible parameter spaces M and Λ are compact subsets of

R2p+3×R+ and R+× [0,∞)2× [0, 1)×R×R+ containing the true parameter vectors µ0 and λ0,

respectively. In both ϕ = (ϕ1, ϕ2) and γ = (γ1, γ2), the first parameter is supposed to have the

role of a location parameter so that it takes values in R, whereas the latter parameter is a scale

parameter and hence is restricted to be positive (these restrictions and interpretations are done

only for concreteness and are not necessary for the development of the theory). The nonlinear

functions F and G are assumed to take values in [0, 1]. The former depends on the lagged

observable yt−d, where d is a fixed known integer between 1 and p (which is not estimated),

whereas the latter depends on ut−1.

For clarity of exposition, we concentrate on the case of F and G being cumulative distribution

functions of the logistic distribution, that is,

F (y;ϕ1, ϕ2) =
[
1 + exp

(
−ϕ2(y − ϕ1)

)]−1 and G (u; γ1, γ2) =
[
1 + exp

(
−γ2(u− γ1)

)]−1
,
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although our results also hold much more generally. This is also one of the most common choices

in practice. In Appendix E we give a set of conditions for the functions F and G that suffice

for our results to hold. It is straigtforward to verify that these conditions are satisfied with the

choice of logistic functions (or, for example, the cumulative distribution functions of the normal

distribution). In the following we assume that the functions F and G satisfy the additional

conditions given in Appendix E.

To present the conditions for this model we require some additional notation. For p = 1,

define A01 = φ0,1 and A02 = φ0,1 + ψ0,1, and for p > 1 define A01 and A02 as the p× p matrices

A01 =

[
φ0,1 · · · φ0,p−1 φ0,p

Ip−1 0p−1

]
and A02 =

[
φ0,1 + ψ0,1 · · · φ0,p−1 + ψ0,p−1 φ0,p + ψ0,p

Ip−1 0p−1

]
,

where Ip−1 and 0p−1 denote the (p − 1) × (p − 1) identity matrix and a (p − 1) × 1 vector of

zeros, respectively. We also need the concept of joint spectral radius defined for a set of bounded

square matrices A by

ρ (A) = lim sup
k→∞

(
sup
A∈Ak

‖A‖
)1/k

,

where Ak = {A1A2 · · ·Ak : Ai ∈ A, i = 1, . . . , k} and ‖·‖ can be any matrix norm (the value of

ρ (A) does not depend on the choice of this norm). If the set A only contains a single matrix A

then the joint spectral radius of A coincides with ρ (A), the spectral radius of A. Several useful

results about the joint spectral radius are given in the recent paper by Liebscher (2005) where

further references can also be found; see also Meitz and Saikkonen (2008b).

Now consider the following set of conditions.

(a) (i) The εt have a (Lebesgue) density which is positive and lower semicontinuous on R

(ii) Either
∑p

j=1 max {|φ0,j |, |φ0,j + ψ0,j |} < 1 or ρ ({A01, A02}) < 1

(iii) E
[
log
(
β0 + (α0,1 + α0,2)ε2t

)]
< 0

(iv) α0,1 > 0 and β0 > 0

(b) (i) At least one of the ψ0,j , j = 0, . . . , p, is nonzero

(ii) α0,2 > 0

(c) (i) The true parameter value θ0 is an interior point of Θ

(ii) E
[(
β0 + (α0,1 + α0,2)ε2t

)2] = β2
0 + 2(α0,1 + α0,2)β0 + (α0,1 + α0,2)2E[ε4t ] < 1

Conditions (a.i)–(a.iv) ensure the validity of Assumption DGP in the case of the considered

nonlinear AR–GARCH model. Condition (a.i) restricts the error term more than required in
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Examples 1 and 2, but this is needed to verify Assumption DGP with the results of Meitz and

Saikkonen (2008b). Condition (a.i) also facilitates the verification of the identification conditions

in Assumptions C6 and N5. As our discussion following Assumption C6 indicated, this is now a

considerably more complicated task than in the preceding examples and involves using Markov

chain techniques to show that the events {(yt−1, ..., yt−p) ∈ A} have a positive probability with

suitably defined (Borel) measurable sets A ⊂ Rp. Condition (a.i) will be critical in establishing

this. The two alternative conditions in (a.ii) are both sufficient restrictions on the conditional

mean needed to show the validity of Assumption DGP. They are used in Meitz and Saikkonen

(2008b, Section 4) and, as discussed by Liebscher (2005, p. 682), the latter condition is strictly

weaker than the former one. Condition (a.iii) is an analogue of the moment conditions (a.i) in the

previous two examples, and it also coincides with the sufficient condition for geometric ergodicity

of a pure smooth transition GARCH model given in Example 4 of Meitz and Saikkonen (2008a).

Condition (a.iv) excludes the ARCH case, but is required for the results in Meitz and Saikkonen

(2008b) to hold. In many applications the estimate of β would typically be rather large (and

close to unity), and hence condition (a.iv) is not very restrictive in practice.8

If conditions (b.i) and (b.ii) are also assumed, Assumptions C1–C6 hold. These two condi-

tions are required to identify the parameters of the model. Finally, the additional conditions

(c.i) and (c.ii) ensure that Assumptions N1–N5 also hold and are completely analogous to (c.i)

and (c.ii) in Example 1.

Above we assumed that the function G is strictly increasing and the value of the parameter

α0,2 is positive, in which case the coefficient of u2
0,t−1 in (19) increases with u0,t−1. Often, an

empirically interesting case is the one in which the effect is in the opposite direction. This

case is obtained by choosing G to be strictly decreasing (in the preceding logistic example the

permissible parameter space of γ2 is then a compact subset of (−∞, 0) instead of (0,∞)). Our

results also apply to this case (with minor changes to the derivations; see Appendix E).

7 Conclusion

In this paper we have developed an asymptotic estimation theory for nonlinear functional-

coefficient AR(p) models with conditionally heteroskedastic errors specified as a general nonlin-

ear GARCH(1,1) model. We proved strong consistency and asymptotic normality of the QML

estimator under conditions similar to those previously employed in linear ARMA–GARCH mod-
8The ARCH case could be treated separately as is also mentioned in Meitz and Saikkonen (2008b, p. 465).

For brevity, we do not pursue this further and only mention that in this case many of the required derivations

would simplify considerably.
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els. In particular, for consistency only a mild moment condition was required, whereas existence

of fourth order moments of the observed process was needed for asymptotic normality. To

the best of our knowledge, our paper is the first one to derive asymptotic estimation theory

for a model allowing for nonlinearity in both the conditional mean and in the GARCH-type

conditional variance.

Because our specification for the conditional variance was restricted to a GARCH(1,1) model

it would be of interest to replace it by a higher order GARCH model. Relaxing our assump-

tions is another topic for potential future work. In particular, it would be useful if asymptotic

normality could be established without the assumption of finite fourth order moments. As far

as QML estimators are concerned, this has turned out to be difficult even in the linear case

where weighted QML estimators have been developed as alternatives (see Ling (2007a) and the

discussion therein). Another interesting extension would be to relax our assumption about the

differentiability of the conditional variance function, and thereby make it possible to obtain

asymptotic normality of the QML estimator also for the type of models discussed in our Ex-

ample 2. Furthermore, our assumptions about permitted nonlinearity in the GARCH-part were

more stringent than those needed to obtain stationarity and ergodicity of the data generation

process so that relaxing these assumptions would be of interest.

Appendix A: Auxiliary results

We shall first give two simple lemmas which are useful in several subsequent proofs.

Lemma A.1. For any r > 0,
∥∥∑k

i=1 xi
∥∥
r
≤ ∆r,k

∑k
i=1‖xi‖r, where ∆r,k = max

{
1, k1/r−1

}
.

Proof. The case r ≥ 1 follows from Minkowski’s inequality. When 0 < r < 1, Loève’s cr–

inequality (see Davidson (1994), p. 140) first applied with r and then with 1/r yields(
E

∣∣∣∣ k∑
i=1

xi

∣∣∣∣r)1/r

≤ c1/rr

( k∑
i=1

E |xi|r
)1/r

≤ c1/rr c1/r

k∑
i=1

(
E |xi|r

)1/r
,

where c1/rr = 1 and c1/r = k1/r−1. Hence the result.

Lemma A.2. Suppose for some r > 0, γ > 1, and nonnegative process xt, γtxt converges to

zero in Lr–norm. Then
∑∞

t=1 xt <∞ a.s. and
∥∥∑∞

t=1 xt
∥∥
r
<∞ also holds.

Proof. By the Borel-Cantelli lemma, the first result follows if we show that
∑∞

t=1 P (xt > δt) <

∞ for some δ ∈ (0, 1). By assumption, γt‖xt‖r → 0, and hence we can find a C < ∞ such

that ‖xt‖r ≤ Cγ−t for all t ∈ N. Hence E[xrt ] ≤ Crγ−tr for all t ∈ N. Choose a δ such that
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γ−1 < δ < 1. Then (δγ)−r < 1, and

∞∑
t=1

P (xt > δt) ≤
∞∑
t=1

δ−trE [xrt ] ≤ Cr
∞∑
t=1

(δγ)−tr <∞.

This proves the former result. When r ≥ 1 the latter result follows from the aforementioned

inequality ‖xt‖r ≤ Cγ−t by using Minkowski’s inequality and monotone convergence. When

r < 1 the same conclusion is obtained by using Loeve’s cr–inequality (see Davidson (1994),

p. 140) instead of Minkowski’s inequality (cf. the proof of Lemma A.1).

The following lemma presents a result which is similar to Theorem 3.1 of Bougerol (1993)

and Theorem 2.8 of Straumann and Mikosch (2006). Its formulation involves a function G :

Mv ×Mz ×K →Mz where Mv, Mz, and K are subsets of Euclidean spaces and K is compact.

The function G is assumed to satisfy the following condition.

Condition G (i) For all ϑ ∈ K, |G(v, z;ϑ)| ≤ %̄ |z|+ ψ (|v|), where 0 < %̄ < 1 is a constant and

ψ : [0,∞)→ [0,∞) a measurable function.

(ii) The function G(·, ·; ·) is continuous and, for all (v, ϑ) ∈Mv ×K, |G(v, z1;ϑ)−G(v, z2;ϑ)| ≤

κ̄ |z1 − z2| for some 0 < κ̄ < 1 and all z1, z2 ∈Mz.

By C (K,Mz) we denote the Banach space of continuous functions from K into Mz endowed

with the supremum norm |·|K , that is, |z|K = supϑ∈K |z(ϑ)|.

Lemma A.3. Let Condition G hold. Then, for all ϑ ∈ K, there exists a stationary and ergodic

solution z∗t (ϑ) to the equation

zt (ϑ) = G (vt−1 (ϑ) , zt−1 (ϑ) ;ϑ) , t = 1, 2, ..., (20)

where z0 is a random function taking values in C (K,Mz) and vt is a stationary and er-

godic process taking values in C (K,Mv) and satisfying E[supϑ∈K ψ (|vt (ϑ)|)r] < ∞, r > 0.

The solution z∗t (ϑ) is continuous in ϑ, measurable with respect to the σ–algebra generated

by (vt−1 (ϑ) , vt−2 (ϑ) , ...), and it is unique when (20) is extended to all t ∈ Z. Moreover,

E[supϑ∈K |z∗t (ϑ)|r] <∞ and, if zt(ϑ), ϑ ∈ K, are any other solutions to (20) with E[supϑ∈K |z0(ϑ)|r] <

∞, then for a finite constant C (depending on r and the distribution of z0),∥∥∥∥sup
ϑ∈K
|z∗t (ϑ)− zt(ϑ)|

∥∥∥∥
r

≤ Cκ̄t.

Compared to Bougerol (1993, Theorem 3.1) and Straumann and Mikosch (2006, Theorem

2.8), Lemma A.3 is more specific although sufficient for the purpose of this paper. Due to its

specificity its application in subsequent proofs also appears to lead to less complex derivations.
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Another difference to the abovementioned theorems is that Lemma A.3 also implies the existence

of certain moments, which turns out to be useful. In particular, because the stationary solution

z∗t obtained from Lemma A.3 is an element of C (K,Mz), Theorem 2.7 of Straumann and Mikosch

(2006) immediately gives the result

sup
ϑ∈K

∣∣∣∣∣T−1
T∑
t=1

z∗t (ϑ)− E[z∗t (ϑ)]

∣∣∣∣∣→ 0 a.s.

when r ≥ 1.

Proof of Lemma A.3. We apply Theorem 3.1 of Bougerol (1993) (see also Theorem 2.8 of

Straumann and Mikosch (2006)). Define the random function Gt : C (K,Mz) → C (K,Mz) as

[Gt (x)] (ϑ) = G(vt−1 (ϑ) , x (ϑ) ;ϑ) (x ∈ C (K,Mz), ϑ ∈ K). Then Gt, t ∈ Z, is a stationary and

ergodic sequence of mappings. By the continuity assumption in Condition G(ii) and the fact

that z0 belongs to C (K,Mz), the function zt (·) defined by equation (20) is in C (K,Mz) and is

a solution to the difference equation xt = Gt (xt−1) , t ≥ 1. Define

ρ (Gt) = sup
{
|Gt(x1)−Gt(x2)|K
|x1 − x2|K

; x1, x2 ∈ C (K,Mz) , x1 6= x2

}
and notice that, due to our Lipschitz condition in Condition G(ii),

|Gt(x1)−Gt(x2)|K = sup
ϑ∈K
|G(vt−1 (ϑ) , x1 (ϑ) ;ϑ)−G(vt−1 (ϑ) , x2 (ϑ) ;ϑ)|

≤ κ̄ sup
ϑ∈K
|x1 (ϑ)− x2 (ϑ)|

= κ̄ |x1 − x2|K .

Thus, ρ (Gt) is a stationary and ergodic process bounded from above by κ̄ < 1.

Now consider Theorem 3.1 of Bougerol (1993), and note that its assumptions (C1) and (C2)

are satisfied due to the assumptions imposed. Specifically, by Condition G(i), the moment

condition imposed on ψ (|vt|), and Lemma A.1, |G1 (x)− x|rK has finite expectation for any

x ∈ C (K,Mz), and thus (C1) holds by Jensen’s inequality. Regarding (C2), it holds (with

p = 1) because ρ (Gt) is bounded from above by κ̄ < 1. The existence of a stationary ergodic

solution z∗t ∈ C (K,Mz) to (20) now follows from this theorem whereas the stated uniqueness can

be obtained from Remark 2.9(2) of Straumann and Mikosch (2006). Defining zt,n (x) = (Gt◦· · ·◦

Gt−n) (x) with n ≥ 0 and a fixed x ∈ C (K,Mz) as the backward iterates obtained by repetitive

application of the random function Gt, we also find from the aforementioned papers that z∗t
can be defined as the (almost sure) limit z∗t = limn→∞ zt,n (x) (with any fixed x ∈ C (K,Mz)).

Hence, z∗t (ϑ) is measurable with respect to the σ–algebra generated by (vt−1 (ϑ) , vt−2 (ϑ) , ...)

(cf. Proposition 2.6 of Straumann and Mikosch (2006)).
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As for the remaining assertions, fix x ∈ C (K,Mz) and use Condition G(i) to obtain

|[zt,n (x)] (ϑ)| = |G (vt−1 (ϑ) , [(Gt−1 ◦ · · · ◦Gt−n) (x)] (ϑ) ;ϑ)|

≤ %̄ |[(Gt−1 ◦ · · · ◦Gt−n) (x)] (ϑ)|+ ψ (|vt−1 (ϑ)|)

= %̄ |[zt−1,n−1 (x)] (ϑ)|+ ψ (|vt−1 (ϑ)|)

and, continuing iteratively,

|[zt,n (x)] (ϑ)| ≤ %̄n |[zt−n,0 (x)] (ϑ)|+
n−1∑
j=0

%̄jψ (|vt−j−1 (ϑ)|) .

Here

|[zt−n,0 (x)] (ϑ)| = |[Gt−n (x)] (ϑ)| = |G(vt−n−1 (ϑ) , x (ϑ) ;ϑ)| ≤ %̄ |x (ϑ)|+ ψ (|vt−n−1 (ϑ)|) ,

where the inequality is again due to Condition G(i). Because the preceding inequalities hold for

all ϑ ∈ K, we have

|zt,n (x)|K ≤ %̄n+1 |x|K +
n∑
j=0

%̄j sup
ϑ∈K

ψ (|vt−j−1 (ϑ)|)

≤ |x|K +
∞∑
j=0

%̄j sup
ϑ∈K

ψ (|vt−j−1 (ϑ)|) .

Denote the stationary process defined by the last expression by wt. By Lemma A.2, this pro-

cess is well defined because the series converges a.s. and, furthermore, E [|wt|r] < ∞ where

Lemma A.1 is also made use of. Hence, we can conclude that the collection of random variables{
|zt,n (x)|rK , n = 1, 2, ...

}
is uniformly integrable (see Billingsley (1995, p. 338)). Thus, because

z∗t = limn→∞ zt,n (x) (in C (K,Mz)) we also have limn→∞ |zt,n|rK = |z∗t |
r
K and the above men-

tioned uniform integrability allows us to conclude that E[|z∗t |
r
K ] (= E[supϑ∈K |z∗t (ϑ)|r]) is the

finite limit of E[|zt,n (x)|rK ] (see Davidson (1994), Theorem 12.8).

Now consider the last assertion. Using Condition G(ii),

|z∗t − zt|
r
K = sup

ϑ∈K

∣∣G(vt−1(ϑ), z∗t−1(ϑ);ϑ)−G(vt−1(ϑ), zt−1(ϑ);ϑ)
∣∣r

≤ κ̄r sup
ϑ∈K

∣∣z∗t−1(ϑ)− zt−1(ϑ)
∣∣r

= κ̄r
∣∣z∗t−1 − zt−1

∣∣r
K
.

Continuing iteratively,

|z∗t − zt|
r
K ≤ κ̄

rt |z∗0 − z0|
r
K ≤ κ̄

rt max
{

1, 2r−1
}

(|z∗0 |
r
K + |z0|rK) ,

where the second inequality follows from Lemma A.1. Because the two norms in the last ex-

pression have finite expectations the stated inequality follows.
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Appendix B: Proofs for Sections 2 and 3

Proof of Proposition 1. We apply Lemma A.3. Specifically, choosing Mv = R, Mz = R+,

K = Θ, G = g, vt = ut = yt − f (yt−1, . . . , yt−p;µ), and zt (θ) = ht (θ) = g (ut−1 (θ) , ht−1 (θ) ; θ),

it follows from Assumption C2 that Conditions G(i) and (ii) are satisfied with the function

ψ (x) = κx2 +$. Furthermore, by the definition of the function f and Assumption C3,

|ut| = |yt − f (yt−1, . . . , yt−p;µ)| ≤ |yt|+ C

p∑
j=1

|yt−j |+ C

for some finite constant C. Thus, Assumption DGP and Lemma A.1 give
∥∥supθ∈Θ|ut|

∥∥
2r
<∞,

implying the moment condition E[supϑ∈K ψ (|vt (ϑ)|)r] < ∞. The stated result, except for the

equality h∗t (θ0) = σ2
t , now follows from Lemma A.3 (note that the solution h∗t (θ) is initialized

from h∗0(θ) having this stationary distribution instead of the constant ς0). From the proof of this

lemma it is also seen that h∗t can be defined as the (almost sure) limit h∗t = limn→∞ ht,n, where

ht,n = (gt ◦ · · · ◦ gt−n) (x), n ≥ 0, are the backward iterates obtained by repetitive application

of the random function [gt (x)] (θ) = g(ut−1 (θ) , x (θ) ; θ) with a fixed x ∈ C (Θ,R+). To prove

that h∗t (θ0) = σ2
t (cf. Propositions 3.7 and 3.12 in Straumann and Mikosch (2006)), note

that h∗t (θ0) = limn→∞ ht,n(θ0) a.s. where ht,n(θ0) = [(gt ◦ · · · ◦ gt−n) (x)](θ0) and [gt (x)] (θ0) =

g(u0,t−1, x(θ0); θ0). By Assumption DGP and the definition of ht,n(θ0), (ht,n(θ0), σ2
t ) is stationary

for every fixed n, and hence ht,n(θ0)−σ2
t and hn,n(θ0)−σ2

n are identically distributed. Regarding

the latter, repeated use of Assumption C2(ii) yields
∣∣hn,n(θ0)− σ2

n

∣∣ ≤ κn
∣∣h0,0(θ0)− σ2

0

∣∣, where∣∣h0,0(θ0)− σ2
0

∣∣ =
∣∣g(u0,−1, x(θ0); θ0)− σ2

0

∣∣ ≤ %x(θ0) + κu2
0,−1 + $ + σ2

0 by Assumption C2(i).

Making use of Assumption DGP, the result
∥∥supθ∈Θ|ut|

∥∥
2r
< ∞ obtained above, and Lemma

A.1,
∥∥hn,n(θ0)− σ2

n

∥∥
r
≤ Cκn for all n ≥ 0 and for some finite C. Because ht,n(θ0) − σ2

t and

hn,n(θ0)−σ2
n are identically distributed,

∥∥ht,n(θ0)− σ2
t

∥∥
r
≤ Cκn and, using Lemma A.2, we can

conclude that limn→∞(ht,n(θ0) − σ2
t ) = 0 a.s. As noticed above, h∗t (θ0) = limn→∞ ht,n(θ0) a.s.,

and hence h∗t (θ0)− σ2
t = 0 a.s.

Finally, note also that from Lemma A.3 we obtain the inequality∥∥∥∥sup
θ∈Θ
|h∗t − ht|

∥∥∥∥
r

≤ Cκt, (21)

for some finite constant C, a result that will repeatedly be used in the proofs.

Proof of Theorem 1. For strong consistency of the estimator θ̂T it suffices to show that, for

every δ > 0,

lim inf
T→∞

inf
θ∈B(θ0,δ)c

(
LT (θ)− LT (θ0)

)
> 0 a.s.,
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where B (θ0, δ) = {θ ∈ Θ : |θ − θ0| < δ} and B (θ0, δ)
c is the complement of this set in Θ (see,

e.g., Pötscher and Prucha (1991a, p. 145)). To this end, first recall that l∗t (θ) and lt (θ) denote

the summands of L∗T (θ) and LT (θ), respectively. It will be seen below that E[l∗t (θ)] is well

defined taking values in R ∪ {+∞} but E[l∗t (θ0)] <∞. Next note that

lim inf
T→∞

inf
θ∈B(θ0,δ)c

(
LT (θ)− LT (θ0)

)
≥ −lim sup

T→∞
sup
θ∈Θ

∣∣(L∗T (θ)− L∗T (θ0)
)
−
(
LT (θ)− LT (θ0)

)∣∣
+lim inf

T→∞

(
E[l∗t (θ0)]− L∗T (θ0)

)
+lim inf

T→∞
inf

θ∈B(θ0,δ)c

(
L∗T (θ)− E[l∗t (θ0)]

)
. (22)

We shall prove that the first two terms on the minorant side of (22) equal zero a.s. whereas the

third term is strictly positive.

We begin by showing that

sup
θ∈Θ
|L∗T (θ)− LT (θ)| → 0 a.s. as T →∞, (23)

from which it follows that the first term on the minorant side of (22) equals zero a.s. Note that

|l∗t (θ)− lt (θ)| =
∣∣log (h∗t )− log (ht) + u2

t (1/h
∗
t − 1/ht)

∣∣ ≤ g−1 |h∗t − ht|+ g−2u2
t |h∗t − ht| ,

where the inequality makes use of the mean value theorem and Assumption C5. Using Lemma

A.1 and the Cauchy-Schwartz inequality we obtain∥∥∥∥sup
θ∈Θ
|l∗t (θ)− lt (θ)|

∥∥∥∥
r/2

≤ C1

(
1 +

∥∥∥∥sup
θ∈Θ

u2
t

∥∥∥∥
r

)∥∥∥∥sup
θ∈Θ
|h∗t − ht|

∥∥∥∥
r

for some finite C1. As seen in the proof of Proposition 1, the term in the parenthesis is finite,

whereas inequality (21) gives the upper bound Cκt for the term
∥∥supθ∈Θ|h∗t − ht|

∥∥
r
. Hence,

there exists a γ > 1 such that γt supθ∈Θ |l∗t (θ)− lt (θ)| converges to zero in Lr/2–norm, and thus∑∞
t=1 supθ∈Θ |l∗t (θ)− lt (θ)| <∞ a.s. by Lemma A.2. Hence the result in (23) follows.

To handle the remaining two terms, first consider the summands of L∗T (θ), l∗t (θ). By Propo-

sition 1, h∗t is stationary and ergodic, and hence the same holds for log (h∗t ) + u2
t /h
∗
t . Because

h∗t ≥ g, l∗t (θ) is bounded from below uniformly in Θ, implying that E [l∗t (θ)] is well defined

and belongs to R ∪ {+∞} (in particular, E [infθ∈Θ l
∗
t (θ)] > −∞). Also, by Proposition 1,

E [supθ∈Θ h
∗r
t ] < ∞ with r > 0, and hence E [supθ∈Θ log (h∗t )] < ∞ by Jensen’s inequality. As

for the term u2
t /h
∗
t , notice that

u2
t = σ2

t ε
2
t − 2 (ft(µ)− ft(µ0))σtεt + (ft(µ)− ft(µ0))2 . (24)

For θ = θ0, u2
t (θ0) = σ2

t ε
2
t , and therefore E [l∗t (θ0)] < ∞ because E

[
ε2t
]
< ∞. However, for

θ 6= θ0, we may have E
[
u2
t /h
∗
t

]
= ∞. (We note that if E [supθ∈Θ l

∗
t (θ)] < ∞, a uniform law of
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large numbers applies giving supθ∈Θ |L∗T (θ)− E [l∗t (θ)]| → 0 a.s. as T → ∞, in which case the

proof simplifies; cf. Straumann and Mikosch (2006), part 2 of the proof of Theorem 4.1.) That

the second term on the minorant side of (22) equals zero a.s. can now be concluded from the

ergodic theorem (because l∗t (θ0) is a stationary ergodic sequence with E [l∗t (θ0)] <∞).

Now consider the third term on the minorant side of (22). As in Pfanzagl (1969), proof of

Lemma 3.11, it can be shown that

lim inf
T→∞

inf
θ∈B(θ0,δ)

c
L∗T (θ) ≥ inf

θ∈B(θ0,δ)
c
E [l∗t (θ)] a.s. (25)

We give a brief outline of the required steps. Exactly as in the aforementioned proof of Pfanzagl,

it can be shown that E [l∗t (θ)] is a lower semicontinuous function on Θ and, moreover, for every

θ ∈ Θ there exists an open neighborhood B (θ) of θ such that E
[
infθ∈B(θ)∩Θ l

∗
t (θ)

]
> l• whenever

E [l∗t (θ)] > l• (we note that E [l∗t (θ)] can equal∞, and also that the property E [infθ∈Θ l
∗
t (θ)] >

−∞ is required here so that the monotone convergence theorem applies). Now let l• be such

that E [l∗t (θ)] > l• for all θ ∈ B (θ0, δ)
c. The open sets B (θ), θ ∈ B (θ0, δ)

c, form a cover of

the compact set B (θ0, δ)
c, and hence we may choose a finite subcover, say B(θ(1)), . . . , B(θ(k)).

Because E [infθ∈Θ l
∗
t (θ)] > −∞, the ergodic theorem yields

lim
T→∞

inf
θ∈B(θ(i))∩Θ

L∗T (θ) ≥ lim
T→∞

T−1
T∑
t=1

inf
θ∈B(θ(i))∩Θ

l∗t (θ) = E

[
inf

θ∈B(θ(i))∩Θ
l∗t (θ)

]
a.s., (26)

i = 1, . . . , k, even when the expected value in (26) equals +∞ (cf. Billingsley (1995), pp. 284 and

495, and Francq and Zaköıan (2004), p. 617). Making use of the inequality infθ∈B(θ0,δ)
c L∗T (θ) ≥

mini=1,...,k infθ∈B(θ(i))∩Θ L
∗
T (θ) and (26) we obtain

lim inf
T→∞

inf
θ∈B(θ0,δ)

c
L∗T (θ) ≥ lim inf

T→∞
min

i=1,...,k
inf

θ∈B(θ(i))∩Θ
L∗T (θ) ≥ min

i=1,...,k
E

[
inf

θ∈B(θ(i))∩Θ
l∗t (θ)

]
> l• a.s.

Because l• is arbitrary, we obtain the result in (25).

By (25) and the lower semicontinuity of E [l∗t (θ)] the third term on the minorant side of

(22) is positive if E [l∗t (θ)] − E [l∗t (θ0)] ≥ 0 with equality if and only if θ = θ0. Because

E [l∗t (θ0)] < ∞ this obviously holds if E [l∗t (θ)] = ∞. Therefore in the following we assume

that E [l∗t (θ)] < ∞. In (24) both σ2
t and (ft(µ)− ft(µ0)) are functions of (yt−1, yt−2, ...) only,

and hence independent of εt. Also h∗t is a function of (yt−1, yt−2, ...) only, and hence we obtain

E
[
u2
t /h
∗
t

]
= E

[
σ2
t /h
∗
t

]
+ E[(ft(µ)− ft(µ0))2 /h∗t ] and, furthermore,

E [l∗t (θ)]− E [l∗t (θ0)] = E
[
log
(
h∗t /σ

2
t

)]
+ E

[
σ2
t /h
∗
t

]
+ E[(ft(µ)− ft(µ0))2 /h∗t ]− 1. (27)

Making use of the inequality x − log(x) ≥ 1 (x ∈ R+) and the identification conditions in

Assumption C6 we conclude that the expression in (27) is nonnegative and equals zero if and

only if θ = θ0. This completes the proof.
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Appendix C: Proofs for Section 4

We first present a simple lemma which is used in the proofs of Propositions 2 and 3.

Lemma C.1. Suppose the assumptions of Propositions 2 and 3 hold. Then (i) α∗θ,t and α∗θθ,t are

Lr/2–dominated in Θ0 whereas γθ,t and γ∗θ,t are L2r–dominated in Θ0, (ii) |α∗θ,t−αθ,t|, |α∗θθ,t−

αθθ,t|, |β∗t −βt|, |γ∗θ,t−γθ,t|, and |δ∗t − δt| are all bounded from above by Ct−1|h∗t−1−ht−1|, where

Ct−1 = κ′(1 + 2|fθ,t−1|+ |fθ,t−1|2 + |fθθ,t−1|) is Lr–dominated in Θ0, and (iii) supθ∈Θ0
|βt| ≤ κ,

supθ∈Θ0
|β∗t | ≤ κ, supθ∈Θ0

|δt| < κ′, and supθ∈Θ0
|δ∗t | < κ′, where κ and κ′ are as in Assumptions

C2(ii) and N3(iii), respectively.

Proof. To prove part (i), first note that
∥∥supθ∈Θ0

h∗t
∥∥
r
< ∞ by Proposition 1 and that ut is

L2r–dominated in Θ0, as seen in the proof of the same proposition. Thus, Assumption N3(ii)

and Lemma A.1 imply that g∗θ,t, g
∗
u,t, g

∗
θθ,t, g

∗
uu,t, g

∗
uθ,t, and g∗θu,t are Lr–dominated in Θ0. The

Lipschitz conditions of Assumptions C2(ii) and N3(iii) ensure that g∗h,t, g
∗
θh,t, gθh,t, g

∗
uh,t, guh,t,

and g∗hh,t are bounded by a finite constant uniformly over Θ0. Moreover, Assumptions DGP

and N3(i) ensure that fθ,t and fθθ,t are L2r–dominated in Θ0 (cf. the beginning of the proof of

Proposition 1). The result now follows from Lemma A.1, the Cauchy-Schwartz inequality, and

the norm inequality (for simplicity, the same order, r/2, is used for the first two terms). In

(ii), the boundedness of the absolute differences follows directly from the Lipschitz conditions

of Assumption N3(iii) (again, for simplicity, the same upper bound is used for all the absolute

differences). As was noted above, fθ,t and fθθ,t are L2r–dominated in Θ0, and hence Ct−1 is

Lr–dominated in Θ0 by Lemma A.1. The results in (iii) follow from the Lipschitz conditions of

Assumptions C2(ii) and N3(iii).

Proof of Proposition 2. To prove part (a), we first apply Lemma A.3. Set zt (θ) = hθ,t (θ)

and v∗t−1(θ) = (α∗θ,t, β
∗
t ). For all v ∈ Rm+l+1, z ∈ Rm+l, and θ ∈ Θ0, define the function G as

G (v, z; θ) = (v1, . . . , vm+l)+vm+l+1z, where the subscript denotes a particular coordinate of the

vector v. Thus zt (θ) = hθ,t (θ) satisfies the difference equation zt (θ) = G
(
v∗t−1 (θ) , zt−1 (θ) ; θ

)
.

Condition G, the continuity of v∗t (·), and the moment condition E[supθ∈Θ0
ψ (|v∗t (θ)|)r/2] <

∞ hold with ψ (x) = x due to Assumption N2 and Lemma C.1. The results of part (a), except

for the last one concerning differentiability, now follow from Lemma A.3 (note that the solution

h∗θ,t(θ) is understood to be initialized from h∗θ,0(θ) having this stationary distribution).

The continuous differentiability of h∗t (θ) and the relation ∂h∗t (θ)/∂θ = h∗θ,t(θ) can be proved

in a manner similar to the one used in Straumann and Mikosch (2006, pp. 2483–2484). To this

end, let x ∈ C (Θ,R+) be twice continuously differentiable on Θ0 and define the sequence h̃n(θ),

n ≥ 0, with h̃0(θ) = x (θ) and h̃n(θ) = hn,n−1(θ), n ≥ 1, where ht,s = (gt ◦ · · · ◦ gt−s) (x),
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s ≥ 0, with [gt (x)] (θ) = g(ut−1 (θ) , x (θ) ; θ) (cf. proof of Proposition 1). Thus h̃n(θ), n ≥ 0,

is a random sequence in C (Θ,R+) with its elements being twice continuously differentiable on

Θ0 with probability one (the latter fact follows from Assumption N2). Moreover, h̃n(θ) and

h̃θ,n(θ) = ∂h̃n(θ)/∂θ are solutions to the difference equations (6) and (9), respectively. Hence,

by part (b) of this proposition (the proof of which does not rely on the subresult currently being

proven), for some γ > 1,

γn sup
θ∈Θ0

|h∗θ,n(θ)− h̃θ,n(θ)| → 0 in Lr/4 − norm as n→∞. (28)

On the other hand, note that for any fixed n ≥ 1, (∂ht,n−1(θ)/∂θ, h∗θ,t(θ)) is a stationary

process. Therefore, (∂ht,n−1(θ)/∂θ, h∗θ,t(θ)) and (∂hn,n−1(θ)/∂θ, h∗θ,n(θ)) are identically dis-

tributed. In the latter, ∂hn,n−1(θ)/∂θ = h̃θ,n(θ), and hence, making use of (28), it also

holds that γn supθ∈Θ0
|h∗θ,t(θ) − ∂ht,n−1(θ)/∂θ| → 0 in Lr/4–norm as n → ∞. By Lemma A.2,

supθ∈Θ0
|h∗θ,t(θ)−∂ht,n−1(θ)/∂θ| → 0 a.s. as n→∞. To conclude, we have shown that ht,n−1(θ)

converges to h∗t (θ) a.s. as n → ∞ for each θ ∈ Θ0 (see the proof of Proposition 1) and that

∂ht,n−1(θ)/∂θ converges uniformly to h∗θ,t(θ) a.s. as n → ∞. Now, by Lang (1993, Theorem

XIII.9.1) and the continuity of h∗θ,t(θ) (obtained from Lemma A.3), h∗t (θ) is continuously differ-

entiable on Θ0 and ∂h∗t (θ)/∂θ = h∗θ,t(θ).

To prove part (b), note that by the definitions, using Lemma C.1, and denoting at−1 =

Ct−1(1 + |h∗θ,t−1|) we have∣∣h∗θ,t − hθ,t∣∣ ≤ ∣∣α∗θ,t − αθ,t∣∣+ |β∗t − βt|
∣∣h∗θ,t−1

∣∣+ |βt|
∣∣h∗θ,t−1 − hθ,t−1

∣∣
≤ at−1

∣∣h∗t−1 − ht−1

∣∣+ κ
∣∣h∗θ,t−1 − hθ,t−1

∣∣ .
Repeated substitution now yields

∣∣h∗θ,t − hθ,t∣∣ ≤ t−1∑
j=0

κt−1−jaj
∣∣h∗j − hj∣∣+ κt

∣∣h∗θ,0 − hθ,0∣∣ ,
where hθ,0 = 0. Using Lemma A.1 and Hölder’s inequality we obtain

∆−1
r/4,t+1

∥∥∥∥ sup
θ∈Θ0

∣∣h∗θ,t − hθ,t∣∣∥∥∥∥
r/4

≤
t−1∑
j=0

κt−1−j
∥∥∥∥ sup
θ∈Θ0

aj

∥∥∥∥
r/3

∥∥∥∥ sup
θ∈Θ0

∣∣h∗j − hj∣∣∥∥∥∥
r

+ κt
∥∥∥∥ sup
θ∈Θ0

∣∣h∗θ,0∣∣∥∥∥∥
r/4

.

In the former term on the majorant side,
∥∥supθ∈Θ0

aj
∥∥
r/3

is bounded by a finite constant by

Hölder’s inequality, part (a), and Lemma C.1, whereas
∥∥supθ∈Θ0

|h∗j−hj |
∥∥
r
≤ Cκj by (21). Thus

the former term is bounded by C ′tκt−1 for some finite C ′. In the latter term, the norm is finite

by part (a). Therefore, for some finite C ′′,∥∥∥∥ sup
θ∈Θ0

|h∗θ,t − hθ,t|
∥∥∥∥
r/4

≤ C ′′max{t, t4/r}κt−1, (29)
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from which the stated result follows.

Proof of Proposition 3. To prove part (a), we first apply Lemma A.3. Set zt (θ) =

vec (hθθ,t) and v∗t−1 (θ) = (vec(α∗θθ,t), β
∗
t , γ
∗
θ,t, δ

∗
t , h
∗
θ,t), where vec (·) signifies the usual columnwise

vectorization of a matrix. For all v ∈ R(m+l+1)2+1, z ∈ R(m+l)2 , and θ ∈ Θ0, define the function

G as G (v, z; θ) = v1 + v2z + vec(v3v′5) + vec(v5v′3) + v4 vec(v5v′5), where v = (v1, v2, v3, v4, v5) is

partitioned conformably with the partition of v∗t−1 (θ) above. Thus zt (θ) = vec (hθθ,t) satisfies

the difference equation zt (θ) = G
(
v∗t−1 (θ) , zt−1 (θ) ; θ

)
. Condition G as well as the moment

condition E[supθ∈Θ0
ψ (|v∗t (θ)|)r/4] < ∞ hold with ψ (x) = κ̄x2 + $̄ (0 < κ̄, $̄ < ∞) due

to the Cauchy-Schwarz inequality, Proposition 2, and Lemmas A.1 and C.1. The results of

part (a), except for the last one concerning differentiability, now follow from Lemma A.3 (with

h∗θθ,t(θ) being initialized from h∗θθ,0(θ) having this stationary distribution). Finally, the proof of

differentiability and of the relation ∂2h∗t (θ)/∂θ∂θ
′ = h∗θθ,t(θ) is analogous to that in Proposition

2, cf. Straumann and Mikosch (2006, pp. 2485–2486). We omit the details for brevity, and only

note that the result of part (b) is needed to prove this.

To prove part (b), note that by the definitions

∣∣h∗θθ,t − hθθ,t∣∣ ≤ ∣∣α∗θθ,t − αθθ,t∣∣+
∣∣β∗t h∗θθ,t−1 − βthθθ,t−1

∣∣+
∣∣γ∗θ,th∗′θ,t−1 − γθ,th′θ,t−1

∣∣
+
∣∣h∗θ,t−1γ

∗′
θ,t − hθ,t−1γ

′
θ,t

∣∣+
∣∣δ∗t h∗θ,t−1h

∗′
θ,t−1 − δthθ,t−1h

′
θ,t−1

∣∣ . (30)

The second, third (which equals the fourth), and fifth term on the majorant side of (30) are

bounded from above by |β∗t −βt||h∗θθ,t−1|+ |βt||h∗θθ,t−1−hθθ,t−1|, |γ∗θ,t−γθ,t||h∗θ,t−1|+ |γθ,t||h∗θ,t−1−

hθ,t−1|, and |δ∗t − δt||h∗θ,t−1h
∗′
θ,t−1| + |δt||h∗θ,t−1h

∗′
θ,t−1 − hθ,t−1h

′
θ,t−1|, respectively. In the last of

these upper bounds, |h∗θ,t−1h
∗′
θ,t−1 − hθ,t−1h

′
θ,t−1| ≤ 2|h∗θ,t−1||h∗θ,t−1 − hθ,t−1| + |h∗θ,t−1 − hθ,t−1|2.

Using these inequalities and Lemma C.1 we obtain the following inequalities for the four distinct

terms on the majorant side of (30):

∣∣α∗θθ,t − αθθ,t∣∣ ≤ Ct−1

∣∣h∗t−1 − ht−1

∣∣ ,∣∣β∗t h∗θθ,t−1 − βthθθ,t−1

∣∣ ≤ Ct−1

∣∣h∗t−1 − ht−1

∣∣ ∣∣h∗θθ,t−1

∣∣+ κ
∣∣h∗θθ,t−1 − hθθ,t−1

∣∣ ,∣∣γ∗θ,th∗′θ,t−1 − γθ,th′θ,t−1

∣∣ ≤ Ct−1

∣∣h∗t−1 − ht−1

∣∣ ∣∣h∗θ,t−1

∣∣+ |γθ,t|
∣∣h∗θ,t−1 − hθ,t−1

∣∣ ,∣∣δ∗t h∗θ,t−1h
∗′
θ,t−1 − δthθ,t−1h

′
θ,t−1

∣∣ ≤ Ct−1

∣∣h∗t−1 − ht−1

∣∣ ∣∣h∗θ,t−1h
∗′
θ,t−1

∣∣
+κ′(2

∣∣h∗θ,t−1

∣∣ ∣∣h∗θ,t−1 − hθ,t−1

∣∣+
∣∣h∗θ,t−1 − hθ,t−1

∣∣2).

Denoting bt−1 = Ct−1(1+2|h∗θ,t−1|+ |h∗θ,t−1|2 + |h∗θθ,t−1|) and ct−1 = 2|γθ,t|+2κ′|h∗θ,t−1| we obtain

∣∣h∗θθ,t − hθθ,t∣∣ ≤ bt−1

∣∣h∗t−1−ht−1

∣∣+ct−1

∣∣h∗θ,t−1−hθ,t−1

∣∣+κ′ ∣∣h∗θ,t−1−hθ,t−1

∣∣2+κ
∣∣h∗θθ,t−1−hθθ,t−1

∣∣ .
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By repeated substitution

∣∣h∗θθ,t − hθθ,t∣∣ ≤ t−1∑
j=0

κt−1−j
(
bj
∣∣h∗j − hj∣∣+ cj

∣∣h∗θ,j − hθ,j∣∣+ κ′
∣∣h∗θ,j − hθ,j∣∣2)+ κt

∣∣h∗θθ,0 − hθθ,0∣∣ ,
where hθθ,0 = 0. Using Lemma A.1, Hölder’s inequality, and the norm inequality

∆−1
r/8,3t+1

∥∥∥∥ sup
θ∈Θ0

∣∣h∗θθ,t − hθθ,t∣∣∥∥∥∥
r/8

≤
t−1∑
j=0

κt−1−j
∥∥∥∥ sup
θ∈Θ0

bj

∥∥∥∥
r/5

∥∥∥∥ sup
θ∈Θ0

∣∣h∗j − hj∣∣∥∥∥∥
r

+
t−1∑
j=0

κt−1−j
∥∥∥∥ sup
θ∈Θ0

cj

∥∥∥∥
r/2

∥∥∥∥ sup
θ∈Θ0

∣∣h∗θ,j − hθ,j∣∣∥∥∥∥
r/4

+
t−1∑
j=0

κt−1−jκ′
∥∥∥∥ sup
θ∈Θ0

∣∣h∗θ,j − hθ,j∣∣2∥∥∥∥
r/8

+ κt
∥∥∥∥ sup
θ∈Θ0

∣∣h∗θθ,0∣∣∥∥∥∥
r/4

.

By arguments already used, the terms
∥∥supθ∈Θ0

bj
∥∥
r/5

,
∥∥supθ∈Θ0

cj
∥∥
r/2

, and
∥∥supθ∈Θ0

|h∗θθ,0|
∥∥
r/4

are bounded by a finite constant. Furthermore, by (21) and (29), the terms
∥∥supθ∈Θ0

|h∗j −hj |
∥∥
r

and
∥∥supθ∈Θ0

|h∗θ,j−hθ,j |
∥∥
r/4

are bounded from above by C ′κj and C ′max{j, j4/r}κj , respectively,

for some finite C ′. Therefore, for some finite C ′′,∥∥∥∥ sup
θ∈Θ0

∣∣h∗θθ,t − hθθ,t∣∣∥∥∥∥
r/8

≤ C ′′∆r/8,3t+1

(
tκt−1 + tmax{t, t4/r}κt−1 + κt

)
,

from which the result follows.

Appendix D: Proofs for Section 5

Recall from Section 3 that LT (θ) = T−1
∑T

t=1 lt(θ) and L∗T (θ) = T−1
∑T

t=1 l
∗
t (θ), where lt(θ) =

log (ht) + u2
t /ht and l∗t (θ) = log (h∗t ) + u2

t /h
∗
t . Let Lθ,T (θ) = ∂LT (θ)/∂θ and lθ,t(θ) = ∂lt(θ)/∂θ,

and denote the analogous first and second partial derivatives of L∗T (θ) and l∗t (θ) with L∗θ,T , L∗θθ,T ,

l∗θ,t, and l∗θθ,t. As an intermediate step in the proof of Theorem 2, we first establish (in Lemmas

D.1–D.4 below) the asymptotic normality of the infeasible estimator θ̃T based on minimizing

L∗T (θ). This is done by using a standard mean value expansion of the score L∗θ,T (θ) given by

T 1/2L∗θ,T (θ̃T ) = T 1/2L∗θ,T (θ0) + L̇∗θθ,TT
1/2(θ̃T − θ0), (31)

where L̇∗θθ,T signifies the matrix L∗θθ,T (θ) with each row evaluated at an intermediate point θ̇i,T

(i = 1, . . . ,m+ l) lying between θ̃T and θ0. Subsequently, in Lemmas D.5 and D.6 we show the

asymptotic equivalence of the estimators θ̂T and θ̃T . The result of Theorem 2 is then obtained

as an immediate consequence of the conclusions of Lemmas D.4 and D.6.
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Lemma D.1. If the assumptions of Theorem 2 hold, then T 1/2L∗θ,T (θ0) d→ N (0, I (θ0)), where

I (θ0) = E
[
l∗θ,t(θ0)l∗′θ,t(θ0)

]
is finite and can be expressed as

I (θ0) =

 4E
[
fµ,t(µ0)
σt

f ′µ,t(µ0)

σt

]
0m×l

0l×m 0l×l

+ E
[
ε4t − 1

]
E

[
h∗θ,t(θ0)

σ2
t

h∗′θ,t(θ0)

σ2
t

]

+2E
[
ε3t
]  E

[
fµ,t(µ0)
σt

h∗′µ,t(θ0)

σ2
t

+
h∗µ,t(θ0)

σ2
t

f ′µ,t(µ0)

σt

]
E
[
fµ,t(µ0)
σt

h∗′λ,t(θ0)

σ2
t

]
E
[
h∗λ,t(θ0)

σ2
t

f ′µ,t(µ0)

σt

]
0l×l

 . (32)

Proof. Partitioning l∗θ,t as l∗θ,t = (l∗µ,t, l
∗
λ,t), direct calculation yields

l∗µ,t = −2
fµ,t

h∗1/2t

ut

h∗1/2t

−
h∗µ,t
h∗t

(
u2
t

h∗t
− 1
)

and l∗λ,t = −
h∗λ,t
h∗t

(
u2
t

h∗t
− 1
)
, (33)

and hence

l∗µ,t (θ0) = −2
fµ,t(µ0)
σt

εt −
h∗µ,t(θ0)
σ2
t

(
ε2t − 1

)
and l∗λ,t (θ0) = −

h∗λ,t(θ0)

σ2
t

(
ε2t − 1

)
. (34)

By straightforward calculation one now obtains the expression (32). As seen in the proof of

Lemma C.1, fµ,t is L2r–dominated in Θ0. From this fact and Assumptions C5 and N4 it

follows that E
[
l∗θ,t(θ0)l∗′θ,t(θ0)

]
is finite. Noting that l∗θ,t(θ0) is a stationary ergodic martingale

difference sequence and T 1/2L∗θ,T (θ0) = T−1/2
∑T

t=1 l
∗
θ,t(θ0), the stated convergence is obtained

from Billingsley’s (1961) central limit theorem in conjunction with the Cramér-Wold device.

Lemma D.2. If the assumptions of Theorem 2 hold, then l∗θθ,t(θ) is L1–dominated in Θ0 and

sup
θ∈Θ0

∣∣L∗θθ,T (θ)− J (θ)
∣∣→ 0 a.s.,

where J (θ) = E
[
l∗θθ,t(θ)

]
is continuous at θ0. Moreover, J (θ0) can be expressed as

J (θ0) =

 2E
[
fµ,t(µ0)
σt

f ′µ,t(µ0)

σt

]
0m×l

0l×m 0l×l

+ E

[
h∗θ,t(θ0)

σ2
t

h∗′θ,t(θ0)

σ2
t

]
. (35)

Proof. The first partial derivatives of l∗t were obtained in (33), whereas the second ones are

l∗µµ,t = −
h∗µµ,t
h∗t

(
u2
t

h∗t
− 1
)

+
h∗µ,t
h∗t

h∗′µ,t
h∗t

(
2
u2
t

h∗t
− 1
)
− 2

fµµ,t

h∗1/2t

ut

h∗1/2t

+2
fµ,t

h∗1/2t

f ′µ,t

h∗1/2t

+ 2
(
fµ,t

h∗1/2t

h∗′µ,t
h∗t

+
h∗µ,t
h∗t

f ′µ,t

h∗1/2t

)
ut

h∗1/2t

,

l∗µλ,t = −
h∗µλ,t
h∗t

(
u2
t

h∗t
− 1
)

+
h∗µ,t
h∗t

h∗′λ,t
h∗t

(
2
u2
t

h∗t
− 1
)

+ 2
fµ,t

h∗1/2t

h∗′λ,t
h∗t

ut

h∗1/2t

,

l∗λλ,t = −
h∗λλ,t
h∗t

(
u2
t

h∗t
− 1
)

+
h∗λ,t
h∗t

h∗′λ,t
h∗t

(
2
u2
t

h∗t
− 1
)
.
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It follows from Assumption DGP and Propositions 1, 2, and 3 that l∗θθ,t forms a stationary and

ergodic sequence in C
(
Θ0,R(m+l)×(m+l)

)
and hence the uniform strong law of large numbers in

Theorem 2.7 of Straumann and Mikosch (2006) applies if E
[
supθ∈Θ0

|l∗θθ,t(θ)|
]

is finite. Thus,

the stated convergence is proved if∥∥∥∥ sup
θ∈Θ0

|ut|
∥∥∥∥

4

,

∥∥∥∥ sup
θ∈Θ0

|fµ,t|
∥∥∥∥

4

,

∥∥∥∥ sup
θ∈Θ0

|fµµ,t|
∥∥∥∥

4

,

∥∥∥∥ sup
θ∈Θ0

1
h∗t

∥∥∥∥
∞
,

∥∥∥∥∥ sup
θ∈Θ0

|h∗θ,t|
h∗t

∥∥∥∥∥
4

, and

∥∥∥∥∥ sup
θ∈Θ0

|h∗θθ,t|
h∗t

∥∥∥∥∥
2

are all finite. For the first three norms, this has already been justified in the proofs of Propositions

1 and Lemma C.1, whereas Assumption C5 implies the finiteness of the fourth norm. The last

two are finite by Assumption N4. Finally, the continuity of J (θ) at θ0 also follows from the

aforementioned theorem of Straumann and Mikosch (2006), and that J (θ0) can be expressed

as in (35) is seen by straightforward calculation.

Lemma D.3. If the assumptions of Theorem 2 hold, then the matrices I (θ0) and J (θ0) are

positive definite.

Proof. Consider the matrix I (θ0). For an arbitrary x = (xµ, xλ) ∈ Rm × Rl, suppose

x′I (θ0)x = E
[(
x′l∗θ,t(θ0)

)2] = 0. Then, by (34), we must have

x′l∗θ,t(θ0) = 2εtx′
fθ,t (θ0)
σt

+
(
ε2t − 1

)
x′
h∗θ,t (θ0)

σ2
t

= 0 a.s.

Following exactly the same steps as in Francq and Zaköıan (2004) (their arguments between equa-

tions (4.52) and (4.53)) we can use Assumption N5(i) to show that, almost surely, x′µfµ,t (θ0) = 0

and x′h∗θ,t (θ0) = 0. By Assumption N5(ii), xµ = 0, and hence x′λh
∗
λ,t (θ0) = 0. By equation (11)

and the definitions preceding it in Section 4,

h∗λ,t (θ0) = α∗λ,t (θ0) + β∗t (θ0)h∗λ,t−1 (θ0)

= ∂g(u0,t−1, σ
2
t−1; θ0)/∂λ+ ∂g(u0,t−1, σ

2
t−1; θ0)/∂h · h∗λ,t−1 (θ0) .

By stationarity, also x′λh
∗
λ,t−1 (θ0) = 0, and hence x′λ∂g(u0,t−1, σ

2
t−1; θ0)/∂λ = 0. By Assumption

N5(iii), xλ = 0, and hence we have proved that I (θ0) is positive definite.

Regarding the matrix J (θ0), note that x′J (θ0)x = 0 now directly implies that

2E
[(
x′µfµ,t(θ0)

)2
σ−2
t

]
+ E

[(
x′h∗θ,t(θ0)

)2
σ−4
t

]
= 0.

This can only happen if x′µfµ,t (θ0) = 0 and x′h∗θ,t (θ0) = 0 a.s. As above, this implies that x = 0.

Hence also J (θ0) is positive definite.

Lemma D.4. If the assumptions of Theorem 2 hold, then

T 1/2(θ̃T − θ0) d→ N
(
0,J (θ0)−1I(θ0)J (θ0)−1

)
.
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Proof. First note that from the proof of Theorem 1 it can be seen that θ̃T → θ0 a.s. (because

lim infT→∞ infθ∈B(θ0,δ)
c (L∗T (θ)− L∗T (θ0)) equals the sum of the last two terms on the minorant

side of (22)). Recalling the mean value expansion of L∗θ,T (θ) in (31), by the strong consistency

of θ̃T we also have θ̇i,T → θ0 a.s. as T →∞ (i = 1, . . . ,m+ l). This, together with the uniform

convergence result for L∗θθ,T (θ) in Lemma D.2, now yields L̇∗θθ,T → J (θ0) a.s. as T → ∞ (see

Amemiya (1973), Lemma 4). By Lemma D.3, J (θ0) is invertible, and hence for all T sufficiently

large also L̇∗θθ,T is invertible and L̇∗−1
θθ,T → J (θ0)−1 a.s. as T →∞ (see Lemma A.1 of Pötscher

and Prucha (1991b)). Multiplying the mean value expansion (31) with the Moore-Penrose

inverse L̇∗+θθ,T of L̇∗θθ,T (this inverse exists for all T ) and rearranging we obtain

T 1/2(θ̃T − θ0) = (I − L̇∗+θθ,T L̇
∗
θθ,T )T 1/2(θ̃T − θ0) + L̇∗+θθ,TT

1/2L∗θ,T (θ̃T )− L̇∗+θθ,TT
1/2L∗θ,T (θ0). (36)

The first two terms on the right hand side of (36) converge to zero a.s. (more precisely, for all

events ω on a set with probability one, there exists a T (ω) such that for all T ≥ T (ω) the first

two terms are identically equal to zero). For the first term, this follows from the fact that for

all T sufficiently large L̇∗θθ,T is invertible. For the second one, this holds because θ̃T being a

minimizer of L∗T (θ) and θ0 being an interior point of Θ0 yield L∗θ,T (θ̃T ) = 0 for all T sufficiently

large. Furthermore, the eventual a.s. invertibility of L̇∗θθ,T also means that L̇∗+θθ,T −J (θ0)−1 → 0

a.s. Hence, (36) becomes

T 1/2(θ̃T − θ0) = o1(1)− (J (θ0)−1 + o2(1))T 1/2L∗θ,T (θ0),

where o1(1) and o2(1) (a vector- and a matrix-valued process, respectively) converge to zero a.s.

Combining this with the result of Lemma D.1 completes the proof.

Lemma D.5. If the assumptions of Theorem 2 hold, then for some γ > 1,

γt sup
θ∈Θ0

∣∣l∗θ,t (θ)− lθ,t (θ)
∣∣→ 0 in L1/3–norm as t→∞.

Proof. In this proof we assume r = 2, but retain the notation r for ease of comparison to

previous results. First consider the difference h∗θ,t/h
∗
t −hθ,t/ht and use Assumption C5 to obtain

|h∗θ,t/h∗t −hθ,t/ht| ≤ g−2|h∗θ,t||h∗t −ht|+ g−1|h∗θ,t−hθ,t|. By Lemma A.1, Hölder’s inequality, and

the norm inequality, we now find that

∆−1
r/4,2

∥∥∥∥ sup
θ∈Θ0

∣∣∣∣h∗θ,th∗t − hθ,t
ht

∣∣∣∣∥∥∥∥
r/4

≤ g−2

∥∥∥∥ sup
θ∈Θ0

∣∣h∗θ,t∣∣∥∥∥∥
r/2

∥∥∥∥ sup
θ∈Θ0

|h∗t − ht|
∥∥∥∥
r

+g−1

∥∥∥∥ sup
θ∈Θ0

∣∣h∗θ,t − hθ,t∣∣∥∥∥∥
r/4

.

Thus, Proposition 2 and inequalities (21) and (29) give∥∥∥∥ sup
θ∈Θ0

∣∣h∗θ,t/h∗t − hθ,t/ht∣∣∥∥∥∥
r/4

≤ C max
{
t, t4/r

}
κt (37)
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for some finite C.

Now consider the difference l∗θ,t (θ)−lθ,t (θ). Making use of Assumption C5 and the inequality

|x∗y∗ − xy| ≤ |x∗ − x| |y∗|+ |x∗ − x| |y∗ − y|+ |x∗| |y∗ − y| for any conformable vectors we obtain

∣∣l∗θ,t (θ)− lθ,t (θ)
∣∣ =

∣∣∣∣−h∗θ,th∗t
(
u2
t

h∗t
− 1
)

+
hθ,t
ht

(
u2
t

ht
− 1
)
− 2

fθ,t
h∗t

ut + 2
fθ,t
ht
ut

∣∣∣∣
≤

∣∣∣∣h∗θ,th∗t − hθ,t
ht

∣∣∣∣ ∣∣∣∣u2
t

h∗t
− 1
∣∣∣∣+
∣∣∣∣h∗θ,th∗t − hθ,t

ht

∣∣∣∣ ∣∣∣∣u2
t

h∗t
− u2

t

ht

∣∣∣∣
+
∣∣∣∣h∗θ,th∗t

∣∣∣∣ ∣∣∣∣u2
t

h∗t
− u2

t

ht

∣∣∣∣+ 2 |fθ,t| |ut|
∣∣∣∣ 1
h∗t
− 1
ht

∣∣∣∣
≤

∣∣∣∣h∗θ,th∗t − hθ,t
ht

∣∣∣∣ (g−1u2
t + 1) +

∣∣∣∣h∗θ,th∗t − hθ,t
ht

∣∣∣∣u2
t g
−2 |h∗t − ht|

+
∣∣h∗θ,t∣∣u2

t g
−3 |h∗t − ht|+ 2 |fθ,t| |ut| g−2 |h∗t − ht| .

By Lemma A.1, Hölder’s inequality, and the norm inequality

∆−1
r/6,4

∥∥∥∥ sup
θ∈Θ0

∣∣l∗θ,t (θ)− lθ,t (θ)
∣∣∥∥∥∥
r/6

≤
∥∥∥∥ sup
θ∈Θ0

∣∣∣∣h∗θ,th∗t − hθ,t
ht

∣∣∣∣∥∥∥∥
r/4

∥∥∥∥ sup
θ∈Θ0

(g−1u2
t + 1)

∥∥∥∥
r

+g−2

∥∥∥∥ sup
θ∈Θ0

∣∣∣∣h∗θ,th∗t − hθ,t
ht

∣∣∣∣∥∥∥∥
r/4

∥∥∥∥ sup
θ∈Θ0

u2
t

∥∥∥∥
r

∥∥∥∥ sup
θ∈Θ0

|h∗t − ht|
∥∥∥∥
r

+g−3

∥∥∥∥ sup
θ∈Θ0

∣∣h∗θ,t∣∣∥∥∥∥
r/2

∥∥∥∥ sup
θ∈Θ0

u2
t

∥∥∥∥
r

∥∥∥∥ sup
θ∈Θ0

|h∗t − ht|
∥∥∥∥
r

+2g−2

∥∥∥∥ sup
θ∈Θ0

|fθ,t|
∥∥∥∥

2r

∥∥∥∥ sup
θ∈Θ0

|ut|
∥∥∥∥

2r

∥∥∥∥ sup
θ∈Θ0

|h∗t − ht|
∥∥∥∥
r

.

The result now follows from inequalities (21) and (37) and arguments already used.

Lemma D.6. If the assumptions of Theorem 2 hold, then T 1/2(θ̂T − θ̃T )→ 0 a.s. as T →∞.

Proof. Because both θ̂T and θ̃T are strongly consistent estimators of θ0 (see Theorem 1 and

the proof of Lemma D.4), we can assume that T is so large that θ̂T , θ̃T ∈ Θ0 with probability

one. From the identity L∗θ,T (θ̃T ) = Lθ,T (θ̂T ) = 0 and the mean value theorem one then obtains

T 1/2
(
Lθ,T (θ̂T )− L∗θ,T (θ̂T )

)
= T 1/2

(
L∗θ,T (θ̃T )− L∗θ,T (θ̂T )

)
= L̈∗θθ,TT

1/2(θ̃T − θ̂T ), (38)

where L̈∗θθ,T signifies the matrix L∗θθ,T (θ) with each row evaluated at an intermediate point θ̈i,T

(i = 1, . . . ,m+ l) lying between θ̃T and θ̂T . Concerning the term on the left hand side of (38),

T 1/2
∣∣∣Lθ,T (θ̂T )− L∗θ,T (θ̂T )

∣∣∣ ≤ T−1/2
T∑
t=1

sup
θ∈Θ0

∣∣l∗θ,t (θ)− lθ,t (θ)
∣∣ ,

where the majorant side converges to zero a.s. by Lemmas D.5 and A.2. On the other hand,

similarly to the proof of Lemma D.4 it can be shown that the matrix L̈∗θθ,T on the right hand
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side of (38) is invertible for all T sufficiently large and L̈∗−1
θθ,T → J (θ0)−1 a.s. as T →∞. Hence

T 1/2(θ̂T − θ̃T )→ 0 a.s. as T →∞.

Proof of (17). In this proof we assume r = 2, but retain the notation r for ease of comparison

to previous results. It suffices to show that the four quantities in (16) are strongly consistent

estimators of the corresponding four expectations in (15). Due to the strong consistency of θ̂T ,

it suffices to prove that∣∣∣∣∣T−1
T∑
t=1

A
∗(i)
t − E

[
A
∗(i)
t

]∣∣∣∣∣ , i = 1, . . . , 4, and

∣∣∣∣∣T−1
T∑
t=1

(
A
∗(i)
t −A(i)

t

)∣∣∣∣∣ , i = 1, . . . , 4, (39)

converge to zero almost surely uniformly over Θ0 as T →∞, where

A
∗(1)
t =

fµ,t

h∗1/2t

f ′µ,t

h∗1/2t

, A
∗(2)
t = u4

t /h
∗2
t , A

∗(3)
t =

h∗θ,t
h∗t

h∗′θ,t
h∗t

, and A
∗(4)
t =

fµ,t

h∗1/2t

h∗′θ,t
h∗t

,

and A
(i)
t , i = 1, . . . , 4, are defined similarly but with h∗t and h∗θ,t replaced with ht and hθ,t,

respectively.

Concerning the former four convergences in (39), these can be deduced from Theorem 2.7

of Straumann and Mikosch (2006) if E
[
supθ∈Θ0

|A∗(i)t |
]
< ∞, i = 1, . . . , 4, holds. For i = 1,

this follows from the fact that fµ,t is L2r–dominated in Θ0 (see the proof of Lemma C.1) and

Assumption C5. For i = 2, the finiteness follows in view of Assumption C5 and the fact that∥∥supθ∈Θ|ut|
∥∥

2r
< ∞ (see the proof of Proposition 1). For i = 3, this holds due to Assumption

N4, whereas for i = 4, this follows from Assumptions DGP, C5, N3(i), and N4.

Now consider the latter four convergences in (39). For i = 1, use Assumption C5 to obtain

|A∗(1)
t −A(1)

t | = |h
∗−1
t fµ,tf

′
µ,t − h−1

t fµ,tf
′
µ,t| ≤ g−2|fµ,tf ′µ,t||h∗t − ht|.

Thus, by the Cauchy-Schwartz inequality, the aforementioned L2r–dominance of fµ,t, and (21),∥∥∥∥ sup
θ∈Θ0

|A∗(1)
t −A(1)

t |
∥∥∥∥
r/2

≤ g−2

∥∥∥∥ sup
θ∈Θ0

|fµ,tf ′µ,t|
∥∥∥∥
r

∥∥∥∥ sup
θ∈Θ0

|h∗t − ht|
∥∥∥∥
r

≤ Cκt

for some finite C. The required convergence for i = 1 now follows from Lemma A.2.

The cases i = 2, 3, and 4 can be handled in a similar way. We only note that for i = 2,

|A∗(2)
t −A(2)

t | = u4
t |ht/h∗2t ht − h∗t /h∗2t ht + ht/h

∗
th

2
t − h∗t /h∗th2

t | ≤ 2g−3u4
t |h∗t − ht|,

and Hölder’s inequality, the fact that
∥∥supθ∈Θ|ut|

∥∥
2r
<∞, and (21), give∥∥∥∥ sup

θ∈Θ0

|A∗(2)
t −A(2)

t |
∥∥∥∥
r/3

≤ 2g−3

∥∥∥∥ sup
θ∈Θ0

u4
t

∥∥∥∥
r/2

∥∥∥∥ sup
θ∈Θ0

|h∗t − ht|
∥∥∥∥
r

≤ Cκt.
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For i = 3, note that

|A∗(3)
t −A(3)

t | ≤ 2|h∗θ,t/h∗t ||h∗θ,t/h∗t − hθ,t/ht|+ |h∗θ,t/h∗t − hθ,t/ht|2,

and thus, by Lemma A.1, the Cauchy-Schwartz inequality, Assumption N4, and inequality (37),∥∥∥∥ sup
θ∈Θ0

|A∗(3)
t −A(3)

t |
∥∥∥∥
r/8

≤ ∆r/8,2

(
2
∥∥∥∥ sup
θ∈Θ0

|h∗θ,t/h∗t |
∥∥∥∥
r/4

∥∥∥∥ sup
θ∈Θ0

|h∗θ,t/h∗t − hθ,t/ht|
∥∥∥∥
r/4

+
∥∥∥∥ sup
θ∈Θ0

|h∗θ,t/h∗t − hθ,t/ht|2
∥∥∥∥
r/8

)
≤ C

(
max{t, t4/r}κt + max{t2, t8/r}κ2t

)
,

for some finite C. For i = 4, using the inequality |x∗y∗ − xy| ≤ |x∗ − x| |y∗| + |x∗| |y∗ − y| +

|x∗ − x| |y∗ − y| for any conformable vectors, the mean value theorem for the function x−1/2,

and Assumption C5,

|A∗(4)
t −A(4)

t | ≤ |fµ,t||h∗−1/2
t − h−1/2

t ||h∗θ,t/h∗t |+ |fµ,t||h
∗−1/2
t ||h∗θ,t/h∗t − hθ,t/ht|

+|fµ,t||h∗−1/2
t − h−1/2

t ||h∗θ,t/h∗t − hθ,t/ht|

≤ 2−1g−3/2|fµ,t||h∗t − ht||h∗θ,t/h∗t |+ g−1/2|fµ,t||h∗θ,t/h∗t − hθ,t/ht|

+2−1g−3/2|fµ,t||h∗t − ht||h∗θ,t/h∗t − hθ,t/ht|.

First using Lemma A.1 and Hölder’s inequality, then Assumption N4, the L2r–dominance of

fµ,t, and the inequalities (21) and (37), and finally Lemma A.2, yields the required convergence

result. Thus, we have justified (17).

Appendix E: Technical details of the examples

Example 1: Linear AR–GARCH

We first show that the conditions in (a) suffice for the validity of Assumption DGP. First consider

the process σt. Because u0,t = σtεt, the conditional variance process σ2
t = g

(
σt−1εt−1, σ

2
t−1; θ0

)
=

ω0 + α0σ
2
t−1ε

2
t−1 + β0σ

2
t−1 is a function of its own past value and ε2t−1 only. By Francq and

Zaköıan (2004, Proposition 1) and Straumann and Mikosch (2006, Theorem 3.5) the condition

E[ln(β0 +α0ε
2
t )] < 0 in (a.i) implies the existence of a unique strictly stationary ergodic solution

σ2
t to this difference equation. By the same reference, this solution is measurable with respect

to the σ–algebra generated by (εt−1, εt−2, . . .) and E[σ2r
t ] < ∞ for some r > 0. Hence the

process (σt, εt) is stationary and ergodic, measurable with respect to the σ–algebra generated

by (εt, εt−1, . . .), and E[σ2r
t ] < ∞ and E[|εt|2r] < ∞ for some r > 0. Therefore, u0,t = σtεt is
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stationary and ergodic with E[|u0,t|2r] <∞. Denote φ0 (z) = 1−
∑p

j=1 φ0,jz
j and let φ0 (z)−1 =∑∞

j=0 π0,jz
j be the power series expansion of φ0 (z)−1. As is well known, condition (a.ii) implies

that |π0,j | ≤ Cρj for some 0 ≤ ρ < 1 and 0 < C <∞, so that the expansion of φ0 (z)−1 is well

defined for |z| ≤ 1. Moreover, from Lemma A.2 we find that the series yt =
∑∞

j=0 π0,ju0,t−j

converges almost surely. Thus, using Theorem 2.6 of Straumann and Mikosch (2006), (yt, σ2
t ) is

stationary and ergodic. Furthermore, from Lemma A.2 we can also conclude that E[|yt|2r] <∞.

Thus, Assumption DGP holds.

For the assumptions required for consistency, first note that the parameter space is compact

by definition so that it is immediate that Assumptions C1, C3, and C5 hold (the last one because

ω is bounded away from zero for all θ ∈ Θ). The compactness also implies that, for all θ ∈ Θ,

β ≤ β̄ < 1 for some β̄, yielding Assumption C2 except for the continuity of the function g, which

is obvious. Assumption C4 is similarly obvious. To see that Assumption C6 holds (cf. Francq and

Zaköıan (2004), result (ii) in their proof of Theorem 2.1 and result (ii) in their proof of Theorem

3.1), first assume that f(yt−1, . . . , yt−p;µ) = f(yt−1, . . . , yt−p;µ0) a.s. for some µ 6= µ0, which

implies the existence of a linear combination of yt−1, . . . , yt−p that is a.s. equal to a constant.

Hence, to have µ 6= µ0, we must have yt−i for some i = 1, . . . , p being a.s. equal to a deterministic

function of yt−i−j , j ≥ 1. However, by definition yt−i = f(yt−i−1, . . . , yt−i−p;µ0) + σt−iεt−i and,

conditional on yt−i−j , j ≥ 1, yt−i is not deterministic because σt−i ≥ ω > 0 and εt−i is not

degenerate (because E[εt−i] = 0 and E[ε2t−i] = 1). Hence µ = µ0. Similarly it can be shown

that h∗t (µ0, λ) = h∗t (µ0, λ0) a.s. implies λ = λ0 given condition (b.i) and the fact that α0 > 0.

Now consider the validity of the assumptions required for asymptotic normality. Assumption

N1 holds by condition (c.i), and Assumptions N2 and N3 are clearly satisfied (N3(iii) with

κ′ = 1). For Assumption N4, first note that condition (c.ii) ensures that E[σ4
t ] < ∞ in the

case of a pure GARCH model (see, e.g., Francq and Zaköıan (2004)). Therefore, above in the

justification of assumption DGP, the arguments remain valid with r = 2. Hence it can be seen

that Assumption DGP holds with r = 2. The two moment conditions for the derivatives of the

process h∗t can be verified as in Francq and Zaköıan (2004, p. 635), derivation of their equations

(4.59) and (4.60). Assumption N5(i) is identical to condition (c.iii). For Assumption N5(ii), note

that having x′µ∂ft(µ0)/∂µ = 0 a.s. with xµ 6= 0 implies the existence of a linear combination of

yt−1, . . . , yt−p that is a.s. equal to a constant, and a contradiction follows exactly as in verifying

Assumption C6. For N5(iii), suppose that x′λ∂g(u0,t−1, σ
2
t−1; θ0)/∂λ = xλ1 + xλ2σ

2
t−1ε

2
t−1 +

xλ3σ
2
t−1 = 0. First, xλ2 = 0, because otherwise ε2t−1 would be a (measurable) function of

(εt−2, εt−3, . . .). Then, we must also have xλ3 = 0, because otherwise σ2
t−1 would be a.s. equal to

a constant, which is impossible due to α0 > 0 and (b.i). Thus, we also get xλ1 = 0 and xλ = 0

43



so that Assumption N5 holds.

Example 2: AR–AGARCH

Similarly to the case of the linear AR–GARCH model, but now using Theorem 3.5 and Remark

3.6 of Straumann and Mikosch (2006), it can be shown that for the AR–AGARCH model the

process (σt, εt) is stationary and ergodic, measurable with respect to the σ–algebra generated

by (εt, εt−1, . . .), and E[σ2r
t ] < ∞ and E[|εt|2r] < ∞ for some r > 0. Continuing exactly as in

the case of the linear AR–GARCH model Assumption DGP can be verified.

For the assumptions required for consistency, C1–C5 and C6(i) can be checked in a manner

similar to that of the linear AR–GARCH case whereas C6(ii) can be verified exactly as in

Straumann and Mikosch (2006, Lemmas 5.2–5.4). Details are omitted.

Example 3: Nonlinear AR–GARCH

We begin with supplementing conditions (a)–(c) given in Section 6 with conditions required for

the nonlinear functions F and G. Subscripts in F and G will denote partial derivatives with

respect to the variable(s) in question.

(a) (v) The derivatives of F (·;ϕ0) and G(·; γ0) exist up to any order and are continuous, and

G(·; γ0) is strictly increasing (or, alternatively, strictly decreasing).

(b) (iii) The functions F (·; ·) and G(·; ·) are continuous.

(iv) For all ϕ, limy→−∞ yF (y;ϕ) = 0 and limy→∞ y(1− F (y;ϕ)) = 0; if ϕ 6= ϕ0, then for

some ȳ, F (ȳ;ϕ) 6= F (ȳ;ϕ0).

(v) For all γ, limu→−∞ u
2G(u; γ) = 0 and limu→∞ u

2(1−G(u; γ)) = 0 (or, alternatively,

limu→∞ u
2G(u; γ) = 0 and limu→−∞ u

2(1−G(u; γ)) = 0); if γ 6= γ0, then for some ū,

G(ū; γ) 6= G(ū; γ0).

(c) (iii) There exist open neighbourhoods N(ϕ0) and N(γ0) of ϕ0 and γ0 such that F (·; ·)

and G(·; ·) are twice continuously partially differentiable on R × N(ϕ0) and R ×

N(γ0), respectively. Moreover, these partial derivatives are bounded in absolute

value uniformly over R×N(ϕ0) and R×N(γ0), respectively.

(iv) limy→±∞ yFϕ(y;ϕ0) = 0; if (x1, x2) 6= (0, 0), then for some ȳ, (x1, x2)′Fϕ(ȳ;ϕ0) 6= 0.

(v) limu→±∞ u
2Gγ(u; γ0) = 0; if (x1, x2) 6= (0, 0), then for some ū, (x1, x2)′Gγ(ū; γ0) 6= 0.

(vi) Gu (u; γ)u2, Guu (u; γ)u2, and Guγ (u; γ)u2 are bounded in absolute value uniformly

over R×N(γ0).
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All of the conditions above are satisfied if F and G are, for example, cumulative distribution

functions of either the logistic or the normal distribution. Condition (a.v) is required to apply

the results in Meitz and Saikkonen (2008b). Here, as well as in condition (b.v), we separately

consider the cases of G being either strictly increasing or strictly decreasing. Condition (b.iii)

is needed for the continuity requirement in Assumptions C2 and C4. It is also used to verify

the identification conditions in Assumption C6, for which also (b.iv) and (b.v) are needed. Note

that (b.iv) implies that limy→−∞ F (y;ϕ) = 0 and limy→∞ F (y;ϕ) = 1. Condition (c.iii) ensures

the differentiability requirements in Assumptions N2 and N3(i)–(ii), and is also used to verify

the identification conditions in Assumption N5. Conditions (c.iv) and (c.v) are also needed for

Assumption N5 to hold. Finally, (c.vi) is required for the moment conditions for the derivatives

in Assumption N4.

We now show that Assumptions DGP, C1–C6, and N1–N5 hold under the conditions made.

Verification of Assumption DGP.

The validity of Assumption DGP follows from the conditions in (a) due to the results in Meitz

and Saikkonen (2008b). Specifically, the conditions in (a) imply that Assumptions 1–4, 5(b), and

6 of Meitz and Saikkonen (2008b) hold so that from Theorem 1 of that paper we can conclude

that Assumption DGP holds. To see this, note first that, because E
[
ε2t
]

= 1, condition (a.i)

implies that Assumption 1 of Meitz and Saikkonen (2008b) holds with the value of r therein

equal to unity, whereas the conditions imposed on the function F in (a.v) and the assumed

range of F imply Assumption 2 of the same paper. That Assumption 3 of Meitz and Saikkonen

(2008b) holds follows from the discussion given in Section 4 of that paper and condition (a.ii).

Finally, (a.iii), (a.iv), and the conditions assumed about the function G in (a.v) and its range

imply that the model satisfies the assumptions required for the model for conditional variance in

Proposition 1 of Meitz and Saikkonen (2008b).9 Of the two alternative cases in that proposition,

(a) and (b), the latter is relevant, and it follows that Theorem 1 of Meitz and Saikkonen (2008b)

applies with some r0 ∈ (0, 1). Thus, Assumption DGP holds with r = r0.

Verification of Assumptions for consistency.

For the assumptions required for consistency, first note that Assumption C1 holds due to the

definition of the permissible parameter space. The continuity condition in Assumption C2 is

an immediate consequence of condition (b.iii). The other conditions in Assumption C2 hold
9If G is strictly decreasing, a reparameterization is required in order to apply Proposition 1 of Meitz and

Saikkonen (2008b): defining α∗0,1 = α0,1 + α0,2, α∗0,2 = −α0,2, and G∗(u; γ0,1, γ0,2) = 1 − G(u; γ0,1, γ0,2) this

proposition applies (this reparameterization is only used when applying the aforementioned proposition of Meitz

and Saikkonen (2008b); for parameter estimation, the relevant parameters are still α0,1 and α0,2).
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because the range of the function G is [0, 1] and because, for all θ ∈ Θ, β ≤ β̄ < 1 for some β̄ in

view of the assumed compactness of the parameter space. Assumption C3 is satisfied because

the range of the function F is [0, 1], whereas Assumption C4 is implied by condition (b.iii).

Assumption C5 holds because, due to compactness, ω is bounded away from zero for all θ ∈ Θ.

In order to verify Assumption C6(i), we first demonstrate that if Ai, i = 0, . . . , p, are any

nonempty open subsets of R, the event

{(yt, . . . , yt−p) ∈ A0 × · · · ×Ap} (40)

has a positive probability. To this end, by the aforementioned results of Meitz and Saikko-

nen (2008b),
(
yt, . . . , yt−p, σ

2
t

)
is a (geometrically ergodic) Markov chain to which Proposition

4.2.2(iii) and Theorem 10.4.9 of Meyn and Tweedie (1993) apply. By these two results, the

event in (40) has positive probability if, from any fixed initial value, the (nonstationary) chain

(y†t , . . . , y
†
t−p, σ

†2
t ) eventually reaches the set A0×· · ·×Ap×R+ with positive probability (here we

need to distinguish between the chain
(
yt, . . . , yt−p, σ

2
t

)
initialized from the stationary distribu-

tion and the nonstationary one obtained by using a fixed initial value). Because εt has a density

that is positive everywhere, the nonstationary chain can reach the set Ap×Rp×R+ in one step

with positive probability. Next, making use of the Chapman-Kolmogorov equations (see Meyn

and Tweedie (1993, Theorem 3.4.2)), the set Ap−1×Ap×Rp−1×R+ can be reached in the next

step with positive probability. Continuing inductively, in p+ 1 steps the set A0× · · · ×Ap×R+

can be reached with positive probability. Because this holds for any initial value, the event in

(40) has a positive probability.

Consider now the identification condition in Assumption C6(i). To this end, defineAj(y;µ, µ0) =

φj−φ0,j +ψjF (y;ϕ)−ψ0,jF (y;ϕ0), j = 0, . . . , p, let ȳ1, . . . , ȳp denote real numbers, and choose

a µ ∈ M such that f (yt−1, . . . , yt−p;µ) = f (yt−1, . . . , yt−p;µ0) a.s. Then

A0(yt−d;µ, µ0) +
p∑
j=1

Aj(yt−d;µ, µ0)yt−j = 0 a.s. (41)

We first demonstrate that φj = φ0,j , j = 0, . . . , p. First suppose that φd 6= φ0,d, and consider

the set S(d, y•) = {(ȳ1, . . . , ȳp) : ȳd ∈ (y•− 1, y•), ȳj ∈ (−1, 1), j 6= d}, where y• < 0. Concerning

the deterministic sum A0(ȳd;µ, µ0) +
∑

j=1,...,p,j 6=dAj(ȳd;µ, µ0)ȳj , we can find an M > 0 (not

depending on y•) such that this sum is bounded in absolute value by M on the set S(d, y•) for

any y• < 0 (this holds because the range of F is [0, 1]). On the other hand, because φd 6= φ0,d,

it follows from condition (b.iv) that the term Ad(ȳd;µ, µ0)ȳd will attain values arbitrarily large

in absolute value on the set S(d, y•) when y• is chosen small enough. In particular, for y• small

enough, |Ad(ȳd;µ, µ0)ȳd| > M . Because the event {(yt−1, . . . , yt−p) ∈ S(d, y•)} has positive

probability for any y•, we can contradict (41), and hence φd = φ0,d.
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Next suppose that φk 6= φ0,k for some k = 1, . . . , p, k 6= d, and consider the set S(k, y•) =

{(ȳ1, . . . , ȳp) : ȳk, ȳd ∈ (y• − 1, y•), ȳj ∈ (−1, 1), j 6= k, d}, where y• < 0. First note that because

φd = φ0,d, Ad(ȳd;µ, µ0)ȳd = (ψdF (ȳd;ϕ)− ψ0,dF (ȳd;ϕ0))ȳd will approach 0 as ȳd → −∞ due to

condition (b.iv). Hence, the deterministic sum A0(ȳd;µ, µ0) +
∑

j=1,...,p,j 6=k Aj(ȳd;µ, µ0)ȳj will

be bounded in absolute value by some M > 0 on the set S(k, y•) for all sufficiently small y• < 0

(and M does not depend on y•). Again, because φk 6= φ0,k, the term Ak(ȳd;µ, µ0)ȳk will attain

values arbitrarily large in absolute value on the set S(k, y•) when y• is chosen small enough, and

a contradiction is found in the same way as above. Therefore φj = φ0,j for all j = 1, . . . , p.

Finally, to show that φ0 = φ0,0, consider the set S(y•) = {(ȳ1, . . . , ȳp) : ȳj ∈ (y• − 1, y•), j =

1, . . . , p}, where y• < 0. Under the restrictions derived so far and making use of condition (b.iv),

the deterministic sum A0(ȳd;µ, µ0)+
∑p

j=1Aj(ȳd;µ, µ0)ȳj will tend to φ0−φ0,0 on the set S(y•)

when y• is chosen small enough. As above, a contradiction is found, and thus φ0 = φ0,0.

In an analogous manner it can be shown that ψj = ψ0,j , j = 0, . . . , p, and we only give an

outline of the required steps. First, supposing that ψd 6= ψ0,d and considering the set S(d, y•)

with arbitrarily large positive values of y•, one arrives to a contradiction as above by using

condition (b.iv). Then, under the restriction ψd = ψ0,d, one first notes that Ad(y;µ, µ0) =

ψ0,d

[(
1 − F (y;ϕ0)

)
−
(
1 − F (y;ϕ)

)]
. This fact, and the use of the sets S(k, y•) for sufficiently

large y• > 0, yields ψj = ψ0,j for j = 1, . . . , p, j 6= d. Finally, making use of the sets S(y•) with

large positive y•, one obtains ψ0 = ψ0,0.

The identity (41) now takes the form

(
F (yt−d;ϕ)− F (yt−d;ϕ0)

)[
ψ0,0 +

p∑
j=1

ψ0,jyt−j

]
= 0 a.s. (42)

If ϕ 6= ϕ0, then by the last part of condition (b.iv) we can find a ȳ such that F (ȳ;ϕ)−F (ȳ;ϕ0) 6=

0. The continuity of F (·; ·) assumed in (b.iii) now ensures the existence of some y• < ȳ < y• such

that F (ȳd;ϕ) − F (ȳd;ϕ0) is bounded away from zero for all ȳd ∈ (y•, y•). On the other hand,

by condition (b.i), at least one of the ψ0,j , j = 0, . . . , p, is nonzero. First suppose that ψ0,d 6= 0,

and consider the set S(d, δ) = {(ȳ1, . . . , ȳp) : ȳd ∈ (y•, y•), ȳj ∈ (−δ, δ), j 6= d}, where δ > 0. The

deterministic sum ψ0,0 +
∑

j=1,...,p,j 6=d ψ0,j ȳj will take values in a small neighborhood of ψ0,0 on

the set S(d, δ) when δ is sufficiently small. On the other hand, ψ0,dȳd takes the values between

ψ0,dy• and ψ0,dy
• on the set S(d, δ). Because the event {(yt−1, . . . , yt−p) ∈ S(d, δ)} has positive

probability for any δ > 0, we find by choosing δ small enough that the term in square brackets

in (42) cannot be equal to zero with probability one. Hence, unless ϕ = ϕ0, a contradiction has

been found. Now suppose that ψ0,d = 0 but ψ0,k 6= 0 for some k = 1, . . . , p, k 6= d. Consider the

set S(k, δ) = {(ȳ1, . . . , ȳp) : ȳk, ȳd ∈ (y•, y•), ȳj ∈ (−δ, δ), j 6= k, d}, where δ > 0. Using similar
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arguments as above, a contradiction is again found unless ϕ = ϕ0. Finally, if ψ0,j = 0 for all

j = 1, . . . , p but ψ0,0 6= 0, a contradiction is obvious unless ϕ = ϕ0. Therefore ϕ = ϕ0, which

completes the proof of µ = µ0 and hence the verification of the identification condition C6(i).

In order to prove part (ii) of Assumption C6, we first show that for some σ > 0 (which will

be defined below) and all σ < σ• < σ•, the probability of the event

{σ2
t ∈ (σ•, σ•)} (43)

is positive. As when considering the event in (40), it suffices to show that the nonstationary

chain (y†t , . . . , y
†
t−p, σ

†2
t ) eventually reaches the set Rp+1× (σ•, σ•) with positive probability from

any initial value. The components y†t , . . . , y
†
t−p are not essential here, so we concentrate only on

σ†2t . In one step from a fixed initial value σ2
0, the process σ†2t reaches

σ†21 = ω0 + (α0,1 + α0,2G(σ0ε0; γ0))σ2
0ε

2
0 + β0σ

2
0.

Because ε0 has a density that is positive everywhere, P
{
ε20 ≤ (α0,1 + α0,2)−1(1− β0)/2

}
is pos-

itive for all t. For all ε0 taking such values,

σ†21 ≤ ω0 + (1 + β0)/2 · σ2
0
def
= ω0 + β̄0σ

2
0,

where β̄0 < 1. Moreover, because ε1, . . . , εk−1 also take such values with positive probability,

an application of the Chapman-Kolmogorov equations and an inductive argument yields that

σ†2k ≤ ω0(1 + β̄0 + . . . + β̄k−1
0 ) + β̄k0σ

2
0 with positive probability. Setting σ = ω0/(1 − β̄0) + δ

for some δ > 0 it is clear that σ†2k ≤ σ with positive probability in a finite number of steps k.

Next, because εk has an everywhere positive density, in one step σ†2k+1 can take values in any set

(σ•, σ•) such that σ < σ• < σ• with positive probability. Hence, P{σ2
t ∈ (σ•, σ•)} > 0.

Now, to prove part (ii) of Assumption C6, choose a λ ∈ Λ such that h∗t (µ0, λ) = σ2
t a.s. By

stationarity, also h∗t+1 (µ0, λ) = σ2
t+1 a.s., and hence we obtain

(ω − ω0) + (α1 − α0,1) ε2tσ
2
t + (α2G(σtεt; γ)− α0,2G(σtεt; γ0)) ε2tσ

2
t + (β − β0)σ2

t = 0 a.s.

By Assumption C5, σ2
t ≥ g > 0, implying

(α1 − α0,1) ε2t = − (β − β0)−σ−2
t

[
(ω − ω0) + (α2G(σtεt; γ)− α0,2G(σtεt; γ0)) ε2tσ

2
t

]
a.s. (44)

By the same assumption and because εt has a density that is positive everywhere, the event

{σ2
t ≥ g, εt ≤ g−1/2M} has positive probability for all M < 0, and on this event σtεt ≤ M . By

condition (b.v), the term in square brackets in (44) can be made arbitrarily close to (ω − ω0)
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on the event {σtεt ≤M} by choosing a small enough M .10 Because σ−2
t is bounded by g−1,

the right hand side of (44) is bounded on {σtεt ≤M} whereas the left hand side may attain

values arbitrarily large in absolute value if α1 6= α0,1 and M is chosen small enough. Thus,

because σtεt ≤ M with positive probability for every M < 0, we must have α1 = α0,1. Under

this restriction, (44) can be rearranged as

(α2 − α0,2) ε2t = − (β − β0)−σ−2
t

[
(ω − ω0) + (α2(G(σtεt; γ)− 1)− α0,2(G(σtεt; γ0)− 1)) ε2tσ

2
t

]
a.s.

Exactly as above, but now considering the event {σ2
t ≥ g, εt ≥ g−1/2M} with M taking large

positive values, we can deduce α2 = α0,2 by making use of condition (b.v). With the restrictions

derived so far,

(ω − ω0) + α0,2 (G(σtεt; γ)−G(σtεt; γ0)) ε2tσ
2
t + (β − β0)σ2

t = 0 a.s., (45)

where α0,2 > 0 by condition (b.ii). Now consider events {σ2
t ∈ (σ•, σ•), εt ≤ σ−1/2M} with σ <

σ• < σ• and M < 0, which, by (43) and the independence of σ2
t and εt, have positive probability.

Moreover, on these events σtεt ≤M regardless of the values of σ• and σ•. Therefore, by condition

(b.v) and choosing a small enough M , the sum of the first two terms in (45) can be made

arbitrarily close to (ω − ω0) with positive probability. However, considering events with different

values of σ• and σ•, (45) is clearly violated unless β = β0. Furthermore, similar reasoning using

(45) and the restriction β = β0 also yields ω − ω0. Hence [G(σtεt; γ)−G(σtεt; γ0)]ε2tσ
2
t = 0 a.s.

If γ 6= γ0, then by the last condition in (b.v) and the continuity of G (· ; ·) assumed in (b.iii),

we can find some u• < u• such that on the event {σtεt ∈ (u•, u•)} the term in square brackets

is bounded away from zero. As this event clearly has positive probability, we can conclude that

γ = γ0. Therefore λ = λ0 and Assumption C6(ii) holds.

Verification of Assumptions for asymptotic normality.

Now consider the validity of the assumptions required for asymptotic normality. Assumption N1

holds by condition (c.i), and Assumption N2 by condition (c.iii). Assumptions N3(i) and N3(ii)

can be verified by condition (c.iii), whereas Assumption N3(iii) is clearly satisfied with κ′ = 1.

That Assumption DGP holds with r = 2 follows from conditions (a) and (c.ii). Specifically,

part (a) of Proposition 1 of Meitz and Saikkonen (2008b) now applies with r = 2, and thus the

validity of Assumption DGP with r = 2 follows from Theorem 1 of the same paper (cf. the

verification of Assumption DGP above).
10This concerns the case of a strictly increasing G. If G is strictly decreasing, consider the event {σ2

t ≥ g, εt ≥

g−1/2M} with M > 0, on which event σtεt ≥ M . Now, considering sufficiently large values of M , the same

conclusion is obtained. An analogous change to the arguments is needed also in two other instances in the rest of

the verification of C6(ii), but we omit the details.
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Verifying the moment conditions for the first and second derivatives of h∗t in Assumption

N4 requires considerably more work. In what follows, we assume that θ ∈ Θ0. Moreover,

without loss of generality we may assume Θ0 is small enough to ensure that θ ∈ Θ0 implies

0 < ω ≤ ω ≤ ω < ∞, 0 < α1 ≤ α1 ≤ α1 < ∞, 0 < α2 ≤ α2 ≤ α2 < ∞, 0 < β ≤ β ≤ β < 1,

ϕ ∈ N(ϕ0), and γ ∈ N(γ0). Now, for the first norm in Assumption N4 concerning the vector

h∗θ,t/h
∗
t , recall that in the present case h∗t = ω + (α1 + α2G(ut−1; γ))u2

t−1 + βh∗t−1 (where the

argument θ has been suppressed from h∗t and ut) and, in the notation of Section 4, h∗θ,t =

g∗θ,t − g∗u,tfθ,t−1 + g∗h,th
∗
θ,t−1 (see equations (7) and (11)). Partitioning h∗θ,t as h∗θ,t = (h∗µ,t, h

∗
λ,t)

we obtain h∗µ,t = −g∗u,tfµ,t−1 + βh∗µ,t−1 and h∗λ,t = g∗λ,t + βh∗λ,t−1 as immediate consequences of

the definitions. Because β ≤ β̄ < 1 by assumption, h∗µ,t and h∗λ,t have the representations

h∗µ,t = −
∞∑
j=0

βjg∗u,t−jfµ,t−j−1 and h∗λ,t =
∞∑
j=0

βjg∗λ,t−j , (46)

respectively, where the convergence of the infinite sums follows from Lemmas A.2 and C.1. By

straightforward derivation,

g∗u,t = 2 (α1 + α2G(ut−1; γ))ut−1 + α2Gu (ut−1; γ)u2
t−1,

whereas the components of the vector g∗λ,t are seen to be

1, u2
t−1, G(ut−1; γ)u2

t−1, h
∗
t−1, and α2Gγ(ut−1; γ)u2

t−1. (47)

Because the range of G is [0, 1], and Gu (u; γ)u2 and Gγ(u; γ) are bounded in absolute value

uniformly over R×N(γ0) by conditions (c.iii) and (c.vi), the finiteness of
∥∥supθ∈Θ0

|h∗µ,t|/h∗t
∥∥

4

and
∥∥supθ∈Θ0

|h∗λ,t|/h∗t
∥∥

4
, and hence of the first norm in Assumption N4, follows if we show that∥∥∥∥∥ sup
θ∈Θ0

∞∑
j=0

βja
(i)
t−1−j/h

∗
t

∥∥∥∥∥
4

<∞, i = 1, . . . , 4, (48)

where a(1)
t = u2

t , a
(2)
t = h∗t , a

(3)
t = |ut||fµ,t|, and a

(4)
t = |fµ,t|.

To show this, first express h∗t as

h∗t =
∞∑
k=0

βk
(
ω + (α1 + α2G(ut−1−k; γ))u2

t−1−k
)
, (49)

where the convergence of the infinite sum follows fom Lemma A.2 and the result
∥∥supθ∈Θ|ut|

∥∥
2r
<

∞ obtained in the proof of Proposition 1. Because ω ≥ ω > 0, α1 ≥ α1 > 0, α2 ≥ α2 > 0, and

β ≥ β > 0 is assumed, we have

h∗t ≥
∞∑
k=0

βk
(
ω + α1u

2
t−1−k

)
≥ ω + βjα1u

2
t−1−j (50)
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for any j ≥ 0.

Now, considering (48) with i = 1 and making use of (50) and the fact that x/(1 + x) ≤ xs

for all x ≥ 0 and any s ∈ (0, 1) (cf. Francq and Zaköıan (2004), above their equation (4.25)),

we obtain that, for any j ≥ 0 and s ∈ (0, 1),

βju2
t−1−j/h

∗
t ≤ α−1

1

βjα1u
2
t−1−j/ω

1 + βjα1u
2
t−1−j/ω

≤ αs−1
1 ω−sβsj |ut−1−j |2s

≤ αs−1
1 ω−sβ̄sj sup

θ∈Θ0

|ut−1−j |2s . (51)

As was noted above,
∥∥supθ∈Θ|ut|

∥∥
2r

< ∞, or
∥∥supθ∈Θ|ut|

∥∥
4
< ∞ when r = 2 is assumed.

Thus, choosing s ≤ 1/2 and making use of the norm inequality we obtain
∥∥supθ∈Θ0

|ut|2s
∥∥

4
≤∥∥supθ∈Θ0

|ut|
∥∥2s

4
. Using this fact, (51), and Minkowski’s inequality we find that∥∥∥∥∥ sup

θ∈Θ0

∞∑
j=0

βju2
t−1−j/h

∗
t

∥∥∥∥∥
4

≤ αs−1
1 ω−s

∞∑
j=0

β̄sj
∥∥∥∥ sup
θ∈Θ0

|ut−1−j |
∥∥∥∥2s

4

,

where the majorant side is finite, and hence we have established (48) with i = 1.

Now consider (48) with i = 2 and conclude from (49) and (50) that

h∗t−1−j
h∗t

≤
∞∑
k=0

βk
ω + (α1 + α2G(ut−2−j−k; γ))u2

t−2−j−k
ω + βj+k+1α1u

2
t−2−j−k

for any j ≥ 0. Because ω ≤ ω and α1 + α2G(ut−2−j−k; γ) ≤ C for some finite C, we have

h∗t−1−j
h∗t

≤ ω

ω

∞∑
k=0

β̄k + C

∞∑
k=0

βk
u2
t−2−j−k

ω + βj+k+1α1u
2
t−2−j−k

.

Hence, by arguments similar to those used to derive (51) we have, for any j ≥ 0 and s ∈ (0, 1),

βj
h∗t−1−j
h∗t

≤ βj
ω

ω

∞∑
k=0

β̄k +
C

α1β

∞∑
k=0

βj+k+1α1u
2
t−2−j−k/ω

1 + βj+k+1α1u
2
t−2−j−k/ω

≤ βj
ω

ω

(
1− β̄

)−1 +
Cαs−1

1

ωsβ

∞∑
k=0

β(j+k+1)s |ut−2−j−k|2s

≤ β̄j
ω

ω

(
1− β̄

)−1 +
Cαs−1

1 β̄s

ωβ
β̄js

∞∑
k=0

β̄ks sup
θ∈Θ0

|ut−2−j−k|2s .

Choosing s ≤ 1/2 and using Minkowski’s inequality and the norm inequality in the same way

as in the case i = 1 we find that the norm in (48) is finite when i = 2.
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Next consider (48) with i = 3. In view of (50) and the inequality x/(1 + x2) ≤ 1 (cf. Francq

and Zaköıan (2004), above their equation (4.49)) we have, for any j ≥ 0,

βj |ut−1−j | |fµ,t−1−j | /h∗t ≤
(βju2

t−1−j)
1/2

ω + βjα1u
2
t−1−j

βj/2 |fµ,t−j−1|

≤ (α1ω)−1/2
(βjα1u

2
t−1−j/ω)1/2

1 + βjα1u
2
t−1−j/ω

β̄j/2 |fµ,t−j−1|

≤ (α1ω)−1/2β̄j/2 |fµ,t−j−1| .

As in the case i = 1, Minkowski’s inequality shows that (48) holds with i = 3 if
∥∥supθ∈Θ0

|fµ,t|
∥∥

4
<

∞. To verify this, calculate the partial derivatives of f (yt−1, . . . , yt−p;µ) as

1, yt−1, . . . , yt−p, (1, yt−1, . . . , yt−p)F (yt−d;ϕ), and (ψ0 +
p∑
j=1

ψjyt−j)Fϕ(yt−d;ϕ). (52)

Because the range of F is [0, 1] and the partial derivatives of F are bounded uniformly over

R×N(ϕ0) by condition (c.iii), we have |fµ,t| ≤ C(1 +
∑p

j=1|yt−j |) for some finite C. Thus, the

desired result follows because E[y4
t ] <∞ in view of Assumption DGP and the fact that r = 2.

For (48) with i = 4 it suffices to note that βj |fµ,t−1−j |/h∗t ≤ g−1β̄j |fµ,t−1−j | by Assumption

C5, and hence the result follows as in the case i = 3. Therefore we have verified (48) and thus

the finiteness of the first norm in Assumption N4.

Now consider the latter norm in Assumption N4 which involves the matrix h∗θθ,t/h
∗
t . Recall

from Section 4 that

h∗θθ,t = α∗θθ,t + β∗t h
∗
θθ,t−1 + γ∗θ,th

∗′
θ,t−1 + h∗θ,t−1γ

∗′
θ,t + δ∗t h

∗
θ,t−1h

∗′
θ,t−1,

where α∗θθ,t, β
∗
t , γ∗θ,t, and δ∗t are as in (7)–(8) but with ht throughout replaced with h∗t . As

already noticed, β∗t = g∗h,t = β, which implies that g∗hh,t = 0 and g∗uh,t = 0. Moreover, only

one element of g∗θh,t is nonzero, namely the one related to the component β of θ for which the

resulting partial derivative is unity. Thus, δ∗t = 0, γ∗θ,t = γ∗θ is independent of t, and we get

h∗θθ,t = α∗θθ,t + γ∗θh
∗′
θ,t−1 + h∗θ,t−1γ

∗′
θ + βh∗θθ,t−1

giving the representation

h∗θθ,t =
∞∑
j=0

βjα∗θθ,t−j +
∞∑
j=0

βjγ∗θh
∗′
θ,t−1−j +

∞∑
j=0

βjh∗θ,t−1−jγ
∗′
θ

(the infinite sums converge due to Lemmas A.2 and C.1 and Proposition 2). This, and the

definition of α∗θθ,t, show that for
∥∥supθ∈Θ0

|h∗θθ,t|/h∗t
∥∥

2
<∞ it suffices to establish that∥∥∥∥∥ sup

θ∈Θ0

∞∑
j=0

βja
(i)
t−1−j/h

∗
t

∥∥∥∥∥
2

<∞, i = 5, . . . , 9, (53)
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where a(5)
t = |g∗θθ,t+1|, a

(6)
t = |g∗uu,t+1||fθ,t|2, a(7)

t = |g∗uθ,t+1||fθ,t|, a
(8)
t = |g∗u,t+1||fθθ,t|, and a

(9)
t = |h∗θ,t|.

Because the details of verifying (53) are similar to those already used to deduce (48), we only

sketch the required steps. For (53) with i = 5, note that because g∗µ,t+1 = 0, also g∗µµ,t+1 = 0

and g∗λµ,t+1 = 0 = g∗′µλ,t+1. Moreover, by direct calculation, it can be seen that the only nonnull

elements of g∗λλ,t+1 are Gγ(ut; γ)u2
t and α2Gγγ(ut; γ)u2

t . Therefore, |g∗θθ,t+1| is dominated by Cu2
t

(C <∞). Arguments similar to those used to show (48) with i = 1 can now be applied to verify

(53) with i = 5 (we omit the details). Next, for (53) with i = 6, straightforward differentiation

gives g∗uu,t+1 = 2 (α1 + α2G(ut; γ)) + 4α2Gu(ut; γ)ut + α2Guu(ut; γ)u2
t . By condition (c.vi),

supθ∈Θ0
|g∗uu,t+1| is bounded, and therefore arguments already used to show (48) with i = 4

can be used to obtain the desired result. For (53) with i = 7, consider g∗uθ,t+1 and note that

g∗uµ,t+1 = 0 whereas the nonnull elements of the matrix g∗uλ,t+1 are 2ut, 2G(ut; γ)ut+Gu(ut; γ)u2
t ,

and 2α2Gγ(ut; γ)ut + α2Guγ(ut; γ)u2
t . By conditions (c.iii) and (c.vi), |g∗uθ,t+1| is dominated by

C(1 + |ut|) (C <∞), and arguments already used to verify (48) with i = 3 can be applied to

deduce (53) with i = 7.

Now consider (53) with i = 8. By (52) and direct calculation, the nonnull elements of

fθθ,t−1 are (1, yt−1, . . . , yt−p)Fϕ(yt−d;ϕ) and (ψ0 +
∑p

j=1 ψjyt−j)Fϕϕ(yt−d;ϕ). Thus, similarly to

supθ∈Θ0
|fθ,t−1| = supθ∈Θ0

|fµ,t−1| also supθ∈Θ0
|fθθ,t−1| is dominated by a term of the form C(1+∑p

j=1|yt−j |) with a finite C. Arguments used for (48) with i = 3 and 4 can now be used to deduce

(53). Finally, for (53) with i = 9, recall that we have shown that
∥∥supθ∈Θ0

|h∗θ,t|/h∗t
∥∥

4
is finite,

and thus Minkowski’s inequality gives
∥∥supθ∈Θ0

∑∞
j=0 β

j |h∗θ,t−1−j |/h∗t
∥∥

2
< ∞. To conclude, we

have shown that (53) holds with i = 5, . . . , 9, and therefore that
∥∥supθ∈Θ0

|h∗θθ,t|/h∗t
∥∥

2
< ∞.

This completes the verification of Assumption N4.

As for Assumption N5, part (i) clearly holds due to condition (a.i). Consider now verifying

the condition for the conditional mean in Assumption N5(ii). Recall that the partial derivatives

of f (yt−1, . . . , yt−p;µ) were given in (52), and choose an x = (x1, . . . , x2p+4) ∈ R2p+4 such that

x′ ∂ft(µ0)
∂µ = 0 a.s. By (52) and rearranging terms,[

x1 + xp+2F (yt−d;ϕ0) + ψ0,0(x2p+3, x2p+4)′Fϕ(yt−d;ϕ0)
]

+
p∑
j=1

[
x1+j + xp+2+jF (yt−d;ϕ0) + ψ0,j(x2p+3, x2p+4)′Fϕ(yt−d;ϕ0)

]
yt−j = 0 a.s.

Using conditions (b.iv) and (c.iv) and arguments similar to those used to verify Assumption

C6(i), we can deduce that x1 = · · · = x2p+2 = 0 (without going into details, first, making use

of the sets S(d, y•) with y• < 0 (see the verification of C6(i)), we obtain x1+d = 0; next, using

the sets S(k, y•) with y• < 0 and k 6= d, we obtain x1+k = 0, k = 1, . . . , p, k 6= d; similar

considerations but now with y• > 0 first give xp+2+d = 0 and then xp+2+k = 0, k = 1, . . . ,
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p, k 6= d; finally, considering first sufficiently small values of y• we obtain x1 = 0, and then

sufficiently large values of y• we obtain xp+2 = 0). Hence

(
(x2p+3, x2p+4)′Fϕ(yt−d;ϕ0)

)[
ψ0,0 +

p∑
j=1

ψ0,jyt−j

]
= 0 a.s.

If either x2p+3 6= 0 or x2p+4 6= 0, then by the last part of condition (c.iv) we can find a ȳ such

that (x2p+3, x2p+4)′Fϕ(ȳ;ϕ0) 6= 0. The continuity of Fϕ(·; ·) assumed in (c.iii) now ensures the

existence of some y• < ȳ < y• such that (x2p+3, x2p+4)′Fϕ(ȳd;ϕ0) is bounded away from zero

for all ȳd ∈ (y•, y•). By condition (b.i), at least one of the ψ0,j , j = 0, . . . , p, is nonzero, and

the arguments used when verifying condition C6(i) can be used to arrive at contradiction (see

equation (42) and the discussion following it). Hence, we must have x2p+3 = x2p+4 = 0, and

thus x = 0. Therefore, Assumption N5(ii) holds.

Now consider Assumption N5(iii), and suppose that for some xλ = (x1, . . . , x6) ∈ R6,

x′λ∂g(u0,t, σ
2
t ; θ0)/∂λ = 0 a.s. or, using the expressions of the partial derivatives in (47),

x1 + x2σ
2
t ε

2
t + x3G(σtεt; γ0)σ2

t ε
2
t + x4σ

2
t + α0,2(x5, x6)′Gγ(σtεt; γ0)σ2

t ε
2
t = 0 a.s. (54)

Now, similarly to the verification of Assumption C6(ii), consider the events {σ2
t ∈ (σ•, σ•), εt ≤

σ−1/2M} with σ < σ• < σ• and M < 0, which by (43) and the independence of σt and εt

have positive probability, and, moreover, on these events σtεt ≤ M regardless of the values

of σ• and σ•. For fixed σ• and σ• and for arbitrarily small values of M , all the other terms

in (54) are bounded (due to conditions (b.v) and (c.v)) except the second one, which takes

values arbitrarily large in absolute value unless x2 = 0.11 Next, under the restriction x2 = 0,

writing x3G(σtεt; γ0)σ2
t ε

2
t = x3σ

2
t ε

2
t + x3(G(σtεt; γ0)− 1)σ2

t ε
2
t and considering the events {σ2

t ∈

(σ•, σ•), εt ≥ σ−1/2M} with M positive, we can similarly conclude that x3 = 0. With the

restrictions derived so far,

x1 + x4σ
2
t + α0,2(x5, x6)′Gγ(σtεt; γ0)σ2

t ε
2
t = 0 a.s. (55)

Now, consider again the events {σ2
t ∈ (σ•, σ•), εt ≥ σ−1/2M} with M positive. Letting M

be arbitrarily large, but this time considering these events with different values for σ• and

σ•, (55) is clearly violated unless x4 = 0. With a similar reasoning, also x1 = 0. Hence

(x5, x6)′Gγ(σtεt; γ0)σ2
t ε

2
t = 0 a.s., from which x5 = x6 = 0 follows by using the last condition in

(c.v) and arguments similar to those used at the end of the verification of Assumption C6(ii).

Thus, Assumption N5(iii) holds, and the verification of Assumption N5 is complete.
11This concerns the case of a strictly increasing G. In the case of a strictly decreasing G, a slight change in the

argument is required here and once more below; cf. footnote 10. We omit the details.
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van Dijk, D., T. Teräsvirta, and P. H. Franses (2002): “Smooth transition autoregressive

models — A survey of recent developments,” Econometric Reviews, 21, 1–47.

Weiss, A. A. (1986): “Asymptotic theory for ARCH models: estimation and testing,” Econo-

metric Theory, 2, 107–131.

White, H. (1980): “Nonlinear regression on cross-section data,” Econometrica, 48, 721–746.

Zaköıan, J.-M. (1994): “Threshold heteroskedastic models,” Journal of Economic Dynamics

and Control, 18, 931–955.

58


