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Parameter estimation in quantum sensing based on deep

reinforcement learning

Tailong Xiao', Jianping Fan? and Guihua Zeng'®

Parameter estimation is a pivotal task, where quantum technologies can enhance precision greatly. We investigate the time-
dependent parameter estimation based on deep reinforcement learning, where the noise-free and noisy bounds of parameter
estimation are derived from a geometrical perspective. We propose a physical-inspired linear time-correlated control ansatz and a
general well-defined reward function integrated with the derived bounds to accelerate the network training for fast generating
quantum control signals. In the light of the proposed scheme, we validate the performance of time-dependent and time-
independent parameter estimation under noise-free and noisy dynamics. In particular, we evaluate the transferability of the scheme
when the parameter has a shift from the true parameter. The simulation showcases the robustness and sample efficiency of the
scheme and achieves the state-of-the-art performance. Our work highlights the universality and global optimality of deep
reinforcement learning over conventional methods in practical parameter estimation of quantum sensing.
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INTRODUCTION

Precise measurement plays a key role in physics and other
sciences which have been widely studied. Parameter estimation is
directly better benefited from more precise measurement’.
Quantum mechanics, fortunately, offers a huge potential advan-
tage toward enhancing the precision of measurement, which
naturally spawns a new subject called quantum sensing>. The
basic task of quantum sensing is parameter estimation which has
a wide application for imaging* and spectroscopy®.

One of the main goals in quantum sensing is to identify the
highest precision of quantum parameter estimation with given
resources. Generally, quantum parameter estimation consists of
three steps : (1) preparing optimal probe states, (2) experiencing
an unknown Hamiltonian evolution, and (3) execute optimal
measurement. Numerous seminal works have been concentrated
on finding optimal probe state and measurement®®. Recently,
increasing researches'®"'3 propose to search optimal quantum
control signals for step (2). For time-independent Hamiltonian
evolution, control-enhanced proposals are proved to be useful to
obtain optimal quantum Fisher information matrix (QFIM),
especially in multiparameter noncommutative Hamiltonian
dynamics'®. However, parameter estimation in time-dependent
quantum evolution is investigated much less. In ref. '>'6, the ideal
bound of parameter estimation in time-dependent quantum
evolution is derived scaling as T* (T is the duration of evolution)
which is larger than the time-independent case of T2 scaling. This
promising result relies heavily on the quantum coherent control,
which is not readily implemented in practice. In ref.'’, an
experiment of the time-dependent parameter estimation in a
simplified physical model is demonstrated.

Optimal control signals are highly crucial to complex quantum
sensing situations. Conventional methods for calculating optimal
quantum control sequences such as gradient ascent pulse
engineering (GRAPE)'® and chopped random basis (CRAB)'
performs well in some simple quantum evolutions. However,
these methods are sensitive to noise and the calculated pulse

shape is hard to engineer. Particularly for some complex
evolutions such as time-dependent or multiparameter qubit cases,
these methods demand a huge computation cost to converge or
sometimes not converging®. Machine learning, however, is
promising to overcome these shortcomings. In ref.?'=23, tradi-
tional machine learning methods are proposed to obtain the
feedback control signals. In ref. 242, deep reinforcement learning-
based methods such as Q learning and policy-gradient network
are used to learn the optimal control for gate design or quantum
memory. These works demonstrate the potential merits of
machine learning in finding optimal control sequences. In
previous works?’?8, reinforcement learning approaches are
successfully applied to time-independent parameter estimation
and achieves impressive results. However, their approaches are
not promising in time-dependent quantum parameter estimation
and even fail in relatively longer evolutions. Moreover, these
approaches require a large number of episodes to converge.
These facts limit the application of the reinforcement learning
approach in quantum sensing.

In this work, we mainly focus on parameter estimation in the
time-dependent Hamiltonian evolution of quantum sensing. We
utilize the state-of-the-art deep reinforcement learning (DRL)
framework to train the artificial agent to find optimal quantum
controls for quantum sensing. We call our proposed protocol
DRLQS. Firstly, we present the theoretical bound of QFI of
parameter estimation from a geometrical perspective in noise-free
and noisy situations. The derived QFI bounds are treated as a
variable of the reward function. Then, we provide a unique control
ansatz for the DRL agent involving the weak physical prior
information about the time-dependent Hamiltonian. Moreover, we
also design a general reward function for quantum sensing
problems, which is the most important component in our DRL. By
conducting rich simulations, the results show that our DRL agent
can effectively produce optimal control signals and the precision
of time-dependent and time-independent parameter estimation
can fast reach the theoretical limit. More importantly, we also
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validate the robust performance of DRL-based control under
dephasing (DP) noise and spontaneous emission (SE) noise
dynamics. Finally, we evaluate the transferability of the DRL
method. The simulation results show that our DRLQS protocol
performs notably efficiently and has a great potential capability in
practical situations.

RESULTS
Physical model

Consider a generic time-dependent Hamiltonian interacted with a
single spin under quantum control given by

Hsen(t) = —Hy(t) + H.(1), (1)

where g represents unknown parameter, I:I,C(t) denotes the control
Hamiltonian functioned on the unknown Hamiltonian of the
targeting system. It is worth pointing out that the optimal
Hamiltonian form of quantum coherent control relies on Hy(t)'".
Besides, the control Hamiltonian must be independent of g since g
is not known a-priori and thus no explicit value can be chosen to
design the control pulse. The physical model of quantum sensing
can be regarded as a quantum sensor as Fig. 1 shows. Particularly,
in case that the control Hamiltonian is nonlinear, this system is
referred to as quantum chaotic sensor?®?°, The unitary evolution
of the quantum sensor can be simply characterized by the
Schrédinger equation when the evolution is noise-free. However,
complete isolation of any realistic quantum systems from their
environment is not typically feasible. Open quantum systems
evolve in a non-unitary fashion, inevitably leading to processes of
losses, relaxation, and phase decoherence. For simplicity, we only
consider the Markovian dissipative process caused by the qubit
spontaneous emission or dephasing in our work. These dissipative
processes have no memory effect. Therefore, we can make use of
the Lindblad master equation to characterize the evolution of the
quantum sensor.

Time-dependent Hamiltonian parameter estimation

In most quantum sensing problems, the first issue we need to
consider is to obtain the QFI of the Hamiltonian parameter
estimation. The QFI quantifies the ultimate precision of estimating
a parameter from a quantum state over all possible quantum
measurements. Then, the next step involves finding the optimal
probe states and the optimal measurements. However, it is hard to
prepare these optimal probe states and implement these
quantum measurements practically. Additionally, when the
Hamiltonian of the quantum sensor becomes more complex, the
calculation of exact QFI also becomes harder. In our quantum
sensor, the Hamiltonian is time-dependent whose calculation of
QFI should be distinguished from the time-independent case®°.
Firstly, we consider the noiseless case, i.e., our quantum sensor
has no energy dissipation to the environment, no decoherence
and relaxations such that we are able to make use of unitary
matrices to characterize the system evolution. Suppose the
parameter to be estimated is denoted by g, the precision of
estimating g from a set of parameter-encoded quantum state p, is

Controllor Quantum system
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Pulse Modulator m /
Process . .
Unit (Algorithms) information A
retrieval Noise

Fig. 1 Schematic diagram of quantum sensing. Hamiltonian can
be time-dependent or time-independent. Unknown Parameters can
be single and multiple. The background noise will cause the the
qubit relaxation and dephasing.
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determined by the Bruce distance between p, and its neighboring
states Py, 4o The relation of QFI and Bruce distance obeys the
equation'®

- 1
A (By:Pg:09) = 7740 A7, @

where dp(-) is the Bruce distance, dg is a small shift from g.
Through Eq. (2), we can derive that the maximum of QFI for
estimating g for time-dependent parameter estimation is given by
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where Amax(S)(Amin(s)) is the largest (smallest) eigenvalue of
9gHgy(s), t is the total evolution time and p, denotes the probe
state. In open noisy quantum evolution, the geometrical frame-
work still works. The maximum QFI for estimating g in noisy
situation is given by

8(1 — fé max|wj <1 3 Amin [Kw(s) + Kw(S)T] ds)
dg? '
4
where  Kys) = Zw;F1,(s)'Fo(s), F1; and Fy denote the Kraus
operators of Kraus evolution K; and K. 4 respectively. w;
represents the ijth entry of dxd matrix W with [|W|| <1 where
|| - || denotes the operator norm indicating that its largest singular
value dose not beyond 1. More derivation details can be seen in
Supplementary Note 1.

To saturate the maximum QFI, the optimal quantum control
signals are required to steer the evolution of the quantum system.
For noise-free evolution, Eq. (3) indicates that if we can prepare
the probe state in the superposition of the eigenvectors
corresponding to Amax(s) and Amin(s) at s=0 and steer the
evolution of the quantum state along the fixed track, we can
saturate the optimal QFI. The optimal evolution that corresponds
to obtain the maximum QFI gain can be mapped to an evolution
according to Schrodinger’s equation of unitary propagators U as
curves on a manifold U€ G, as Fig. 2 shows. The red line
represents the steered propagator evolution based on DRL
control, which aims to approaches the dotted line. It demonstrates
that the quantum control is crucial for time-dependent Hamilto-
nian estimation to stature the optimal QFI or quantum speed limit
in terms of evolution. It is worth pointing out that although
quantum controls will not increase maximum QFl, it is necessary
to manipulate the quantum evolution and guide the probe state
to the right flow of obtaining the maximum information gain. As
for the open system, the optimal control signals can be reduced to
optimizing a semidefinite programming problem in each time slot

max J—'éo) = lim
Po dg—0

Fig. 2 Quantum control V(t) steers the free evolution Uy(t) to
evolute along the “eigen-path" approximately, where }¢k>
denotes the kth eigenstate of d;Msen(t). G denotes a Lie group
and the manifolds U,V e G. The blue points are the propagator
without control and the red points, on the contrary, is the DRL
manipulated propagators.
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(see Supplementary Note 1). In reality, this optimization for the
time-independent case is relatively easier. However, it is
impractical for the time-dependent parameter estimation to
search for optimal matrix W in each time slot through the convex
optimization technique since this optimization process typically
becomes a highly non-convex problem in a global sense.
Therefore, machine learning becomes the promising method we
resort to.

Deep reinforcement learning for quantum sensing

Before analyzing how DRL has been applied to quantum control,
we should present the general ansatz of the control form. Even
though we can calculate the optimal coherent form of the
quantum control based on the complete knowledge of the
Hamiltonian, it is still time-consuming as each time we need to
recalculate the control ansatz in different quantum sensing
protocols. In particular, we even cannot provide the explicit form
when the system Hamiltonian is complicated. One can overcome
this issue by an adaptive algorithm but its optimal QFI is reduced
compared to the maximum QFI'>. On the other hand, we also
require considering the sufficiency of quantum control ansatz
when manipulating the state evolution. Fortunately, we can model
a general form in two-dimensional single spin systems as®’'
H(t) = Zjuj(t)éh where 6;,j = 1,2, 3 are Pauli X, Y, Z operators, u;
represents the amplitude of the control fields for Pauli operator j
which can be assumed to be strong and instantaneous in our
model'®. This control Hamiltonian is sufficient in controlling a
Bloch evolution of a single qubit since any Hy(t) is composed of
the linear combination of Pauli operators.

We note that H/C(t) is designed for time-independent parameter
estimation. However, this control form may not be effective in our
research. Instead of adopting the optimal coherent control form,
we design a general control ansatz for time-dependent Hamilto-
nian given by

Hig(t) = D oh08 = (u(t) - fi(t))6;, ()
]

J

where f{(t) denotes the additional control ansatz which is
determined by the physical prior information about the system,
i.e, the specific time correlation terms of Pauli operators. The
additional control terms should reduce the noncommutativity
feature between 94H,y(t) and Hgy(t). More formally, we consider
the quantum Hamiltonian of a physical system is denoted as
Hg(t) = 3 ;i(9:,2i(t))O;, where z; denotes the time correlation
function. Suppose the unknown parameter and the time function
is linearly coupled, i.e, l{(g; z(t)) = I{giz(t)). The partial derivative
over one unknown parameter is

3 Hg(t) = 3 _3gj(9:2:(0))2i ()0, ©)
J

The coefficients f(t) should be chosen as z(t) for ithe parameter.
The total Hamiltonian can be written as

Fsen(t) = > li(g:zi(1))0; + > zi(t)y (1) 0. @)

In quantum sensing, the partial derivative of the system Hamiltonian
over ith parameter g; plays an important role in determining the final
precision of the estimation. The chosen coefficient f{t) = z{(t) makes
the control form match 8, Hy(t) as long as let u;(t) = 9,4,1;(g,z;(t)).
Physically, the chosen explicit function f(tf) can reduce the
noncommutativity feature so that the neural agent only requires
learning a relatively simplified function, which is an incidental
benefit. Especially in model-free RL, the hardness gap in learning the
two functions is amplified since the sample efficiency is notably
lower than supervised learning®?. We note that sample efficiency
denotes the number of actions it takes and a number of resulting
states and rewards it observes during training in order to reach a
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certain level of performance. This choice is also potentially beneficial
for the neural agent driving the quantum state evolving along the
“eigen-path”. In case the unknown parameter couples a linear time
dependence for which zjt) = ct (the linear factor ¢ can be absorbed
into uj(t)), then the control ansatz coefficient £{(t) is written as f{t) =t.
Mathematically, for highly small time slot At, any complex fu
nction h(At) can be first-order Taylor expanded, e,
h(At) = h(to) + h'(to) (At — to) + o(At?). Let t,=0, we neglect
the second and higher-order terms. The constant term h(0) does
not affect the actual optimization process in a neural network. Then
we have h(At) ~ h'(0)At, which exactly meets the form of the
control ansatz. Compared with H_(t), we provide an explicit time-
dependence for control signals which only requires weak prior
information about the quantum sensor. Remarkably, we find that
H.(t) becomes a special case of our proposed ansatz when the
unknown parameter is time-independent for which z{t) = 1. More-
over, our ansatz does not require the exact Hamiltonian expression.
On the contrary, the coherent control is constructed based on the
complete knowledge of Hamiltonian. Therefore, our DRL control
ansatz will be more universal in practical quantum parameter
estimation.

DRL has achieved many promising results especially in games
such as AlphaGo*334, StarCraft I1°° etc. These impressive results
boom the development of RL. In RL, states S are referred to as the
position set of the agents at a specific time-step in the
environment. Rewards R are the numerical values that the agent
receives on performing some action at some states in the
environment. The numerical value can be positive or negative
based on the actions of the agent. Thus, whenever an agent
performs an action A the environment provides the agent a
reward and a new state where the agent reached by performing
the action. The probability that the agent moves from one state to
its successor state is called state transition probability obeying the
distribution p( - ) with which the environment updates the states. p
(-) is updated according to the action the agent performed.
Notably, a usual MDP is exactly defined that one state moves to
another state with transition probability when given an action3¢37,
At the same time, a reward value is also calculated. A MDP can
also be described by a tuple (S,.A,p(:),R,y), where y€(0,1)
denotes discount rate that balance the importance of current
reward and future reward. In RL, the problem to resolve is
described as an MDP. Theoretical results in RL rely on the MDP
description being a correct match to the problem333°, If the
problem is well described as an MDP, then RL may be a good
framework to use to find solutions.

A critical task in quantum sensing is to estimate the physical
parameter such as frequency, phase of quantum system as precise
as possible. In general, a physical system is considered to be a
Hamiltonian time evolution, which can be mapped into a MDP.
Specifically, a MDP is finite when the sets of S, .4 and R all have a
finite number of elements. In this case, the random variables
R, A, and Sy, have well-defined discrete probability distributions.
At time t;, there is a probability of s’ and r occures given the
preceding state and action:

p(slv I"S, a) = Pr {sfi = S,’ Rl‘i = r‘stlf'l = S?Ati—1 = G}. @8)

for all s',s € S,r € R(s,a) and a € A(s). In our setup, the totol
evolution time t; = iAt, where i ={0, 1, ---, N} and At = [. Formally,
the MDP and agent together thereby give rise to a trajectory:

<Sfo7Afo7Rl‘17Sl‘17Al’27"' 7Rthsl’N> (9)

Ultimately, the optimal quantum measurement is executed on the
final state to obtain the most precise parameter estimation. The
schematic of DRL for quantum parameter estimation is displayed
as Fig. 3 shows. DRL aims to maximize the cumulated reward (also
called returns in RL) for all time steps. In order to achieve this
target, policy m(als) and state value function V,(s) is introduced.
Specifically, 7 is defined as the probability of obtaining one action
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Fig. 3 Illlustration of DRL with (I) agent-environment interaction
(Il) state-aware policy and value networks with LSTMCells®? for
quantum sensing protocols. Generally, the quantum evolution can
be characterized by quantum master equation both for pure and
mixed states. The joint network is divided into the policy/value
branch at the final neural layer. The policy and value gradient are
updated to the policy and value branch, respectively. The reward R
is a function of the QFI (given by the quantum evolution) which can
be calculated by the current control sequence and state. BP refers to
backpropagation.

a given the current state s. The state value V,(s) is defined as the
expected cumulated rewards with the discount rate y starting
from the current state and going to successor states thereafter,
with the policy 7. In DRL, the state value can be calculated by a
functional neural network called a value network. The actions can
be sampled from the policy m(als) which is approximated by
another functional neural network called policy network. Policy
and value networks form a universal architecture for learning
interactions with the arbitrary environment. More details can be
found in Supplementary Note 4. Moreover, the DRL algorithm has
a noble tolerance with noises and action imperfections. Therefore,
it will be more suitable for practical and complex quantum
Sensors.

The DRL state is referred to as the position at a specific time-
step in the environment. The quantum state is referred to as the
density matrix in open quantum evolution at a time step. In our
work, we regard the environment as the quantum evolution (i.e.,
the environment is quantum), then the DRL state is coincident
with the quantum state with the assumption that the DRL agent
can be fully aware of the full density matrix of the quantum state,
for which we have

St = [%{ﬁmn(ti)}7%{ﬁmn(ti)}7m7n € {172}]' (10)

The actions of DRL are viewed as the quantum control amplitude
array which is denoted by a;, = [h1(t;), ha(t;), h3(t;)]. Each element
is used to compose the universal Pauli rotations
Rn(a) = exp{—i2n-6}, where a being the rotation angle, n
denoting a unit vector specifying the rotation axis. Obviously, the
general control form is entirely coincided with the general rotation
operator per single qubit just by regarding a;, = Sn. At each time
slot, the actions are retrieved from the DRL agent and are used to
steer the quantum evolution guiding the quantum state evolving
along the “eigen-path” of the system. Therefore, the optimality of
the quantum control sequence determines whether parameter
estimation is able to reach the maximum QFI. To achieve this goal,
it is necessary to offer a well-defined reward function to train the
agent to generate optimal actions. The generality and expression
as a function of the desired final state are two key features of the
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reward function. Generality means that the reward function
should not implicate the specific information on the character-
istics of actions. As for the expression on the desired final state,
the goal is to maximize the QFI at the end of quantum evolution.
Thus, we define a robust reward function for DRLQS protocols
given by

FO )72 ) Lo«
FOw) F ()
o) -cF,
=4 et ) < FOm<FR -8
FO
1, ﬁa(f)ZU—‘S)

for all time step t;< NAt. When the end of the time evolution is
reached i.e, t;= NAt, we let r;, = r, x C to amplify the final reward
function which will motivates the agent to emphasize the final
state control. In Eq. (11), n, { are hyperparameters slightly larger

than 1, 6 is a little larger than 0. fﬁé denotes the QFI without

control, F'9 represents the maximum QFI at the final time.
Ideally, the maximum QFI is great larger than the QFI without
control. Our design of the reward function firstly aims to ask the
agent to provide control signals such that the QFI becomes larger
than the QFI without controls. However, QFI that larger than the
QFI without control does not indicate the current QFI is optimal.

The DRL agent requires approaching the maximum QFl when
FO®t)/FYL > 1 and FO(t;)/FQ,<1 — 6. The reward value is

— max
negative both in these two conditions so the agent tries to render
the reward value approach to 0. Here we provide a slackness
variable 6 aiming to tell the agent that its goal is reached when
the QFl is approximately equal to the maximum QFI. The variable &
can also be used to shrink F'9 of noise-free case under the noisy
conditions. Specifically, in those complex situations that we

cannot calculate F\Q directly, we can adjust §<1 since the
noisy QFI can be considered as a linear decay of noise-free QFI'%
Generally, the introduction of the slackness variable will reduce
the final target value and make the learning process fast converge.
The reward value is set to be 1, indicating that the ‘game’ is
successful during the current episode. It is worth noting that the
reward function jumps to a lower value from the first case to the
second case. However, the jump does not lead to the sudden drop
down of the QFI since parameters of the neural agent do not
change suddenly only when a few batches of training data
changes which are demonstrated in later simulation results. We
set the first stage reward function is mainly to encourage the
agent to give controls. The first case large reward will reinforce
the control strategy although the agent will be given the second
case reward in most episodes. This first case reward is mainly
functioned on the time-independent parameter estimation where
the gap between F(9(t;) and ]—'(r?é (t;)is not large. Additionally, in
time-dependent parameter estimation, the QFl is relatively easier
larger than the QFI without control because the gap of the scaling
with time between them is notably large. The situation should be
distinguished from the time-independent case, where both
scalings with evolution time have the same order. Thus, the
reward function in the time-dependent case requires finer designs
to satisfy the effectively training demands. In our implementation,
the specific DRL algorithm we used is called A3C LSTM*%#', The
algorithm details and the reason why we design the reward
function of Eq. (11) can be found in Supplementary Note 4. Other
interesting RL algorithms that can be applied to quantum controls
can refer to*>4,

Simulation results

To exemplify the necessity and feasibility of DRL-based quantum
control in time-dependent quantum sensor, we consider a single
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qubit Hamiltonian system of quantum sensor given by'>:
Hsen(t) = —A(cos wtdy + sin wtds) + Flltd(t), (12)

we first consider estimating the field amplitude A. It is easy to
verlfy that the eigenvalues of aAHsen( ) is+ 1 with eigenstates
|Waq) = cOSL|+) +sin =), |, 1) =sin% |+) — cos L |—),

where |[+) = 1/f(|0) + (1)), \— = 1/f(\0) —|1). The optimal
probe state, i.e., the superposition of eigenstate corresponding to
the Iargest and smallest eigenvalue, ie,
w4 (0)) |L/JA1 (0)) + |¢4_1(0))). The optimal QFI for estimat-
|ng parameterA within time duration T can be calculated by using

d. (3) given by

fﬁf) =472, (13)

When we estimate the field frequency w, similarly the eigenvalues
of the partial derlvative of Hamlltonlan over w is + At With eigenstates
Wy ) = siNZ]0) + cos L [1), |, ) = cosL[0) —sin<[1). The
optlmal probe states can  be chosen such  as
lw,,(0) {(pw+> + |, )). The optimal QFI for estimating w
can aIso be caIcuIated by using Eqg. (3) given by

T 2
FO - { / At—(—At)dt} _ AT (14)
0
where At denotes the largest eigenvalue of d,Hsen(t) and — At
denotes the smallest eigenvalue of dwHsen (t). Note that Egs. (13) and
(14) are also known as quantum speed limit (QSL) for time
independent and time-dependent parameter estimation, which is
an alternative description of Heisenberg uncertainty relation. In case
we prepare the optimal probe state (the equal superposition state of
largest and smallest eigenstate of agl:lsen(t)), the ultimate state
|@(T)) will be equal to the probe state. Therefore, the optimal
measurement can be chosen as 1= |y, )(y, | — [p_)(p_| where

W]i) = % (‘wmax(T» + |‘pmin(T)> with |lpmax.min(T)> corresponds to

the maximum and minimum eigenstates of agﬂsen(t) at the
ultimate time slot. Finally, the best precision of parameter estimation
can be obtained. The QFI for estimating A w without quantum
control can also be calculated using the rotation frame method. The
QFI without control is also important for calculating reward value
during training the agent. More details can be seen in Supplemen-
tary Note 2.

We first consider the DP noise, therefore the master equation of
Eq. (20) preserves the following form

dp(t

£ = —ilHsen(t). p(0)] +3[0wp(1)0n — H(1)], (1s)
where T is the dephasing rate for qubit i. In addition, the
dephasing along a general direction is given by n=

(sindcos ¢, sin 9sin ¢, cos9) and 6, =n - 6. By choosing spe-
cific angles, we are able to obtain the pure parallel and transverse
DP noise.

When we consider the SE noise, the evolution can be described
by the Lindblad master equation of Eq. (20)
80— i[Hsen(t).b(1)] + T [6,p(0)6- —1{6-6..p(1)}]

+ T [6-p(1)6, — 1{6.6-,p(D)}],

(16)

where 6, = (01 £i0;)/2 are the ladder operators for spins, I'* are
the qubit SE relaxation rate.

In noisy cases, the optimal QFI can be calculated by optimizing
Eqg. (4). This optimization process will provide optimal control
signals. Since each time slot optimization of the matrix, W involves
semidefinite programming, which in practice the conventional
methods are hard to operate. In this work, the QFI with control
signals in different time slots will be carried out numerically with

Published in partnership with The University of New South Wales

T. Xiao et al.

npj

Eg. (2) such that the reward function can be calculated. The QFI
without control signals is derived by approximately solving the
Lindblad master equation. More calculating details can be seen in
Supplementary Note 3.

Noise-free results

In the context of our quantum sensor, there are two parameters to
be estimated. However, these two parameters are not able to be
estimated simultaneously. In the following, we will estimate A and
w separately to illustrate the performance of our DRL-based
quantum control. We first estimate the time-independent para-
meter A whose similar investigation can be found in ref.?’. The
optimal probe state is p, = |1){1]. In contrast, our DRL algorithm
adds the LSTM cell, and the reward function is more refined in
terms of the controller. The simulation results of estimating A are
shown in Fig. 4, and the control ansatz adopts a time-independent
form. From the Bloch evolution Fig. 4a-c, the final state under
explicit control'® and our DRL control is in a similar position, which
demonstrates DRL control is feasible in producing optimal control
signals. However, in case there is no control, the final state is far
away from the optimal position. More precisely, we have shown
the QFI of the final time slot for each episode in Fig. 4d, we can
see that the QFI is fast approaching the QSL with nearly 100
episodes. In Fig. 4d, Xu's proposal®’ (here is added with LSTM
layer) also showcases a fast convergence. We note that Xu's
proposal is equivalent to our reward function in the time-
independent case since the maximum QFl is in the same order
with the QFI without control. They can be adjusted to be equal by
tuning the hyperparameters n, { in the reward function. However,
the learning curve generated by A3C is not stable compared with
A3C LSTM and the learned QFI drops down to a lower value easily.
The cross-entropy RL (CERL) method (see Supplementary Note 5,
similar to Schuff's proposal?®) is a baseline method that performs
well in Tetris game®. Here we make a comparison with the CERL
method under the same physical system for estimating A. The
results indicate that the CERL method cannot converge into the
QSL. The generated QFl is even lower than the QFI without control
since the initial controls are not small and render the probe state
deviate from the optimal evolution path. The results imply that the
CERL method cannot show competitive performance with A3C
LSTM. Here we do not benchmark the performance with
conventional GRAPE algorithm since GRAPE has been demon-
strated to work well in time-independent algorithm although its
time complexity is relatively higher and the transferability is much
lower?”. We also find that the optimal controls are not unique, i.e.,
our DRL control is not the same as the explicit control but is still
able to obtain the optimal QFl as Fig. 4e shows. Figure 4f
demonstrates our DRL algorithm is capable of learning optimal
control signals for different time durations by choosing appro-
priate hyper-parameters.

We then estimate the time-dependent parameter w. The
optimal probe state is o, = |+)(+|. The control ansatz is adopted
as a linear time correlation form given by Eq. (5). The simulation
results are displayed in Fig. 5. We also plot the Bloch sphere
evolution of the qubit under DRL control, no control, and coherent
control respectively, as Fig. 5a-c shows. The visualization of qubit
evolution presents a direct sense of how the control signals
manipulate the quantum evolution. We can find that the final
qubit positions under our DRL control and optimal coherent
control are the same. Moreover, the QFI value at each final time
slot implies that our DRL control can approach the QSL fast as Fig.
5d shows even in time-dependent cases (200 episodes). However,
the QFI curve with the coherent control form learns relatively slow.
The learning capability of the agent is restricted by the coherent
control form when T is large. One reasonable explanation is that
the coherent control form corresponds to a theoretical result that
assumes the time slot is infinitely small. However, in our

npj Quantum Information (2022) 2



npj

T. Xiao et al.
6
a b
|0> |0> C |0>
¢
[ ° L ([ ]
s Final State
® © 5 e
3 ®
e® L] >
° P e
(]
L
¢ ) [ ] *
ly> o ly>
® ® g °
Final °
° tat °
i1 e ol 2
d e f
0.1 T T T
4
400 ——— 5 g I_!_'—I_L.—. I'Iu 10}
-0.1
300 5 10 15 20
[ —— ASCLSTM 045 T T
- Xu's proposal 1 —_— 2L
o ——A3C S 05 —r L 10
200 = Cross-Entropy RL J S | = [ ¢/
QFI with no control -0.55
\ —==QSL 4 5 10 15 20
— v LI | 01 ¢ A3CLST™M
100 1 . == Max QFI (Quantum Speed Limit)
S = ,__|_|—._, 10’ QFI without control
0 M= [
0 100 200 300 400 500 5 10 15 20 5 10 15 20

Episodes

Times Slots (N=20)

Times Durations (T)

Fig. 4 Simulation results of field amplitude estimation where A =1, w = 1. (a-c) are the Bloch sphere evolution of the qubit where (a) the
quantum state under the DRL-optimized controlled sequences, (b) is none control case and (c) is the coherent optimal control in ref. . The
dark color dot represents the final evolution of the qubit. d displays the learning procedure of QFI varied with each episode under different
proposals where T= 10, At = 0.5 for A3C LSTM, A3C and Xu's proposal, elite ratio is 10% and number of agents is 50 for Cross-Entropy method.
e shows the optimized control signals over all episodes produced by DRL (dark blue) and explicit coherent control strategy (orange). f is result
of QFI with different T under DRL control signals where At =1 for T=20 and At = 0.1 for other T. Error bar is the standard error of the mean.

simulation, the time slot cannot be too small to keep an efficient
training process. Besides, the coherent control form is likely to
limit the imagination of the DRL agent. Also, the optimal control
form is not the only alternative as Fig. 5e shows. The agent can
select any control sequences as long as the maximum QFI can be
acquired. The coherent control form for the DRL agent excludes all
possible control sequences. Thus, this coherent control form will
cause a serious decline in learning speed, especially for a long
evolution time. However, we have shown in Supplementary Note
5 that when T is small, both two control ansatz learn fast and well.
In our protocol, the controls are bounded within the range [ — 4,
4]. In fact, the actions are unlikely beyond such constraints. From
the coherent Hamiltonian control form, the maximum and
minimum control amplitudes are+ 1. However, this optimal
control form has two demerits: (1) require knowing the full
Hamiltonian knowledge, (2) the practical performance is not good
as the purple line shows in Fig. 5(d) of the main text since it limits
the “imagination ability" of the neural agent as we have argued. In
contrast, the simplified linear-time ansatz is beneficial for practical
training performance. The control pulses during the early phase
are suppressed by the function f(t) = t because t is small during
this phase. We consider that the large control in the early phase
will render the evolution of the probe state deviate from the
optimal evolution path ("eigen-path"). In addition, we also
evaluate Xu's proposal, CERL method, and our proposal with no
LSTM. From the simulation results shown in Fig. 5d, we find that
the CERL method and Xu's proposal cannot find the optimal
controls to maximize the final QFl within 600 episodes. Xu's
reward design cannot work well in time-dependent parameter
estimation since the scaling gap between the maximum QFI and
QFIl without control is highly large such that the agent will be
given relatively a good reward even when the QFl is smaller than
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the QSL. We also evaluate the performance of simplified reward
i.e, the difference of two successive QFls. The curves are not
presented in Fig. 5d and details can be found in Supplementary
Note 5 (Reward Comparisons). The CERL method also cannot work
efficiently in our time-dependent parameter estimation. The QFI
learning curve with no LSTM is highly unstable but it can still
approach the QSL, which is similar to the results of estimating A.
LSTM evaluates the performance over the history observations
which can increase the stability of the learning curve. More
discussions about the comparisons can be found in Supplemen-
tary Note 5. In Fig. 5f, we present the DRL-enhanced QFI with
different time durations and the simulation result is well
coincident with the theoretical results.

In order to benchmark the performance of the GRAPE algorithm
in time-dependent parameter estimation, we design two types of
gradient-based quantum control optimization algorithms. The
core component of the GRAPE algorithm is to calculate the
gradient of QFI with respect to control pulses. The two typical
GRAPE algorithms can be summarized as follows:

(1) Discretize the whole time evolution into small pieces 6t, and
each time slot evolution can be regarded as the approx-
imate time-independent evolution. Then, the GRAPE algo-
rithm is applied in each time slot to optimize the control
pulses. The final quantum state in each time slot is viewed
as the next probe state of the evolution. Although it can
work normally by using the results derived in'#, the ideal QFI
realized by this ‘sequential’ GRAPE can only be ~ T° scaling
(detailed demonstrations can be found in Supplementary
Note 5). Here we also assume that the quantum state
manipulated by the GRAPE control is the optimal probe
state for the next time slot evolution. However, this
assumption is highly possible to be not practical.
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(2) Still adopt the essence of the GRAPE algorithm, i.e. calculating
the gradient of the final QFl over the control pulses. The
numerical calculation can be implemented based on the first-
order numerical differential equation, which is also called the
parameter shift rule in numerous variational quantum
algorithms*®4”. The feasibility of this implementation is
beneficial from the geometrical perspective of our derivation
in calculating the upper bound of the QFI. Then we update
the control pulses globally based on the gradients.

Figure 6 a, b display the performance of the first implementation of
GRAPE algorithm and the final maximum QFI is equal to 156. The
ideal QFI controlled by the ‘sequential’ GRAPE algorithm is at most
fOT 4t2dt =4T°. When T=5, the maximum QFl is approximately
equal to 167. Thus, the ‘sequential’ GRAPE algorithm can reach the
suboptimal scaling correctly. We note the overhead of this algorithm
is larger compared with the original implementation in'* since during
each time slot, we should execute the GRAPE independently. If the
time is divided into smaller pieces, the overhead will be larger but the
realized QFI will approach ~ T closer. Thus, we can conclude that this
‘sequential’ GRAPE implementation is a suboptimal algorithm that
cannot find the optimal controls to reach the quantum speed limit.

The second implementation of the GRAPE algorithm is more
naive, but still obeys the essence of the gradient-based principle.
From Fig. 6¢, we see that the QFl increases in the early stage of the
iteration. However, the QFl enters into a stable area (between two
yellow boxes) and does not increase. Then the QFI drops down
suddenly and we guess that the gradient escapes from a position
similar to the saddle point and enters into a much smaller QFI
landscape. We conclude that the scheme of the straightforward
gradient updating cannot work well in time-dependent parameter

npj Quantum Information (2022) 2
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estimation. But it becomes equivalent to the first case of
optimization when the parameter is time-independent except
that the gradient is numerical, not analytical.

Based on the simulation results, we find that our proposal
showcases the competitive performance over Xu's proposal in
estimating time-independent parameter estimation. More signifi-
cantly, in time-dependent parameter estimation, our proposed
protocol is still sample-efficient and optimal in approaching the
QSL but previous RL methods and the GRAPE algorithm cannot
optimize control pulses to increasingly approach the QSL.

Noisy dynamics results

In noise-free case, we have evaluated the performance of
conventional GRAPE and other previous RL methods to
clarify the superiority of our protocol. In noisy dynamics, we only
conduct the simulation of our proposal for simplicity. We firstly
estimate the field amplitude A under two noisy dynamics
respectively. In noisy dynamics, the optimal probe state of
estimating A and w is the same with the noise-free case. In DP
noise, we set d = 11/4, ¢» = 0 which indicates the dephasing are not
parallel or vertical. The simulation outcomes are shown in Fig.
7a-c. We can see that the noisy QFI without control shrinks quickly
compared to QFI with DRL control. Moreover, the convergence of
DRL is highly fast, demonstrating our linear time-correlated
control form is efficient in manipulating quantum states. It is
important to remark that the noisy QFI also reaches QSL under
DRL control rather than a reduced QFI®. It can be clarified that
quantum control signals compensate for the dissipation of the
system and render the qubit remains along the predefined “eigen-
path”. The control pulses are displayed in Fig. 7b, where we do not
present the coherent control pulses as they are not optimal in
noisy dynamics although they might be useful in enhancing the
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precision of parameter estimation. In principle, any quantum
control signals might be beneficial since they can to some extent
protect the system from dissipation. This clarification can be
validated from Fig. 7a where random control signals generated by
DRL can obtain a higher QFI than the case with no control.
However, random signals cannot saturate the QSL and still require
the training procedure. In Fig. 7c, the QFl of different time
durations controlled by DRL can perfectly saturate QSL. In
contrast, the QFI without control decreases rapidly with the
increase of evolution time.

When considering the SE noise in estimating A, the results are
displayed in Fig. 7d-f. We notice that the final QFI does not
entirely saturate the QSL but the gap can be ignored in case more
training episodes are given. The effect of SE noise is stronger than
DP noise in terms of decelerating DRL training. The set of QFI
values with different time duration are also presented in Fig. 7f,
where we can find that the DRL-controlled QFI can perfectly
saturate the QSL compared with the QFI with no control.

When estimating w under DP noise, the results are displayed in
Fig. 8a—c. The little gap between QSL and our QFI implies the DP
noise effect cannot be eliminated. In contrast, QFI without control
decreases dramatically compared to the noise-free case. Similar
results can be seen under SE noise. It demonstrates that the time-
dependent parameter estimation is more sensitive than the time-
independent case. We note that our DRL agent can saturate QSL
with small T under noisy dynamics, which can be verified in Fig.
8c-f. Besides, we could find the SE noise is harder to be overcome
than DP noise. More significantly, these results demonstrate that
the potential capabilities of DRL in quantum control as which can
learn the noise feature and generate proper signals to eliminate
the noise effect. We also validate the performance of the trivial
control ansatz in SE noise (see Supplementary Note 5), the
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learning procedure is not stable and its QFl does not saturate the
QSL with T=5. As a consequence, we can conclude that the
linear-time-correlated quantum control can accelerate the con-
vergence speed of DRL in the time-dependent parameter
estimation. We speculate that even if LSTM neurons are added
to our network®', the network still seems unable to capture the
time dependence of quantum control. We infer that in the time-
independent evolution, the time correlation of quantum control
can be well solved by simple LSTM neurons. However, in the
evolution of a time-dependent quantum system, there is a
“double time-dependent relationship” in quantum control, which
requires a large number of training samples to capture for the
concise LSTM unit, thus reducing the training efficiency of the
network. Therefore, we try to add a prior linear-time coupling to
the quantum control signals. The behind physical intuition of why
this linear-time relation is effective stems from the reduction of
the noncommutativity of the Hamiltonian. Similar to human
learning, when agents are told the direction and purpose of the
learning process, they can give full play to its learning initiative.
On the contrary, the overly complex prior information of time
relation will limit the active learning process of agents leading to a
longer time convergence. The protocol of deep learning with
certain physical prior information is well studied in the theory and
experiment of quantum control in ref. %,

Transferability analysis

The transferability of the parameter estimation algorithm can
measure its efficiency and robustness?’. Here, we analyze the
transferability of our DRLQS protocol in estimating A and w only with
noisy conditions as the noise-free conditions are not such realistic in
practical quantum parameter estimation of which exactly conflicts
with the intention of transferability analysis. From Fig. 9a, b, the QFI
nearly keeps invariant to saturate QSL when A shifts from [0, 4] both
for DP and SE noise. These simulation results are in line with our
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expectations since the amplitude is a linear parameter in our
Hamiltonian. The linear relation has no influence on neural networks
in generating optimal control signals because the network is also
the combination of all linear relationships. More generally speaking,
there are a large amount of linear-relation time-independent
parameters in quantum sensing that can behave a highly impressive
transferability by using our DRLQS protocol.

When discussing the transferability of the frequency w, the
results are not notably impressive compared to the time-
independent case. Figure 9¢, d displays the QFI with different
shifts from the true parameter. When w has a + 0.1 deviation from
wo =1, the performance (QFI value) still stays at a high level. The
QFI value decreases relatively large when the deviation is greater
than 0.3. We note that when w=0.5, the QFI value occurs to
rebound. The transferability of the time-dependent case is not as
impressive as the time-independent case. There are two
possibilities: (1) the parameter w does not own a linear-relation
with the Hamiltonian and (2) a large deviation of frequency will
lead to the huge difference of the evolution. While the input of the
DRL algorithm varies greatly, the control signals will not be
effective in controlling quantum evolution. However, DRL is not
entirely useless or causes a much smaller QFI value compared with
noisy QFI without control. In reality, we can also use the DRLQS
protocol to roughly estimate the shifted time-dependent para-
meter although sometimes we cannot obtain the optimal QFI in
case of large parameter deviation. This result also verifies that the
time-dependent parameter is highly sensitive to noise that may
lead to a large shift of parameters. Thus, the transferability of time-
dependent parameter estimation in quantum sensing should be
paid much more attention.

DISCUSSION

In summary, we have systematically explored the capability of
using DRL to generate robust and optimal control signals for
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quantum sensing, especially in time-dependent parameter esti-
mation. We have presented a new theoretical derivation of QFI
under unitary and open evolution from a geometrical perspective.
We have also offered a detailed calculation of QFI without control
in the open dynamics through approximately solving the Lindblad
master equation. The derived bounds and the noisy QFI without
control are useful for calculating the reward function which
directly determines DRL's performance in generating quantum
control signals. The main challenge of DRL for quantum parameter
estimation is low efficiency which has been greatly improved by
designing a time-correlated control ansatz and a notably
instructive reward function. Besides, we add the LSTMCell into
the DRL algorithm to learn the relations of each successive
quantum state to further enhance the stability of the learning
process. By conducting plenty of simulations, our results
demonstrate that DRL is capable of controlling quantum sensors
perfectly and the QSL of the time-dependent and time-
independent cases can be saturated both for noise-free and noisy
dynamics. More significantly, our trained DRL algorithm show-
cases the transferability in controlling quantum sensors when the
actual parameter deviates from a broad range of true parameters,
especially for time-independent parameter estimation. Compared
to previous RL proposals and conventional GRAPE algorithm, our
DRLQS protocol exhibits better performance in terms of univers-
ality, sample efficiency, and the ability to approach the QSL,
particularly in time-dependent parameter estimation.

We remark that the DRL agent is trained based on the full
density matrix elements. This assumption requires the state
tomography technique in practical quantum sensors. Recently,
the classical shadow*® of quantum state may be beneficial for
obviating this issue. The classical shadow does not require the full
tomography of quantum state and can also be applied to calculate
QFI®°. Therefore, the DRL agent may be fed with the classical
shadow to train the agent in practice. In addition, the generative
neural quantum state®' can also be incorporated into the neural
agent to alleviate the issue by only using a polynomial number of
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measurements. These techniques help deal with the density
matrix assumption in practice. When the agent being well-trained,
it can be referred to as the “coarse-grained" pulses which are
highly instructive in improving the precision of the quantum
sensor. Then we can calibrate them in a closed-loop based on the
practical measurement through a simple optimization algorithm
such as the Nelder-Mead method®?>3, Also, we can adopt the
teacher-student network to make the well-trained agent work in
practical sensing. Let the well-trained agent (policy networks) as
the teacher network, and the simplified feedforward networks fed
with the practical measurements as the student network. Then the
student network does not need the full density matrix and
generates the control pulses with the help of the teacher
networks®®. The proposed protocol can also be applied in a
quantum sensor network combined with the hybrid quantum-
classical architecture>*>>,

In addition, the DRLQS protocol can be easily extended to multi-
qubit dynamics by designing information complete control
Hamiltonian and keeping the full density matrix states and reward
function unchanged. Therefore, our investigation suggests that
DRL-based quantum control is highly universal and achieves the
state-of-the-art performance in practical time-dependent quan-
tum sensing protocols compared to conventional methods and
previous RL works. In future work, we will concentrate on
multiparameter estimation in time-dependent quantum systems
to further exploit the capabilities of the DRLQS protocol.

METHODS
Characterizing quantum evolution for quantum sensors

For noise-free case, the time evolution operator can be represented with
unitary matrices given interrogation time T,

-
U(O — T) = Texp{fi/ l:lsen(t)dt}, 17)
JO
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where 7 denotes time-order operator. However, this integration is
complex and it is extremely hard to calculate the ultimate analytical
solution in a time-dependent Hamiltonian evolution. Generally, we discrete
the continuous-time evolution into small timepieces At = T/N. When At is
small enough, the evolution can be regarded as time-independent, i.e.,

U(kat — (k -+ 1)At) = exp{—ifisen (kAt)At}, (18)

where k€ {0,1---,N — 1} denotes the time slot during the evolution. The
potential assumption here is that the quantum control is able to operate
the quantum sensor instantaneously. For pure state, the unitary time
evolution between kth and (k + 1)th time slot is given by

l((k+1)At)) = UkAt — (k + 1)At)|w(kAt))

. (19)
= exp{—iHsen (kAt)At}|p(kAt)).

For noisy evolution, we use Lindblad master equation to characterize the
dynamics given by

do(t) ..
50 = L)

where p denotes the density matrix of the quantum state in the system,
L[] is a superoperator called Lindbladian given by®>°

Lifo] = —ilfisen(t), o + >~ m(O)(A(6) 0 &) (6) = 1/24A] (DA(0), o}),

(20)

where i denotes the number of noisy quantum channels, A;(t) denotes
noise operators. We assume that the quantum Hamiltonian controls are
capable of operating the qubit with unknown parameters. The coupling
spin qubit and the environment noise operators will not be affected by the
control fields'"'*. As a result, the time evolution of the quantum sensor
under noisy quantum environment is given by

B(T) = Texp{(/;ﬁtdt}[)(o).

We have assumed that h=1. In time-dependent Markovian evolution, it
turns out that n; = 0V i, t. However, if quite a few n; < 0 for some time slots,
the associated dynamics would be non-Markovian which is beyond the
scope of our work. Analogously, to implement the control fields to the
coupling system, it is still required to discretize the continuous-time into N
small time slots. Therefore, the evolution of the density matrix from kAt to
(k+ 1)At is given by p((k + 1)At) = exp{LiAt}p(kAt), where L denotes
the Lindbladian at kth time slot. Thus, the quantum controls can be applied
to each time slot as constants to steer the evolution to achieve the optimal
estimation precision.

(21)

Neural network and software specifications

Our DRL is composed of five neural layers and each layer is followed by a
Leaky ReLU unit to render activation. The dimension of the input units is
eight, which is determined by the full tomography of a single qubit. The
dimension of output units is three, which acts as three control signals for
the quantum sensor. The software is coded by python language and the
deep learning package Pytorch is used to construct and train our neural
networks. The quantum evolution is simulated in Qutip environment of
which is a prominent integrated package used for quantum mechanics.
Also, we validate the performance of traditional methods such as GRAPE
and CRAB algorithms in Qutip. We find that these conventional algorithms
are easily stuck into the local minima especially in time-dependent
quantum evolution even in naive implementations. Since the benchmark-
ing comparison requires the gradient optimization of QFI for control
signals which is highly complex and beyond the scope of our work. We
mainly aim to demonstrate that conventional algorithms are not stable
and universal which are dependent on the specific mathematical
derivations. These shortcomings limit their availability. However, DRL can
exactly overcome these shortcomings. Thus, the superiority of DRLQS is
demonstrated. More quantitive studies of conventional algorithms on
generating quantum controls can be found in Supplementary Note 5. The
specific model parameters for neural network and qubit simulations can be
found in Supplementary Note 6.
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